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Abstract
Keyphrase extraction aims at automatically ex-001
tracting a list of “important” phrases represent-002
ing the key concepts in a document. Prior003
approaches for unsupervised keyphrase extrac-004
tion resort to heuristic notions of phrase im-005
portance via embedding similarities or graph006
centrality, requiring extensive domain exper-007
tise to develop them. Our work presents an008
alternative operational definition: phrases that009
are most useful for predicting the topic of a010
text are keyphrases. To this end, we propose011
INSPECT—a self-explaining neural framework012
for identifying influential keyphrases by mea-013
suring the predictive impact of input phrases014
on the downstream task of topic classification.015
We show that this novel approach not only016
alleviates the need for ad-hoc heuristics but017
also achieves state-of-the-art results in unsu-018
pervised keyphrase extraction in 3 out of 4 di-019
verse datasets across two domains: scientific020
publications and news articles. Ultimately, our021
study suggests a new usage of interpretable022
neural networks as an intrinsic component in023
NLP systems, and not only as a tool for ex-024
plaining model predictions to humans.025

1 Introduction026

Keyphrase extraction is crucial for processing and027

understanding long documents in specialized (e.g.,028

scientific, medical) domains (Mekala and Shang,029

2020; Betti et al., 2020; Wang et al., 2019). The030

task is challenging, as the notion of phrase impor-031

tance is context- and domain-dependent. For ex-032

ample, scientific terminology has key importance033

in processing scientific documents (Bekhuis, 2015;034

Gábor et al., 2016), whereas fine-grained entities035

and events are important in news summarization036

(Pighin et al., 2014; Balachandran et al., 2021;037

Li et al., 2016). Therefore, developing general038

keyphrase annotation guidelines and curating repre-039

sentative hand-labeled datasets is not feasible. This040

motivates the need for generalizable unsupervised041

approaches to keyphrase extraction.042

Figure 1: A comprehensive set of keyphrases should
highlight important phrases for all major topics in a
document. INSPECT presents a method, that lever-
ages interpretable neural models to identify such latent
keyphrase useful for predicting topics in a document.

So far, unsupervised approaches to keyphrase ex- 043

traction have primarily relied on heuristic notions 044

of phrase importance (Mihalcea and Tarau, 2004; 045

Shang et al., 2018; Campos et al., 2018). Popular 046

proxies for phrase importance include phrase clus- 047

tering based on statistical features like word den- 048

sity (Florescu and Caragea, 2017a; Campos et al., 049

2018) and structural features like graph centrality 050

(Bougouin et al., 2013). However, such approaches 051

do not yield high-quality keyphrases in new do- 052

mains as they require domain experts to carefully 053

construct appropriate heuristics (Mani et al., 2020). 054

In this work, we present an alternative approach. 055

We measure the importance of phrases in a docu- 056

ment by their influence on classifying the topics in 057

a text from a set of pre-defined topics. These topics 058

are extracted unsupervisedly in a pre-processing 059

stage. Pre-neural methods have used keyphrases to 060

help identify topics in a document (Wallach, 2006; 061

Wang et al., 2008; Liu and Yang, 2009). We hypoth- 062

esize that end-to-end neural models also latently 063

use keyphrases to represent documents and per- 064

form downstream tasks. Consequently, if we can 065

interpret model decisions via highlighting salient 066
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Figure 2: Overview of INSPECT . We first extract candidate phrases and their representations using RoBERTa.
The representations of the input without the contribution of each phrase is constructed and provided to the topic
classifier. During inference, the model predicts the topics in the document and compares the logits to compute
importance scores for each phrase, where a higher score signifies more influence on prediction.

and influential features (phrases) used for predic-067

tion, we can identify such keyphrases. Inspired068

by this intuition, we propose INSPECT—a novel069

framework that uses interpretable text classifiers070

to highlight keyphrases important for predicting071

the topics in a text. Specifically, we adapt an in-072

terpretable classifier SelfExplain (Rajagopal et al.,073

2021) to jointly predict the topic of an input docu-074

ment and to identify the salient phrases influencing075

the prediction. We consider the resulting interpre-076

tations as keyphrases for the input document (§2).077

Through extensive experiments, we show that078

INSPECT is generalizable and can be easily adapted079

to new domains. We present the applicability of080

INSPECT in the scientific and news domain (§3).081

Results on four benchmark datasets show that IN-082

SPECT improves keyphrase extraction performance083

over baselines by up to 11.4% F1 (§4), outperform-084

ing the state-of-the-art in unsupervised keyphrase085

extraction on 3 out 4 datasets. Importantly, IN-086

SPECT alleviates the need for heuristics and expert-087

labelled annotations, and thus can be applied to088

a wide range of domains and problems where089

keyphrase extraction is important. Our results con-090

firm that the latent keyphrases obtained from an in-091

terpretable model correlate with human annotated092

keyphrases, opening new avenues for research on093

interpretable models for information extraction.1094

1Code and data will be publicly released.

2 The INSPECT Framework 095

The goal of the INSPECT framework is to extract 096

important keyphrases in long documents. Follow- 097

ing a hypothesis that neural text classifiers latently 098

leverage important keyphrases for predicting topics 099

in text, INSPECT extracts keyphrases through inter- 100

preting the classification decisions. It builds upon 101

an interpretable model, SelfExplain (Rajagopal 102

et al., 2021), which learns to attribute text clas- 103

sification decisions to relevant phrases in the input. 104

However, SelfExplain was designed and tested in 105

supervised settings and for single-sentence classi- 106

fication; in this work we explore its extension to 107

unsupervised keyphrase extraction from long docu- 108

ments. In what follows, we describe the base Self- 109

Explain model (§2.1) and the distant supervision 110

setup for topic classification (§2.2). We outline the 111

training mechanism to jointly predict topics and 112

highlight salient phrases in the document as model 113

interpretations (§2.3) and finally extract the result- 114

ing phrase interpretations as important keyphrases 115

in the document (§2.4). The framework overview 116

is shown in Figure 2. 117

2.1 Base Interpretable Model 118

Feature attribution methods for model interpretabil- 119

ity include two predominant approaches, (i) post- 120

hoc interpretations of a trained model (Jin et al., 121

2020; Kennedy et al., 2020; Lundberg and Lee, 122

2017; Ribeiro et al., 2016), and (ii) intrinsically (by- 123
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design) interpretable models (Alvarez-Melis and124

Jaakkola, 2018; Rajagopal et al., 2021). We adopt125

the latter approach, specifically SelfExplain (Ra-126

jagopal et al., 2021) as our phrase attribution127

model, as the model directly produces interpreta-128

tions, though in principal any phrase based inter-129

pretability techniques could be employed.130

SelfExplain augments a pre-trained transformer-131

based model (RoBERTa (Liu et al., 2019) in our132

case) with a local interpretability layer (LIL) and a133

global interpretability layer (GIL) which are trained134

to produce local (relevant features from input sam-135

ple) and global (relevant samples from training136

data) interpretations respectively. The model can be137

trained for any text classification tasks using gold138

task supervision, and produces local and global in-139

terpretations along with model predictions. Since140

our goal is to identify important phrases from the141

input sample, we use only the LIL layer. The LIL142

layer takes as input a sentence x and a set of candi-143

date phrases CP x = cp1, cp2, ..., cpN and quanti-144

fies the contribution of a particular phrase for pre-145

diction through the activation difference (Shriku-146

mar et al., 2017; Montavon et al., 2017) between147

the phrase and sentence representations.148

2.2 Distant Supervision via Topic Prediction149

Obtaining annotations for keyphrases in specialized150

domains is challenging for supervised keyphrase151

extraction (Mani et al., 2020). Instead, we train the152

interpretable model in a distant supervision setup153

for multi-class topic classification and use model154

interpretations to identify keyphrases, without any155

keyphrase annotations. Topical information about156

a document are known to be essential for identi-157

fying diverse keyphrases (Bougouin et al., 2013;158

Sterckx et al., 2015). Further, a comprehensive set159

of keyphrases should represent the various major160

topics in the document to be useful for different161

long document applications (Liu et al., 2010). We162

hypothesize that by using topic classification as our163

end-task, our model will learn to highlight—via164

interpretations it is designed to provide—important165

and diverse keyphrases in the input document.166

While certain domains like news articles have ex-167

tensive datasets with human annotated topic labels,168

others like scientific articles or legal documents169

require significant effort for human annotation. IN-170

SPECT can be trained using annotated topic labels171

when they exist. In other domains where such an-172

notations are scarce, INSPECT can be trained using173

labels extracted unsupervisedly using topic models 174

(Gallagher et al., 2017). Experiments in §4 show 175

results using both settings. 176

2.3 Keyphrase Relevance Model 177

SelfExplain is designed to process single sentences 178

and uses all the phrases spanning non-terminals in a 179

constituency parser as units (candidate phrases) for 180

interpretation. This is computationally expensive 181

for our use-case. To facilitate long document topic 182

classification, we instead define the set of noun 183

phrases (NPs) as the interpretable units, which 184

aligns with prior work in keyphrase extraction of 185

using noun phrases as initial candidate phrases 186

(Shang et al., 2018; Mihalcea and Tarau, 2004; 187

Bougouin et al., 2013). INSPECT splits a long doc- 188

ument into constituent passages, extracts NPs as 189

candidates, and attributes the contribution of each 190

NP for predicting the topics covered in the passage. 191

For each text block x in the input document, we 192

preprocess and identify a set of candidate phrases 193

CP x = cp1, cp2, ..., cpN where N is the number 194

candidate phrases in x. From the base RoBERTa 195

model, we obtain contextual [CLS] representations 196

of the entire text block hCLS and individual to- 197

kens. We compute phrase representations h1...hN 198

for each candidate in CP x = {cp1, cp2, ..., cpN} 199

by taking the sum of the RoBERTa representations 200

of each token in the phrase cpi. 201

To compute the relevance of each phrase, we 202

construct a representation of the input without the 203

contribution of the phrase, zi, using the activation 204

differences between the two representations. We 205

then pass it to a classifier layer in the local inter- 206

pretability module to obtain the label distribution 207

for prediction. 208

zi = g(hi)− g(hCLS); li = f(W T zi + b) (1) 209

where g is the ReLU activation function and W 210

and b are the weights and bias of the classifier. 211

Here li denotes the label distribution obtained on 212

passing the phrase-level representations zi through 213

a classification layer f which is either the sigmoid 214

or the softmax function depending on the prediction 215

task (multi-label versus multi-class). We denote the 216

label distribution from the base RoBERTa model 217

for predicting the output using the whole input 218

block as lCLS . We train the model using the cross 219

entropy loss Ly with respect to the multi-label gold 220

topics yt and an explanation specific loss Le using 221

the mean of all phrase-level label distributions such 222
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that le = mean(li).223

Ly = −
T∑
t=1

yt log(lCLS), Le = −
T∑
t=1

yt log(le)

(2)224

The classifier is regularized jointly with α parame-225

ter using explanation and classification loss:226

L = (1− α)Ly + αLe,227

2.4 Inference228

During inference, for each predicted label y ∈ Y ,229

where Y denotes set of all predicted labels for input230

text x, INSPECT calculates an importance score231

ryi with respect to the predicted label y using the232

difference between the label distribution lyi for a233

candidate phrase ci and the one obtained using the234

entire input lyCLS as ryi = lyCLS − l
y
i .235

This score denotes the influence of a candidate236

keyphrase on the predicted topic. A higher score is237

caused by a high shift in label distribution when us-238

ing the representation of the input without the con-239

tribution of the phrase, indicating that the phrase240

is highly relevant for predicting the topic. Since241

the relevance scores are computed with respect to a242

particular predicted topic and it’s label distribution,243

the scores for the same input are not comparable244

across different predicted topics in multi-label clas-245

sification (since label distributions can vary in mag-246

nitude). To aggregate important keyphrases across247

all predicted topics, we pick the ones that positively248

impact prediction for each topic (having a positive249

influence score) as a set of keyphrases.250

KP (x) = [CPi ∀ ryi > 0; y ∈ Y ; i ∈ {1 : N}]251

3 Experimental Setup252

3.1 Evaluation Datasets253

We evaluate INSPECT in two domains using four254

popular keyphrase extraction datasets—scientific255

publications (SemEval-2017 (Augenstein et al.,256

2017a), SciERC (Luan et al., 2018), SciREX (Jain257

et al., 2020)) and news articles (500N-KPCrowd258

(Marujo et al., 2013)). Dataset details and statistics259

are listed in Table 5 in the Appendix §A.1.260

3.2 Topic Labels261

We create distant supervision for INSPECT by label-262

ing the above datasets using document topics as la-263

bels. We leverage existing topic annotations when264

such annotations exist. In the 500N-KPCrowd265

news based dataset, we use existing topic labels266

(tags or categories such as Sports, Politics, Enter- 267

tainment) in a one-class classification setting. For 268

the scientific publications domain, we use topic 269

models (Gallagher et al., 2017) to extract T = 75 270

topics where each document can be labeled with 271

multiple topics. The scientific domain datasets are 272

trained in a multi-label classification setup. 273

3.3 Training Data and Settings 274

We evaluate the generalizability of INSPECT in two 275

experimental settings: 276

1. INSPECT: In this setting, for each of our 277

datasets we train the model for topic predic- 278

tion using only the documents and topic labels 279

from the training set of the dataset. We then 280

evaluate using the held-out test data from the 281

dataset. The training data in this setting, is 282

most closely aligned to the test data, as the 283

documents are of the same topic distribution. 284

2. INSPECT-ZeroShot: Here, the model is 285

trained using a large external dataset of docu- 286

ments and topic labels from a similar domain. 287

The model is then evaluated on the test data of 288

each dataset. The training data here is of a sim- 289

ilar domain (e.g. ICLR papers for scientific 290

domain), but not necessarily of similar topic 291

distribution as the test data (e.g. SemEval- 292

2017 has Physicis papers which have differ- 293

ent topics than ICLR papers). In this setting, 294

we use data from ICLR OpenReview2 papers 295

for scientific domain and BBC News articles 296

for news domain. We collect over 8,317 full 297

papers from ICLR and obtained 75 topic la- 298

bels using topic modeling3. We removed 22 299

topic labels that were uninformative (list in 300

Appendix Table 6) and used the rest to train 301

our model in a multi-label classification setup. 302

The BBC News corpus (Greene and Cunning- 303

ham, 2006) consists of 2,225 news article doc- 304

uments, each annotated with one of five top- 305

ics (business, entertainment, politics, sport, or 306

tech). 307

We pre-process each document by splitting it 308

into text blocks of size 512 tokens, where consecu- 309

tive blocks overlap with a stride size of 128. Fol- 310

lowing Shang et al. (2018), for each block we con- 311

sider all Noun Phrases (NPs) as candidate phrases 312

2https://openreview.net/group?id=ICLR.
cc

3https://github.com/gregversteeg/
corex_topic
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F1 Score
Dataset Method Micro Macro Weighted

SciERC RoBERTa 0.842 0.651 0.767
INSPECT 0.836 0.658 0.771

SciREX RoBERTa 0.609 0.404 0.641
INSPECT 0.628 0.442 0.697

SemEval17 RoBERTa 0.819 0.613 0.731
INSPECT 0.822 0.611 0.744

500N-KPCrowd RoBERTa 0.916 0.880 0.910
INSPECT 0.938 0.904 0.939

ICLR RoBERTa 0.729 0.456 0.699
INSPECT 0.743 0.492 0.733

BBC News RoBERTa 0.880 0.851 0.876
INSPECT 0.902 0.886 0.894

Table 1: Proxy Task (Topic prediction) performance.
Our INSPECT method outperforms a strong RoBERTa
baseline on Micro, Macro and Weighted F1 scores.

and extract them using a Noun Phrase extractor313

from the Berkeley Neural Parser4. All hyperpa-314

rameters were chosen based on development set315

performance on SciERC. Our final models were316

trained with a batch size of 8 a learning rate of 2e-5317

for 10 epochs.The classification layer dimension318

was 64 and α was 0.5.5319

3.4 Baselines320

We compare our method against seven unsuper-321

vised keyphrase extraction techniques — Yake322

(Campos et al., 2018), TF-IDF (Florescu and323

Caragea, 2017a), TopicRank (Bougouin et al.,324

2013) AutoPhrase (Shang et al., 2018; Liu et al.,325

2015), SifRank (Sun et al., 2020), AttentionRank326

(Ding and Luo, 2021) and UKE-CCRank (Liang327

et al., 2021). Out of the chosen baselines, Yake,328

TF-IDF and AutoPhrase are statistical, TopicRank329

is graph-based and SifRank, AttentionRank and330

UKE-CCRank are neural embedding based meth-331

ods. Following prior work and task guidelines332

(Augenstein et al., 2017a; Jain et al., 2020), IN-333

SPECT produces span level keyphrases and distin-334

guishes each occurrence of a keyphrase. In con-335

trast, methods like SifRank, AttentionRank, and336

UKE-CCRank are phrase level keyphrase extrac-337

tors which don’t provide span level outputs. To338

maintain common evaluation, we adapt these meth-339

ods to span level keyphrase extraction by matching340

each output keyphrase to all occurrences of the341

phrase in the document. As our method applies342

a cutoff on relevance scores and picks any phrase343

with a positive relevance score as a keyphrase, we344

4https://pypi.org/project/benepar/
5Details on our hyperparameter search is shared in the

appendix §A.2

cannot be directly compared with baselines which 345

rank candidate phrases and pick top-K phrases as 346

important. To establish a fair setting for evaluation, 347

we use the choose the average of the number of 348

keyphrase predictions from our model as the ’K’ 349

across all baselines. 350

3.5 Evaluation Metrics 351

Topic Prediction Evaluation: To ensure high- 352

quality interpretations from our model, it is im- 353

perative that it performs well on topic prediction. 354

We first evaluate INSPECT’s performance on topic 355

prediction using average F1 scores across all labels. 356

Keyphrase Extraction Evaluation: For our pri- 357

mary evaluation of keyphrase extraction, we evalu- 358

ate using span match of our predictions and the true 359

labels (human annotated keyphrases). Prior works 360

(Shang et al., 2018; El-Beltagy and Rafea, 2009; 361

Bougouin et al., 2013) have mainly focused on ex- 362

act match performance. However, a recent survey 363

highlights that the measure is highly restrictive (Pa- 364

pagiannopoulou and Tsoumakas, 2019) as simple 365

variations in preprocessing can misalign phrases 366

giving an inaccurate representation of the model’s 367

capabilities (Boudin et al., 2016). 368

Alternatively, partial span match using the word 369

level overlap between the predicted and gold span 370

ranges, has also been explored (Rousseau and Vazir- 371

giannis, 2015). But, it is sometimes lenient in 372

scoring. Papagiannopoulou and Tsoumakas (2019) 373

suggest average of the exact and partial matching 374

as an appropriate metric based on empirical stud- 375

ies. Therefore, we evaluate performance using the 376

average of the exact and partial match F1 scores 377

between predicted and true phrases keyphrases. 378

4 Results 379

4.1 Topic Prediction with INSPECT 380

First, we compare INSPECT’s effectiveness in clas- 381

sifying the topics with the corresponding non- 382

interpretable encoder baseline, using micro, macro, 383

and weighted F1 score of the classifier’s predic- 384

tions compared to gold standard annotations. The 385

results in Table 1 show that our approach outper- 386

forms a strong RoBERTa (Liu et al., 2019) baseline 387

for topic prediction across all of our evaluation 388

datasets. The difference is more pronounced in 389

larger datasets (SciREX, ICLR, and BBC News), 390

and strong performance on the topic classification 391

task provides confidence that highlighted interpre- 392

tations are for relevant and major topics in the text. 393
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Dataset Method Exact Match F1 Partial Match F1 Avg Exact Partial F1

SciERC

TF-IDF 0.0627 0.2860 0.1743
TopicRank 0.2533 0.5680 0.4110
Yake 0.2230 0.5125 0.3678
AutoPhrase 0.0961 0.3145 0.2053
AttentionRank 0.3461 0.4690 0.4075
UKE CCRank 0.3584 0.4804 0.4194
INSPECT 0.3108 0.5524 0.4316

SciREX

TF-IDF 0.1521 0.3690 0.2605
TopicRank 0.2298 0.4122 0.3210
Yake 0.1840 0.3734 0.2787
AutoPhrase 0.1814 0.4236 0.3025
AttentionRank 0.2554 0.2198 0.2376
UKE CCRank 0.0419 0.0759 0.0589
INSPECT 0.2397 0.4127 0.3262

SemEval17

TF-IDF 0.0610 0.2698 0.1654
TopicRank 0.2240 0.4312 0.3276
Yake 0.1687 0.3644 0.2665
AutoPhrase 0.0790 0.3404 0.2097
AttentionRank 0.2408 0.3442 0.2925
UKE CCRank 0.2427 0.345 0.2938
INSPECT 0.2594 0.5185 0.3889

500N-KPCrowd

TF-IDF 0.1034 0.3520 0.2277
TopicRank 0.1060 0.2346 0.1703
Yake 0.1380 0.3551 0.2465
AutoPhrase 0.1590 0.3608 0.2599
AttentionRank 0.3032 0.3442 0.3237
UKE CCRank 0.1729 0.2873 0.2303
INSPECT 0.1608 0.3920 0.2764

Table 2: Span-match results for unsupervised keyphrase extraction across datasets in the INSPECT setting. Best
performance is indicated in Bold. Our model ourperforms baselines on average of exact and partial F1 scores.

4.2 Keyphrase Span Match Performance394

Next, we study the utility of INSPECT in highlight-395

ing keyphrases via model interpretations. The re-396

sults for INSPECT are detailed in Table 2 and, for397

INSPECT-ZeroShot in Table 3. 6398

Results in Table 2 show that even with access to399

only training set of documents from each dataset,400

on 3 out of 4 datasets INSPECT outperforms all401

baselines with ∼3.24 average F1 improvements. In402

the news domain (500-KPCrowd dataset) INSPECT403

has low exact match scores but higher partial match404

scores indicating misalignments between predicted405

and gold spans. Additionally, 500N-KPCrowd an-406

notates all instances of a keyphrase as a reference407

span which favours phrase level methods like At-408

tentionRank in the current evaluation setup. In409

SciREX, we observe very poor performance of410

UKE CCRank as it ranks common phrases like411

“image”, “label”, “method”, etc, very high.412

In the INSPECT-ZeroShot setting, with access to413

a larger dataset of external documents, our model414

outperforms prior methods in 3 out of 4 datasets415

6As SifRank uses external data to augment the model,
we compare it with INSPECT-ZeroShot for a fair comparison.
Baselines that don’t make use of any external corpus are only
included in the INSPECT setting evaluation.

with ∼3.2 points average F1 improvements. In the 416

500N-KPCrowd dataset, INSPECT performs com- 417

parably to SifRank with improved Partial Match F1. 418

As Table 3 illustrates, we notice that the model con- 419

sistently performs better in the INSPECT-ZeroShot 420

setting when compared with the INSPECT setting, 421

showing that the method benefits from more train- 422

ing data. Our results further show that variations 423

in topic distribution between training and test data 424

don’t significantly impact results. INSPECT can 425

thus benefit from large unlabeled documents from 426

similar domains to improve results. 427

INSPECT improves performance in settings with 428

human annotated topics (news) as well as when 429

topics are extracted using unsupervised topic mod- 430

eling (scientific). Additionally, most baselines rely 431

on carefully constructed pre- and post-processing 432

to eliminate common phrases and produce high- 433

quality candidates (Liang et al., 2021; Ding and 434

Luo, 2021; Sun et al., 2020). In contrast, IN- 435

SPECT achieves competitive results without do- 436

main expertise and processing for extracting qual- 437

ity keyphrases. Therefore, INSPECT can be easily 438

adapted to new domains without human annota- 439

tions for topics and with minimal domain knowl- 440

edge. 441
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Dataset Method Exact Match F1 Partial Match F1 Avg Exact Partial F1

SciERC
TF-IDF 0.2162 0.4434 0.3298
AutoPhrase 0.2416 0.6130 0.4273
SifRank 0.2248 0.7357 0.4803
Our 0.4371 0.7114 0.5743

SciREX
TF-IDF 0.1780 0.4008 0.2894
AutoPhrase 0.2583 0.4993 0.3788
SifRank 0.1234 0.3957 0.2595
Our 0.2601 0.4893 0.3747

SemEval17
TF-IDF 0.1810 0.3398 0.2604
AutoPhrase 0.1104 0.4874 0.2989
SifRank 0.2804 0.6336 0.457
Our 0.3246 0.6218 0.4732

500N-KPCrowd
TF-IDF 0.1398 0.3578 0.2488
AutoPhrase 0.1701 0.3918 0.2805
SifRank 0.1847 0.4125 0.2986
Our 0.1776 0.4194 0.2985

Table 3: Span-match results for unsupervised keyphrase extraction in INSPECT-ZeroShot (trained on ICLR and
BBC News corpus). Best performance is indicated in Bold. INSPECT outperforms most baselines.
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Case 1

Case 2

True Keyphrases Our Predictions AutoPhrase

Figure 3: Two data points randomly chosen from the SciERC dataset. Orange spans represent gold standard
annotations. Green spans in the predictions represent correctly predicted spans, whereas red spans are spans
wrongly predicted as being keyphrases and red text are keyphrases that the model did not identify.

Our results demonstrate that phrase attribu-442

tion techniques from interpretability literature can443

be leveraged to identify high-quality document444

keyphrases by measuring predictive impact of in-445

put phrases on topic prediction. Crucially, as446

these keyphrases correlate with human annotated447

keyphrases, our results validate our initial hypoth-448

esis that neural models latently use document449

keyphrases for tasks like topic classification.450

5 Discussion451

Here, we present an analysis on the common error452

types in INSPECT and discuss the strengths and453

weaknesses of INSPECT using qualitative examples.454

Entity Type Analysis: We leverage the entity455

type information in SciERC to observe the perfor-456

mance of INSPECT on specific types of keyphrases.457

From Table 4, we see that INSPECT performs best458

on keyphrases labelled as Scientific Terms and Ma- 459

terials. Generic phrases and Metrics are usually 460

not representative of topical content, and thus, our 461

method performs poorly on them. On manual anal- 462

ysis, we noticed that many phrases marked as Task 463

are very unique and infrequent, making them harder 464

to identify. A high partial match recall but a low 465

exact match recall for Method type suggest that 466

many predicted keyphrases are misaligned with the 467

gold labels. We believe that alternative downstream 468

tasks can be explored in future to help tailor our 469

approach to capture specific types of entities, based 470

on application requirements. 471

Qualitative Analysis In Figure 3 we show two 472

randomly selected abstracts from the SciERC 473

dataset. We see that INSPECT tends to extract 474

longer phrases compared to AutoPhrase, which 475

tends to extract mostly unigrams or bigrams. Since 476
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Recall
Type Exact Partial
Metric 60.65 78.34
Task 58.27 90.45
Material 72.17 86.69
Scientific Term 78.87 95.13
Method 65.31 95.41
Generic 63.16 86.06

Table 4: Exact and partial span match recall scores for
different types of keyphrases on the SciERC dataset.

noun phrases can overlap, we observe that our477

model sometimes predicts overlapping phrases.478

Overall, our approach is able to extract more rele-479

vant phrases than the baseline. Both INSPECT and480

AutoPhrase tend to miss generic phrases like ‘ap-481

proach’ (e.g., as seen in case 1). We hypothesize482

that since the downstream task in INSPECT is to483

identify topics, it would lead the model to focus on484

phrases more relevant for detecting the topic of the485

document. Also, this could make INSPECT miss486

highly targeted phrases (which usually consist of487

proper nouns) like Nitzan-Paroush in case 2.488

INSPECT tends to extract longer compound489

phrases conntected by functional words. Poten-490

tially, post-processing to remove overlapping and491

compound phrases might lead to even higher perfor-492

mance on datasets with smaller keyphrases. Case493

2 in Figure 3 also demonstrates the ability of pre-494

dicting complete phrases, like ‘classical decision-495

theoretic problem’, instead of AutoPhrase’s predic-496

tion – ‘classical decision-theoretic’ which is incom-497

plete.498

6 Related Work499

Unsupervised keyphrase extraction is typically500

treated as a ranking problem, given a set of can-501

didate phrases (Shang et al., 2018; Campos et al.,502

2018; Florescu and Caragea, 2017a). A standard503

pipeline (1) extracts candidate phrases; (2) scores504

phrase relevance; and (3) ranks the phrases based505

on their scores. Broadly, prior approaches can be506

categorized as statistical, graph-based, embedding-507

based, or language model based methods; Papa-508

giannopoulou and Tsoumakas (2019) provide a de-509

tailed survey.510

Statistical methods exploit notions of informa-511

tion theory directly. Common approaches in-512

clude TF-IDF based scoring (Florescu and Caragea,513

2017a) of phrases with other co-occurrence statis-514

tics to enhance performance (Liu et al., 2009; El-515

Beltagy and Rafea, 2009). Campos et al. (2018)516

shows the importance of incorporating statistical in- 517

formation of the context of each phrase to improve 518

performance. Statistical approaches typically treat 519

different instances of a phrase equally, which is a 520

limitation. 521

Graph-based techniques, on the other hand, 522

broadly aim to form a graph of candidate phrases 523

connected based on similarity to each other. Then 524

core components of the graph are chosen as key 525

phrases. Amongst these, PageRank (Brin and Page, 526

1998) and TextRank (Mihalcea and Tarau, 2004) 527

assign scores to nodes based on their influence. A 528

common extension is to use weights on the edges 529

denoting the strength of connection (Wan and Xiao, 530

2008; Rose et al., 2010; Bougouin et al., 2013). 531

Position Rank (Florescu and Caragea, 2017b) and 532

SGRank (Danesh et al., 2015) combine the ideas 533

from statistical, word co-occurrence and positional 534

information. Some approaches, especially applied 535

in the scientific document setting, make use of ci- 536

tation graphs (Gollapalli and Caragea, 2014; Wan 537

and Xiao, 2008), and external knowledge bases (Yu 538

and Ng, 2018) to improve keyphrase extraction. In 539

this work, we focus our approach on a general un- 540

supervised keyphrase extraction setting applicable 541

to any domain where such external resources may 542

not be present. 543

Finally, embedding based techniques (Bennani- 544

Smires et al., 2018; Papagiannopoulou and 545

Tsoumakas, 2018) make use of word-document 546

similarity using word embeddings (Sun et al., 2020; 547

Liang et al., 2021), while language-model based 548

techniques use the uncertainty when predicting 549

words to decide informativeness (Tomokiyo and 550

Hurst, 2003). Ding and Luo (2021) uses attention 551

scores to calculate phrase importance with the doc- 552

ument in an unsupervised manner. 553

7 Conclusion and Future Work 554

In this work, we introduced INSPECT, a novel ap- 555

proach to unsupervised keyphrase extraction. Our 556

framework uses a neural model that explains text 557

classification decisions to extract keyphrases via 558

phrase-level feature attribution. Using four stan- 559

dard datasets in two domains, we show that IN- 560

SPECT outperforms prior methods and establishes 561

state-of-art results in 3 out of 4 datasets.. Through 562

qualitative and quantitative analysis, we show that 563

INSPECT can produce high-quality and relevant 564

keyphrases. INSPECT presents applications of inter- 565

pretable models beyond explanations for humans. 566
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A Appendix 846

A.1 Evaluation Datasets 847

SemEval-2017 (Augenstein et al., 2017a) consists 848

of 500 abstracts taken from 12 AI conferences cov- 849

ering Computer Science, Material Science, and 850

Physics. The entities are annotated with Process, 851

Task, and Material labels, which form the funda- 852

mental concepts in scientific literature. Identifica- 853

tion of the keyphrases was subtask A of the Scien- 854

ceIE SemEval task (Augenstein et al., 2017b). 855

SciERC (Luan et al., 2018) extends SemEval- 856

2017 by annotating more entity types, relations, 857

and co-reference clusters to include broader cover- 858

age of general AI. The dataset was annotated by a 859

single domain expert who had high (76.9%) agree- 860

ment with three other expert annotators on 12% 861

subset of the dataset. 862

SciREX (Jain et al., 2020) is a document-level 863

information extraction dataset, covering entity iden- 864

tification and n-ary relation formation using salient 865

entities. Human and automatic annotations were 866

used to annotate 438 full papers with salient en- 867

tities, with a distant supervision from the Papers 868

With Code7 corpus. This dataset can help verify 869

the performance of models on full papers. 870

500N-KPCrowd (Marujo et al., 2013) is a 871

keyphrase extraction dataset in the news domain. 872

This data consists of 500 articles from 10 topics 873

annotated by multiple Amazon Mechanical Turk 874

workers for important keywords. Following the 875

baselines on this datasets, we pick keywords that 876

were among the top two most frequently chosen by 877

the human annotators. Since no span-level infor- 878

mation for these keywords is given, we annotate all 879

occurrences of the chosen keywords in the docu- 880

ment to obtain a list of span labels, which we use 881

to evaluate all the models. 882

A.2 Implementation Details 883

Here, we present the hyper-parameters for all exper- 884

iments along with their corresponding search space. 885

We chose all hyperparameters based on the devel- 886

opment set performance on the SciERC dataset. 887

We considered RoBERTa (Liu et al., 2019) and 888

XL-NET (Yang et al., 2019) based encoders and 889

finally chose RoBERTa for faster compute times. 890

7https://paperswithcode.com/
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Dataset Type Split Total docs Avg words per doc Avg keyphrases per doc

SciERC Scientific
Train 350 130 16
Dev 50 130 16
Test 100 134 17

SciREX Scientific
Train 306 5601 353
Dev 66 5484 354
Test 66 6231 387

SemEval17 Scientific
Train 350 160 21
Dev 50 193 27
Test 100 186 23

500N-KPCrowd News
Train 400 430 193
Dev 50 465 86
Test 50 420 116

BBC News News All 2225 385 -
ICLR Scientific All 8317 6505 -

Table 5: Description about the datasets. Average words and keyphrases per document are rounded to the nearest
whole number. ICLR and BBC News are used in INSPECT-ZeroShot setting for training and don’t have any labelled
keyphrase data.

S.No. Top words from removed topic
1 proposed;propose novel;propose;proposed method;method
2 generalization;study;analysis;suggest;provide
3 outperforms;existing;existing methods;outperforms stateoftheart;methods
4 state;art;state art;shortterm;current state
5 effectiveness;demonstrate effectiveness;source;effectiveness proposed;student
6 training;training data;training set;training process;model training
7 experimental;experimental results;results;results demonstrate;experimental results demonstrate
8 experiments;extensive;extensive experiments;experiments demonstrate;conduct
9 performance;improves;significantly;improve;improved
10 recent;shown;recent work;recent advances;success
11 achieves;introduce;competitive;achieves stateoftheart;introduce new
12 trained;model trained;models trained;networks trained;trained using
13 present;paper present;present novel;work present;monte
14 widely;parameters;widely used;proposes;paper proposes
15 simple;benchmark datasets;benchmark;propose simple;simple effective
16 prior;approach;sampling;continuous;prior work
17 program;introduces;programs;future;paper introduces
18 solve;challenging;able;complex;challenging problem
19 challenge;current;challenges;open;current stateoftheart
20 rate;good;good performance;l;regime
21 works;previous works;existing works;focus;scenarios
22 evaluate;evaluation;tackle;tackle problem;evaluate method

Table 6: 22 Generic topics removed from the 75 topic labels learned using topic modeling on ICLR data.

We experimented with learning-rates from the set891

of 1e-5,2e-5,5e-5,1e-4 and 2e-4. We chose 2e-5892

as the final learning rate. Our batch size of 8 was893

chosen after experimenting with 4, 8, 12 and 16.894

The size of the weights matrix in the classification895

layer was chosen to be 64 from a set of 16,32,64896

and 128. The α parameter used for regularization897

was fixed at 0.5. We tried values between 0.1 and898

0.9 and did not find signifcant difference. We saved899

the model based on best weighted F1 on the topic900

prediction task. All training runs took less than901

3 hours on 2 Nvidia 2080Ti GPUs, except on the902

ICLR dataset, which took 8 hours. All results are903

from a single run.904
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