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Abstract

Solving time-dependent Partial Differential Equations (PDEs) using a densely
discretized spatial domain is a fundamental problem in various scientific and engi-
neering disciplines, including modeling climate phenomena and fluid dynamics.
However, performing these computations directly in the physical space often incurs
significant computational costs. To address this issue, several neural surrogate
models have been developed that operate in a compressed latent space to solve the
PDE. While these approaches reduce computational complexity, they often use
Transformer-based attention mechanisms to handle irregularly sampled domains,
resulting in increased memory consumption. In contrast, convolutional neural
networks allow memory-efficient encoding and decoding but are limited to regular
discretizations. Motivated by these considerations, we propose CALM-PDE, a
model class that efficiently solves arbitrarily discretized PDEs in a compressed
latent space. We introduce a novel continuous convolution-based encoder-decoder
architecture that uses an epsilon-neighborhood-constrained kernel and learns to
apply the convolution operator to adaptive and optimized query points. We demon-
strate the effectiveness of CALM-PDE on a diverse set of PDEs with both regularly
and irregularly sampled spatial domains. CALM-PDE is competitive with or out-
performs existing baseline methods while offering significant improvements in
memory and inference time efficiency compared to Transformer-based methods.

1 Introduction

Many scientific problems, such as climate modeling and fluid mechanics, rely on simulating physical
systems, often involving solving spatio-temporal Partial Differential Equations (PDEs). In recent
years, Machine Learning (ML) models have been successfully used to approximate the solution
of PDEs (Lu et al., 2019; Li et al., 2020; Brandstetter et al., 2022; Chen & Wu, 2024), offering
several advantages over classical numerical PDE solvers. For instance, ML models offer a data-driven
approach that is applicable even if the underlying physics is (partially) unknown, can generate
solutions more efficiently (Li et al., 2021b; Tompson et al., 2017), and are inherently differentiable
by design, which is often not the case for numerical solvers (Takamoto et al., 2022).

Practical applications usually require a densely discretized spatial domain (2, leading to more than
1M spatial points per timestep. For example, ML-based weather forecasting models typically operate
on a spatial domain of 720 x 1440 points or pixels (Pathak et al., 2022). Learning the solution of
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Figure 1: CALM-PDE encodes the arbitrarily discretized PDE solution into a fixed latent space R!*¢,
computes the dynamics in the latent space, and decodes the solution for the given query points.

a time-dependent PDE directly in the physical domain 2 rather than in a compressed latent space
can result in high memory and computational costs. Consequently, several architectures for reduced-
order PDE-solving have been introduced (Wu et al., 2022; Alkin et al., 2024; Serrano et al., 2024,
Wang & Wang, 2024). These models adopt the encode-process-decode paradigm (Sanchez-Gonzalez
et al., 2020), wherein the physical domain is encoded into a compact latent space, its dynamics are
evolved via a processor, and the output is decoded back to the original domain. Many real-world
applications involve geometries with irregularly sampled spatial domains, necessitating discretization-
agnostic models to effectively process such data. Unfortunately, existing approaches mainly utilize
Convolutional Neural Networks (CNNs), which necessitate a regular spatial discretization (Wu et al.,
2022), or memory-intensive attention-based mechanisms (Vaswani et al., 2017) to enable the encoding
and decoding of arbitrarily discretized spatial domains (Alkin et al., 2024; Serrano et al., 2024; Wang
& Wang, 2024).

Motivated by these considerations, we introduce CALM-PDE (Continuous and Adaptive Convolutions
for Latent Space Modeling of Time-dependent PDEs), an architecture featuring a novel encoder
and decoder for reduced-order modeling of arbitrarily discretized PDEs. CALM-PDE compresses
the spatial domain into a fixed latent representation with an encoder that builds on parametric
continuous convolutional neural networks (Wang et al., 2018) and adaptively learns where to apply
the convolution operator (learnable query points). This enables CALM-PDE to selectively sample
more densely in important regions of the spatial domain, such as near complex solid boundaries,
while allocating fewer points to smoother regions. Furthermore, we incorporate a locality inductive
bias into the kernel function, consisting of an epsilon neighborhood and a distance-weighting, to
enhance computational efficiency and to facilitate the learning of local patterns. An autoregressive
model computes the temporal evolution completely in the latent space (latent time-stepping), which
can be interpreted as Neural Ordinary Differential Equation (NODE; Chen et al. (2018)). The
discretization-agnostic decoder, which builds on similar layers as the encoder, enables querying the
output solution at arbitrary spatial locations. An overview of the CALM-PDE framework is shown in
Figure 1.

We demonstrate the effectiveness of our approach through a broad set of experiments, solving Initial
Value Problems (IVPs) in fluid dynamics with regularly and irregularly sampled spatial domains.

Our main contributions are summarized as follows:

* We propose a model featuring a novel encoder and decoder that solves arbitrarily discretized
PDEs in a fixed latent space.

* A novel encoder-decoder approach based on continuous convolutions that learns where to
apply the convolution operation (query points) to effectively sample the spatial domain.

* A kernel function with a locality inductive bias (epsilon neighborhood and distance weight-
ing) to enhance efficiency and encourage learning local patterns, and a modulation that
allows query points with similar positions to consider different spatial features.



2 Problem Definition

In the following section, we formally introduce the problem of solving PDEs. We refer to Appendix B
for information about the dataset and training objective to train neural surrogates for PDE-solving.

Partial Differential Equations. Similar to Brandstetter et al. (2022), we consider time-dependent
PDEs over the time dimension ¢ € [0, 7] and multiple spatial dimensions w = (7,7, z,...)" € Q C
RN« where N, denotes the spatial dimension of the PDE. Thus, a PDE is defined as

Ou = F(t,w,u,0uu,dyuu, .. .), (t,w) € 0,T] x Q
u(0,w) = u’(w) = u’, w e (1
Blu)(t,w) =0, (t,w) € [0,T] x 0

where u : [0, 7] x Q — R¢ represents the solution function of the PDE that satisfies the Initial
Condition (IC) u(0, w) for ¢ = 0 and the boundary conditions B[u](t, w) if w is on the boundary OS2
of the domain 2. N, denotes the number of output channels or field variables of the PDE. Solving a
PDE involves computing (an approximation of) the function u that satisfies Equation (1).

3 Background and Preliminaries

We briefly introduce deep parametric continuous convolutional neural networks (Wang et al., 2018).
For comparison, discrete convolution and discrete CNNs are explained in Appendix C.

Deep Parametric Continuous Convolutlonal Neural Networks Let f,k : R — R be two real-
valued functions and a € R, then (f * =%, (a — a)da is the convolution of f and
k. Wang et al. (2018) propose to appr0x1mate the functlon k which is the learnable kernel, with a
Multi-Layer Perceptron (MLP) and the integral with Monte Carlo integration, which yields

N
/ f(a) - k(a — a)da ~ }VZ flam) - K - an) @

where N input points «, are sampled from the domain. The kernel function % is constructed using
an MLP kg (a — «) which spans the entire domain and is parametrized by a finite vector 6 containing
the weights and biases. Similar to discrete convolutional layers, a deep parametric continuous
convolutional layer consists of multiple filter kernels for NV; input channels, which leads to

( ZZfz an : zo _an) 3)

i=1n=1

where o denotes the 0" output channel. The output is computed for all output or query points a;
and input points o, with the function value f(«,). We denote the set of output or query points as
A = {a;}}_, and the set of input points as A = {a,, })_,. The number of output points A does not
necessarlly have to be the same as the input points A, Wthh allows the continuous convolutional
layer to reduce or compress information (cf., downsampling) or to increase the number of points (cf.
upsampling). Similar to discrete CNNs, the receptive field for each query point can be limited to A/
points such that

(f*k) Z Z fz am : zo( _am) (4)

1=1 m€ERF(ay)

where RF(a;) outputs the indices for the M points that lie in the receptive field of a query point a;.
The receptive field can be constructed by only considering the K-nearest neighbors of the point a; or
by considering the points in an epsilon neighborhood. Setting M := N means that the receptive field
is not limited. Appendix D shows a visualization of continuous convolution. To generalize the layer
from 1D to d-D, only the input dimension of the kernel function has to be adapted.
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Figure 2: Encode-process-decode architecture of CALM-PDE. The encoder reduces the spatial
dimension and increases the channel dimension. It is based on multiple CALM layers, which perform
continuous convolution on learnable query points constrained to an epsilon neighborhood.

4 Method

First, we introduce the CALM layer, which enhances continuous convolutional layers and acts
as a building block for the architecture. Thereafter, we describe the encoder, processor for latent
time-stepping, and decoder of the CALM-PDE model. Finally, we elaborate on the training strategy.

4.1 Learning Continuous Convolutions with Adaptive Query Points

We follow the formulation of a deep parametric continuous convolutional layer in Equation (4)
introduced by Wang et al. (2018) and propose the following improvements for encoding and decoding
PDE solutions, which yield the CALM layer used for the encoder and decoder.

Parametrization of Kernel Function. We use a 2-layer MLP that takes a — « as input to parameter-
ize the continuous kernel function &; ,(a@ — ). The translation ¢ — « is encoded with Random Fourier
Features (RFF; Li et al. (2021a)) to allow the kernel function to be less smooth (i.e., a small change in
the input translation can lead to large output changes in the weight) which could be beneficial for
high-frequency content where slightly different translation vectors should result in a large difference.
Thus, the parametrized kernel function is given as k; ,(a — @) = MLP (RFF(a — a))i , Where 7 is the

it" input channel and o the o*" output channel.

Epsilon Neighborhood and Distance Weighting. We limit the receptive field by considering only
the input points «,, within an epsilon neighborhood of the query point a;, similar to Wang et al.
(2018). The epsilon is dynamically computed by taking the p** percentile of the Euclidean distances
from a; to all input points ¢;, similar to the mechanism proposed by Chen & Wu (2024). Thus, the
hyperparameter p controls the size of the epsilon neighborhood or receptive field in a relative fashion.
Consequently, the size of the epsilon neighborhood varies depending on how densely the spatial
points are sampled. In densely sampled regions, the epsilon neighborhood is smaller compared to
sparsely sampled regions, with a larger epsilon neighborhood. We denote the receptive field based on
this mechanism as RF(a;) = {a,, € A | |laj — ay|| < €(a;)} where €(a;) is the p" percentile of
the Euclidean distances from a; to all input points «,, € A. Furthermore, we introduce a distance
weighting to the kernel function k. We use sof tmax with temperature 7', similar to a Gaussian kernel,
to represent the distances normalized to [0, 1] within the epsilon neighborhood, which yields
exp (* % )

ki,o(a — o) = MLP(RFF(a — a)), oo P —min(a)

= exp (i)

o ERF(a)

&)



for the kernel function with min(a) = miI} : lla — o |*. This emphasizes input points closer
«;ERF(a

to the query point within the epsilon neighborhood. The softmax also serves as a normalization
factor for the Monte Carlo integration. The combination of the limited receptive field and distance
weighting is a locality inductive bias, which is helpful because local patterns are often more important
in PDE-solving (Chen & Wu, 2024). Part (i) of Figure 2 shows the receptive field and the distance
weighting within the receptive field.

Learnable Query Points. In continuous convolution, the input and output points do not have to be
the same. This means that downsampling and upsampling are inherently supported, in contrast to
CNNs, where strided convolution and variants are needed for downsampling. This allows us to reduce
the number of points for encoding and to increase the number of points for decoding. We propose to
make the query points for both encoding and decoding learnable. This allows the model to sample
more densely in regions with important characteristics (e.g., a region that contains turbulence or an
obstacle). The query positions are initially uniformly sampled from the domain 2. We assume that
Q is normalized in a range [0, 1) which yields A = {a;}J<, = {(x;,y;)}/<, with 25, y; ~ U(0,1)
for the initialization of the query points in 2D. Alternatively, the query points can be initialized by
sampling K query points from the underlying mesh. We call this initialization method of the query
points as “mesh prior”. During the training, the query points are moved with a variant of stochastic
gradient descent such as Adam (Kingma & Ba, 2017) as (z;,y;) " < (z;,y;)" — n% Vg
where 7 denotes the learning rate and Lg the cost function. The kernel function provides feedback in
which direction to move, and the softmax function in Equation (5) avoids hard cuts caused by the
learnable query points and epsilon neighborhood by weighting the input points on the boundary of
the epsilon neighborhood lower. The learnable query points are illustrated in part (ii) of Figure 2.

Kernel Modulation. We allow each query point to have a customized filter kernel (i.e., different
kernel weights for the same or similar translation vectors). This way, there can be multiple query
points at the same location, each paying attention to different features. This could be helpful for
simulations that contain a geometry or obstacles (e.g., many query points close to the obstacle, but
each query learns different characteristics). The kernel modulation is done by scaling and shifting the
intermediate representations (Perez et al., 2018) of the MLP in Equation (5). Each query point has a
location as well as scaling and shifting parameters. We denote the modulated kernel function as

2,0

kio(a — ) = <W2 : a((w1 “RFF(a — @) + by) O, + 5a) n b2) ©)

where we exclude the distance weighting for the sake of simplicity. W denotes a weight matrix with
a suitable shape, o is a non-linearity, and =, 3, are the scale and shift for query point a, respectively.
Part (iii) of Figure 2 demonstrates that the kernel modulation enables query points, despite having
identical receptive fields and translation vectors of input points, to output different kernel weights.

Periodic Boundaries. PDE solutions often involve periodic boundary conditions. Thus, we adapt
the translation vector a — « to account for periodic boundaries for the kernel function if the solution
has a periodic boundary.

CALM Layer. A non-linearity follows the continuous convolution operation, which completes the
CALM layer. Hence, the CALM layer with the previously defined kernel function k is given as

N;

AN = LR (Pl =0(X 5 filan) hiofas-an)+b,) )

=1 meERF(a;)

where f and A refers to the sampled input and A to the query points. The query points are learnable,
except for the final decoding layer, where the query points correspond to the queried spatial points. o
corresponds to a suitable non-linearity such as ReLU or GELU, and b, is the bias for the 0" channel.

4.2 Neural Architecture for Discretization-Agnostic Reduced-Order PDE-Solving

The architecture of the CALM-PDE model follows an encode-process-decode paradigm (Sanchez-
Gonzalez et al., 2020). Figure 2 shows an overview of the CALM-PDE architecture.



Encoder. We stack multiple CALM layers together for the encoder. Each layer increases the
number of channels (the number of output channels is larger than the number of input channels,
i.e., N, > N;) and reduces the number of (spatial) points (the number of query points is much
smaller than the number of input points, i.e., |A| < |.A|). This design is similar to CNN-based
encoders, which reduce the spatial size of the feature maps and increase the number of feature maps
to encourage hierarchical feature learning. The output of the encoder ey is a set of latent tokens Z*
for time ¢ and their corresponding positions P. We denote the encoder as

col{u n) Mo {n}2on) = (1ot ()P fon Bl A At Ab), A ) ®)
.=ZtcRIxd \:7;

where k denotes the number of layers, [ is a CALM layer, {u’(w,)})_; describes the solution
function at time ¢ evaluated at the locations {w,, })__,. Z* and P are the final representations of the
input solution. Note that the positions P are learned, fixed after the training, and independent of u?.

Processor for Latent Time-Stepping. The model evolves the dynamics within the latent space
through an autoregressive prediction. In particular, the processor 1y predicts the difference from the
latent tokens Z* at time ¢ to the future latent tokens Z'+2t = At - ¢y(Z*, P) + Z*. To obtain the
solution for a timestep ¢ + n - At, the processor is applied n times iteratively to completely evolve
the dynamics in the latent space (latent time-stepping). We opt for a Transformer model (Vaswani
et al., 2017) since attention allows the processor to capture global information from local tokens,
and latent tokens can dynamically interact with each other. For instance, the processor can learn the
dynamics of a moving vortex in a CFD simulation by adapting the latent tokens on the path of the
moving vortex and pushing it from one position to another. We include the positional information of
the latent tokens into self-attention using the Euclidean distance, similar to Chen & Wu (2024). We
refer to Appendix E.2 for details. Using the processor to predict the residual and scaling it with the
temporal resolution At can be understood as solving a NODE parametrized by vy, which is given
as Z(t+ At) = Z(t) + fttJrAt Yo (Z (1), P)dr with an explicit Euler solver. Thus, the processor
implicitly defines a vector field that could be integrated with solvers more advanced than the explicit
Euler method, such as a Runge-Kutta solver.

Decoder. The decoder dy is also based on multiple CALM layers that reduce the number of channels
and increase the number of spatial points. The decoder takes the latent tokens Z?, positions P, and a

set of query points {w; } é\’;l as input and outputs the solution in the physical space for the queried
points. The decoder with & layers is given as

dg(Z*, P, {wj};-v:/l) =l (lk71(~ L W(ZY P AY), Aj—a, Ak—1), Akt {wj}év_/1>

= {u' (@)}

which maps from the latent tokens Z* and their position P to the physical domain for the given set of
queried spatial points {w; } §V=/1.

€))

4.3 Training Procedure

We opt for an end-to-end training procedure because we found it to be more stable compared to a
two-stage training procedure that first trains the encoder-decoder using a self-reconstruction loss and,
after that, trains the processor to learn the latent dynamics (Yin et al., 2023; Serrano et al., 2024).
The end-to-end training consists of a curriculum strategy that slowly increases the trajectory length
during training (Li et al., 2023a) and a randomized starting points strategy (Brandstetter et al., 2022;
Hagnberger et al., 2024) that randomly samples ICs along the trajectory. Besides future timesteps,
the model predicts the IC, which we incorporate as self-reconstruction into the loss function.

5 Related Work

We give an overview of surrogate models, introduce continuous convolutional neural networks, and
present reduced-order PDE-solving models. We refer to Appendix F for details on related work.



PDE Solving with Neural Surrogate Models. Neural surrogate models are increasingly used for
approximating the solutions of PDEs (Lu et al., 2019; Li et al., 2021b, 2020; Cao, 2021; Li et al.,
2023a; Hagnberger et al., 2024). Neural operators (Kovachki et al., 2023) constitute an important
category, and prevalent neural operator models include the Graph Neural Operator (GNO; Li et al.
(2020)) based on message passing (Gilmer et al., 2017) and the Fourier Neural Operator (FNO; Li
et al. (2021b)), which leverages Fourier transforms, alongside its various variants. Transformers are
also increasingly employed for surrogate modeling, typically using the attention mechanism on the
spatial dimension of the PDE (Cao, 2021; Li et al., 2023a; Hao et al., 2023; Li et al., 2023b). Another
distinct group of models, neural fields, is particularly well-suited for solving PDEs due to their ability
to represent spatial functions. These models are gaining traction in PDE-solving applications (Yin
et al., 2023; Chen et al., 2023; Serrano et al., 2023; Hagnberger et al., 2024; Knigge et al., 2024).

Point Clouds and Continuous Convolution. Solving fluid dynamics problems can be interpreted
as a dense prediction problem for point clouds. Models that apply convolution to point clouds either
use a discrete filter and extend it to a continuous domain via interpolation or binning (Hua et al., 2018)
or parameterize the filter with a continuous function (Wang et al., 2018; Xu et al., 2018; Wu et al.,
2019). These models were mainly introduced for the segmentation of point clouds. Ummenhofer
et al. (2019) adapt continuous convolution to simulate Lagrangian fluids, where the model predicts
the movement of the particles. In contrast to our method, their model parametrizes the filters in
a discrete fashion and the weights are interpolated to extend it to a continuous domain, while our
approach follows the method proposed by Wang et al. (2018) and uses an MLP to parametrize the
filters. Winchenbach & Thuerey (2024) define the kernel function using separable basis functions and
employ the Fourier series as the basis with even and odd symmetry for particle-based simulations.

Neural Networks for Reduced-Order PDE-Solving. Neural networks for reduced-order PDE-
solving usually compress the spatial domain into a smaller space and solve the dynamics in that
smaller space. LE-PDE (Wu et al., 2022) employs CNNs for encoding and decoding and an MLP to
compute the dynamics. PIT (Chen & Wu, 2024) compresses the spatial domain into a predefined
latent grid with position attention that computes attention weights based on the Euclidean distance.
UPT (Alkin et al., 2024) supports simulations in the Eulerian and Lagrangian representations and
employs a hierarchical structure to encode the input. The encoder uses message passing to aggregate
information in super nodes, and a Transformer and Perceiver (Jaegle et al., 2021) to further distill
the information into latent tokens. A Transformer computes the dynamics in the latent space, and
the Perceiver-based decoder decodes the processed latent tokens. AROMA (Serrano et al., 2024)
utilizes cross-attention and learnable query tokens to distill information from the spatial input into
query tokens. It uses denoising diffusion to map from one latent representation to the subsequent
latent representation by denoising the latent tokens. LNO (Wang & Wang, 2024) encodes the spatial
input into a latent space by computing cross-attention between the input positions and learnable query
positions in a high-dimensional space. Since the query positions in LNO are learnable, they simplify
the attention computation, which makes the query positions inaccessible. They use a Transformer to
compute the next timestep in the latent space, and a decoder decodes the latent tokens back to the
physical space.

6 Experiments and Evaluation

We focus on solving IVPs and evaluate the performance of CALM-PDE on a set of various PDEs in
fluid dynamics. The experiments are designed to answer the following Research Questions (RQ):
e RQ1: How effective is CALM-PDE compared to the state-of-the-art methods for regularly sampled
spatial points? e RQ2: How well does CALM-PDE perform on irregularly sampled points? e RQ3:
Does solving the dynamics in a compressed latent space yield a lower memory consumption and
provide a speedup? ¢ RQ4: Where does the model place the query points and do they learn local or
global information? e RQS: Which components contribute to the model’s performance?

6.1 Datasets

For regularly sampled spatial domains, we conduct experiments on the 1D Burgers’ equation dataset
from PDEBench (Takamoto et al., 2022), the 2D Navier-Stokes equation datasets introduced by Li
et al. (2021b), and the 3D compressible Navier-Stokes dataset of Takamoto et al. (2022). The 2D



Table 1: Rel. L2 errors of models trained and tested on regular meshes. Values in parentheses indicate
the percentage deviation to CALM-PDE and underlined values indicate the second-best errors.

Relative L2 Error (})
Model 1D Burgers’ 2D Navier-Stokes 2D Navier-Stokes 3D Navier-Stokes
v=1e3 v=1le* v=1e" n=C_=1e8
FNO 0.0358 (+46%) 0.0811 (+169%) 0.0912 (-12%) 0.6898 (+2%)

F-FNO 0.0362 (+47%)  0.0863 (+187%)  0.0844 (-18%) 0.6466 (-4%)
OFormer  0.0575 (+134%)  0.0380 (+26%) 0.1938 (+88%) 0.6719 (-1%)

PIT 0.1209 (+391%)  0.0467 (+55%) 0.1633 (+58%) 0.7423 (+10%)
LNO 0.0309 (+26%) 0.0384 (+28%) 0.0789 (-24%) 0.7063 (+4%)
AROMA 0.0937 (+281%)  0.1061 (+252%) 0.1931 (+87%) 1.3328 (+97%)
CALM-PDE  0.0246 0.0301 0.1033 0.6761

Euler equation with an airfoil geometry and the incompressible Navier-Stokes equation with cylinder
geometries datasets from Pfaff et al. (2020) are used to evaluate the models on irregularly sampled
domains. We refer to Appendix H for additional details on the datasets.

6.2 Baseline Models

We compare the CALM-PDE model against FNO (Li et al., 2021b) and Geo-FNO (Li et al., 2023c¢) for
irregularly sampled meshes, F-FNO (Tran et al., 2023), OFormer (Li et al., 2023a), PIT (Chen & Wu,
2024), LNO (Wang & Wang, 2024), and AROMA (Serrano et al., 2024). We train the autoregressive
models (FNO, F-FNO, Geo-FNO, and PIT) with a curriculum strategy that slowly increases the
trajectory length, which improves the error compared to training with a full autoregressive rollout (see
Appendix I). OFormer uses a similar strategy, LNO a one-step training, and AROMA a denoising
diffusion training to learn the temporal dynamics of the PDE as proposed by the authors.

6.3 Results

We report the mean values and percentage deviations of the relative L2 error of multiple runs with
different initializations. We opt for the relative L2 error as an evaluation metric because it weights
channels with small and large magnitudes equally and does not ignore time-dependent decay effects
like in the 1D Burgers’ equation. We refer to Appendix N.1 for the full results with standard deviations
and Appendix N.2 for qualitative results.

RQ1. We train and evaluate the models on regularly sampled spatial domains. Regularly sampled
spatial domains refer to meshes with equidistant nodes or points. We select datasets that span the
entire spatial dimension from 1D to 3D. Table 1 shows the relative L2 errors of the baselines and
CALM-PDE model. On 2 out of 4 benchmark problems, CALM-PDE outperforms all baselines. On
one problem, CALM-PDE achieves the third-lowest errors and on the remaining benchmark problem,
CALM-PDE is outperformed by F-FNO and LNO, and outperforms PIT and OFormer.

RQ2. CALM-PDE is also designed to support irregularly sampled spatial domains. Irregularly
sampled domains are characterized by a mesh with varying distances between the nodes. Geometries
mainly cause this irregularity because the mesh is usually denser in regions of interest, such as the
tip of an airfoil, where a higher accuracy is required. We train and evaluate the models on two
datasets, namely the airfoil and cylinder datasets. The first dataset simulates the airflow around a
static airfoil geometry. The geometry can be considered static because it does not change between
different training and test samples. In the second dataset, the water flow in a channel with a cylinder
as an obstacle is simulated. In contrast to the airfoil geometry, the cylinder geometry changes, which
means that each training and test sample has a different cylinder geometry with a different diameter
and position. Table 2 shows the relative L2 errors for both benchmark problems. On the airfoil
dataset, AROMA achieves the lowest error overall, while our model outperforms Transformer-based
baselines such as OFormer and LNO, and on the cylinder dataset, CALM-PDE delivers the second-
best performance, closely trailing AROMA. Thus, CALM-PDE not only supports irregularly sampled
domains but also generalizes across different geometries.



Query Positions of CALM-PDE

2D Cylinder Dataset Model Relative L2 Error ({)
Decoder Layer 2 2D Airfoil 2D Cylinder
Query Positions Output Positions

11 ——— Geo-FNO 0.0388 (-25%) 0.1383 (+17%)
R F-FNO 0.1081 (+110%)  0.1490 (+26%)
0.7 0.7 OFormer 0.0520 (+1%) 0.2264 (+91%)
PIT 0.0894 (+74%) 0.1400 (+18%)
0.3 0.3 LNO 0.0582 (+13%) 0.1654 (+39%)

e AROMA 0.0372 (-28%) 0.1139 (-4%)

-0.1 — -0.1 CALM-PDE 0.0515 0.1186

-0.1 0.3 0.7 11 -0.1 03 0.7 11
Figure 3: Learned query positions of CALM-PDE. Table 2: Relative L2 errors of models trained and
The model samples more query points in the re- tested on the irregular meshes with geometries in
gion where the cylinders are located (red rectan- the fluid flow. The values in parentheses indicate
gle) by moving query points to this region. the percentage deviation to CALM-PDE.

RQ3. We measure the inference times on an NVIDIA A100 GPU to evaluate the efficiency of
CALM-PDE. Figure 4 shows the inference times measured on the 2D Navier-Stokes dataset with a
resolution of 64 x 64 and 200 trajectories. We increase the trajectory length to measure the scaling
behavior. CALM-PDE is significantly faster than OFormer and LNO and achieves a competitive
inference time to that of FNO and PIT, which are fast baselines due to the use of the Fast Fourier
Transform (FFT) and position attention, respectively. Table 3 shows the time per epoch and memory
consumption for the forward and backward pass during training on 2D Navier-Stokes with a batch
size of 32. CALM-PDE outperforms OFormer and LNO in terms of time and memory consumption.

RQ4. Further, we investigate the learned positions of the query points and the represented infor-
mation (local or global information). The results show that the model places more query points
in regions that can intuitively be considered important and that the tokens primarily learn local
information. Figure 3 illustrates the learned query positions for the decoder on the cylinder dataset,
showing that the model samples more query points in areas where the cylinders are located. We refer
to Appendix L for more details. Thus, learnable query points allow the model a higher information
density in important regions and allow learning and discovering unknown important regions.

RQS5. Finally, we analyze the impact of the model’s components in the ablation study presented
in Appendix M. The results indicate that learnable query points reduce the error more effectively
than both fixed and randomly sampled query points, as well as fixed query points sampled from the
underlying mesh. Additionally, the kernel modulation improves the error for regularly and irregularly
sampled spatial domains. Furthermore, the distance weighting, which is part of the locality inductive
bias, also helps the model to further reduce the error and stabilize the training.

7 Limitations

CALM-PDE compresses the input into a smaller latent space, which implies that information such
as fine-grained details is lost. This could be an issue for PDEs such as Kolmogorov flow that have
fine details that must be accurately captured. Another limitation, that also applies to other neural
PDE solvers, are the required computational resources for real-world applications with large spatial
domains with millions of spatial points. Compared to the Transformer-based methods, CALM-PDE is
more efficient but not efficient enough for practical applications. For the 3D Navier-Stokes equation
with 21 timesteps and a spatial resolution of 64 x 64 x 64, which corresponds to 262k points,
CALM-PDE requires one A100 80GB GPU for the training, while LNO requires four A100 80GB
GPUs with a batch size of 4, respectively. However, practical applications would require spatial
resolutions larger than 64 x 64 x 64.

8 Conclusion and Future Work

With CALM-PDE, we propose an efficient framework for reduced-order modeling of arbitrarily
discretized PDEs. The experiments demonstrate that CALM-PDE achieves low errors on regularly



2D Navier-Stokes, 64 x 64, 200 Trajectories -
2D Navier-Stokes

=20 Model

E s s FNO Time/Batch [ms] Memory [MB]

F OFormer FNO 126.17+4-38 5453

g 10 = o OFormer 786.36567 43807

i — CALM-PDE PIT 124.23%9-16 16968

£ — LNO 1196.57%0-57 61191
20 40 60 80 100 CALM-PDE 138.25+473 14147

Prediction Steps

Figure 4: Comparison of inference times on 2D Table 3: Time and memory consumption needed
Navier-Stokes with 200 trajectories. Prediction for the forward and backward pass during training
steps are increased to evaluate the scaling. FNO, on the 2D Navier-Stokes dataset for a batch size
PIT, and CALM-PDE achieve similar times. of 32 on an NVIDIA A100 GPU.

and irregularly discretized PDEs, as well as that the model can generalize to different geometries.
While it does not consistently surpass all baselines, it delivers competitive errors across various
problems. This makes it a viable alternative to established approaches such as FNOs and transformer-
based architectures and demonstrates that convolution can also be applied to irregular meshes. Beyond
PDEs, CALM layers have broader applicability, including potential use in fields like chemistry. For
future work, we aim to improve CALM-PDE for problems with high frequencies, which are important
in real-world applications. Additionally, future work could investigate “dynamic query points” that
depend on the IC and geometry or move during the rollout to track important regions. Another
interesting direction for future research is improving the model for a two-stage training procedure.
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NeurlIPS Paper Checklist

1. Claims

Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?

Answer: [Yes]

Justification: We have conducted extensive experiments on PDEs with regularly and irregu-
larly sampled spatial domains to evaluate the model.

Guidelines:

* The answer NA means that the abstract and introduction do not include the claims
made in the paper.

* The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

* The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

* It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]

Justification: The paper contains a limitation section (Section 7) to discuss potential limita-
tions of the proposed model.

Guidelines:

* The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

 The authors are encouraged to create a separate "Limitations" section in their paper.

* The paper should point out any strong assumptions and how robust the results are to
violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

* The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

* The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

* The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

* If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

* While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs

Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?

14



Answer: [NA]
Justification: The paper has no theoretical results.
Guidelines:

* The answer NA means that the paper does not include theoretical results.

* All the theorems, formulas, and proofs in the paper should be numbered and cross-
referenced.

* All assumptions should be clearly stated or referenced in the statement of any theorems.

* The proofs can either appear in the main paper or the supplemental material, but if
they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

* Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

* Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]

Justification: The used datasets and hyperparameters are outlined in detail in Appendix H
and Appendix J, respectively. Furthermore, the proposed method is fully explained.

Guidelines:

* The answer NA means that the paper does not include experiments.

* If the paper includes experiments, a No answer to this question will not be perceived
well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.
Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

While NeurIPS does not require releasing code, the conference does require all submis-

sions to provide some reasonable avenue for reproducibility, which may depend on the

nature of the contribution. For example

(a) If the contribution is primarily a new algorithm, the paper should make it clear how
to reproduce that algorithm.

(b) If the contribution is primarily a new model architecture, the paper should describe
the architecture clearly and fully.

(c) If the contribution is a new model (e.g., a large language model), then there should
either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
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Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer: [Yes]

Justification: The code to reproduce the results will be made publicly available upon
acceptance.

Guidelines:

* The answer NA means that paper does not include experiments requiring code.

* Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

* While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

* The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

* The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

* The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

* At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

* Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLSs to data and code is permitted.

6. Experimental setting/details

Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]

Justification: A detailed description of the experimental setting is provided in Appendix J.
The data splits are introduced in Appendix H.

Guidelines:

* The answer NA means that the paper does not include experiments.

* The experimental setting should be presented in the core of the paper to a level of detail
that is necessary to appreciate the results and make sense of them.

* The full details can be provided either with the code, in appendix, or as supplemental
material.

7. Experiment statistical significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [Yes]

Justification: We have reported the mean values and standard deviations in Table 21 and
Table 22 in the appendix.

Guidelines:

* The answer NA means that the paper does not include experiments.

* The authors should answer "Yes" if the results are accompanied by error bars, confi-
dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.
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8.

10.

* The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

* The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

* The assumptions made should be given (e.g., Normally distributed errors).

¢ It should be clear whether the error bar is the standard deviation or the standard error
of the mean.

It is OK to report 1-sigma error bars, but one should state it. The authors should
preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

* For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

o If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

Experiments compute resources

Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]

Justification: We have provided information about the used GPUs as well as detailed
information about the memory and execution time in Figure 4 and Table 3.

Guidelines:

* The answer NA means that the paper does not include experiments.

 The paper should indicate the type of compute workers CPU or GPU, internal cluster,
or cloud provider, including relevant memory and storage.

* The paper should provide the amount of compute required for each of the individual
experimental runs as well as estimate the total compute.

* The paper should disclose whether the full research project required more compute
than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

. Code of ethics

Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]

Justification: We have examined the NeurIPS Code of Ethics and ensured that our research
fully conforms to its principles.

Guidelines:

¢ The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.

* If the authors answer No, they should explain the special circumstances that require a
deviation from the Code of Ethics.

* The authors should make sure to preserve anonymity (e.g., if there is a special consid-
eration due to laws or regulations in their jurisdiction).

Broader impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [Yes]
Justification: We have discussed the broader impact of the work in Appendix A.
Guidelines:

* The answer NA means that there is no societal impact of the work performed.
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11.

12.

* If the authors answer NA or No, they should explain why their work has no societal
impact or why the paper does not address societal impact.

» Examples of negative societal impacts include potential malicious or unintended uses
(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

» The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

* The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

* If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

Safeguards

Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]
Justification: The work poses no such risks.
Guidelines:

* The answer NA means that the paper poses no such risks.

* Released models that have a high risk for misuse or dual-use should be released with
necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

 Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

* We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

Licenses for existing assets

Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]
Justification: The creators of all datasets, models, and code are credited properly.
Guidelines:

e The answer NA means that the paper does not use existing assets.

* The authors should cite the original paper that produced the code package or dataset.

 The authors should state which version of the asset is used and, if possible, include a
URL.

* The name of the license (e.g., CC-BY 4.0) should be included for each asset.

* For scraped data from a particular source (e.g., website), the copyright and terms of
service of that source should be provided.
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13.

14.

15.

* If assets are released, the license, copyright information, and terms of use in the
package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

* For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

* If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.
New assets

Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [Yes]

Justification: Comprehensive documentation and practical examples demonstrating the use
of the new model architecture will be made available.

Guidelines:

* The answer NA means that the paper does not release new assets.

* Researchers should communicate the details of the dataset/code/model as part of their
submissions via structured templates. This includes details about training, license,
limitations, etc.

* The paper should discuss whether and how consent was obtained from people whose
asset is used.

* At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.
Crowdsourcing and research with human subjects

Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [NA]
Justification: The paper does not involve crowdsourcing nor research with human subjects.
Guidelines:
* The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

* Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

* According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

Institutional review board (IRB) approvals or equivalent for research with human
subjects

Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [NA]
Justification: The paper does not involve crowdsourcing nor research with human subjects.
Guidelines:

* The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

* Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.
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* We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

* For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.
16. Declaration of LLM usage

Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.

Answer: [NA]
Justification: The work does not involve LLMs.
Guidelines:

* The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

¢ Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.
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A Impact Statement

Advanced and efficient neural surrogate models significantly lower the expenses of running otherwise
cost-intensive simulations, such as those used in weather forecasting and fluid mechanics. This
improvement helps to speed up simulations and to reduce energy consumption, costs, and CO,
emissions. However, a potential drawback is the risk of misuse by bad actors, as fluid dynamic
simulations play a role in designing military equipment.

B Details on the Problem Definition

Discretized Dataset. We use discretized data generated by numerical solvers to train and test
the surrogate models. The temporal domain [0,77] is discretized into NNV; timesteps yielding a
sequence (u’,u't, ..., uT) with N; elements which describes the evolution of the PDE. At :=
t;+1 — t; denotes the temporal step size or resolution. Similarly, the spatial domain €2 is also
discretized into a finite set of N points {w, }2_, by discretizing each spatial dimension which yields
a discretized representation {u’(w,)}_; of the function. Figure 5 visualizes the discretization
process. A dataset D = {(X1,Y1),...,(Xn,,Yn,)} for each PDE consists of Ny samples.
X, = {u®(w,)}_;, denotes the IC and Y; = ({u! (wp)}_y,..., {u? (w,)}2 1) denotes the
target sequence of timesteps.

Discretized Function
Function u(-, x, y) Lo Mesh {(X, y)n}N_1 1o {ul, (%, y)n)IN_;

R IR EEE R EEERE RS ° > AR RN R R NN XN NN
EXXXXXXXXKXXX XXX ecee
08 IIIIIIiIiiiiiii 0.8
EXXXRXXKXRRKKKKXXX
06 [IIIIIIIIiIiIiii 06 iiiiiiiiiiiiiil
XX XXXXXXXXXXXXX 0000000000 L]
EXXXXRXRKXKXRKKKK XXX )eeeccccsece (X
0.4 rxxxxxxxxxxxxxxx 0.4 Jeeeeeecccce oo
EXXXRXXKXRRKKKKXXX ‘e oo
EXXXRXXKXRRKKKKXXX ‘e X
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: 0.0 Fms s s 0.0 *mrnsssnsssnosas
00 02 0.4 0.6 08 1.0 00 02 0.4 06 0.8 1.0 00 02 0.4 0.6 08 1.0

Figure 5: The continuous solution function u(+, z, y) has to be discretized along the spatial dimension
with a suitable mesh or grid into a discrete representation {u(-, (x,%),)}2_; of the function.

Training Objective. The training objective aims to optimize the parameter vector 8 that contains
all weights and biases of the model fg that best approximates the true function v by minimizing the
empirical risk over the dataset D as

N
1 s
argmin Lg = argmin — L( t N {w M | X, {wn ,Ys> (10)
i Lo = argnin - 3 (fol{1:H Y s | X))

where Lg denotes the overall cost function and L denotes a suitable loss function such as the Mean
Squared Error (MSE) or relative L2 norm. fg ({ti}é\fz‘17 {w;j}C) | X, {wn}),) represents the

predicted trajectory of the neural network queried with the set of times {¢;} zN:tl and the set of spatial
points {w; }}_,, given the initial condition X, evaluated at the points {w, }_;.

C Discrete Convolution and Cross-Correlation
We briefly explain discrete convolution and elaborate on how discrete convolution is used in CNNs.

Discrete Convolution and Cross-Correlation. In the discrete case (i.e., the functions f and k are
only defined for integers), the convolution operator simplifies to

(fxk)al = > fla—a]- ko] (11)

a=—00
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with a € Z. The points usually have equal spacing because discrete convolution operates on sequences
or discrete signals with regularly indexed data points. Similarly to the continuous case, k[«] has to be
reflected to k[—a] to compute cross-correlation.

Convolutional Neural Networks. CNNs implement cross-correlation where f is the finite and
discrete input signal (i.e., the input features) with a length of N, and k represents a finite and learnable
kernel with the length M. This leads to

M

(f*k)a] =" (Fxk)a] = 3 fla+a—1]- ko] (12)

a=1

with a € [1, N — M + 1]. As mentioned previously, cross-correlation is equivalent to convolution
with a reflected kernel. Since the weights of the kernel are learned during training, it does not matter
whether the layer implements cross-correlation or convolution. Usually, the input contains multiple
input features or channels (i.e., is a vector) and multiple convoluted output features or channels are
desired. V; and N, denote the number of input and output channels respectively which yields

N, M
(f *k)ol :ZZ fila+a—1] - k; o[ (13)

where o corresponds to the the o' output feature or channel and i to the i*" input channel and
k[a] € RMNi*Ne contains the filter kernels. k[a] is usually implemented using a finite, multi-
dimensional array. The convolution layer as introduced above can be extended from 1D to d-D.

D Deep Parametric Continuous Convolutional Neural Networks

Figure 6 visualizes continuous convolution with and without a receptive field for 4 input points o,
and one query point a;. As proposed by Wang et al. (2018), the kernel function & is parametrized by
an MLP. However, continuous convolution can be optimized further for the encoding and decoding of
PDE solutions. For instance, CALM layers learn the position of the query points a; to effectively
sample the spatial domain, use a locality inductive bias including an explicit weighting with the
Euclidean distance to emphasize the input points closer to the query point and an epsilon neighborhood
to improve efficiency, and each query point modulates the MLP to support different kernels for query
points that have similar translation vectors.

4
(f % K)o(ar) = D Flom)i - kiolar — am)
)

ay flaq)

U ¢ Gehe) O“D\
flag) ﬁ \\

a

flag)
oy

as flag) C;S flaz)

(a) Without receptive field (b) With receptive field (blue circle)

Figure 6: Continuous convolution without receptive field (a) and with a receptive field (b) that limits
the number of considered input points. The kernel function & takes as input the translation vector
a — o and outputs a weight for an input channel ¢ and output channel 0. An MLP parametrizes the
kernel function.
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Figure 7: A CALM layer takes a point cloud with |.A| points as input and outputs a new point cloud
with |A| points and a new feature dimension d. CALM layers compute continuous convolution with
a locality inductive bias to emphasize closer points, learnable query points (output positions), and
a kernel modulation to allow different weights for different query points with similar translation
vectors.

E Additional Details on the CALM-PDE Framework

E.1 CALM Layer

Overview. Figure 7 shows a CALM layer that performs continuous convolution with three distinct
features: (i) locality inductive bias, consisting of a limited receptive field and distance weighting,
to emphasize closer points, (ii) learnable query points to let the model learn where to compute
convolution, and (iii) kernel modulation to allow different query points to have different weights for
similar translation vectors. Depending on the purpose (e.g., encoder or final layer of the decoder), the
query points can be learned or provided as an external input query. The kernel function k is given as

|la—a||?—min(a)
exp (_ T(max(a)fniiri(a))) )

—a;||2—min
1,0 Z exp( - TU(amalj(](lz‘L)fminEZ;))
o ERF(a)

kiola—a) = <W2 . O’((Wl “RFF(a — ) +b1) ©v, + ,3,1,> + b2>

Modulated MLP Distance Weighting
(14)
where v, and 3, denote the modulation parameters which depend on the query point @, and
min(a) = min,  epr(a) la — @; ||2 computes the minimum distance within the epsilon neighborhood.
Similarly, max(a) computes the maximum distance within the epsilon neighborhood. The distance
normalization ensures that small distances are amplified and the effect of large distances is reduced.

Implementation of Kernel Function. In practice, the kernel function k is parametrized by a 2-layer
MLP that outputs a large vector in R™Vi"Ne followed by a reshape operation to get a kernel matrix in
RN:xNo N, denotes the number of input channels and N, is the number of output channels. The
bias term bs is initialized with Kaiming uniform initialization (He et al., 2015) where the number of
input features corresponds to the number of input channels IV; and not to the hidden dimension of the
MLP. We opt for this initialization to ensure proper initialization of the weights used in the continuous
convolution operation. This approach can also be understood as initializing a learnable weight k; ,,
which is independent of the translation a — « and shared between all points, with Kaiming uniform
initialization and using a 2-layer MLP without a bias in the last layer to learn an additive correction
or residual depending on the input ¢ — « to parameterize the continuous kernel function k; ,(a — ).
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Figure 8: The CALM-PDE model utilizes multiple CALM layers with learnable query positions to
encode arbitrarily discretized PDE solutions into a fixed latent space. A Transformer processes the
compressed latent representation and outputs the latent representations of future timesteps which
will be decoded by the decoder. The decoder also uses multiple CALM layers with learnable query
positions, except for the last decoder layer which uses the mesh as an external input query.

Receptive Field and Epsilon Neighborhood. The receptive field of a query point a; is given
as RF(a;) = {an, € A | |laj; — ay|| < €(a;)} where €(a;) is the p*" percentile of the Euclidean
distances from query point a; to all input points «;,, € A similar to Chen & Wu (2024). The
hyperparameter p controls the size of the receptive field. For instance, p = 0.1 means that the
epsilon neighborhoods are constructed so that each query point a; aggregates at least 10% of all
input points. Consequently, the epsilon neighborhood is smaller in densely sampled regions than in
sparsely sampled regions which avoids convolution or aggregation with too many or few input points.

Pointwise Operations. Before and after applying the continuous convolution operation, a pointwise
linear operation and a pointwise MLP are applied, respectively. The pointwise operations enable
the model to combine the input or output channels of continuous convolution to a richer feature
representation.

Computational Complexity. The complexity of a CALM layer is given as follows. Let [N be an
arbitrary number of input points. The output of the layer are features for N’ output or query points,
where N’ is constant for all layers except for the final decoder layer. The percentile, which determines
the size of the receptive field, and the feature or channel dimension of the CALM layer are denoted
as p and d, respectively. This results in O(p - N - N’ - d) computations in total. In contrast, models
such as AROMA (Serrano et al., 2024) or LNO (Wang & Wang, 2024) do not consider a receptive
field, which requires O(N - N’ - d) computations for N” query tokens. Since p is usually small (e.g.,
p = 0.01), the complexity is reduced by two orders of magnitude compared to models without a
receptive field.

E.2 Neural Architecture

In this section, we provide additional details on the neural architecture of CALM-PDE. Figure 8
shows the architecture of the model with the encoder, processor, and decoder.

Processor for Latent Time-Stepping. The processor network 1y(Z¢, P) is a Transformer with
combined attention that combines scaled dot-product attention (Vaswani et al., 2017) and position
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attention (Chen & Wu, 2024). It takes the latent representation Z? for time ¢ and the positions P as
input and computes the change between the latent representations Z! and Z!** as follows

H, = (Z'||rFF(P)) W™

Hy = CombinedAttn(H;, P) + H;

Hs = MLP(Hy, P) + H,

H, = CombinedAttn(Hs, P) + Hs

Hs = MLP(Hy, P) + Hy as)

'(/JG(Zta-P) _ H5W0ut

Z = At -apg (2, P) + 71

CombinedAttn(H,P) = softmax(%LN(HWQ)LN(HWK) —d(P,P))HWY

where d(P, P) outputs a distance matrix with the pairwise distances of the positions P. LN denotes
layer normalization (Ba et al., 2016) and At is the temporal resolution. We only normalize the queries
and keys to allow the propagation of the scaling of the features through the processor similar to
Cao (2021). The processor is applied iteratively to compute the latent representation of timesteps
further into the future. Due to the residual connection and the scaling of the predicted change with
the temporal step size At, the prediction Zt1 = At - 1y(Z?, P) + Z* can be interpreted as solving
a neural ordinary differential equation parametrized by 1y with an explicit Euler solver. The exact
solution is given as

t+At
Z(zH—At):Z(t)—i—/t+ Yo(Z(7), P)dr (16)

which can be approximated with an explicit Euler solver as follows

t+AL
Z({t+ At)=Z(t) —l—/t Yo(Z(7), P)dr

~ Z(t) + At - e(Z(t), P)
=Z"'+ At -e(Z", P)

7)

where At denotes the temporal step size.

F Continuation of Related Work

Latent Neural Surrogates and Latent Time-Stepping. We introduce the term Latent Neural
Surrogates (LNS) to refer to models that internally use a smaller spatial latent representation instead
of the original spatial representation, such as Position-Induced Transformer (PIT; Chen & Wu (2024))
and Latent Neural Operator (LNO; Wang & Wang (2024)). We use the term Latent Time-Stepping
(LTS) to describe models that solve the dynamics completely in the latent space without decoding
it in every timestep. In contrast, models like PIT and LNO follow an autoregressive rollout in the
physical space, meaning they decode the solution in every timestep and do not belong to the LTS
category. Prevalent LTS models include LE-PDE (Wu et al., 2022), which employs a CNN for both
encoding and decoding and an MLP as the latent processor. OFormer (Li et al., 2023a) utilizes a
Transformer as encoder and decoder and a pointwise MLP on the spatial dimension as processor.
UPT (Alkin et al., 2024) applies attention for encoding and decoding and a Transformer for latent
time-stepping. AROMA (Serrano et al., 2024) uses cross-attention as encoder and decoder and a
diffusion Transformer as latent processor. The proposed CALM-PDE model belongs to both model
categories. Itis an LNS as it uses the proposed CALM layers for the encoder and decoder to compress
the solution and it is an LTS model since it solves the dynamics completely in the latent space with a
Transformer.

Discretization-Agnostic Architectures. Discretization-agnostic architectures for PDE-solving
decouple the input and output spatial domains and allow solving arbitrarily discretized PDEs.
Transformer-based models such as OFormer, UPT, AROMA, and LNO are discretization-agnostic.
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Variants such as Geo-FNO (Li et al., 2023c) of the Fourier Neural Operator (Li et al., 2021b) are also
discretization-agnostic and support arbitrarily discretized inputs. Neural fields are also suitable for
discretization-agnostic models and have been used in DINo (Yin et al., 2023), CORAL (Serrano et al.,
2023), and Equivariant Neural Fields (Knigge et al., 2024) for PDE-solving. CALM-PDE is based
on continuous convolution and also supports the encoding and decoding of arbitrarily discretized
and irregularly sampled solutions. Furthermore, CALM-PDE decouples the input from the output
domain.

Point Clouds. Solving fluid mechanics problems in the Eulerian or Lagrangian representation can
be interpreted as a dense prediction problem for point clouds. Models such as PointNet (Qi et al.,
2017a) and PointNet++ (Qi et al., 2017b) have shown great success in the classification and semantic
segmentation of point clouds. PointNet is based on pointwise transformations and a max pooling
operation to extract a global representation of the point cloud. They concatenate the point features
with the global representation to obtain a rich feature vector with local and global information for
semantic segmentation. PointNet++ extends PointNet with a hierarchical structure to gradually
combine regions into larger ones.

G Comparison to Related Models

We compare related models such as OFormer (Li et al., 2023a), PIT (Chen & Wu, 2024), UPT (Alkin
et al., 2024), AROMA (Serrano et al., 2024), and LNO (Wang & Wang, 2024) with the proposed
CALM-PDE model. We briefly introduce the models and elaborate on similarities and differences.

PIT (Chen & Wu, 2024) compresses the spatial domain into a smaller latent representation with
position attention, computes the dynamics for one timestep, and decodes it back with position
attention. They propose an attention mechanism called position attention that computes the attention
weights of the input points and the latent points based on the Euclidean distance instead of the
scaled-dot product (Vaswani et al., 2017). A predefined set of points is used in the latent space
as a latent mesh. UPT (Alkin et al., 2024) supports simulations in the Eulerian and Lagrangian
representations and employs a hierarchical structure to encode the input. The encoder uses message
passing to aggregate information in super nodes, and a Transformer and Perceiver (Jaegle et al.,
2021) to further distill the information into latent tokens. A Transformer computes the dynamics
completely in the latent space (latent time-stepping), and the Perceiver-based decoder decodes the
processed latent tokens. AROMA (Serrano et al., 2024) utilizes cross-attention and learnable query
tokens to distill information from the spatial input into the query tokens. The decoding is also
realized with cross-attention. The model is trained in a two-stage training. First, the encoder-decoder
model is trained as a variational autoencoder (Kingma & Welling, 2022). After that, a denoising
diffusion Transformer (Peebles & Xie, 2023) is trained to map from one latent representation to
the subsequent latent representation by denoising the latent tokens. LNO (Wang & Wang, 2024)
encodes the spatial input into a fixed latent space by computing cross-attention between the input
positions and learnable query positions in a high-dimensional space. Thus, the attention weights
depend only on the positions, similar to PIT and AROMA. Since the query positions in LNO are
learnable, they simplify the attention computation, which makes the query positions inaccessible.
They use a Transformer to compute the next timestep in the latent space, and a decoder decodes the
latent tokens back to the physical space. The LNO model is trained with teacher forcing and used for
inference in an autoregressive fashion, both in the physical space.

CALM-PDE learns query points to effectively sample the spatial domain, where each point has a
specific position, giving the learned query points a tangible physical meaning. In contrast, AROMA
and LNO also implicitly learn query points for cross-attention, but the query points are inaccessible
and lack physical relevance, as they are defined in a high-dimensional space. The physical meaning
of CALM-PDE’s query points enables the incorporation of a mesh prior. For example, the query
points can be initialized to be denser in predefined critical regions and sparse in less significant
regions. This concept is similarly applied in PIT, where the latent space is structured on a predefined
latent mesh. However, predefined query points are not always optimal, and the ability to learn query
positions provides greater flexibility. This fundamental distinction sets CALM-PDE apart from PIT,
which operates without learnable query points. The key distinctions from PIT include the use of
continuous convolution, learnable query positions, a kernel MLP for computing convolution weights,
and multiple filters. AROMA and CALM-PDE differ in the encoder and decoder (scaled dot-product
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attention compared to continuous convolution), latent processor, and training procedure. UPT and
CALM-PDE differ in the encoder and decoder architecture (message passing and attention compared
to continuous convolution). Similarly, LNO and CALM-PDE differ in the use of attention compared
to continuous convolution in the encoder and decoder. PIT, UPT, and CALM-PDE share the approach
of restricting the receptive field to enforce locality and optimizing computational efficiency. AROMA
and LNO do not restrict the receptive field of the query tokens. In contrast to the mentioned methods,
CALM-PDE does not lift the input channels into a higher-dimensional space, which is required for
the Transformer-based models. Due to multiple filters, our model can still extract enough features
without the need to operate in such a high-dimensional space.

Table 4 provides an overview of similarities and differences between related work and the CALM-PDE
framework. We compare the following properties:

* Supports Compression: Whether the model supports compressing the solution into a smaller
latent space.

 Latent Time-Stepping: Whether the models compute the dynamics completely in the latent
space.

e Hierarchical Encoder and Decoder: Whether the models use a hierarchical encoder and or
decoder.

* Attention or Kernel Weights solely based on Positions: Whether the models compute
attention or kernel weights solely based on the position of the sampled points.

» Large Number of Filters or Heads: Whether the models can support a large number of filters
or heads. For attention-based models, the number of filters is limited by the dimension of the
query, key, and values, while convolution-based models do not suffer from this limitation.

* Learnable Query Points: Whether the model has learnable query points or query tokens.

* Physical Meaning of Query Points: Whether the query points or tokens have a physical
meaning, such as a position that provides information about where the model samples more
densely.

* No Lifting or Embedding Required: Whether it is required to lift or embed the input channels
(e.g., 1 to 5 channels) into a higher-dimensional space (e.g., 96 to 256) at the beginning,
which results in a higher computational complexity.

Table 4: Overview of properties of related models and the proposed CALM-PDE model.

Property OFormer PIT UPT AROMA LNO CALM-PDE
Supports Compression X 4 v v v v
Latent Time-Stepping v X v v X v
Hierarchical Encoder X X 4 X X v
Hierarchical Decoder X X X X X v
Attention or Kernel Weights

solely based on Positions X v X v v v
Large Number of Filters or Heads X X X X X 4
Learnable Query Points X X v v v v
Physical Meaning of Query Points X v X X X v
No Lifting or Embedding Required X X X X X v

H Additional Details on the Datasets

We benchmark the baselines and CALM-PDE model on the following datasets with regularly and
irregularly sampled spatial domains. We use the term regularly sampled spatial domain to refer to
spatial points sampled from a uniform grid, in contrast to the term irregularly sampled domain, which
refers to a grid or mesh with non-equidistant points. Meshes are mainly irregular due to geometries
or obstacles in the fluid flow. Table 5 shows an overview of the used datasets.
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Table 5: Overview of the used datasets. TStatic geometry means that the geometry is the same for
each sample. In contrast, changing geometry means that the geometry changes with each sample.

PDE Parameter Timesteps  Spatial Resolution Mesh Geometry' Channels N,
1D Burgers’ v=1e? 41 1024 Regular No 1
2D Navier-Stokes v=1le* 20 64 x 64 Regular No 1
2D Navier-Stokes v=1e® 20 64 x 64 Regular No 1
3D Navier-Stokes 7 =( = le™8 21 64 x 64 x 64 Regular No 5
2D Airfoil N/A 16 5233 points Irregular Yes, static 4
2D Cylinder N/A 15 1885 points (avg)  Irregular  Yes, changing 3

H.1 Regularly Sampled Spatial Domains

1D Burgers’ Equation. The 1D Burgers’ equation models the non-linear behavior and diffusion
process of 1D flows in fluid dynamics and is defined as

Owu(t, z) + u(t, z)0yu(t,x) = %amu(t,x), te (0,2, z € (—1,1] (18)

where the parameter v denotes the diffusion coefficient. We use the dataset provided by PDEBench
(Takamoto et al., 2022) and select a diffusion coefficient v = 1e~2 to encourage shocks. The equation
is under periodic boundary conditions and the goal is to learn neural surrogates to approximate the
function u. We use a spatial resolution of 1024 for z € (—1, 1) and subsample the temporal resolution
to 41 timesteps for ¢ € (0, 2]. The dataset contains 10k trajectories, with the first 1k samples used for
testing and the remaining 9k samples for training.

2D Incompressible Navier-Stokes Equation. The Navier-Stokes equations are important for
Computational Fluid Dynamics (CFD) applications. We consider the 2D Navier-Stokes equation for
a viscous, incompressible fluid in vorticity form on the unit torus which is given as

O (t,w) + u(t,w) - Vo(t,w) = vAu(t,w) + f(w), w e (0,1)%,t € (0,T]
V- u(t,w) =0, w e (0,1)%,t€[0,T] (19)
v(0,w) = vo(w), w e (0,1)2

where v = V x u denotes the vorticity, u the velocity, and v € R the viscosity coefficient. v is the
initial vorticity and f is the forcing term. The task is to learn a neural surrogate to approximate the
function v. We use the dataset proposed by Li et al. (2021b) with periodic boundary conditions and
consider the viscosities v = 1le~* and v = 1e~5. We drop the first 10 timesteps due to less complex
dynamics and consider a temporal horizon of ¢ € (10, 30] (20 timesteps) for v = le~* and use a
temporal horizon of ¢ € (0, 20] (20 timesteps) for v = 1e~°. The spatial domain is discretized into a
grid of 64 x 64. We use the last 200 samples for testing and the remaining ones for training in both
cases.

3D Compressible Navier-Stokes Equation. Additionally, we consider a compressible version of
the Navier-Stokes equations (Equations 20a to 20c). The equations describe the flow of a fluid and
are defined as

Op+V-(pv) =0, (20a)
POV +v - VV) = —Vp+nAv + (C + g)V(V'V), (20b)

2 2
8t(6+%)+v-[(p+e+%)v—v-a’]:0, (20¢)
p=pt,w),v:=v(t,w),p:=ptw), we N tel0,T] (20d)

where p is the density, v the velocity, and p the pressure of the fluid. ¢ denotes the internal energy and
o’ the viscous stress tensor. The parameters 7 and ¢ are the shear and bulk viscosity. Equation (20a)
represents the conservation of mass, Equation (20b) is the equation of the conservation of momentum,
and Equation (20c) is the energy conservation. The goal is to learn a neural surrogate approximating
density, velocity, and pressure. We use the dataset from PDEBench (Takamoto et al., 2023) with
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n = ¢ = le~8, a spatial resolution of 64 x 64 x 64, and the full temporal resolution of 21 timesteps.
The equation in the dataset is under periodic boundary conditions. We use the first 10 samples for
testing and the last 90 samples for training.

H.2 Irregularly Sampled Spatial Domains

2D Compressible Euler Equation with Airfoil Geometry. The 2D Euler equation describes the
flow of an inviscid fluid and corresponds to the Navier-Stokes equations with zero viscosity and no
heat conduction. The 2D Euler equation for a compressible fluid is defined as

Op+ V- (pv) = s1,
p(Ov + v -Vv)+ Vp = sg,

2 2 1)
O (e + %) +V-[p+e+ %)V] = s3,

p=p(t,w),v:=v(tw),p:=ptw), weNtel0,T]

where p is the density, v is the velocity, and p the pressure of the fluid. ¢ denotes the internal energy
and sy, S2, s3 are the source terms. The task is to learn a neural surrogate model that approximates
the functions p, v, and p. We use the dataset of Pfaff et al. (2020) which contains the geometry of an
airfoil with a no-penetration condition imposed on the airfoil. The distances between the points in the
meshes range from 2¢~* m to 3.5 m, which makes it a dataset with a highly irregular sampled spatial
domain. We consider a subsampled temporal resolution of 16 timesteps for the experiments.

2D Incompressible Navier-Stokes with Cylinder Geometries. The 2D incompressible Navier-
Stokes equation with a constant density is defined as

8tV = 0,

po(Ov +v - V) + Vp = Vv, (22)
vi=v(t,w),p:=p(t,w), wetel0,T]

where pg is the constant density, v the velocity, and p the pressure. We use the dataset introduced by
Pfaff et al. (2020) that models the flow of water in a channel with a cylinder as an obstacle in the fluid
flow. With each sample, the diameter and position of the cylinder change. The neural surrogates are
trained to predict the velocity and pressure. We subsample the temporal resolution to 15 timesteps for
the experiments.

I Additional Details on the Baselines

Fourier Neural Operator (FNO) and Geo-FNO. The Fourier Neural Operator is a neural operator
based on Fast Fourier Transforms (FFTs). We use the implementation of FNO from PDEBench
(Takamoto et al., 2022) and use the model in an autoregressive fashion as proposed by Li et al. (2021b)
as “FNO with RNN structure”. However, we use a curriculum strategy that combines autoregressive
training with teacher-forcing training by slowly increasing the rollout length of the autoregressive
rollout (Li et al., 2023a) and by doing a teacher-forcing prediction with the remaining timesteps
of the trajectory (Takamoto et al., 2023). The strategy improves the performance compared to full
autoregressive training. We use the Geo-FNO (Li et al., 2023c), a variant of the FNO that supports
irregularly sampled domains, for the irregularly sampled spatial domains experiments. The Geo-FNO
also uses the curriculum training strategy for improved training.

Factorized Fourier Neural Operator (F-FNO). The Factorized Fourier Neural Operator (Tran
et al., 2023) is an improved version of the Fourier Neural Operator that uses separable spectral convo-
lution layers, improved residual connections, and pointwise MLPs. Separable spectral convolution
layers factorize the Fourier transforms over the spatial dimension, which significantly decreases
the number of model parameters. The improved residual connections, which are applied after the
non-linearity, and the pointwise MLPs, akin to the pointwise MLPs in Transformers, further improve
the performance. We use the original implementation of F-FNO and train the model in a similar
fashion as FNO and Geo-FNO (i.e., autoregressive rollout with curriculum strategy).
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Operator Transformer (OFormer). OFormer (Li et al., 2023a) leverages an attention-based
encoder and decoder to decouple the input from the output spatial domain. The attention mechanism
enables its direct application to irregularly sampled spatial domains. The model uses latent time-
stepping to compute the dynamics of time-dependent PDEs. We follow the original implementation
of OFormer and train it using a curriculum strategy that increases the trajectory length during training.

Position-Induced Transformer (PIT). PIT (Chen & Wu, 2024) uses an attention mechanism
based on the Euclidean distances instead of the scaled dot-product. The model computes a latent
representation that is based on a latent grid. The latent grid has to be fixed prior to the training
and has the same dimension as the physical grid (e.g., 2D latent grid for 2D PDEs). For PDEs
with regularly sampled domains, we follow the authors and use a uniform mesh with fewer points
or resolution as latent grid which is a suitable choice. Similar to OFormer, PIT directly supports
irregularly sampled domains. However, there are several suitable methods for generating the latent
mesh for irregularly sampled domains (e.g., uniform mesh or sampling the latent mesh from the input
mesh), and the authors did not experiment with irregularly sampled meshes. Thus, we generate the
latent mesh for the airfoil dataset by randomly sampling from the training mesh and we use a uniform
latent mesh for the cylinder dataset. Sampling a mesh for the cylinder dataset is not a good choice
since there are huge differences in the meshes of different training samples and sampling from one
mesh does not optimally cover the spatial domain. The authors propose to train the PIT model in
an autoregressive fashion. We have conducted experiments training the model in an autoregressive
fashion and noticed that the curriculum strategy, which we use to train the FNO and Geo-FNO, also
significantly improved the performance of PIT. Thus, we train PIT with the same strategy to obtain
lower errors.

Latent Neural Operator (LNO). LNO (Wang & Wang, 2024) compresses the input solution into a
fixed latent representation with attention. The attention is solely computed using the input positions.
A Transformer computes the next latent representation for the next timestep and a decoder maps the
latent representation back to the physical space. Similar to OFormer and PIT, LNO directly supports
irregularly sampled domains. The authors propose to train the model for one-step predictions (teacher
forcing) and use it to do an autoregressive rollout. We follow their original setup and keep the training
strategy.

Attentive Reduced Order Model with Attention (AROMA). AROMA (Serrano et al., 2024) is a
reduced-order model that compresses the input solution into a fixed latent representation by applying
cross-attention in a Perceiver-like fashion (Jaegle et al., 2021). A Transformer computes the latent
representation for the next timestep with denoising diffusion, and a decoder maps the latent represen-
tation back to the physical space. Similar to LNO, AROMA directly supports irregularly sampled
spatial domains. The authors use a two-stage training procedure that consists of an autoencoder
training that trains the encoder-decoder model with a self-reconstruction loss and a dynamics training
that trains the denoising diffusion model to predict the latent representation of the next timestep. We
use their original implementation and keep the training strategy.

Full Autoregressive Training vs Curriculum Strategy. The errors of the autoregressive models
(FNO, Geo-FNO, and PIT) can be reduced by using a curriculum strategy, that slowly increases the
rollout length (Li et al., 2023a) and performs teacher-forcing training with the remaining timesteps
(Takamoto et al., 2023), compared to fully autoregressive training. Table 6 shows that the curriculum
strategy performs significantly better compared to fully autoregressive training. Thus, we train the
autoregressive models with the curriculum strategy.

J Additional Details on the Experiments

J.1 Hardware
We conduct all experiments on NVIDIA A100 SXM4 GPUs. The training of CALM-PDE takes 2

to 6 hours on an A100 GPU, depending on the dataset. In contrast, it takes up to 2 days to train the
baselines on multiple A100 GPUs.
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Table 6: Rel. L2 errors of FNO and PIT trained in a fully autoregressive fashion and with curriculum
learning. The values in parentheses indicate the percentage deviation to the autoregressive model
Relative L2 Error ({)
Model  Training Type 2D Navier-Stokes
v=1e*
Autoregressive  0.1335%0:0006
Curriculum 0.0811+0-0004 (.39

Autoregressive  0.1038%0-0052
Curriculum  0.0467%0-0068 (_55,)

FNO

PIT

J.2 Loss Function

We train the models with a relative L2 loss (Li et al., 2021b, 2023a,b; Chen & Wu, 2024), which offers
the advantage of treating channels with small magnitudes on par with those having large magnitudes,
ensuring balanced weighting, while also providing feedback when the PDE solution decays (i.e.,
the magnitudes decay) over time. Let Y € RNt*N*Ne pe the ground truth and ¥ € RN+ XN X¢ the
model’s prediction. [Vy is the number of timesteps or trajectory length, /N the number of spatial points
(e.g., 4096 = 64 - 64 for a resolution of 64 x 64 for 2D), and N, the number of channels. Then, the
loss is defined as

(23)

where ||-|| denotes the L2 norm.

J.3 Evaluation Metric

We use the relative L2 error as defined previously as an evaluation metric. In addition to the advantages
mentioned in the previous section, the relative L2 error can be interpreted as a percentage error.

J.4 Hyperparameters

Fourier Neural Operator (FNO) and Geo-FNO. Table 7 shows the hyperparameters for FNO
and Geo-FNO used in the experiments. We adopt comparable hyperparameters to those in Li et al.
(2021b) for the 1D Burgers’ equation and the 2D Navier-Stokes equations. For the 3D Navier-Stokes
equations, we follow the hyperparameters outlined in Takamoto et al. (2022), with the exception of
reducing the batch size from 5 to 2. For Geo-FNO, we utilize the hyperparameters proposed by Li
et al. (2023c) which prove to be effective.

Table 7: Hyperparameters for FNO and Geo-FNO used in the experiments.

Parameter PDE
1D Burgers’ 2D Navier-Stokes 3D Navier-Stokes 2D Airfoil 2D Cylinder
Width 64 24 20 24 24
Modes 16 14 12 14 14
Layers 4 4 4 6 6
Learning Rate le-3
Batch Size 32 64 2 8 8
Epochs 500
Parameters 549,569 1,812,161 22,123,753 2,327,710 2,327,669

Factorized Fourier Neural Operator (F-FNO). Table 8 summarizes the hyperparameters used for
F-FNO in our experiments. For the 1D Burgers’ equation, we adopt hyperparameters similar to those
in Li et al. (2021b), which prove to be effective. In the case of the 2D Navier-Stokes equations, we
follow the configuration from Tran et al. (2023), but reduce the number of modes and the width to
align with FNO, a necessary adjustment due to GPU memory limitations encountered during training.
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The 3D Navier-Stokes configuration also mirrors FNO’s hyperparameters. For the airfoil and cylinder
datasets, we adopt the hyperparameters proposed by Li et al. (2023c).

Table 8: Hyperparameters for F-FNO used in the experiments.

Parameter PDE
1D Burgers’ 2D Navier-Stokes 3D Navier-Stokes 2D Airfoil 2D Cylinder
Width 64 24 20 24 24
Modes 16 14 12 14 14
Layers 4 4 4 6 6
Learning Rate le-3
Batch Size 32 64 2 8 8
Epochs 500
Parameters 665,281 151,361 131,913 625,270 625,229

OFormer. Table 9 shows the hyperparameters for OFormer used in the experiments. We employ
similar hyperparameters for the 1D Burgers’ equation and adopt the same parameters for the 2D
Navier-Stokes equations as presented in Li et al. (2023a). For the 3D Navier-Stokes equations, we
reduce the embedding dimensions to ensure the model fits on an A100 GPU. Increasing the model for
3D Navier-Stokes is infeasible due to excessive GPU memory usage and memory constraints in the
experiments. For the 2D airfoil dataset, we utilize the hyperparameters specified in Li et al. (2023a)
and adopt them for the 2D cylinder dataset.

Table 9: Hyperparameters for OFormer used in the experiments. fIncreasing the model is infeasible
due to memory constraints in the experiments.

PDE
Parameter
1D Burgers’ 2D Navier-Stokes 3D Navier-Stokes! 2D Airfoil 2D Cylinder
Encoder
Embedding Dimension % 96 64 128 128
Encoder
Out Dimension 96 192 128 128 128
Encoder Layers 4 5 5 44
Decoder
Embedding Dimension 26 384 256 128 128
Propagator Layers 3 1 1 1 1
Learning Rate 8e-4 Se-4 Se-4 6e-4 6e-4
Batch Size 64 16 2 8 8
Iterations 128k 128k 22k 48k 48k
Parameters 660,719 1,850,497 825,157 1,367,812 1,370,371

Position-Induced Transformer (PIT). Table 10 shows the hyperparameters for PIT used in the
experiments. We adopt the hyperparameters introduced in Chen & Wu (2024) for the 1D Burgers’
equation, with the modification of increasing the batch size from 8 to 64. For the 2D Navier-Stokes
equations, we retain the same hyperparameters as specified in Chen & Wu (2024). To train the 3D
Navier-Stokes model on an A100 GPU, we reduce the latent mesh, quantiles, and the number of
heads. Increasing the model for 3D Navier-Stokes is impractical due to GPU memory limitations
encountered during the experiments. For the 2D airfoil and 2D cylinder datasets, we apply the
hyperparameters used for the 2D Navier-Stokes equations which prove to be effective. The latent
mesh for the 2D airfoil dataset is sampled from the training mesh (cf. mesh prior initialization of
CALM-PDE) while the model employs a uniform latent mesh for the 2D cylinder dataset.

Latent Neural Operator (LNO). Table 11 shows the hyperparameters for LNO used in the experi-
ments. For the 1D Burgers’ equation, the listed hyperparameters prove to be effective. Compared to
the hyperparameters introduced in Wang & Wang (2024) for the 2D Navier-Stokes equations, we
decrease the embedding dimension, number of modes, and number of projector layers to better match
the other models in terms of the number of parameters and required compute. For 3D Navier-Stokes,
the embedding dimension is reduced further to train the model on an A100 GPU. Increasing the
model is infeasible due to memory constraints in the experiments. We adopt the hyperparameters
from 2D Navier-Stokes for the 2D airfoil dataset which prove to be effective. For the 2D cylinder
dataset, we use similar hyperparameters as for the 2D cylinder dataset but reduce the embedding
dimension from 192 to 176.
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Table 10: Hyperparameters for PIT used in the experiments. TIncreasing the model is infeasible due

to memory constraints in the experiments.

PDE
Parameter
1D Burgers’ 2D Navier-Stokes 3D Navier-Stokes? 2D Airfoil 2D Cylinder
Embedding Dimension 64 256 256 256 256
Heads 2 2 1 2 2
Layers 4 4 4 4 4
Latent Mesh 1024 16 x 16 8x 8x8 256 16 x 16
Encoder Quantile 0.01 0.02 0.002 0.02 0.02
Decoder Quantile 0.08 0.02 0.01 0.02 0.02
Learning Rate 6e-4 le-3 Se-4 6e-4 6e-4
Batch Size 64 20 1 16 16
Epochs 500 500 500 500 500
Parameters 78,861 1,249,805 923,659 1,251,088 1,252,383

Table 11: Hyperparameters for LNO used in the experiments. fIncreasing the model is infeasible due

to memory constraints in the experiments.

PDE
Parameter
1D Burgers’ 2D Navier-Stokes 3D Navier-Stokes! 2D Airfoil 2D Cylinder
Embedding Dimension 96 192 128 192 176
Modes 128
Projector Layers 3 2 2 2 2
Propagator Layers 4 8 8 8 8
Learning Rate le-3
Batch Size 64 32 2 8 8
Epochs 500 250 250 500 500
Parameters 461,121 2,847,105 1,276,805 2,848,260 2,397,267

AROMA. Table 12 summarizes the hyperparameters used for AROMA in our experiments. We
adopt the hyperparameters reported in Serrano et al. (2024), but reduce the number of epochs to finish
each training within 24 hours.

Table 12: Hyperparameters for AROMA used in the experiments.

Parameter PDE
1D Burgers’ 2D Navier-Stokes 3D Navier-Stokes 2D Airfoil 2D Cylinder
.. Hidden Dimension 128
8 Number of Latents 32 256 256 64 64
§ Latent Dimension 8 16 16 16 16
a Depth 3
_qg Encode Geometry X X X v v
It Learning Rate le-3
5 Batch Size 128 10 4 32 64
Epochs 1500 1000 500 5000 10000

<  Hidden Dimension 128
3 Depth 4
= Minimum Noise le-2 le-3 le-3 le-6 le-3
8 Denoising Steps 3
E Learning Rate le-3
g Batch Size 512 64 4 32 128
= Epochs 1000

Parameters 665,281 1,845,505 1,852,773 1,950,148 1,949,891

CALM-PDE. Table 13 shows the hyperparameters for CALM-PDE used in the experiments. The
notation [16, 32, 64] for the channels means that the first layer has 16 channels, the 2nd 32 channels,
and the 3rd 64 channels. Similarly, for different hyperparameters in the table. The dimensionality
of the latent space is defined by the number of latent variables or query points and their channel
dimension. We determine the dimensionality of the latent space based on the principle that the
number of query points, receptive field, and channel dimension must cover the entire spatial domain.
Similar to discrete CNNs, a small receptive field with a large stride (e.g., only a few query points)
misses information, while a large receptive field with a small stride could have an averaging effect.
With this principle, we obtain the number of query points (e.g., 1024, 256, 16 for the encoder layers),
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which we use for all 2D experiments. Thus, a fixed number of query points works across different
problems.

Table 13: Hyperparameters for CALM-PDE used in the experiments.

Parameter PDE
1D Burgers’ 2D Navier-Stokes 3D Navier-Stokes 2D Airfoil 2D Cylinder
Layers 3
E Channels [16, 32, 64] [32, 64, 128] [64, 128, 256] [32, 64, 128] [32, 64, 128]
8 Query Points [256, 64, 8] [1024, 256, 16] [1024, 256, 64] [1024, 256, 16]  [1024, 256, 16]
sl Percentile [0.05,0.1,0.5] [0.01,0.01,0.2]  [0.001,0.01,0.2] [0.01,0.01,0.5] [0.01,0.01,0.5]
Temperature [1.0, 1.0, 1.0] [1.0, 1.0, 0.1] [1.0, 1.0, 0.1] [1.0, 1.0, 0.1] [1.0, 1.0, 0.1]
- Layers 3
3 Channels [32, 16, 1] [64,32,1] [128, 64, 5] [64, 32, 4] [64, 32, 3]
3 Query Points [64, 256, -] [256, 1024, -] [256, 1024, -] [256, 1024, -] [256, 1024, -]
A Percentile [1.0,0.5,0.1] [0.2,0.01,0.01]  [0.2,0.01,0.001] [0.5,0.01,0.01] [0.5,0.01,0.01]
Temperature [1.0, 1.0, 1.0] [0.1, 1.0, 1.0] [0.1, 1.0, 1.0] [0.1, 1.0, 1.0] [0.1, 1.0, 1.0]
Periodic Boundary v v v X X
Mesh Prior X X X 4 X
Processor Layers 2
Random Starting Points v v v 4 X
Learning Rate le-3 le-3 le-4 6e-4 le-3
Batch Size 64 32 4 16 8
Epochs 500 500 250 500 500
Parameters 568,331 2,230,627 8,367,267 2,237,240 2,239,403

K Hyperparameter Study

This section provides additional information about the hyperparameters of CALM-PDE and their
robustness. In particular, we show the similarities of the hyperparameters of CALM-PDE and discrete
CNNs, and demonstrate the robustness of the softmax temperature.

Comparison to discrete CNNs. CALM-PDE introduces the softmax temperature, receptive field
radius (percentile), channel dimension, and number of query points as hyperparameters. The receptive
field radius (percentiles) is equivalent to the kernel size in discrete CNNs, and the number of query
points to downsampling (e.g., stride and pooling) in CNNs. The channel dimension is equivalent
to the channel dimension in CNNs. Alternatively, the number of query points can be compared to
the number of latent query tokens used in other models, such as AROMA (Serrano et al., 2024) or
LNO (Wang & Wang, 2024). Consequently, CALM-PDE maintains a conventional hyperparameter
footprint without introducing excessive complexity.

Hyperparameter Selection and Robustness. Selecting hyperparameters for CALM-PDE does
not require an extensive hyperparameter search. As shown in Table 13, we use the same tempera-
tures, receptive field sizes (percentiles), and number of query points for all 2D experiments, which
demonstrates that the hyperparameters are robust and work across different problems.

Hyperparameter Study of Softmax Temperature. The softmax temperature is a new hyperparam-
eter that controls the distance weighting within the receptive field. We also use the same temperatures
across all experiments, demonstrating its robustness. Additionally, we perform a hyperparameter
study by sweeping the temperature from a high value in model (a) to a low value in model (f). As
shown in Table 14, temperatures in the range of 7' € [0.1, 5.0] result in only minor changes in test
error, confirming the robustness of the model to this parameter. All experiments are conducted on the
2D Navier-Stokes dataset with v = le™%.
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Table 14: Relative L2 errors of CALM-PDE models with different temperatures trained and tested on
the 2D Navier-Stokes dataset.

Model Configuration Relative L2 Error (})
Temperature T in Encoder and Decoder 2D Il\/Ia:eire—gaokes
(a) 10 0.0398
(b) 5 0.0336
(©) 2 0.0316
(d) 1 0.0304
(e) 0.1 0.0341
() 0.01 0.1640

L. Model Analysis

Visualization of Learned Positions. We visualize the learned positions of the query points of
CALM-PDE. We conduct the experiment on models trained on the 2D Navier-Stokes equation, 2D
Euler equation airfoil, and 2D Navier-Stokes cylinder datasets. Figure 9 shows the latent positions
for a regular mesh where CALM-PDE samples more regularly. Figure 10 shows the input and output
positions as well as learned query positions for the airfoil dataset. The results show that CALM-PDE
samples more densely in important regions such as the boundary of the airfoil (see query points
of decoder layer 2). A similar, but less emphasized effect can be observed for the encoder layer 1.
Encoder layer 2 and decoder layer 1 do not show such an effect. Figure 11 shows the positions for
the cylinder dataset. Similar to the airfoil dataset, CALM-PDE samples more densely in the regions
where the cylinders are located. This effect can be observed in encoder layer 1 and decoder layer 2.
Thus, the learned positions correspond to intuitively important regions and learnable query points
help the model to have a higher information density in these important regions.

Query Positions of CALM-PDE
2D Navier-Stokes Dataset

Encoder Layer 1 Encoder Layer 2
11 Input Positions 11 Query Positions Query Positions Latent Positions

1.1 11

o 0.7
v ' 0.3
_‘I..
-0.1
0.3 0.7 11 -0.1 0.3 0.7 1.1
Decoder Layer 1 Decoder Layer 2
Latent Positions Query Positions Query Positions 11 Output Positions

11 11 11

07 —— 0.7
03 - . 03 .
—01 —01 .
01 03 07 11 01 03 07 11 —01 03 07 11 01 03 07 11

Figure 9: Input, output, and latent positions of CALM-PDE trained on the 2D Navier-Stokes dataset.
CALM-PDE samples more regularly from the domain since the input and output positions are also
regularly sampled.
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Input Positions

Query Positions of CALM-PDE
2D Euler Airfoil Dataset

Encoder Layer 1
Query Positions

Encoder Layer 2
Query Positions
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Figure 10: Input, output, and latent positions of CALM-PDE trained on the 2D Euler equation airfoil
dataset. CALM-PDE samples more densely at the boundary of the airfoil (indicated by the red
rectangle) by moving more query points to these areas.

Query Positions of CALM-PDE
2D Navier-Stokes Cylinder Dataset

Encoder Layer 1

Input Positions Query Positions
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Figure 11: Input, output, and latent positions of CALM-PDE trained on the 2D incompressible
Navier-Stokes cylinder dataset. CALM-PDE samples more densely in regions where the cylinders
are located (indicated by the red rectangle) by moving more query points to these areas.

Information Content of Query Points. Next, we investigate the information content of the query
points. We are mainly interested in whether query points represent local or global information. Local
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information means that each query point represents the solution of the nearby surroundings while
global information means that a single query point influences the global spatial domain. Due to the
constrained receptive field, we assume that each token only represents local information. We add
Gaussian noise to a token and investigate how the solution is affected to validate the hypothesis.
Figure 12 shows that only the surrounding of the token is affected which matches our hypothesis that
each token represents local information.

2D Navier-Stokes v =1e~%

Prediction
Latent Tokens Prediction Token 2 Noised Absolute Error

1.00 2 1.00 1.00 1.00

3
0.75 6 11 A 3 0.75 0.75 0.75

B 5

0.50 12 0.50 0.50 0.50

A3
025 715 40 0.25 0.25 0.25
0.00 2.7 0.00 0.00 0.00

0.00 0.25 0.50 0.75 1.00 0.00 0.25 0.50 0.75 1.00 0.00 0.25 0.50 0.75 1.00 0.00 0.25 0.50 0.75 1.00

Figure 12: The latent tokens represent local information since adding Gaussian noise to a token (here:
Token 2) changes only the solution of the token’s surroundings (here: indicated by a red rectangle).

Visualization of Kernel Weights. Additionally, we visualize the learned kernel weights. Figure 13
shows the absolute values and Figure 14 the weights with the sign for the first encoder layer of
CALM-PDE trained on the 2D Navier-Stokes dataset. The filters have similarities to the filters learned
by a discrete CNN and some filters are similar to an edge detection filter (e.g., filter 4 in Figure 14).
Figure 15 and Figure 16 show the learned filters for the second encoder layer of CALM-PDE. We
only visualize the 64 filters for the first input channel. The filters are less regular and have similarities
to attention weights in Transformers. It is important to note that filters complement each other by
having one filter that focuses on a subset of tokens and another filter that focuses on the remaining
subset of tokens (e.g., filters 31 and 38 in Figure 15).
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Figure 13: Absolute values of the kernel weights for the first layer of CALM-PDE’s encoder trained
on 2D Navier-Stokes. The black cross (x) represents the query point.
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The black cross (x) represents the query point.
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Figure 15: Absolute values of the kernel weights for the second layer of CALM-PDE’s encoder
trained on 2D Navier-Stokes. The black cross (x) represents the query point.
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Figure 16: Kernel weights for the second layer of CALM-PDE’s encoder trained on 2D Navier-Stokes.
The black cross (x) represents the query point.
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Size of Latent Space. We compare the sizes required for one timestep of a PDE in different
representations. We define the representation size as the number of spatial points or tokens times the
number of channels per token (e.g., 64 - 64 - 64 - 5 ~ 1, 3M for a 3D PDE with a spatial resolution of
64 x 64 x 64 and 5 channels). A smaller representation size or latent space can result in reduced
model complexity (memory consumption and or inference time). However, if a model has a smaller
latent space but the computations are computationally expensive, it might be possible that it is less
efficient compared to a model with a larger latent space but simpler computations. Furthermore, a
small latent space (i.e., dimensionality reduction) can eliminate redundant features and noise. Our
observations show that the baselines often have a larger latent space than the physical space while
CALM-PDE consistently performs a compression and has a smaller latent space compared to the
representation in the physical space.

Table 15: Representation sizes for one timestep of different PDEs in the physical and model’s
latent spaces. T A larger latent space is infeasible for these models due to memory constraints in the
experiments.

Representation Size ()

Model 1D Burgers’ 2D Navier-Stokes 3D Navier-Stokes 2D Airfoil 2D Cylinder
Physical Space 1024 4096 1.3M 20,932 5655 (avg)
FNO 2048 18,816 276k 32,256 32,256
OFormer 98,304 786k 67M" 670k 241k (avg)
PIT 65,536 65,536 131kt 65,536 65,536
LNO 12,288 24,576 16,3841 24,576 22,528
CALM-PDE 512 2048 16,384 2048 2048

M Ablation Study

We conduct an ablation study to investigate the effect of (i) learnable query positions, (ii) kernel
modulation, and (iii) distance weighting. Furthermore, we replace the proposed kernel function with a
function that outputs weights only based on the Euclidean distance. We also investigate the influence
of different latent dimensions on the model’s performance. We test the modified models on the 2D
Euler equation airfoil dataset and the 2D Navier-Stokes dataset.

M.1 Learnable Query Positions

In the first experiment, we investigate the effect of learnable query positions. We conduct the
experiment on the 2D Euler equation airfoil dataset with an irregularly sampled spatial domain. We
examine three different configurations of CALM-PDE with (a) learnable query points and mesh prior
initialization enabled (i.e., we initially sample the query points from the mesh and allow the model to
change their positions), (b) no learnable query points but with mesh prior (i.e., we sample from the
mesh to obtain the query points and their positions are fix), and (c) no learnable query points and no
mesh prior (i.e., the query points are randomly sampled from the entire spatial domain and fixed).
Table 16 shows that the model with learnable query points and mesh prior achieves the lowest errors.
Soley sampling from the mesh to obtain the query points (mesh prior and no learnable query points)
yields a significantly higher error. Using random query points with fixed positions results in the
highest errors which is intuitive since the model does not necessarily have query points at important
regions and cannot move query points to these regions. Thus, it is forced to learn the underlying
mesh only with the kernel function.

M.2 Kernel Modulation

In this experiment, we disable the query modulation. We conduct the experiment on the 2D Navier-
Stokes dataset with a regularly sampled spatial domain and the 2D Euler airfoil dataset with an
irregularly sampled spatial domain. We compare the CALM-PDE model with (a) enabled kernel
modulation against a model (b) without kernel modulation. Table 17 shows the relative L2 errors for
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Table 16: Relative L2 errors of CALM-PDE models trained and tested on the 2D Euler equation
airfoil dataset. The values in parentheses indicate the percentage deviation to CALM-PDE with
enabled learnable query points and mesh prior. Underlined values indicate the second-best errors.

Model Configuration Relative L2 Error ({)
Learnable Query Points  Mesh Prior 2D Euler Airfoil
() v v 0.0515+0-0007
(b) X v 0.0709+0-0016 (4389
(©) X X 0.1627+0-0046 (41216%)

Table 17: Relative L2 errors of CALM-PDE models trained and tested on the 2D Navier-Stokes and
2D Euler airfoil datasets. The value in parentheses indicates the percentage deviation to CALM-PDE
with enabled kernel modulation.

Model Configuration Relative L2 Error ({)
Kernel Modulation 2D ll\ja:iréga()kes 2D Euler Airfoil
(a) Ve 0.0301j:0.0014 0.0515j:0.0007
(b) X 0.0358%0-0014 (119%)  0.0632%0-0017 (+:23%)

both model configurations. The proposed kernel modulation, which allows each query point to have a
different kernel function, results in a lower error than the models without the kernel modulation.

M.3 Distance Weighting

Furthermore, we investigate the effect of the distance weighting term, which includes the Euclidean
distance directly into the kernel function to give more weight to closer points. The mechanism
ensures that the model puts more emphasis on closer points within the epsilon neighborhood, provides
feedback that points on the boundary of the epsilon neighborhood are less important to avoid hard cuts
caused by the displacement of query points, and serves as a normalization factor for the Monte Carlo
integration. We compare three models with (a) distance weighting, (b) without distance weighting
but with a normalization term 1/M = 1/|RF(a)|, and (c) without distance weighting and without
a normalization term. The kernel function of the model without distance weighting but with a
normalization term is given as

1
" |RF(a)l

ki.o(a — o) = MLP(RFF(a — «v)) (24)

where M = |RF(a)| denotes the number of input points in the receptive field RF(a) of query point a.
The kernel function of the model without distance weighting and without a normalization term is
given as

kio(a — a) = MLP(RFF(a — ), (25)
where MLP denotes the modulated two-layer multi-layer perceptron and RFF random Fourier features.
Table 18 shows that the models without distance weighting and without a normalization term diverge
during training. Including a normalization term of 1/M stabilizes the training but still yields a higher
error than the model with distance weighting. Thus, distance weighting, which emphasizes input
points closer to the query point and serves as a normalization, is crucial for reducing the error.

M.4 Distance-based Kernel Function
We replace the proposed kernel function, which computes the weights based on translation vectors

and the Euclidean distances, with a kernel function that computes the weights solely based on the
Euclidean distances. The temperature in the softmax function is a learnable parameter, and each
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Table 18: Relative L2 errors of CALM-PDE models trained and tested on the 2D Navier-Stokes
dataset. TThe value is unavailable since the models diverge during training.

Model Configuration Relative L2 Error ({)
Distance Weighting Normalization 2D I\Vla:eircfaokes
(a) v softmax 0.0301+0-0014
(b) X 1/M 0.0590%0-0122 (196%)
(c) X X N/AT

Table 19: Relative L2 errors of CALM-PDE models trained and tested on the 2D Navier-Stokes
dataset. The value in parentheses indicates the percentage deviation to CALM-PDE with the proposed
kernel function.

Model Configuration  Relative L2 Error (J.)
2D Navier-Stokes

v=1e*

(@  CALMPDE  0.0301+0:001
(b) Distance-based 0.1783%0-0062 (14929

Kernel Function

filter has its own temperature parameter. The kernel function is given as

la—a||? —min(a)
eXpl—, max(a)—min
ki.o(a — a) = ( Tiol I (a) ”2 ((L))3 ) ) min(a) = miI} )Ha - CYjHQ (26)
’ a—ajl||*—min(a a; ERF(a
Z exp( - Tiyo(max(a)—min(a)))
o ERF(a)

where T; , represents a learnable temperature parameter and RF(«) the receptive field for the query
point . We compare the CALM-PDE model with (a) the proposed CALM-PDE kernel function
against a model with (b) the distance-based kernel function. Table 19 shows that the kernel function
proposed by CALM-PDE achieves a lower error than a distance-based kernel function.

M.5 Latent Dimension

We investigate the effect of different latent dimensions by increasing the number of query points.
Starting from model (a), which uses a small number of query points, we incrementally scale up to
model (e), characterized by a large number of query points. As shown in Table 20, increasing the
latent dimension initially leads to a reduction in test error. However, beyond a certain threshold,
further increases of the latent dimension result in an increasing test error, suggesting overfitting
or diminishing returns. The table also reports training time, which consistently increases with the
number of query points, reflecting the computational cost of a higher latent dimension. The notation
[256, 64, 4] denotes 256 query points for the first layer, 64 query points in the 2nd layer, and 4 for the
last layer.
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Table 20: Relative L2 errors and training times of CALM-PDE models with different numbers of
query points trained and tested on the 2D Navier-Stokes dataset.

Model Configuration Relative L2 Error (})  Training time ({)
Number of Query Points 2D Navier-Stokes
Encoder Decoder v=1e™*
(a) [256, 64, 4] [64, 256, -] 0.0533 4:18h
(b) [512, 128, 8] [128, 512, -] 0.0425 4:40h
(¢) [1024, 256, 16] [256, 1024, -] 0.0304 5:25h
(d) [2048, 512, 32] [512,2048,-] 0.0251 6:21h
(e) [4096, 1024, 64] [1024, 4096, -] 0.0267 8:1%h

N Additional Results

N.1 Quantitative Results

This section provides the full benchmark results with the standard deviations of multiple runs, which
we omit for a more compact representation in the tables in the main paper. Table 21 shows the errors
for the experiments with regular meshes and Table 22 for the irregular meshes.

Table 21: Relative L2 errors of models trained and tested on regular meshes. The values in parentheses
indicate the percentage deviation to CALM-PDE and underlined values indicate the second-best
errors.

Relative L2 Error ({)
Model 1D Burgers’ 2D Navier-Stokes 2D Navier-Stokes 3D Navier-Stokes
v=1e3 v=1le* v=1e® n=_=1le®
FNO 0.0358+0:0006 (146%)  0.0811%0-0004 (+169%)  0.0912+0-0003 (L1296)  0.6898+0-0002 (4+29%)

F-FNO 0.0362:(:[)1)()(]1 (+47%) 0.0863:(:().()(]12 (+187%) 0.0844:(:(],(][)()8 (-18%) 0.6466:(:().()(]44 (_4%)
OFormer  0.0575%0:0015 (1134%)  0.0380%0-0009 (426%)  0.1938%0-0106 (188%) 0.6719%0-0105 (_1%)
PIT 0.1209%0-0048 (13919)  0.0467%0-0008 (155%)  0.1633%0:0029 (£58%)  0.7423+0-0036 (110%)
LNO 0.0309+0-0012 (426%)  0.0384%0-0020 (428%)  (.0789+0-0051 (:249%)  0.7063%0-0027 (4+4%)
AROMA  0.0937%0-0143 (4281%)  0.1061F0-0455 (4252%)  0.1931F0-0161 (487%)  1.3328%0-2210 (497%)
CALM-PDE  0.0246+0-0013 0.0301+0-0014 0.1033+0-0057 0.6761+0-0020

Table 22: Relative L2 errors of models trained and tested on the irregular meshes with geometries
in the fluid flow. The values in parentheses indicate the percentage deviation to CALM-PDE and
underlined values indicate the second-best errors.

Relative L2 Error ({)
2D Euler Airfoil 2D Navier-Stokes Cylinder

Geo-FNO  0.0388%0-0019 (.2595)  0.1383+0-0018 (117%)
F-FNO 0.1081%0-0195 (4110%)  0.1490+0-0040 (426%)
OFormer  0.0520%0-0003 (4 19,) 0.2264%0-0109 (191 %)
PIT 0.0894+0-0078 (1749,)  0.1400%0-0043 (+18%)
LNO 0.0582%0-0026 (1139%)  0.1654%0-0409 (4+39%)
AROMA  0.0372+0-.0004 (_pgez)  (.,1139+0-0027 (4,
CALM-PDE 0.0515%0-:0007 0.1186%0-0020

Model

N.2 Qualitative Results

We visualize the predictions and ground truth of randomly selected trajectories for the benchmark
problems.

* 1D Burgers’ Equation: Figure 17
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* 2D Navier-Stokes with Parameters v = le~* and v = 1e~°: Figure 18
* 2D Euler Equation with Airfoil Geometry: Figure 19, Figure 20, Figure 22, Figure 21
* 2D Incompressible Navier-Stokes with Cylinder Geometries: Figure 23, Figure 24, Figure 25
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1D Burgers' Equation
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Figure 17: Ground truth, prediction, and absolute error for the first 11 timesteps of a randomly
selected 1D Burgers’ equation trajectory.
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2D Navier-Stokes v =1e™* 2D Navier-Stokes v = 1>

Ground Truth Prediction Absolute Error Ground Truth Prediction Absolute Error
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Figure 18: Ground truth, prediction, and absolute error for the first 11 timesteps of two randomly
selected 2D Navier-Stokes v = le~* and v = 1le ™~ trajectories.
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2D Euler Equation with Airfoil
Velocity vy
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Figure 19: Ground truth, prediction, and absolute error of the velocity v, for the first 11 timesteps of
a randomly selected 2D Euler equation with airfoil geometry trajectory.
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2D Euler Equation with Airfoil
Velocity vy

Ground Truth Prediction Absolute Error
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Figure 20: Ground truth, prediction, and absolute error of the velocity v, for the first 11 timesteps of
a randomly selected 2D Euler equation with airfoil geometry trajectory.
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Figure 21: Ground truth, prediction, and absolute error of the density p for the first 11 timesteps of a
randomly selected 2D Euler equation with airfoil geometry trajectory.
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2D Euler Equation with Airfoil
Pressure p

Ground Truth Prediction Absolute Error
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Figure 22: Ground truth, prediction, and absolute error of the pressure p for the first 11 timesteps of a
randomly selected 2D Euler equation with airfoil geometry trajectory.



2D Euler Equation with Cylinder
Velocity vy
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Figure 23: Ground truth, prediction, and absolute error of the velocity v, for the first 11 timesteps of
a randomly selected 2D incompressible Navier-Stokes with cylinder geometries trajectory.



2D Euler Equation with Cylinder
Velocity vy

Ground Truth Prediction Absolute Error

u(0, w)

u(0.4, w)

P
®

u(0.8, w)

u(1.2, w)

-0.15
- 0.10

u(1.6, w)

- 0.05

'
<
=

o »h

u(2.4,w)
T
°
N

T
o
s

P
®

u(2.8, w)
0
°
o

u(3.2,w)

T
o
=

g

g g

u(3.6, w)
0
°
o

u(2.0,w)
T B B S S S S E"mn" "

- 0.50

- 0.25

u(4.0, w)

ojle °
’ & %

Figure 24: Ground truth, prediction, and absolute error of the velocity v,, for the first 11 timesteps of
a randomly selected 2D incompressible Navier-Stokes with cylinder geometries trajectory.



2D Euler Equation with Cylinder
Pressure p

Ground Truth Prediction Absolute Error
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Figure 25: Ground truth, prediction, and absolute error of the pressure p for the first 11 timesteps of a
randomly selected 2D incompressible Navier-Stokes with cylinder geometries trajectory.



O Additional Experiments

Beyond the main experiments, we explore time-independent PDEs with complex and varying ge-
ometries. Additionally, we evaluate an encoder—decoder-only variant of CALM-PDE trained with
a self-reconstruction loss to test its encoding and decoding capabilities. Finally, we analyze the
scalability of the model with respect to the output query mesh size.

0.1 Time-independent Problems

We conduct additional experiments on time-independent PDE problems. In particular, we experiment
on the time-independent airfoil and elasticity datasets from Geo-FNO (Li et al., 2023c). The task is
to map an input geometry (e.g., changing airfoil shape) to a physical quantity. We follow the setup
from LNO (Wang & Wang, 2024) and take the errors for the baselines from their work. The baselines
include Geo-FNO (Li et al., 2023c), F-FNO (Tran et al., 2023), Galerkin Transformer (Cao, 2021),
OFormer (Li et al., 2023a), GNOT (Hao et al., 2023), ONO (Xiao et al., 2024), Transolver (Wu et al.,
2024), and LNO (Wang & Wang, 2024). As shown in Table 23, CALM-PDE consistently outperforms
6 out of 8 baselines and ranks among the top models alongside LNO and Transolver. Additionally,
the results demonstrate that CALM-PDE can generalize across complex, varying geometries. The
hyperparameter for CALM-PDE are denoted in Table 24.

Table 23: Relative L2 errors of models trained and tested on the time-independent airfoil and elasticity
datasets. The values in parentheses indicate the percentage deviation to CALM-PDE and underlined
values indicate the second-best errors.

Relative L2 Error x1072 ()

Model
Time-indepdent Airfoil Elasticity
Geo-FNO 1.38 (+138%) 2.29 (+332%)
F-FNO 0.60 (+3%) 1.85 (+249%)
Galerkin Transformer 1.18 (+103%) 2.40 (+353%)
OFormer 1.83 (+216%) 1.83 (+245%)
GNOT 0.75 (+29%) 0.88 (+66%)
ONO 0.61 (+5%) 1.18 (+123%)
Transolver 0.47 (-19%) 0.62 (+17%)
LNO 0.51 (-12%) 0.52 (-2%)
CALM-PDE 0.58 0.53

Table 24: Hyperparameters for CALM-PDE used in the time-independent experiments.

Parameter

PDE

Time-independent Airfoil

Elasticity

Layers
Channels
Query Points
Percentile
Temperature

Encoder

3

[64, 96, 128]

[128, 64, 64]
[0.25, 0.5, 0.5]
[1.0, 1.0, 1.0]

(1024, 256, 16]
[0.02, 0.02, 0.1]
[1.0, 1.0, 0.1]

Layers
Channels
Query Points
Percentile
Temperature

Decoder

3

[96, 64, 1]

[512, 2048, -]

(256, 1024, -]

[0.25,0.01, 0.01]

[1.0, 1.0, 1.0]

[0.1, 1.0, 1.0]

Periodic Boundary
Mesh Prior
Processor Layers

X
X
2

Random Starting Points

Learning Rate
Batch Size
Epochs

le-4

500

2e-4

Parameters

4,378,273

4,353,313
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0.2 Encoding and Decoding Capabilities

We train an encoder-decoder-only variant of CALM-PDE with a self-reconstruction loss (i.e., an
autoencoder) to investigate the encoding and decoding capabilities of the model. We train CALM-PDE
as an autoencoder on the 2D Navier-Stokes v = 1e~* dataset and compare it to the self-reconstruction
error reported in AROMA (Serrano et al., 2024). The results in Table 25 show that CALM-PDE
achieves a significantly lower reconstruction relative L2 error compared to AROMA.

Table 25: Relative L2 errors of AROMA and CALM-PDE models trained and tested on the 2D
Navier-Stokes dataset. The value in parentheses indicates the percentage deviation to CALM-PDE.

Reconstruction Relative L2 Error x1072 ()

2D Navier-Stokes
v=1e*

Model

AROMA 1.049 (+141%)
CALM-PDE 0.435

0.3 Scaling of Output Query Mesh Size

To investigate the scaling behavior of the model for large meshes, we increase the number of output
query points during inference. The experiment is conducted on the 2D Navier-Stokes v = le™*
dataset, where the maximum resolution of the ground truth is limited to 64 x 64. Thus, we only
provide the inference time and GPU memory consumption. The experiment is done on an NVIDIA
A100 GPU with a batch size of 32 and predicting one timestep. Table 26 shows the scaling behavior
of the model for increased output query mesh sizes.

Table 26: Inference time and memory consumption of CALM-PDE for different output query grid
sizes on the 2D Navier-Stokes dataset.

2D Navier-Stokes

Qutput Query Mesh Size
Inference Time [ms] Inference Memory [GB]
64 x 64 (4096) 10.27 0.84
128 x 128 (16,384) 14.83 1.80
256 x 256 (65,536) 33.89 5.64
512 x 512 (262,144) 107.52 21.00

P Notation

Scalars, Vectors, and Multi-dimensional Arrays. We follow the convention and represent scalars
with a small letter (e.g., a), vectors with a small boldfaced letter (e.g., a), and matrices and N-
dimensional arrays (with N > 3) with a capital boldfaced letter (e.g., A).

Partial Derivatives. The notation 9,,u, .1, . . . is short for the i*" order (where i € {1,2,..,n})

. . . du  9%u "u
partial derivative 57, 55, .., 55w -
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