
Fine-Tuned Language Models Generate Stable
Inorganic Materials as Text

Nate Gruver1 Anuroop Sriram2 Andrea Madotto2

Andrew Gordon Wilson1 C. Lawrence Zitnick2 Zachary Ulissi2
1NYU 2Meta FAIR

Abstract

Deep learning models have drastically accelerated materials discovery by acceler-
ating predictive computational simulations like density functional theory (DFT).
Large open computational materials databases such as the Materials Project or
OQMD contain O(106) known structures, and it is now straightforward to search
those databases for materials with exciting properties. However, these databases
are limited to experimentally known materials or candidates discovered in high-
throughput computational campaigns. Many state-of-the-art engineering advances
in solar photovaltaics, battery electrodes, and catalysts are made by discovering
materials with outstanding properties that have not yet been discovered. Generative
models are a natural solution to expand families of interest through sampling.
While popular methods are typically constructed from variational autoencoders
or diffusion models, we propose fine-tuning large language models for genera-
tion of stable materials. While unorthodox, fine-tuning large language models
on text-encoded atomistic data is simple to implement yet reliable, with around
90% of sampled structures obeying physical constraints on atom positions and
charges. Using energy of hull calculations from both learned ML potentials and
gold-standard DFT calculations, we show that our strongest model (fine-tuned
LLaMA-2 70B) can generate materials predicted to be metastable at about twice
the rate (49% vs 28%) of CDVAE, a competing diffusion model. Because of
text prompting’s inherent flexibility, our models can simultaneously be used for
unconditional generation of stable material, infilling of partial structures and text-
conditional generation. Finally, we show that language models’ ability to capture
key symmetries of crystal structures improves with model scale, suggesting that
the biases of pretrained LLMs are surprisingly well-suited for atomistic data.

1 Introduction

The training objective for autoregressive large language models (LLMs) is simple–just predict the
next word–but their abilities are increasingly general. Despite being pre-trained solely on text, large
language models have been applied to a wide variety of tasks, including image generation [6], image
compression [10], and robotic planning [13]. From these results, it’s evident that pre-trained LLMs
can act as general-purpose priors, identifying the most salient patterns in input data [17]. In fact,
LLMs can be viewed as a compression of human reasoning available in the form of internet text [37].
More effective compression of complex phenomena leads naturally to stronger abilities to compress
downstream data and extrapolate the most generalizable patterns, often with orders of magnitude less
examples than models trained from scratch [5].

While fine-tuned LLMs have so far been particularly impactful for language and vision data, two
modalities that are core to human cognition, their strengths as universal priors also make them
promising for scientific data modalities (e.g. small molecules, proteins, or crystalline materials),

37th Conference on Neural Information Processing Systems (NeurIPS 2023).

Distribution of known
stable and metastable

inorganic materials
This Work

Atomic Structure
Representation

Prompts &
Augmentations

LLaMA-2 7B/13B/70B LLM

Unconditional Stable
Materials Generation

Text-Conditioned
Materials Generation

Infilling for
Point-Wise Mutations

Figure 1: Overview of our approach to enable unconditional stable materials generation, text-condition
materials generation, and structural infilling tasks. Base LLaMA2 models are fine-tuned using a
variety of crystal atomic structure representations and task prompts, and trained on a database of
known inorganic materials ([30].

where data can be small, multi-modal, and challenging for non-experts to interpret. LLMs have the
potential to unite datasets within a strong pre-trained backbone and add an interpretable interface
through text, which enables scientists to more easily specify desired properties and constraints.
Lowering the barrier to expert-level atomistic design has the potential to unlock breakthroughs
ranging from novel therapeutic drugs [4] to improved carbon capture [7] and beyond.

In this work, we show that fine-tuned LLMs can generate stable three-dimensional crystals as text
(Figure 1). Our method is incredibly simple: first, encode crystals as new-line separated strings and
combine with text instructions, then perform parameter efficient fine tuning (PEFT) on a base LLM
(LLaMA-2) with a multitask curriculum and translation augmentations (Section 4). We evaluate
our method with Materials Project data [22], comparing against an invariant diffusion model and
a sequence model trained from scratch. Using both learned ML potentials and gold-standard DFT
calculations, we show that our method can generate materials predicted to be stable at much higher
rates than baseline methods. To understand the success of our fine-tuning approach compared to more
domain-specific approaches, we probe the learned symmetry properties of our model, proposing a
new metric for language models trained on atomistic data and examining the effect of model scale on
learned invariance. Going beyond unconditional generation, We also show that our LLMs have other
useful abilities within materials design, such as text-conditional generation and infilling, which can
be used to optimize the properties of existing materials.1

2 Related Work

There are two central challenges in applying generative models to crystals and related atomistic
modalities. The first challenge is that atoms are intrinsically both discrete and continuous objects, as
they are associated with both an element identity and a position in three dimensional space. In the
case of crystals, there are also continuous parameters that define a crystal’s unit cell, the repeated
pattern that is tiled infinitely in every direction (somewhat like a convolutional filter in computer
vision). The second key challenge is the prevalence of symmetries in atomistic data. A unit cell, for
example, is the common representation for crystals because it easily captures translation invariance,
the fact that atoms can be shifted and wrapped around the unit cell while still representing the same
underlying structure. Symmetries can pose challenges to deep learning models because they entail
constraints on the functions that neural networks must learn.

Diffusion models Xie et al. [44] introduced crystal diffusion variational autoencoder (CDVAE)
to directly deal with both of these challenges. CDVAE uses several individual generative models
for discrete and continuous components that share a continuous (VAE) latent space. The chemical
composition is reconstructed from this latent space using a language modeling head, while atom
positions are generated with a denoising diffusion model [20]. Since CDVAE, Jiao et al. [23] has
also extended diffusion processes to be used not just for the atom positions but also the lattice

1https://github.com/facebookresearch/crystal-llm

2

https://github.com/facebookresearch/crystal-llm

parameters and element identities. Both of these diffusion models were designed with a careful eye
towards symmetries and are built on top of graph neural networks with strict invariance/equivariance
properties.

Language models Recently Flam-Shepherd & Aspuru-Guzik [14] demonstrated an alternative
approach to continuous denoising models and architectural invariances. Instead of treating discrete
and continuous modalities separately, as in CDVAE, Flam-Shepherd & Aspuru-Guzik [14] uses
sequences of discrete tokens to represent everything, including the digits of atomic coordinates. With
all data encoded as tokens, standard language modeling methods designed for text can be applied with
little to no modification. The simplicity of this method also makes it simple to adapt to many different
kinds of molecular structures, including small molecules, protein binding pockets, and, of course,
crystals. In lieu of architectural symmetries, augmentations of the training data are used to encourage
learning known invariances. Flam-Shepherd & Aspuru-Guzik [14] demonstrates that language
models trained from scratch on many common molecular datasets actually outperform popular
domain-specific models, including CDVAE, in their ability to capture valid element compositions
and high-level statistics of the training data. Similarly, Antunes et al. [3] also use language models to
generate crystal structures as discrete sequences by training from scratch on millions of CIF strings.

LLMs as initializations or priors While language models can be trained from scratch for molecular
modalities, several recent papers suggest that text-pretrained language models can be incredibly
useful as initializations for non-text modalities. Chang et al. [6], for example, use a pre-trained T5
model to create a text-conditional image generator by extending the vocabulary with image tokens.
Similarly, Delétang et al. [10] show that a pre-trained Chinchilla 70B can act as a more effective
image compressor than domain-specific compression algorithms, and in the molecular space, Krause
et al. [25] showed that LLMs fine-tuned on protein sequences can be used to generate antibodies with
improved function.

Our work In this work, we show that pretrained LLMs are also incredibly useful for understanding
and generating 3-dimensional atomic structures. By using a pre-trained LLM, we can achieve high
rates of validity without crystal-specific tokenization [14] or millions of auxiliary structures [3].
Unlike models designed narrowly for crystal structures and symmetries [44], our model can also be
easily extended to multiple crystal generation tasks and, in the future, to other atomistic modalities
without any changes to the underlying model or training procedure. Building on the basic observations
made by Flam-Shepherd & Aspuru-Guzik [14], we show that larger models, which are often more
effective compressors of data, demonstrate improved ability to learn symmetries from the training
data and augmentation.

3 Background

Language Modeling Autoregressive language models are trained on large datasets of sequences,
U = {U1, U2, . . . Ui, . . . , UN}, where Ui = {u1, u2, . . . , uj , . . . , uni} and ui belong to a vocabulary
V . The parameters of the language model encode an autoregressive distribution, in which the
probability of each symbol is only dependent on the previous symbols in the sequence, p (Ui; θ) =∏ni

j=1 p (uj | u0:j−1; θ). The parameters, θ, are learned by maximizing the probability of the entire

dataset p(U ; θ) =
∏N

i=1 p(Ui; θ). Each conditional distribution p(uj | u0:j−1; θ) is a categorical
distribution over the vocabulary size |V|, and therefore each loss term resembles the standard
cross-entropy loss. Models are often compared using perplexity, which is the exponent of the length-
normalized cross entropy loss, PPL(ui) = 2CE(ui)/n. All common autoregressive models use the
transformer architecture with causal self-attention.

To sample new sequences from the learned model, each conditional distribution is sampled sequen-
tially. Samples, however, are rarely drawn from the unmodified conditional distributions. Instead the
sampling procedure is typically modulated with temperature (τ) and nucleus size (p) hyperparameters.
Temperature serves to flatten the conditional distributions to uniform (high temperature) or collapse
them around their maximal probabilities (low temperature). Nucleus size limits the tokens that can be
sampled based on the cumulative distribution function, clipping out values that contribute very little
mass. A nucleus of p (0 < p ≤ 1) corresponds to keeping tokens to cumulatively contribute p% of
the total probability, and discarding the rest.

3

Tokenization To train language models on text datasets, strings are converted into sequences of
tokens. Most modern LLMs rely on the SentencePiece [26] tokenizer which implements byte pair
encoding (BPE) [16], a method that allows tokenization at the sub-word level. BPE has two appealing
properties for tokenization. First, BPE performs an intial phase of compression on input strings by
assigning common substrings their own token, making overall sequence lengths shorter. Second,
BPE ensures that no new character is ever out of vocabulary, handling one aspect of generalization
beyond the train set. One unique downside of BPE tokenization, however, is the default tokenization
of numbers. BPE typically breaks numbers into irregular substrings instead of individual digits. In
response, Touvron et al. [39] constrain the LLaMA-2 tokenizers to individual digits for numbers,
which has been shown to dramatically improve performance on arithmetic tasks [29]. We chose to
use LLaMA models in this work in order to leverage their natural representation of numbers, which
facilitates learning simple functions acting on 3D coordinates and the invariances explored in Section
5.

Prompting Because large language models are simply trained to complete text, they can be used to
sample from complex conditional distributions with “prompting", in which a text string is appended
to data, with information that might be useful in controlling generation. Although simple at face
value, prompting can encompass a surprisingly broad range of tasks, including conditioning based on
a composable set of constraints and infilling partial sequences included within the prompt. Prompts
can be either be manually formatted [5], or can be automatically learned using soft-prompt tuning
[28]. Several recent papers have shown that careful design of prompts improves the ability of LLMs
to follow instructions [41], reason [42], or verify factual claims [12].

Crystal structures and energy prediction Periodic materials are defined by a unit cell repeated
infinitely along all three dimensions (Figure 2). The unit cell comprises a lattice (parallelepiped)
with side lengths (l1, l2, l3) and angles (θ1, θ2, θ3). Within the lattice, there are N atoms, each
specified by an element identity, ei, and set of 3d coordinates (xi, yi, zi) which can be absolute or
fractional (specified as a percentage of the unit cell side lengths). Therefore a bulk material can be
fully described by the tuple

C = (l1, l2, l3, θ1, θ2, θ3, e1, x1, y1, z1, ..., eN , xN , yN , zN) . (1)

For a given set of environmental conditions, every crystal has a corresponding energy that describes
how likely it will occur in a particular configuration. Configuration with unfavorable electrostatic
interactions from unlike atomic positions, such as highly overlapping atoms, are typically high
energy. The gold standard for energy prediction is density functional theory (DFT), which provides
tractable approximations to governing quantum mechanical equations that describe the energy and
time evolution of a system. DFT, however, is still often prohibitively expensive, often scaling O(n3)
with the system size, which has motivated development of deep learning potentials to approximate
DFT solutions [27].

Stability of hypothetical materials (Ehull) The composition of a crystal also impacts its energy,
as different elements have different geometries and charge properties. Certain stoichiometries, or

Figure 2: (left) We convert the crystal lattice, atom identities, and atom positions into strings.
The model is trained to generate a structures conditioned on the text prompt, which might contain
additional information about the composition, properties, or a starting structure to modify. (right)
Energy above hull (Ehull) quantifies the stability of a material. A crystal with Ehull < 0.1 will be
energetically favorable both in its structure and composition.

4

ratios of elements, are naturally favored, and a composition of elements A and B with constituent
parts AxBy can dissociate into the composition AcBd if it is energetically favorable. Because of the
effect of composition, the energy of a crystal is typically a two dimensional concept captured by the
energy hull, which is the minimum observed configuration energy for a given composition. For a
crystal to be low-energy and stable, and therefore give rise to a practically useful material, it must
have a small energy above hull (Ehull), the distance from the energy hull for the crystals elemental
composition (Figure 2). Crystals with Ehull < 0 are considered stable and by definition have lower
energy than the known minimum (which has Ehull = 0). Crystals with Ehull < 0.1 eV/atom are often
metastable and likely to be practical useful ([36]).

4 Method

Our approach to generating stable materials is pleasingly simple. We take a pre-trained LLM, which
has useful biases towards generalizable patterns, and fine-tune it on crystal string representations.
Because language models can also ingest text, we can condition the model’s generations on text
descriptions. The flexibility of language models also allows us to solve other tasks, such as infilling,
through small modifications to the input formatting. Though we focus solely on crystal structures
in this work, our method itself is general purpose and could be easily extended to proteins, nucleic
acids, or small molecules. We include a more detailed discussion of how general text-pretraining
impacts our method in Appendix A.5.

String formatting and tokenization We convert the crystal tuple C (Equation 1) using fixed
precision numbers. An example of crystal string formatting is shown in Figure 2. We represent lattice
lengths with one decimal place (2-3 digits) and lattice angles as integers (1-3 digits). Fractional
coordinates are always represented with two digits. 3D coordinates are combined with spaces and
all other crystal components are combined with newlines. We deliberately chose LLaMA-2 models
because they are both state-of-the-art in overall performance among open-source models and because
they tokenize numbers as individual digits by default. Notably, it is therefore impossible to create one
token per full number, as Flam-Shepherd & Aspuru-Guzik [14] do in their best performing model
(further discussion in Appendix A.1). Instead, we rely on the extensive pretraining of LLaMA-2
models to instill useful biases over numerical operations [29].

Prompt design To train a model that can be used for many tasks, including unconditional generation,
text-conditional generation, and infilling, we adopt an instruction tuning framework [41]. The full
input given to the model consists of a prompt followed by the string-formatted crystal (Figure 2). In
the most basic case, the prompt indicates that the model should generate bulk materials represented
as a lattice and atoms. The prompt can also be expanded to include a desired composition or material
properties, or to include a starting structure, in the case of infilling. For infilling, the prompt includes
the string-formatted crystal with every instance of a randomly chosen element replaced with [MASK],
and the model is trained to generate the identity of the masked element at the end of the sequence.
During training all three tasks are included through random sampling, with two thirds generation and
one third infilling (details in Appendix A.2). As in instruction tuning, the prompt is given as input to
the model but does not contribute to the generative loss function. The model is only penalized for its
predictions on the crystal string or masked element.

Generation Prompt Infill Prompt
<s>Below is a description of a bulk material.
[The chemical formula is Pm2ZnRh]. Generate a
description of the lengths and angles of the lattice
vectors and then the element type and coordinates
for each atom within the lattice:

[Crystal string]</s>

<s>Below is a partial description of a bulk
material where one element has been replaced
with the string “[MASK]”:

[Crystal string with [MASK]s]

Generate an element that could replace [MASK]
in the bulk material:

[Masked element]</s>

Blue text is optional and included to enable conditional generation, while purple text stands in for string encodings of atoms.

5

Augmentations Crystals structures are symmetric under translational. All atomic coordinates can be
shifted modulo the lattice boundaries without changing the resulting material structure. Similarly, the
ordering of atoms within the lattice is irrelevant to the underlying material (permutation invariance).
Prior work on diffusion generative models guarantee these symmetries as invariance or equivariance
constraints on the model architecture [44, 23]. To encourage translation invariance in our language
models, we apply random uniform translations to the fractional coordinates. We chose not to augment
the ordering of atoms because these variables often contained valuable information, for example
grouping set of elements together for placement in the lattice (discussion in Appendix A.1).

5 Experiments

We explore several uses of language models in crystal generative modeling. First, in order to compare
with prior work, we show that fine-tuned LLMs can be used for unconditional generation of novel
materials and that the resulting materials correspond to stable relaxed structures under the predictions
of an ML potential and DFT. We then show that LLMs can also be used for text-conditional generation
and to propose small changes to existing materials.

Datasets and models For consistency with prior work ([44], [15]) we used MP-20 [22], a dataset of
45231 materials, when training for unconditional generation. All structures in MP-20 are stable, and
therefore an effective generative model trained on MP-20 should tend to propose new crystals that are
at least metastable. For text-conditioned generation, we train with all forms of prompting (Section 4)
on a collection of 120,000 crystals from Materials Project (Appendix A.3). The collection includes
basic property information, such as the space group number, band gap, Ehull and the chemical formula.
All of our experiments were conducted with LLaMA-2 models (7B 13B, and 70B) [38, 39] through
the Transformers library [43] and PyTorch [32]. In order to train on small number of GPUs we use
4-bit quantization [11] and Low-Rank Adapters (LoRA) [21]. We provide the full hyperparameters
and training details in Appendix A.4.

Evaluation For basic evaluation of the LLM samples, we use the validity and diversity metrics
introduced by Xie et al. [44]. Structural validity is determined by non-overlapping atomic radii
(overlapping taken to be both atoms within half a radius of each other), while compositional validity
captures the net charge of the structure (only structures with net neutral total charge are valid).
Diversity is computed as pairwise distance between samples under featurizations of the structure and
composition from Matminer [40, 44].

While useful for sanity checking models, simple validity metrics only reflect a subset of our real-world
priorities in generating novel materials. Arguably the most important property that we hope to assess
in samples is their predicted stability, which we can approximate by predicting the energy of relaxed
structures. Using known materials and energy calculations from Materials Project we construct the
ground truth energy convex hull and then calculate the approximate energy above hull, Êhull. We
chose two methods to estimate material stability:

• ML potential: M3GNet [8] provides energy, force, and stress approximations for crystal
unit cells. For each sample we first run a relaxation using force and stress approximations
then use the energy of the final structure.

• DFT: We run a relaxation using the Density Functional Theory code VASP [19] with
INCAR settings chosen by Pymatgen [31]. DFT is the more accurate, but also much more
computationally intense, of the two options.

In both cases, results are compatible with Materials Project values [22] (Appendix B.1). Because
DFT is prohibitively expensive for many use cases (often hours per calculation), we only use it to
double-check results obtained with ML potentials, and we only run VASP calculations on materials
that have already been predicted as metastable by M3GNet (<0.1 eV/atom Êhull). The use of a
M3GNet surrogate model is not perfect as many structures in Figure 3 (right) have energies above
the expected 0.1 eV/atom threshold, but the structures are largely close to the hull compared to the
broader distribution of materials generated.

Unconditional generation We sample 10,000 structures from each fine-tuned LLaMA model,
parsing a CIF from the generated string. We reject the sample and draw another if a CIF cannot be

6

Table 1: Benchmark comparison of fine-tuned LLaMA-2 models with existing generative models
for inorganic materials. Following prior work [44], we report validity, which captures physical
constraints, as well as coverage and property metrics, which capture alignment between the ground
truth and sampling distribution. We add stability and diversity checks, which count the percentage of
samples estimated to be stable by M3GNet [8] and DFT [19] (precise details in Appendix B.2). We
also quantify the diversity among the predicted metastable materials (M3GNet). LLaMA excels at
generating valid structures and generates a high percentage of stable materials, while maintaining
diversity.

Method Validity Check Coverage Property Distribution Metastable Stable Diversity
Structural↑ Composition↑ Recall↑ Precision↑ wdist (ρ)↓ wdist (Nel)↓ M3GNet ↑ DFT† ↑ Structural↑ Composition↑

CDVAE 1.00 0.867 0.991 0.995 0.688 1.43 28.8% 5.4% 0.777 15.0
LM-CH 0.848 0.835 0.9925 0.9789 0.864 0.13 n/a n/a n/a n/a
LM-AC 0.958 0.889 0.996 0.9855 0.696 0.09 n/a n/a n/a n/a

LLaMA-2
7B (τ = 1.0) 0.918 0.879 0.969 0.960 3.85 0.96 35.1% 6.7% 0.806 16.4
7B (τ = 0.7) 0.964 0.933 0.911 0.949 3.61 1.06 35.0% 6.2% 0.827 13.7

13B (τ = 1.0) 0.933 0.900 0.946 0.988 2.20 0.05 33.4% 8.7% 0.865 14.1
13B (τ = 0.7) 0.955 0.924 0.889 0.979 2.13 0.10 38.0% 14.4% 1.03 15.9
70B (τ = 1.0) 0.965 0.863 0.968 0.983 1.72 0.55 35.4% 10.0% 1.028 15.9
70B (τ = 0.7) 0.996 0.954 0.858 0.989 0.81 0.44 49.8% 10.6% 0.706 13.6
† Fraction of structures that are first predicted by M3GNet to have EM3GNet

hull < 0.1 eV/atom, and then verified with DFT to have EDFT
hull < 0.0 eV/atom.

Figure 3: Stability of LLaMA samples compared to CDVAE [44]. Fine-tuned LLaMA-2 70B
generates a higher rate of metastable (Êhull < 0.1) and stable materials than CDVAE, using estimates
of Êhull from both M3GNet [8] and VASP [19]. Because of computational cost, we only run VASP
on structures predicted to be stable by M3GNet. Stable materials generated by LLaMA are also more
diverse (as quantified by Matminer featurization [40]) than stable samples from CDVAE. We include
sampled stable structures, shown as (2,2,2) supercells, which display a high-degree of regularity and
understanding of three-dimensional space.

parsed from the sampled string, which guarantees all samples can be interpreted as crystals but does
not guarantee validity of the resulting crystal. We show the validity and predicted stability ([44])
of the resulting structures in Figure 3, which shows that LLMs can achieve near-perfect rates of
structural and compositional validity. Hyper-parameters like temperature and nucleus size can be
used to trade-off validity and stability of samples with their coverage (Figure 4). LLaMA-2 70B
strikes an effective balance, generating high rates of stable materials with good coverage and diversity.
By defaut, generation is completed unconstrained and therefore the model can hallucinates imaginary
elements, for example “Ln,” a common abbreviation for Lanthanide (Figure 4), but the problem can
be easily avoided with constrained generation [43].

Symmetry learning As crystal structures have translational symmetry, ideally our model’s likeli-
hood should be invariant to translations. We propose Increase in Perplexity under Transformation
(IPT) as metric for assessing the invariance of language models to continuous group transformations.
For a transformation group G with group elements g and group action t, we define IPT for an input s
to be,

IPT(s) = Eg∈G[PPL(tg(s))− PPL(tg∗(s))]

where
g∗ = argmin PPL(tg∗(s))

and PPL is the perplexity of the sequence assigned by the language model (Section 3). In our case G
is the group of translation, where each g is a distance to translate by, and tg is the mapping that decode
the string, translates the coordinates (wrapping them around the boundary), and re-encodes the string.

7

Figure 4: (left) Validity and rate of stability depend on sampling hyper-parameters. Lowering the
temperature or restricting the nucleus size leads to significant improvements in validity/stability
but incurs a cost to coverage of a held-out test set (recall). Fine-tuned LLaMA-2 70B displays the
best trade-off between coverage and stability, generating materials that are both stable and diverse.
(center) One failure mode in high temperature sampling is hallucination of elements (e.g. “Ln”,
an abbreviation for Lanthanide). (right) Translation invariance on test data and ability to generate
stable materials increase in proportion. Larger models learn invariances from augmentations more
effectively during training, likely as a result of their preference for abstract and compressible patterns.

IPT captures the degree to which transformations change a language model’s compression ability.
Good understanding of group transformations and invariance in the data should lead to minimal
change in the perplexity of a transformed sequence. We can approximate IPT by sampling many
values of g (e.g. 20), picking g∗ as the minimum among those values, and computing a sample mean.
Figure 4 shows the mean IPT of 500 random crystals from the test set, for each of the three LLaMA
model sizes. We see that invariance, indicated by low error, increases alongside a model’s ability to
generate metastable structures, and is one way to understand their good generative performance. We
include additional details about our IPT calculation in Appendix B.3.

Text-conditioned generation Extending our method to text-conditional generation is as simple
as including additional information in the prompt, with a small amount of additional text (Figure
4). We explore conditioning on spacegroup number, composition, and Ehull, as these properties are
easy to verify (at least approximately) in silico. We assess the model’s ability to perform conditional
generation by comparing the intended condition with labels obtained from an in-silico oracle for the
constraint. For the chemical formula, we simply parse the composition from the generated CIF. For
space group determination, we use pymatgen’s SpacegroupAnalyzer with a precision of 0.2 angstroms
[31]. For stability, we use M3GNet to estimate Ehull as before. Using the oracle’s labels, we then
compute the percentage of cases in which the condition was properly met (Figure 5). The model is
able to generate a material with the correct composition the majority of the time but becomes less
reliable as the number of atoms in the chemical formula increases. Space group conditioning is more
challenging, as it requires precise control and understanding of 3D structure, but the observed 24% is
impressive when considering the 230 possible space groups. Generating stable/unstable structures
as a binary task is the most challenging, likely because the training dataset is predominantly stable
compounds and stability is defined only in reference to existing compounds. Stability is most easily
controlled by modulating sampling hyperparameters.

Infilling Existing Materials In many practical settings, sampling and filtering materials from
scratch is unnecessary. Good starting materials are often known, and manufacturing processes are
easier to adapt to related compositions than develop completely from scratch by making small edits
to their composition–often referred to as template methods) [24, 33]. To emulate a typical template
method, we construct a lookup table that maps each element to elements that have a similar atom
radius when in the same oxidation state (code in Appendix C). We choose an element uniformly at
random and swap it with a random element chosen from the table. The resulting structure is then
relaxed using M3GNet [8]. To improve this strategy using our fine-tuned LLM, we used the infilling
prompt (Section 4) to obtain a distribution over elements (modulated with temperature τ) which we
use instead of a uniform distribution over swaps. To evaluate our mutation procedure, we sample
3000 structures randomly from the test set and generate perform one mutation-relaxation step for
each, using both uniform and language model-guided sampling. In Figure, 5 we show the percentage
of stable compounds and diversity in the stable compounds for the uniform baseline and LLaMA-2

8

formula is PrAlO3

space group is 221

E above hull is 0.011

Below is a

Generate ...
Generate ...

Below is a partial
description ...

[MASK]

S Se
P(element)

...
0.92 0.34 0.75

constrain

description ...

Figure 5: Text-conditional generation and infilling of existing structures with fine-tuned LLMs. (left)
Including composition or property information (sampled from a hold-out set) in the text prompt leads
to a high rate of samples with the desired composition/property (space group or stability). We bin
stability as Êhull < 0.1 (metastable) and Êhull > 0.1 (unstable) for simplicity. Complex formulas and
space groups challenge the model, but the samples are correct at a rate that facilitates practical use.
We also show the rate of samples that both satisfy the condition and are predicted to be metastable by
M3GNet. (right) Using the infilling prompt we can select mutations to existing materials. LLaMA-2
70B proposes a distribution over elements, which we constrain using knowledge of atom radii and
charge interactions. We sample mutations with temperature τ and relax the results structure with
M3GNet. When we apply this mutation procedure, we obtain more stable materials per mutation,
with negligible changes to the overall diversity of the stable materials.

70B with different temperature values. LLaMA-2 70B proposes elements that lead to stable structures
at a higher rate than the baseline template method without sacrificing diversity.

6 Discussion

By generating a high rate of plausible stable materials (verified by DFT), we have demonstrated
LLMs can be state-of-the-art generative models for atomistic domains with direct application of
parameter-efficient instruction tuning and minimal task-specific modeling choices. This approach to
generative modeling opens the door to multitask capabilities within a single sampling paradigm and
multimodal training on atoms and text (e.g. to extract knowledge from a large corpus of scientific
papers). We also advocate for the use of evaluation metrics (e.g. Ehull) for generative models that are
more closely tied to the downstream task of generating stable or metastable materials. The space of
all hypothetical materials is combinatorially large (consider all the ways to pack 20 arbitrary elements
into a box), but only a small subset of materials will actually be stable or metastable. Models that
can directly generate near-stable structures make all downstream tasks far easier, and increases the
likelihood the generative models may be useful for day-to-day tasks in materials discovery.

Limitations Our method shares the limitations of the underlying generative models. LLMs are
sensitive to precise details of the chosen prompt and the tokenization strategies, particularly in
how tokenization effects processing of numbers. Hallucination of unphysical chemical elements or
structures has been observed, though fortunately is easy to check and filter. Text-conditioning has
the potential to tap latent conceptual understanding in the underlying LLM, but training LLMs that
successfully leverage scientific and chemistry literature is a major outstanding challenge. Lastly,
training the largest of our LLMs can be prohibitively expensive for some computational budgets.
Despite this, inference from all LLMs is often highly tractable when compared to baseline methods,
as we show in Appendix B.4.

Future directions There is substantial room for improvement in conditional generation, which
could ideally be used to generate materials with desired properties directly. While we did not
pursue alternative sampling strategies in depth, approaches like classifier-free guidance [34] or
variants of PPLM [9] might be useful in combination with fine-tuned LLMs for improved conditional
generation. These methods could also be combined with primitives from Bayesian optimization for
sample-efficient and uncertainty-aware design [35, 18].

9

References
[1] NVIDIA A100 GPU Benchmarks for Deep Learning. https://lambdalabs.com/blog/

nvidia-a100-gpu-deep-learning-benchmarks-and-architectural-overview.

[2] LLaMA 2 on Amazon Sagemaker, a Benchmark. https://huggingface.co/blog/
llama-sagemaker-benchmark.

[3] Luis M Antunes, Keith T Butler, and Ricardo Grau-Crespo. Crystal structure generation with
autoregressive large language modeling. arXiv preprint arXiv:2307.04340, 2023.

[4] Carrie Arnold. Inside the nascent industry of ai-designed drugs. Nature medicine, 2023.

[5] Tom Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared D Kaplan, Prafulla Dhariwal,
Arvind Neelakantan, Pranav Shyam, Girish Sastry, Amanda Askell, et al. Language models are
few-shot learners. Advances in neural information processing systems, 33:1877–1901, 2020.

[6] Huiwen Chang, Han Zhang, Jarred Barber, AJ Maschinot, Jose Lezama, Lu Jiang, Ming-Hsuan
Yang, Kevin Murphy, William T Freeman, Michael Rubinstein, et al. Muse: Text-to-image
generation via masked generative transformers. arXiv preprint arXiv:2301.00704, 2023.

[7] Lowik Chanussot, Abhishek Das, Siddharth Goyal, Thibaut Lavril, Muhammed Shuaibi, Mor-
gane Riviere, Kevin Tran, Javier Heras-Domingo, Caleb Ho, Weihua Hu, Aini Palizhati,
Anuroop Sriram, Brandon Wood, Junwoong Yoon, Devi Parikh, C. Lawrence Zitnick, and
Zachary Ulissi. Open catalyst 2020 (oc20) dataset and community challenges. ACS Catalysis,
2021. doi: 10.1021/acscatal.0c04525.

[8] Chi Chen and Shyue Ping Ong. A universal graph deep learning interatomic potential for the
periodic table. Nature Computational Science, 2(11):718–728, 2022.

[9] Sumanth Dathathri, Andrea Madotto, Janice Lan, Jane Hung, Eric Frank, Piero Molino, Jason
Yosinski, and Rosanne Liu. Plug and play language models: A simple approach to controlled
text generation. arXiv preprint arXiv:1912.02164, 2019.

[10] Grégoire Delétang, Anian Ruoss, Paul-Ambroise Duquenne, Elliot Catt, Tim Genewein, Christo-
pher Mattern, Jordi Grau-Moya, Li Kevin Wenliang, Matthew Aitchison, Laurent Orseau, et al.
Language modeling is compression. arXiv preprint arXiv:2309.10668, 2023.

[11] Tim Dettmers, Mike Lewis, Sam Shleifer, and Luke Zettlemoyer. 8-bit optimizers via block-wise
quantization. 9th International Conference on Learning Representations, ICLR, 2022.

[12] Shehzaad Dhuliawala, Mojtaba Komeili, Jing Xu, Roberta Raileanu, Xian Li, Asli Celikyilmaz,
and Jason Weston. Chain-of-verification reduces hallucination in large language models. arXiv
preprint arXiv:2309.11495, 2023.

[13] Danny Driess, Fei Xia, Mehdi S. M. Sajjadi, Corey Lynch, Aakanksha Chowdhery, Brian Ichter,
Ayzaan Wahid, Jonathan Tompson, Quan Vuong, Tianhe Yu, Wenlong Huang, Yevgen Chebotar,
Pierre Sermanet, Daniel Duckworth, Sergey Levine, Vincent Vanhoucke, Karol Hausman, Marc
Toussaint, Klaus Greff, Andy Zeng, Igor Mordatch, and Pete Florence. Palm-e: An embodied
multimodal language model, 2023.

[14] Daniel Flam-Shepherd and Alán Aspuru-Guzik. Language models can generate molecules,
materials, and protein binding sites directly in three dimensions as xyz, cif, and pdb files. arXiv
preprint arXiv:2305.05708, 2023.

[15] Daniel Flam-Shepherd, Kevin Zhu, and Alán Aspuru-Guzik. Atom-by-atom protein generation
and beyond with language models. arXiv preprint arXiv:2308.09482, 2023.

[16] Philip Gage. A new algorithm for data compression. The C Users Journal archive, 12:23–38,
1994.

[17] Micah Goldblum, Marc Finzi, Keefer Rowan, and Andrew Gordon Wilson. The no free lunch
theorem, kolmogorov complexity, and the role of inductive biases in machine learning. arXiv
preprint arXiv:2304.05366, 2023.

10

https://lambdalabs.com/blog/nvidia-a100-gpu-deep-learning-benchmarks-and-architectural-overview
https://lambdalabs.com/blog/nvidia-a100-gpu-deep-learning-benchmarks-and-architectural-overview
https://huggingface.co/blog/llama-sagemaker-benchmark
https://huggingface.co/blog/llama-sagemaker-benchmark

[18] Nate Gruver, Samuel Stanton, Nathan C Frey, Tim GJ Rudner, Isidro Hotzel, Julien Lafrance-
Vanasse, Arvind Rajpal, Kyunghyun Cho, and Andrew Gordon Wilson. Protein design with
guided discrete diffusion. arXiv preprint arXiv:2305.20009, 2023.

[19] Jürgen Hafner. Ab-initio simulations of materials using vasp: Density-functional theory and
beyond. Journal of computational chemistry, 29(13):2044–2078, 2008.

[20] Jonathan Ho, Ajay Jain, and Pieter Abbeel. Denoising diffusion probabilistic models. Advances
in neural information processing systems, 33:6840–6851, 2020.

[21] J. Edward Hu, Yelong Shen, Phillip Wallis, Zeyuan Allen-Zhu, Yuanzhi Li, Shean Wang, and
Weizhu Chen. Lora: Low-rank adaptation of large language models. ArXiv, abs/2106.09685,
2021.

[22] Anubhav Jain, Shyue Ping Ong, Geoffroy Hautier, Wei Chen, William Davidson Richards,
Stephen Dacek, Shreyas Cholia, Dan Gunter, David Skinner, Gerbrand Ceder, et al. Commentary:
The materials project: A materials genome approach to accelerating materials innovation. APL
materials, 1(1), 2013.

[23] Rui Jiao, Wenbing Huang, Peijia Lin, Jiaqi Han, Pin Chen, Yutong Lu, and Yang Liu. Crystal
structure prediction by joint equivariant diffusion on lattices and fractional coordinates. In
Workshop on”Machine Learning for Materials”ICLR 2023, 2023.

[24] Scott Kirklin, James E Saal, Bryce Meredig, Alex Thompson, Jeff W Doak, Muratahan Aykol,
Stephan Rühl, and Chris Wolverton. The open quantum materials database (oqmd): assessing
the accuracy of dft formation energies. npj Computational Materials, 1(1):1–15, 2015.

[25] Ben Krause, Subu Subramanian, Tom Yuan, Marisa Yang, Aaron Sato, and Nikhil Naik.
Improving antibody affinity using laboratory data with language model guided design. bioRxiv,
2023.

[26] Taku Kudo and John Richardson. Sentencepiece: A simple and language independent subword
tokenizer and detokenizer for neural text processing. In Conference on Empirical Methods in Nat-
ural Language Processing, 2018. URL https://api.semanticscholar.org/CorpusID:
52051958.

[27] Janice Lan, Aini Palizhati, Muhammed Shuaibi, Brandon M Wood, Brook Wander, Abhishek
Das, Matt Uyttendaele, C Lawrence Zitnick, and Zachary W Ulissi. Adsorbml: Accelerating
adsorption energy calculations with machine learning. arXiv preprint arXiv:2211.16486, 2022.

[28] Xiang Lisa Li and Percy Liang. Prefix-tuning: Optimizing continuous prompts for generation.
Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics and
the 11th International Joint Conference on Natural Language Processing (Volume 1: Long
Papers), abs/2101.00190, 2021.

[29] Tiedong Liu and Bryan Kian Hsiang Low. Goat: Fine-tuned llama outperforms gpt-4 on
arithmetic tasks. arXiv preprint arXiv:2305.14201, 2023.

[30] Yinhan Liu, Jiatao Gu, Naman Goyal, Xian Li, Sergey Edunov, Marjan Ghazvininejad, Mike
Lewis, and Luke Zettlemoyer. Multilingual denoising pre-training for neural machine translation.
Transactions of the Association for Computational Linguistics, 8:726–742, 2020.

[31] Shyue Ping Ong, William Davidson Richards, Anubhav Jain, Geoffroy Hautier, Michael Kocher,
Shreyas Cholia, Dan Gunter, Vincent L Chevrier, Kristin A Persson, and Gerbrand Ceder.
Python materials genomics (pymatgen): A robust, open-source python library for materials
analysis. Computational Materials Science, 68:314–319, 2013.

[32] Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer, James Bradbury, Gregory Chanan,
Trevor Killeen, Zeming Lin, Natalia Gimelshein, Luca Antiga, Alban Desmaison, Andreas
Köpf, Edward Yang, Zach DeVito, Martin Raison, Alykhan Tejani, Sasank Chilamkurthy,
Benoit Steiner, Lu Fang, Junjie Bai, and Soumith Chintala. Pytorch: An imperative style,
high-performance deep learning library. In Neural Information Processing Systems, 2019.

11

https://api.semanticscholar.org/CorpusID:52051958
https://api.semanticscholar.org/CorpusID:52051958

[33] James E Saal, Scott Kirklin, Muratahan Aykol, Bryce Meredig, and Christopher Wolverton.
Materials design and discovery with high-throughput density functional theory: the open
quantum materials database (oqmd). Jom, 65:1501–1509, 2013.

[34] Guillaume Sanchez, Honglu Fan, Alexander Spangher, Elad Levi, Pawan Sasanka Ammana-
manchi, and Stella Biderman. Stay on topic with classifier-free guidance. arXiv preprint
arXiv:2306.17806, 2023.

[35] Samuel Stanton, Wesley Maddox, Nate Gruver, Phillip Maffettone, Emily Delaney, Peyton
Greenside, and Andrew Gordon Wilson. Accelerating bayesian optimization for biological se-
quence design with denoising autoencoders. In International Conference on Machine Learning,
pp. 20459–20478. PMLR, 2022.

[36] Wenhao Sun, Stephen T Dacek, Shyue Ping Ong, Geoffroy Hautier, Anubhav Jain, William D
Richards, Anthony C Gamst, Kristin A Persson, and Gerbrand Ceder. The thermodynamic scale
of inorganic crystalline metastability. Science advances, 2(11):e1600225, 2016.

[37] Ilya Sutskever. An observation on generalization. Workshop on Large Language Models
and Transformers, 2023. URL https://www.youtube.com/watch?v=AKMuA_TVz3A&ab_
channel=SimonsInstitute.

[38] Hugo Touvron, Thibaut Lavril, Gautier Izacard, Xavier Martinet, Marie-Anne Lachaux, Timo-
thée Lacroix, Baptiste Rozière, Naman Goyal, Eric Hambro, Faisal Azhar, Aurelien Rodriguez,
Armand Joulin, Edouard Grave, and Guillaume Lample. Llama: Open and efficient foundation
language models. ArXiv, abs/2302.13971, 2023.

[39] Hugo Touvron, Louis Martin, Kevin R. Stone, Peter Albert, Amjad Almahairi, Yasmine Babaei,
Nikolay Bashlykov, Soumya Batra, Prajjwal Bhargava, Shruti Bhosale, Daniel M. Bikel, Lukas
Blecher, Cristian Canton Ferrer, Moya Chen, Guillem Cucurull, David Esiobu, Jude Fernandes,
Jeremy Fu, Wenyin Fu, Brian Fuller, Cynthia Gao, Vedanuj Goswami, Naman Goyal, Anthony S.
Hartshorn, Saghar Hosseini, Rui Hou, Hakan Inan, Marcin Kardas, Viktor Kerkez, Madian
Khabsa, Isabel M. Kloumann, A. V. Korenev, Punit Singh Koura, Marie-Anne Lachaux, Thibaut
Lavril, Jenya Lee, Diana Liskovich, Yinghai Lu, Yuning Mao, Xavier Martinet, Todor Mihaylov,
Pushkar Mishra, Igor Molybog, Yixin Nie, Andrew Poulton, Jeremy Reizenstein, Rashi Rungta,
Kalyan Saladi, Alan Schelten, Ruan Silva, Eric Michael Smith, R. Subramanian, Xia Tan, Binh
Tang, Ross Taylor, Adina Williams, Jian Xiang Kuan, Puxin Xu, Zhengxu Yan, Iliyan Zarov,
Yuchen Zhang, Angela Fan, Melanie Kambadur, Sharan Narang, Aurelien Rodriguez, Robert
Stojnic, Sergey Edunov, and Thomas Scialom. Llama 2: Open foundation and fine-tuned chat
models. ArXiv, abs/2307.09288, 2023.

[40] Logan Ward, Alexander Dunn, Alireza Faghaninia, Nils ER Zimmermann, Saurabh Bajaj,
Qi Wang, Joseph Montoya, Jiming Chen, Kyle Bystrom, Maxwell Dylla, et al. Matminer: An
open source toolkit for materials data mining. Computational Materials Science, 152:60–69,
2018.

[41] Jason Wei, Maarten Bosma, Vincent Y Zhao, Kelvin Guu, Adams Wei Yu, Brian Lester, Nan
Du, Andrew M Dai, and Quoc V Le. Finetuned language models are zero-shot learners. arXiv
preprint arXiv:2109.01652, 2021.

[42] Jason Wei, Xuezhi Wang, Dale Schuurmans, Maarten Bosma, Ed Huai hsin Chi, F. Xia, Quoc
Le, and Denny Zhou. Chain of Thought Prompting Elicits Reasoning in Large Language Models.
ArXiv, abs/2201.11903, 2022.

[43] Thomas Wolf, Lysandre Debut, Victor Sanh, Julien Chaumond, Clement Delangue, Anthony
Moi, Pierric Cistac, Tim Rault, Rémi Louf, Morgan Funtowicz, Joe Davison, Sam Shleifer,
Patrick von Platen, Clara Ma, Yacine Jernite, Julien Plu, Canwen Xu, Teven Le Scao, Sylvain
Gugger, Mariama Drame, Quentin Lhoest, and Alexander M. Rush. Transformers: State-of-the-
art natural language processing. In Proceedings of the 2020 Conference on Empirical Methods
in Natural Language Processing: System Demonstrations, pp. 38–45, Online, October 2020.
Association for Computational Linguistics. URL https://www.aclweb.org/anthology/
2020.emnlp-demos.6.

12

https://www.youtube.com/watch?v=AKMuA_TVz3A&ab_channel=SimonsInstitute
https://www.youtube.com/watch?v=AKMuA_TVz3A&ab_channel=SimonsInstitute
https://www.aclweb.org/anthology/2020.emnlp-demos.6
https://www.aclweb.org/anthology/2020.emnlp-demos.6

[44] Tian Xie, Xiang Fu, Octavian-Eugen Ganea, Regina Barzilay, and Tommi Jaakkola. Crys-
tal diffusion variational autoencoder for periodic material generation. arXiv preprint
arXiv:2110.06197, 2021.

13

Appendix

Table of Contents
A Training Details 14

A.1 Numerical Formatting . 14
A.2 Training with Stochastic Prompts . 14
A.3 Extended Materials Project Dataset . 15
A.4 Training Hyperparameters and Details . 15
A.5 Role of Text Pretraining . 15

B Model Evaluation 16
B.1 Evaluation with ML potentials and DFT . 16
B.2 Stability Checks and Percentages . 16
B.3 Increase in Perplexity under Transformation (IPT) 16
B.4 Sampling Speed . 17

C Template Method Baseline 17

A Training Details

A.1 Numerical Formatting

Notably, our approach to tokenization is distinctly different from prior work on modeling atomic
structures with language models. Instead of using a special vocabulary and training models from
scratch, we use LLaMA-2’s existing tokenizer. This choice allows us to easily process both encoded
crystals and text data. In early experiments, we tried out many other approaches, including fine-
tuning LLaMA-2 models with additional tokens specific to crystal data. These methods were more
challenging to train and didn’t lead to any improvements over using a shared tokenizer. We include a
set of example training losses below:

Epoch 1 Epoch 2 Epoch 3 Epoch 4 Epoch 5
Special Crystal Tokens 0.783 0.693 0.623 0.611 0.588
Shared Tokenization 0.457 0.432 0.424 0.401 0.385

There are many important decisions involved both in text formatting (e.g the choice of fractional or ab-
solute coordinates) and augmentation of the input data (e.g. translation or permutation augmentations
on coordinates). As a simple example, we provide average validity numbers (using low temperature
sampling) from earlier experiments on LLaMA-2 7B models trained with different formatting styles

Setting Structural Validity Compositional Validity
Fractional coords 91.4% 83.2%
Absolute coords 90.8% 80.5%
No permutations 92.5% 82.9%

With permutations 89.2% 81.7%

A.2 Training with Stochastic Prompts

In order to enable multi-task use of the fine-tuned LLMs, we train on a stochastically generate prompt.
Two thirds of the time we provide the model with a generation task, in which the prompt consists of a
basic instruction to generate a bulk material as a lattice and atom positions. We randomly sample a
set of properties from the available descriptors of a given crystal and add any chosen ones (if any) to
the prompt, using a small amount of wrapper text. The remaining one third of the time, we provide

14

use the sampled crystal to construct and infilling task. We choose on element randomly from the set
of elements in the composition and we construct a prompt that contain the string encoding of the
crystal with this element replaced with [MASK]. The model then generates the replaced element as
text following the prompt.

A.3 Extended Materials Project Dataset

To facilitate text-conditional generation, we extend the original CDVAE training dataset with materials
from Materials Project [22] as of April 2023. We filter out crystal with more than 30 atoms in the
unit cell, which slow down training with minimal benefit to model performance, leaving a training set
that contains 127609 crystal structures. The original validation and test splits are left unchanged and
all test/validation points are removed from the new training set.

A.4 Training Hyperparameters and Details

We provide the training details per model:

• LLaMA-2 7B: Batch size of 256 for 65 epochs with a cosine annealed learning rate of
0.0005. LoRA rank 8 and alpha 32.

• LLaMA-2 13B: Batch size of 256 for 44 epochs with a cosine annealed learning rate of
0.0005. LoRA rank 8 and alpha 32.

• LLaMA-2 70B: Batch size of 32 for 21 epochs with a cosine annealed learning rate of
0.0005. LoRA rank 8 and alpha 32.

Limitations around available compute lead to our use of differing batch sizes and total number of
epochs for each model. Ideally, we would train all models with the largest batch sized used among
all models and would train all models for the same number of epochs (the maximum used by any
model). At the same time, we wanted to properly demonstrate the full potential of all model sizes and
therefore chose to present results for the best model we were able to train at each model size.

A.5 Role of Text Pretraining

Text pretraining is essential to our method for two reasons.

1. It would be impractically expensive or computationally infeasible to train models with up to
70B parameters from scratch on our data. Using a pretrained model with LoRA [21] offers
the benefits of model scale while maintaining tractability and limiting overfitting, as the
actual number of trainable parameters can be relatively small.

2. Pretraining on text data yields a model that can be conditioned on text for free, and text
conditioning opens up a huge new realm of exciting possibilities, like conditioning samples
on desired properties. It would be challenging to achieve a similar result from scratch without
significantly expanding the size of the dataset (to improve general text understanding) and
without essentially training a general-purpose language model in the process.

To better understand the first point, let’s quickly review the exact details of the finetuning procedure.
We are using low-rank adapters (LoRA), as opposed to end-to-end finetuning, and this means we are
adding a small number of additional parameters to an existing, frozen model. The easiest way to see
the difference between this approach and training a model from scratch (as in [14]) is to compare the
training loss over the first few epochs of training.

Model Epoch 1 Epoch 2 Epoch 3 Epoch 4 Epoch 5
GPT-2 (from scratch) 0.946 0.878 0.807 0.757 0.740
LLaMA-13B (LoRA) 0.457 0.432 0.424 0.401 0.385
LLaMA-70B (LoRA) 0.402 0.344 0.325 0.305 0.296

If we attempt to run LoRA finetuning with randomly initialized parameters for the LLaMA-2 7B
model we observe an immediate and significant difference in the training losses:

15

Model 1 Iter 0.33 Epochs 0.66 Epochs 1 Epoch
Random 13.46 1.53 0.81 0.78

Pre-trained 1.57 0.47 0.41 0.39

While LoRA finetuning is tractable because 99.95% of the model is frozen, finetuning a LLaMA-2
model end-to-end in half-precision would require at least 4 times as many GPUs, making it infeasible
for all but a handful of researchers. When using LoRA, even though the base models are large the
number of trainable parameters is very small. In fact, the LLamA-2 7B model has less trainable
parameters than one of the baseline methods we compared (CDVAE) [44]. The number of trainable
parameters for each of our models and the baseline models is shown below:

Model Trainable parameters (millions) Percentage of total
CDVAE [44] 4.5 100%

LM-CH/AC [14] 1-100 100%
LLaMA-2 7B 3.5 0.05%

LLaMA-2 13B 6.5 0.05%
LLaMA-2 70B 35 0.05%

B Model Evaluation

B.1 Evaluation with ML potentials and DFT

Approximating Ehull from the energies of known materials in Materials Project requires a consistent
correction scheme. We touch on some of the details here.

M3GNet Importantly, M3GNet was trained on the total energy of VASP calculations in the Mate-
rials Project dataset, so the results were expected to be consistent with the correction schemes and
absolute energies in Section 5.

VASP To be consistent with the Materials Project settings (e.g. the PBE functional, DFT/DFT+U
as appropriate, consistent pseudopotentials, etc). We did a single relaxation for every candidate
structure using the default parameters in MPRelaxSet [31]. VASP relaxations were run using the
GPU-accelerated VASP6 code.

In both situations, the total energies were corrected using the MP2020 compatibility scheme, which
was important to maintain consistency when calculating formation energies, and allow the use of
varying functionals (DFT/DFT+U) for different materials.

B.2 Stability Checks and Percentages

To calculate the percentage of metastable compounds, we take all samples and remove samples
that are invalid under the basic structure and composition checks. We then run relaxations with
M3GNet and obtain the final relaxation energies. The final percentage takes into account both the
rate of validity (used to perform the initial filtering), and the rate of compounds with Êhull < 0.1,
as determined by the convex hull calculation using the M3GNet relaxation energy. To calculate the
VASP percentage, we select materials determined to be metastable M3GNet and run VASP with
default setting. We then report the percentage of the materials with Êhull < 0.0.

B.3 Increase in Perplexity under Transformation (IPT)

We calculate IPT for each model using 500 test datapoints and 20 randomly translation sampled
as fraction coordinates from a uniform distribution per dimension. The translations themselves are
implemented in PyMatgen and respect periodic boundary conditions [31]. In order to combine the
IPT values in a meaningful way across different datapoints, we normalize their values by the mean
perplexity over transformations. Thus datapoints which happen to have large perplexity, and therefore
naturally large potential changes in perplexity, do not drown out points with small perplexity.

16

B.4 Sampling Speed

Although LLMs might seem like computational overkill at face value, if we perform a detailed
analysis, we can see that deploying a LLaMA model for large-scale sampling of materials actually
has comparable computational overhead to competing approaches. We can use LLaMA-2 13B and
70B as the models for our method and AWS as the deployment environment. In a recent benchmark
on a cloud instance with 8 A100 GPUs (ml.p4d.12xlarge) [2], LLaMA-2 13B achieved 0.416 hr/1M
tokens and LLaMA-2 70B achieved 0.864 hr/1M tokens. One crystal is around 100 tokens on average,
so the throughput for 10,000 crystals is the same as for 1M tokens. For comparison, we use CDVAE
and its recorded runtimes for generating 10,000 crystals on a single RTX2080 Ti GPU [44]. To obtain
the final numbers, we adjust for the number of GPUs (8) and a 2x improvement from RTX2080 Ti to
A100 GPUs [1].

Model Hours / 10,000 crystals Hours / 10,000 metastable (M3GNet) crystals
CDVAE 0.363 1.260

LLaMA-13B 0.416 1.094
LLaMA-70B 0.864 1.728

We see that LLaMA-2 13B actually has a comparable computational overhead to prior work, and
LLaMA-2 70B is only slightly higher. When considering the rate of stable materials generated
by each method, we see that LLaMA-2 13B actually has a higher throughput than CDVAE and
with noticeably higher diversity. We think LLMs are particularly exciting because their ability to
understand physical laws improved consistently with the performance of the base model, capping out
at overall validity (structure and composition) rates near 90%.

C Template Method Baseline

We provide code in Listing 1 implementing construction of the physically-inspired element swap
table. This table is used by both the template method and the LLM-guided sampling method to
constrain search to elements that are physically plausible. Listing 2 shows our implementation of
a basic template method with uniform sampling. The LLM-guided procedure is mostly identical,
except with uniform sampling of the swap element changed for sampling from a distribution obtained
from the LLM with an infilling prompt (and modulated with temperature parameter τ)

1 import os
2 import random
3 import pandas as pd
4 import numpy as np
5 from pymatgen.core import Element
6 from pymatgen.core.structure import Structure
7 from m3gnet.models import Relaxer
8

9 def find_similar_elements(target_element , elements , tolerance =0.1):
10 similar_elements = []
11 for state , radius in target_element.ionic_radii.items():
12 for el in elements:
13 if state in el.ionic_radii:
14 radius_diff = abs(radius - el.ionic_radii[state])
15 if radius_diff < tolerance and el.symbol !=

target_element.symbol:
16 similar_elements.append ((el.symbol , state ,

radius_diff))
17 return sorted(similar_elements , key=lambda x: x[2])
18

19 def make_swap_table ():
20 elements = [Element(el) for el in Element]
21

22 swap_table = {}
23

24 for el in elements:
25 swap_table[el.symbol] = [
26 x[0] for x in find_similar_elements(el , elements)

17

27]
28

29 return swap_table

Listing 1: Self contained code to construct the template method table which can be used to proposed
mutations for local optimization around an existing material. The same table can be used in tandem
with a language model to provide sampling constraints (i.e. eliminate elements which are very
physically unlikely).

1 def propose_new_structures(cif_str , swap_table , max_swaps =1):
2 struct = Structure.from_str(cif_str , fmt="cif")
3

4 elements = [el.symbol for el in struct.species]
5 swappable_elements = [
6 el for el in elements if el in swap_table and len(swap_table[

el]) > 0
7]
8

9 num_possible_swaps = sum([len(swap_table[el]) for el in
swappable_elements])

10 num_swaps = min(num_possible_swaps , max_swaps)
11

12 relaxer = Relaxer ()
13 new_bulks = []
14 for _ in range(num_swaps):
15 old_el = random.choice(swappable_elements)
16 possible_new = swap_table[old_el]
17 new_el = random.choice(possible_new)
18

19 new_bulk = struct.copy()
20 new_bulk.replace_species ({ old_el: new_el })
21

22 relax_results = relaxer.relax(new_bulk)
23 final_structure = relax_results[’final_structure ’]
24 final_relaxed_energy = relax_results[’trajectory ’]. energies

[-1]
25

26 new_bulks.append(dict(
27 cif=final_structure.to(fmt="cif"),
28 energy=final_relaxed_energy
29))
30

31 new_bulks = pd.DataFrame(new_bulks)
32 return new_bulks

Listing 2: Self contained code implementing a template method with uniform sampling. Our language
model procedure is essentially the same but replaces uniform sampling with logits from a prompted
language model. This language model can use the context from the rest of the crystal structure to
propose a mutation instead of choosing a mutation completely at random.

18

	Introduction
	Related Work
	Background
	Method
	Experiments
	Discussion
	Appendix
	 Appendix
	Training Details
	Numerical Formatting
	Training with Stochastic Prompts
	Extended Materials Project Dataset
	Training Hyperparameters and Details
	Role of Text Pretraining

	Model Evaluation
	Evaluation with ML potentials and DFT
	Stability Checks and Percentages
	Increase in Perplexity under Transformation (IPT)
	Sampling Speed

	Template Method Baseline

