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ABSTRACT

Harnessing the power of diffusion models to synthesize auxiliary training data
based on latent space features has proven effective in enhancing out-of-distribution
(OOD) detection performance. However, extracting effective features outside
the in-distribution (ID) boundary in latent space remains challenging due to the
difficulty of identifying decision boundaries between classes. This paper proposes
a novel framework called Boundary-based Out-Of-Distribution data generation
(BOOD), which synthesizes high-quality OOD features and generates human-
compatible outlier images using diffusion models. BOOD first learns a text-
conditioned latent feature space from the ID dataset, selects ID features closest to
the decision boundary, and perturbs them to cross the decision boundary to form
OOD features. These synthetic OOD features are then decoded into images in
pixel space by a diffusion model. Compared to previous works, BOOD provides
a more efficient strategy for synthesizing informative OOD features, facilitating
clearer distinctions between ID and OOD data. Extensive experimental results
on common benchmarks demonstrate that BOOD surpasses the state-of-the-art
method significantly, achieving a 29.64% decrease in average FPR9S5 (40.31% vs.
10.67%) and a 7.27% improvement in average AUROC (90.15% vs. 97.42%) on
the CIFAR-100 dataset.

1 INTRODUCTION

In the field of open-world learning, machine learning models will encounter various inputs from
unseen classes, thus be confused and make untrustworthy predictions. Out-Of-Distribution (OOD)
detection, which flags outliers during training, is a non-trivial solution for helping models form
a boundary around the ID (in-distribution) data (Du et al., |2023)). Recent works have shown that
training neural networks with auxiliary outlier datasets is promising for helping the model to form a
decision boundary between ID and OOD data (Hendrycks et al.,[2019; Liu et al.| 2020; |[Katz-Samuels
et al., |2022; Ming et al., 2022). However, the process of manually preparing OOD data for model
training incurs substantial costs, both in terms of human resources investment and time consumption.
Additionally, it’s impossible to collect data distributed outside the data distribution boundary, which
can not be captured in the real world as shown in Figure

To address this problem, recent works have demonstrated pipelines regarding automating OOD data
generation, which significantly decreases the labor intensity during creating auxiliary datasets (Du
et al., [2022; [Tao et al.| |2023a; Du et al., 2023} |Chen et al., 2024). As a representative of them,
DreamOOD (Du et al.} 2023)) models the training data distribution and samples visual embeddings
from low-likelihood regions as OOD auxiliary data in a text-conditioned latent space, then decoding
them into images through a diffusion model. However, due to the lack of an explicit relationship
between the low-likelihood regions and the decision boundaries between classes, the DreamOOD (Du
et al., 2023) can not guarantee the generated images always lie on the decision boundaries, which
have demonstrated efficacy in enhancing the robustness of the ID classifier and refining its decision
boundaries (Ming et al., [2022).

In this paper, we introduce a new framework, BOOD (Boundary-based Out-Of-Distribution data
generation), which explicitly enables us to generate images located around decision boundaries
between classes, thus providing high-quality and informative features for OOD detection. The
challenging part lies in the following: (1) Identifying the data distribution boundary accurately, and (2)
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Figure 1: Top: images generated from ID features. Bottom: images generated from OOD features.
Compared to preparing ID image datasets, preparing OOD image datasets incurs substantial costs in
terms of resource allocation, particularly with respect to labor and time investment. Moreover, certain
OOD images, as illustrated in the above figure, are impossible to acquire through real-world data
collection methods. Consequently, there exists a pressing need for the development of automated
pipelines capable of generating OOD datasets.

Synthesizing the informative outlier features based on the identified data distribution boundaries. Our
innovative framework addresses the aforementioned challenges by: (1) an adversarial perturbation
strategy, which successfully identifies the features closest to the decision boundary by calculating
the minimal perturbation steps imposed on the feature to change the model’s prediction, and (2) an
outlier feature synthesis strategy, which generates the outlier features by perturbing the identified
boundary ID features along with the gradient ascent direction. The synthetic outlier features are
subsequently fed into a diffusion model to generate the OOD images. To guarantee the synthetic
feature space is compatible with the diffusion-model-input-space (class token embedding space), we
employ a class embedding alignment strategy during the image encoder training following Du et al |
(2023).

Before delving into details, we summarize our contributions as below:

* To our best knowledge, BOOD is the first framework that enables generating OOD data
lying around the decision boundaries explicitly, thus providing informative features for
shaping the decision boundaries between ID and OOD data.

* We propose two key methodologies to address the challenges in synthesizing the OOD
features: (1) Identifying the ID boundary data by counting their minimum perturbation
steps to cross the decision boundaries for all ID features. (2) Synthesizing the informative
OOD features lying around the decision boundaries by perturbing the ID boundary features
towards the gradient ascent direction.

* Our method demonstrates superior performance improvement across two challenging bench-
marks, achieving state-of-the-art results on CIFAR-100 and IMAGENET-100 datasets. For
instance, on CIFAR-100, BOOD improves the average performance on detecting 5 OOD
datasets from 40.31% to 10.67% in FPR95 and from 90.15% to 97.42% in AUROC. More-
over, we conducted extensive quantitative ablation analyses to provide a deeper insight into
BOOD’s efficiency mechanism.

2 PRELIMINARIES

Latent space formation. Given an ID training dataset, Dig = {(x;,v;)}";, where z; € X and
y; € Y. X denotes the input space and Y € {1,2,...V} denotes the label space. Let hg(z) :
X — R" denote the image feature encoder, where R™ denotes the feature space. The output of
hg is supposed to be an n-dimensional vector representing the encoded image feature. We denote
f(z) = CosSim(hg(x),T(y)) as the cosine image classifier, whose output is assumed to be a v-
dimensional vector that performs as a discrete probability function representing prediction probability
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Figure 2: Illustration of perturbing ID boundary feature process. The bar charts under each image
represent the prediction probability of the perturbed features by the image classifier. After each
perturbation, the prediction probability of the original class decreases. When the prediction of the
image classifier switches, we consider the obtained feature crossed the decision boundary.

for each class. I'(y) represents the class token embedding encoded by feeding class name y into

CLIP (Radford et al,2021) text encoder.

OOD detection. In real-world applications of machine learning models, a reliable classification
system must exhibit dual capabilities: it should accurately categorize familiar in-distribution (ID)
samples, and it must possess the ability to recognize and flag out-of-distribution (OOD) inputs that
belong to unknown classes not represented in the original training set y ¢ ). Thus, having an
OOD detector can solve this problem. OOD detection can be formulated as a binary classification
problem 2022), and the goal is to decide whether an input is from ID or OOD. We denote
the OOD detection as go(z) : X — {ID, 00D} mathematically.

Diffusion-based image generation. Diffusion models demonstrate formidable prowess in generating
authentic and lifelike content. Their robust capabilities extend to various applications, with particular
efficacy in tasks such as the creation of synthetic images. We can synthesize images in a specific
distribution by conditioning on class labels or text descriptions (Ramesh et all, [2022). Stable
Diffusion (Rombach et al.} 2022) is a text-to-image model which enables generating particular images
conditioned by text prompts. For a given class name y, the generating process can be denoted by:

x ~ P(x|Z,) (1)

where Z, = I'(Y") denotes a specific textual representation of class label y with prompting, and we
denote the whole prompting as Y. For instance, Y = "A picture of [y]". I" denotes the CLIP

[2021)) model’s text encoder.

3 BOOD: BOUNDARY-BASED OUT-OF-DISTRIBUTION DATA GENERATION

Images situated near the decision boundary offer informative OOD insights, which can significantly
enhance the ability of OOD detection models to establish accurate boundaries between ID and OOD
data, thereby improving overall detection performance. In this paper, we propose a framework
BOOD (Boundary-based Out-Of-Distribution data generation), which enables us to generate human-
compatible synthetic images decoding from latent space features lying around the decision boundaries
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Algorithm 1: BOOD: Boundary-based Out-Of-Distribution data generation

Input: In-distribution training data Diq = {(;,y;)}.~,, initial model parameters 6 for learning
the text-conditioned latent space, diffusion model.

Output: Synthetic images 4.

// Section. 3.1} Building the text-conditioned latent space

1. Extract token embeddings I'(y) of the ID label y € ).

2. Learn the text-conditioned latent representation space by Equation 2}

// Section. 3.2} Synthesizing OOD features and generating images

1. Calculate the distances for each feature and select the ID boundary features with Equation 3]

2. Perturb the selected ID boundary features to cross the decision boundary with Equation [ and
Equation 3}

3. Decode the outlier embeddings into the pixel-space OOD images via diffusion model by
Equation|[§]

among ID classes. The challenging part lies in identifying the ID boundary features and synthesizing
outlier features located around the decision boundary, which have demonstrated efficacy in enhancing
the robustness of the ID classifier and refining its decision boundaries (Ming et al., [2022]).

3.1 BUILDING THE TEXT-CONDITIONED LATENT SPACE

Aiming at ensuring the image features are suitable for being decoded by the diffusion model, we first
create an image feature space that is aligned with the diffusion-model-input space. To achieve this, we
train the image encoder hy by aligning the extracted image features hg(x) with their corresponding
class token embeddings I'(y), which match the input space with the diffusion model. The resulting
generated features form a text-conditioned latent space. Following DreamOOD (Du et al.,[2023)), we
train the image encoder hy with the following loss function:

exp(T(y) "2/t)

S0 exp(L(5;) T2/ @)

Ec = E(z,y)NDid [—lOg

where z = hg(x)/||(z)]]2 is the Lo-normalized image feature embedding, ¢ is the temperature, hy
denotes the text-conditioned image feature encoder, and I'(y) denotes the class token embedding
encoded by feeding class name y into CLIP (Radford et al.,[2021) text encoder. After training the
image encoder hy, the image classifier f can be simply formulated as a cosine classifier between the
encoded image features hy(x) and the class token embeddings I'(y).

3.2 SYNTHESIZING OOD FEATURES AND GENERATING IMAGES

feature latent space, our framework proposes the gen- ‘. .{.’
eration of outlier images through a three-step process. %0 »° '3 o NQ\

Firstly, we estimate each feature’s distance to the deci- z oo P
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o
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v
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the decision boundaries, and select the ID boundary fea-
tures by choosing those features with minimal distances in
Sec.[3:2.1] Subsequently, we push the identified ID bound-
ary features to the location around the decision boundary

to synthesize OOD features by perturbing them along with ©® ID features —————- Decision boundary
the gradient ascent direction until the model’s prediction @ ® 1D boundary features @ OOD features
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tation of Sec.3.2.TJand Sec.[3.2.2 to cross the decision boundary.
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Table 1: OOD detection results for CIFAR-100 as the in-distribution data. We report standard deviations
estimated across 3 runs. Bold numbers are superior results, and the last row is the improvement of our method
over previous state-of-the-art DreamOQOD (Du et al.|[2023)).

00D Datasets

Methods SVHN PLACES365 LSUN ISUN TEXTURES Average ID ACC
FPR95| AUROCtT FPR95| AUROCtT FPR95] AUROCT FPR95| AUROCT FPR95| AUROCT FPR95| AUROCT
MSP (Hendrycks & Gimpel|[2017) ~ 87.35 69.08 81.65 76.71 76.40 80.12 76.00 78.90 79.35 7743 80.15 76.45 79.04
ODIN (Liang et al.[[2018) 90.95 64.36 79.30 74.87 75.60 78.04 53.10 87.40 72.60 79.82 7431 76.90 79.04
Mabhalanobis (Lee et al.|[2018b) 87.80 69.98 76.00 77.90 56.80 85.83 59.20 86.46 62.45 84.43 68.45 80.92 79.04
Energy (Liu et al.[[2020) 84.90 70.90 82.05 76.00 81.75 78.36 73.55 81.20 78.70 78.87 80.19 71.07 79.04
GODIN (Hsu et al.[[2020) 63.95 88.98 80.65 77.19 60.65 88.36 51.60 92.07 71.75 85.02 65.72 86.32 76.34
KNN (Sun et al.|[2022) 81.12 73.65 79.62 78.21 63.29 85.56 73.92 79.77 73.29 80.35 74.25 79.51 79.04
ViM (Wang et al.|2022) 81.20 77.24 79.20 77.81 43.10 90.43 74.55 83.02 61.85 85.57 67.98 82.81 79.04
ReAct (Sun et al.|[2021) 82.85 70.12 81.75 76.25 80.70 83.03 67.40 83.28 74.60 81.61 77.46 78.86 79.04
DICE (Sun & Li1)|2022) 83.55 72.49 85.05 75.92 94.05 73.59 75.20 80.90 79.80 77.83 83.53 76.15 79.04
Synthesis-based methods
GAN (Lee et al.|[2018b) 89.45 66.95 88.75 66.76 82.35 75.87 83.45 73.49 92.80 62.99 87.36 69.21 70.12
VOS (Du et al.|2022) 78.50 73.11 84.55 75.85 59.05 85.72 72.45 82.66 75.35 80.08 73.98 79.48 78.56
NPOS (Tao et al.|[2023a) 11.14 97.84 79.08 71.30 56.27 82.43 51.72 85.48 35.20 92.44 46.68 85.90 78.23
DreamOOD (Du et al.[[2023) 58.75 87.01 70.85 79.94 24.25 95.23 1.10 99.73 46.60 88.82 40.31 90.15 78.94
BOOD 5.42 +0.5 98.43+0.1 40.55+1 90.76-£0.5 2.06+0.8 99.25+0.1 0.224+0.15 99.91--0.02 5.1+1 98.74+0.2 10.67+0.95 97.42+0.1 78.03 +0.1
A (improvements) +53.33 +11.42 +30.3 +10.82 +22.19 +4.02 +0.88 +0.18 +41.5 +9.92 +29.64 +7.27

3.2.1 BOUNDARY FEATURE IDENTIFICATION

We believe that the ID features distributed near the decision boundary are more sensitive to perturba-
tion, as slight perturbation can push them across the decision boundary, making them ideal candidates
for synthesizing OOD features in Sec.[3.2.2] Thus, the target at this stage is to select features that
are closest to the decision boundary. Introduced by (Chakraborty et al.,|2018)) and (Kurakin et al.|
2017), adversarial attack endeavors to perturb a data point to the smallest possible extent to cross
the model’s decision boundary. Inspired by |Yang et al.[|(2024b)), our objective is to determine the
minimal distance required for an in-distribution (ID) feature to traverse the decision boundary. This
is accomplished by quantifying the number of steps, denoted as &, necessary to perturb the ID feature
along the gradient ascent direction until it changes the model’s prediction.

Below is the working principle for a given feature (z, y):

adv adv adv

2l = 2, + o sign(V_o Ufo(z0).w) k€ [0, K] 3)

where « denotes the step size of a single perturbation, z((l]:l)v denotes adversarial feature at step k, [ is

the loss function, fy denotes the image classifier and K denotes the maximum iteration. The process
keeps iterating until fy # y or k = K, indicating that the adversarial feature z((flz) has crossed the
decision boundary or k exceeds the maximum allowed iteration number K. We provide visualization

of this process in Figure 2]

During each iteration, our method perturbs the adversarial feature in a direction that maximizes
the change in the model’s prediction. The minimum number of iterations k necessary to create
an adversarial example z,4, from a given feature z that crosses the decision boundary, can be
employed as a proxy for the shortest distance between that data point and the decision boundary.
This relationship is expressed as d(z, y) = k, where k is bounded by [0, K. Thus, we can obtain the
distance set for all ID features to the decision boundaries D and select the ID boundary features that
have minimal distances to the decision boundary, denoted as z;4 € {z|d(z,y) € D,y } where D,y
denotes the smallest 7% of distance set D and r denotes the selection ratio of ID boundary selection.

3.2.2 OOD FEATURE SYNTHESIZING

The features distributed around the decision boundary can provide high-quality OOD information
to facilitate the OOD detection model to form precise ID-OOD boundaries. So we aim to perturb
the selected ID boundary features z;4 to the location around the decision boundary, where we might
synthesize informative features. These OOD features, denoted as z,,4, Will be decoded into outlier
images that are distributed around the OOD detection boundary. We summarize the perturbation
process in the following module:
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Table 2: OOD detection results for IMAGENET-100 as the in-distribution data. We report standard deviations
estimated across 3 runs. Bold numbers are superior results, and the last row is the improvement of our method
over previous state-of-the-art DreamOQOD (Du et al.|[2023)).

OOD Datasets
Methods INATURALIST PLACES SUN TEXTURES Average ID ACC
FPRO5| AUROCT FPR95|, AUROCT FPR95| AUROCT FPRO5] AUROC] FPR95| AUROCT
MSP (Hendrycks & Gimpel|[2017) — 31.80 94.98 47.10 90.84 47.60 90.86 65.80 83.34 48.08 90.01 87.64
ODIN (Liang et al.||2018) 24.40 95.92 50.30 90.20 44.90 91.55 61.00 81.37 45.15 89.76 87.64
Mahalanobis (Lee et al.[[2018b) 91.60 75.16 96.70 60.87 97.40 62.23 36.50 91.43 80.55 7242 87.64
Energy (Liu et al.||2020) 32.50 94.82 50.80 90.76 47.60 91.71 63.80 80.54 48.68 89.46 87.64
GODIN (Hsu et al.|[2020) 39.90 93.94 59.70 89.20 58.70 90.65 39.90 92.71 49.55 91.62 87.38
KNN (Sun et al.[2022) 28.67 95.57 65.83 88.72 58.08 90.17 12.92 90.37 41.38 91.20 87.64
ViM (Wang et al.|[2022) 75.50 87.18 88.30 81.25 88.70 81.37 15.60 96.63 67.03 86.61 87.64
ReAct (Sun et al.|[202T) 2240 96.05 45.10 92.28 37.90 93.04 59.30 85.19 41.17 91.64 87.64
DICE (Sun & Li|[2022) 37.30 92.51 53.80 87.75 45.60 89.21 50.00 83.27 46.67 88.19 87.64
Synthesis-based methods
GAN (Lee et al.| 2018a) 83.10 71.35 83.20 69.85 84.40 67.56 91.00 59.16 85.42 66.98 79.52
VOS (Du et al.|[2022) 43.00 93.77 47.60 91.77 39.40 93.17 66.10 81.42 49.02 90.03 87.50
NPOS (Tao et al.|[2023a) 53.84 86.52 59.66 83.50 53.54 87.99 8.98 98.13 44.00 89.04 85.37
DreamOOD (Du et al.|[2023) 24.10 96.10 39.87 93.11 36.88 93.31 53.99 85.56 38.76 92.02 87.54
BOOD 18.33+0.3 96.74+0.2 33.33+0.5 94.08+0.4 37.924+0.2 93.52+0.1 51.88+0.5 85.41+0.5 35.37+0.3 92.44+0.1 87.92+0.05
A (improvements) +5.77 +0.64 +6.54 +0.97 -1.04 +0.21 +2.11 -0.15 +3.39 +0.42
While (f(zi4) = y) do
Zia = Zia + o - sign (V. 1(fo(2ia), y)) “4)
end
Zood = %id
for i+ 0Otoc
(+1) _ ) : (@
Zood = “ood +a- sign vz(()'io)dl(fg(zood)7 y) (5)
end

Consider a selected ID boundary feature z;4, we perturb it following the direction of gradient ascent
until the prediction of the image classifier fy switches (f(z;q4) # y). We continue perturbing it for ¢
steps to guarantee it is adequately distant from the ID boundary. We provide ablation studies on «
and c in Sec.

3.2.3 OOD IMAGE GENERATION

To generate the outlier images, we finally decode the synthetic OOD feature embeddings z,,4 through
a diffusion model. Following|Du et al.|(2023)), we replace the origin token embedding I'(y) in the
textual representation Z, with our synthetic OOD embedding z,,4. The generation process can be
formulated as:

Tood ~ P(x‘Zood) (6)

where z,,4 denotes the synthetic OOD images and Z,,,4 denotes the textual representation Z,, with
I'(y) replaced by z,,q. We summarize our methodology in Algorithm

3.3 REGULARIZING OOD DETECTION MODEL

After synthesizing the OOD images, we regularize the OOD classification model with the following
loss function:

exp?E(ge(zia))) 1
Loop = Bewunpial o9 S | + Broin Do S0 Sy D)

where ¢ denotes a 3-layer MLP function of the same structure as VOS (Du et al., 2022), £ denotes
the energy function and gy denotes the output of OOD classification model. The final training
objective function combines cross-entropy loss and OOD regularization loss, which can be reflected
by Log + B - Loop, where 8 denotes the weight of the OOD regularization.
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Figure 4: Left: the effect of step size o , Right: the effect of perturbing steps c after crossing the
boundary.

4 EXPERIMENTS AND ANALYSIS

4.1 EXPERIMENTAL SETUP AND IMPLEMENTATION DETAILS

Datasets. Following DreamOOD 2023), we select CIFAR-100 and IMAGENET-100
as ID image datasets. As the OOD datasets should not overlap with ID datasets, we
choose SVHN (Netzer et all [2011), PLACES365 (Zhou et al. 2018), TEXTURES(Cimpoi et al
[2014), LsuN (Yu et al., 2015), 1ISUN (Xu et al., 2015) as OOD testing image datasets for CIFAR-
100. For IMAGENET-100, we choose INATURALIST 2018), Sun [2010),
PLACES and TEXTURES (Cimpoi et al.} 2014)), following MOS
2021).

Training details. The ResNet-34 architecture was employed as the training network
for both the CIFAR-100 and IMAGENET-100 datasets. The model was trained for 200 epochs
utilizing the Stochastic Gradient Descent (SGD) optimizer with a momentum of 0.9 and weight
decay of 5e~*. The initial learning rate was set to 0.1, with a cosine learning rate decay schedule
implemented. A batch size of 160 was utilized. In the construction of the latent space, the temperature
parameter ¢ was assigned a value of 1. In the boundary feature selection process, the initial pruning
rate © was established at 5, with an initial total step K of 100. The step size o was configured to 0.015.
The hyper parameters for the OOD feature synthesis step were maintained consistent with those of the
boundary feature identification process. A total of 1000 images per class were generated using Stable
Diffusion v1.4, yielding a comprehensive set of 100,000 OOD images. For the regularization of the
OOD detection model, the 3 parameter was set to 1.0 for IMAGENET-100 and 2.5 for CIFAR-100.

Evaluation metrics. We evaluate the performance using three key metrics: (1) the false positive
rate at 95% true positive rate (FPR95) for OOD samples, (2) the area under the receiver operating
characteristic curve (AUROC), and (3) in-distribution classification accuracy (ID ACC). These
metrics collectively assess the model’s discriminative capability, overall performance, and retention
of in-distribution task proficiency.

4.2 COMPARISON WITH STATE-OF-THE-ART

BOOD shows outstanding performance improvement compared to previous state-of-the-art methods.
As shown in Table[T]and [2] we compare BOOD with other methods, including Maximum Softmax
Probability (Hendrycks & Gimpel, [2017), ODIN score (Liang et al.l 2018), Mahalanobis score
etall[2018D), Energy score(Liu et al., 2020), Generalized ODIN (Hsu et al.| 2020), KNN distance
et al.l 2022), VIM score (Wang et al., 2022), ReAct (Sun et al., 2021) and DICE (Sun & Li, 2022).
Additionally, we compare BOOD with another four synthesis-based methods, including GAN-based
synthesis 2018b), VOS(Du et al.| 2022), NPOS and DreamOQD
2023) as they have a closer relationship with us. BOOD surpasses the state-of-the-art method
significantly, achieving a 29.64% decrease in average FPR95 (40.31% vs. 10.67%) and a 7.27%
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Figure 5: Left: The effect of step size «. Right: The effect of perturbation steps c after crossing the
boundary.

improvement in average AUROC (90.15% vs. 97.42%) on the CIFAR-100 dataset. BOOD’s
performance also surpasses the state-of-the-art methodologies on the IMAGENET-100 dataset.

The superior performance of BOOD in comparison to DreamOQOD (Du et al.| 2023) and other
synthesis-based methodologies can be attributed to its novel approach to extracting more informative
features from the latent space. While Gaussian-based feature sampling in low-likelihood regions
does not ensure that sampled features consistently reside on decision boundaries, BOOD enables
the generation of outlier features situated around the decision boundary. This positioning facilitates
the synthesis of OOD images, which in turn aids the OOD detection model in establishing a more
accurate ID-OOD boundary.

4.3 ABLATION STUDIES AND HYPER-PARAMETER ANALYSIS

In this section, we provide ablation studies and show the effect of some hyper-parameters in our
method to provide a deeper insight into factors that affect BOOD’s performance. We choose CIFAR-
100 as the ID dataset for all the experiments.

4.3.1 ABLATION ON OOD FEATURE SYNTHESIZING METHODOLOGIES

We ablate the effect of boundary identification and feature perturbation. As shown in Table 3| we
conduct 3 experiments: (1) directly decode the ID features selected by Section [3.2.1} (2) randomly
choose ID features and perturb them to the boundary (Section , (3) full BOOD. The results
demonstrate that both the boundary feature identification and OOD feature perturbation modules are
essential for achieving the best result. ID boundary features are more sensitive to perturbation, which
makes them optimal candidates for perturbation. The generated features lying around the decision
boundary can provide high-quality OOD information to help the OOD detection model regularize the
ID-OOD decision boundary.

Table 3: Ablation on OOD feature synthesizing methodologies

Methods Criteria (Avg.)
boundary feature
identification  perturbation FPR5| AUROCT IDACC
v 99.61 7.83 76.51
v 44.26 89.79 77.59
v v 10.67 97.42 77.64
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Figure 6: Left: OOD images generated for CIFAR-100. Right: OOD images generated for
IMAGENET-100.

4.3.2 HYPER PARAMETERS SENSITIVE ANALYSIS

The effect of step size . We show the effect of step size « in Figure [3] (left). Employing a
smaller step size allows for minor perturbations of the instance x in each iteration and facilitates a
more nuanced differentiation between samples across different distances. It also guarantees that the
perturbed features are in a more accurate direction towards the decision boundary. We choose the
step size cv as 0.015 in our experiments. Figure [ (left) illustrates the effect of a: when « increases,
the discrepancy between iteration increases.

The effect of perturbation steps c after crossing the boundary. We analyze the effect of per-
turbation steps c after crossing the boundary in Figure [5| (right) to explore whether it will extract
more efficient features. We vary steps ¢ € {0,1,2,3,4,5} and observe that when ¢ = 2, BOOD
shows the best performance. Employing a large ¢ may force the feature to step into the ID region,
and choosing a small ¢ may not guarantee the perturbed feature is adequately distant from the ID
boundaries. Figure [] (right) shows the effect of ¢: as the number of steps crossing the boundary
augment, the generated images gradually transform into another classes or distribute outside the
distribution boundary.

5 RELATED WORK

OOD detection. OOD detection has experienced a notable increase in research attention, as evi-
denced by numerous studies (Tajwar et al., 2021}, [Fort et al.| 2021}, [Elflein et al.| 2021} [Fang et al.]
2022} [Yang et al [2022; [2024a). A branch of research approach to addressing the OOD detection
problem through designing scoring mechanisms, such as Bayesian approach (Gal & Ghahramani,
[2016}; [Lakshminarayanan et al.l 2017; Malinin & Gales| 2018} [Osawa et all,[2019), energy-based
approach (Liu et al., 2020; [Lin et al.l 2021} (Chot et al., 2023)) and distance based methods
let al., 2019; Ren et al., 2021} [Zaeemzadeh et al., 2021} Ming et al., [2023). Most of these works
need auxiliary datasets for regularization. VOS (Du et al., [2022) and NPOS (Tao et al, [2023a)
propose methodologies for generating outlier data in the feature space, and DreamOOD (Du et al.,
[2023) synthesizes OOD images in the pixel space. Compared to DreamOOD 2023) and
NPOS [20234) which samples features with Gaussian-based strategies, BOOD synthesizes
features located around the decision boundaries, providing high-quality information to the OOD
detection model.

Diffusion-model-based data augmentation. The field of data augmentation with diffusion models
attracts various attention (Tao et al.| [2023b} [Zhu et al.| 2024} Ding et al.| 2024} Yeo et al.,2024). One
line of work performed image generation with semantic guidance. [Dunlap et al.|(2023)) proposes to
caption the images of the given dataset and leverage the large language model (LLM) to summarize the
captions, thus generating augmented images with the text-to-image model. (2024) generated
augmented images with the guidance of captions and textual labels, which are generated from the
image decoder and image labels. A branch of research proposed perturbation-based approaches to
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synthesize augmented images (Shivashankar & Miller, [2023} |[Fu et al.l [2024). [Zhang et al.| (2023))
perturbed the CLIP (Radford et al.,[2021)-encoded feature embeddings, guided the perturbed features
by class name token features, and finally decoded it with diffusion model. Our framework BOOD
creates an image feature space aligning with the class token embeddings encoded by CLIP (Radford
et al.|[2021). It proposes a perturbation strategy to generate informative OOD features that are located
around the decision boundary.

6 CONCLUSION

In this paper, we propose an innovative methodology BOOD that generates effective decision
boundary-based OOD images via diffusion models. BOOD provides two key methodologies in
identifying the ID boundary data and synthesizing OOD features. BOOD proves that generating
OOD images located around the decision boundaries is effective in helping the detection model to
form precise ID-OOD decision boundaries, thus delineating a novel trajectory for synthesizing OOD
features within this domain of study. The empirical result demonstrates that the generated boundary-
based outlier images are high-quality and informative, resulting in a remarkable performance on
popular OOD detection benchmarks.

7 LIMITATIONS

Although BOOD achieves excellent performance on common benchmarks, it still has some shortcom-
ings. The classification error for unseen outlier features in Section might result in deviations in
determining whether a perturbed feature has crossed the decision boundary, leading to generating
low-quality OOD features. Besides, judging a generated OOD feature’s quality without decoding it is
difficult.

8 REPRODUCIBILITY STATEMENT

In Appendix [A] we describe the datasets’ details. We also include the core codes in the supplementary
files.
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B ADDITIONAL VISUALIZATION OF THE GENERATED IMAGES

In this section, we provide additional visualizations of generated images.

noooorg  Amagqmens
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Figure 7: Left: OOD images generated for CIFAR-100. Right: OOD images generated for
IMAGENET-100.
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Figure 8: Left: OOD images generated with DreamOOD (Du et al.} 2023). Right: OOD images
generated with BOOD.

C ADDITIONAL HYPER PARAMETER SENSITIVE ANALYSIS

In this section, we provide additional hyper parameter analysis of BOOD for OOD detection. All
experiments are conducted using CIFAR-100 as ID dataset.

Table 4: Left: The effect of r, Right: The effect of 3

- values Criteria (Avg.) 3 values Criteria (Avg.)
FPR95 | AUROC 1 FPR95 | AUROC 1

2.5 13.45 96.84 1.5 12.71 96.95

5 12.47 97.34 2 12.78 97.15

10 13.31 97.02 2.5 12.47 97.34

20 15.88 95.68 3 13.10 97.02
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The effect of ». We show the effect of pruning rate r in table(left). We vary rate r € {2.5,5, 10,20}
and observe that BOOD shows best performance when we employ a moderate pruning rate. Insuffi-
cient pruning (small ) may limit the diversity of generated OOD images (not enough features), while
excessive pruning (large r) risks selecting ID features proximally distributed to the anchor.

The effect of 5. From table |4] (right), we can conclude that empirical evidence suggests optimal
performance is achieved with moderate regularization weighting 5 = 2.5 , as excessive OOD
regularization can compromise OOD detection efficiency.

The effect of K. We analyze the effect of maximum iteration number K in table 4] We vary
K € {5,50,100, 200,400} and found that a relatively large max iteration number K to ensure com-
prehensive boundary crossing for most features. While increased iterations do affect computational
overhead in boundary identification, the impact remains manageable.

Table 5: The effect of K

K values Criteria (Avg.)

Boundary identification time FPR95 | AUROC 1
5 ~Osec 17.69 94.33
50 ~1.5min 12.47 97.34
100 ~2.5min 12.47 97.34
200 ~5min 12.47 97.34
400 ~10min 12.47 97.34

D COMPARISON BETWEEN PERTURBATION METHODS

To gain a deeper insight of the effectiveness of our strategy, we provide additional ablation studies
(see table[6)) on the different perturbation strategies in this section, including (1) adding Gaussian
noises to the latent features, (2) displacing features away from class centroids and (3) BOOD’s
perturbation strategy.

Table 6: Comparison of BOOD with different perturbation methods

Criteria (Avg.)
FPR95 | AUROC 1

(1) 18.99 95.04
2) 40.51 91.63
BOOD  10.67 97.42

Method

The results illustrates that our perturbation strategies are solid.

E COMPUTATIONAL COST AND MEMORY REQUIREMENTS

In this section, we conducted a comparative study of computational efficiency between BOOD and
DreamOOD (Du et al., |2023). We specifically focus on four key processes: (1) the building of
latent space, (2) OOD features synthesizing, (3) the OOD image generation and (4) regularization of
OOD detection model. To provide quantitative evidence, we present below a detailed comparison
of computational requirements between BOOD and DreamOOD in table[7] We also summarize the
memory requirements of BOOD and DreamOOD on CIFAR-100 in table
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Table 7: Computational cost comparison

Computational Building OOD OOD OOD detection

Cost latent space  features synthesizing image generation —model regularization Total
BOOD ~0.62h ~0.1h ~7.5h ~8.5h ~16.72h
DreamOOD ~0.61h ~0.05h ~7.5h ~8.5h ~16.66h

Table 8: Memory requirements comparison

Memory OOD OOD
requirements  features 1mages

BOOD ~732MB  ~11.7G  ~11.7G
DreamOOD ~2.9G ~11.67G ~14.57G

Total

Our empirical evaluation reveals that the differences between these approaches are not statistically
significant. Thus, our proposed framework is not time consuming or has strict memory requirements.

F ARCHITECTURES OF MODEL

For code reproducibility, we introduce our model selection for image encoder(Sec[3.1)) and OOD
regularization model (Sec @]) here: we choose a standard ResNet-34 (He et al.| [2016)) for both of
them, with the final linear transformation layer changed to 512 — 768 for image encoder (aligns with
class token embeddings).
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