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Abstract

The problem of computing minimally sparse solutions of under-determined linear systems
is NP hard in general. Subsets with extra properties, may allow efficient algorithms, most
notably problems with the restricted isometry property (RIP) can be solved by convex ℓ1-
minimization. While these classes have been very successful, they leave out many practical
applications. In this paper, we consider alternative classes of tractable problems. Unlike
the RIP, they can be adapted to new situations based on prior knowledge. This knowledge
is gained through learning a curriculum that proceeds from easy to hard problems. The
setup mimics curricula for human students to learn difficult problems in a targeted area of
expertise.

1 Introduction

We consider efficiently solvable subclasses of NP hard problems, variations of 3SAT at the end of the paper
and sparse solutions of linear systems in its main part: For matrix A ∈ Rm×n and right hand side b ∈ Rm,
we wish to find the sparsest solution of

min
x∈Rn

∥x∥0 subject to Ax = b, (1)

where ∥x∥0 denotes the number of non-zero entries of x. In full generality, this problem is NP -hard Natarajan
(1995); Ge et al. (2011) but as many hard problems it contains tractable subclasses. Some of these are
uninteresting, at least form the perspective of sparsity, e.g. problems with zero kernel ker(A) = 0 and unique
solution, which renders the ℓ0-minimization trivial. Other tractable subclasses have been extensively studied
in the literature, most notable problems that satisfy the (s, ϵ)-Restricted Isometry property (RIP)

(1 − ϵ)∥x∥ ≤ ∥Ax∥ ≤ (1 + ϵ)∥x∥ for all s-sparse x ∈ Rn,

with strict requirements ϵ < 4/
√

41 ≈ 0.6246 on the RIP constants and more generally the null space property
(NSP) of order s

∥vS∥1 < ∥vS̄∥1 for all 0 ̸= v ∈ kerA and |S| ≤ s,

where vS is the restriction of v to an index set S and S̄ its complement. In both cases, the sparsest solution
of (1) is found by the relaxation of the sparsity ∥ · ∥0 to the convex ∥ · ∥1-norm

min
x∈Rn

∥x∥1 subject to Ax = b,

see Candes et al. (2006); Donoho (2006); Candès et al. (2006); Foucart & Rauhut (2013) for details.

All of these tractable subclasses are completely rigid: A problem is either contained in the class or we are
out of luck. Alternatively, there are subclasses based on prior knowledge. Trivially, if we know that the
solution x = Xz is in the column span of a matrix X ∈ Rn×p, we can simplify the search space

min
z∈Rp

∥Xz∥0 subject to AXz = b,

or even simpler
min
z∈Rp

∥z∥0 subject to AXz = b, (2)
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if X has sparse columns. Again, we can find tractable subclasses, where AX is injective or where AX satisfies
the RIP Kasiviswanathan & Rudelson (2019); Welper (2020; 2021). With relatively simple rank constraints
on A, these classes can contain every possible solution x, but they are useless without explicit knowledge of
X. A purely computational approach to uncover X is not promising because it would provide us with efficient
algorithms for generic NP hard problems. Instead of addressing a difficult ℓ0-minimization instance heads
on, we therefore consider a sequence of ℓ0-minimization instances organized into a curriculum of separate
learning episodes, each one consisting of samples from a different tractable subclasses of increasing difficulty.

ℓ0-min
ker(A) = 0

Null Space
Property

AX

In order to follow a chain of learning episodes, we use a mechanism to learn a full class from simple samples,
introduced in Welper (2021) and summarized in Section 2. Simple problems are ones that can be efficiently
solved by a student who has mastered prerequisite problem classes organized in a curriculum or tree, Section
3. In Section 4, we construct an example for a tree that enables the student to find an arbitrary ℓ0 minimizer
x together with further random solutions, added to model more realistic problem classes of non-trivial size.
Finally, in Section 5, we apply the learning method to a signed variant of NP complete 1-in-3-SAT problems.

Human Learning The prior knowledge informed subclasses, together with an iterative learning curricu-
lum, are intended as a hypothetical model for human problem solving, or more concretely theorem proving.

If N ̸= NP , and human brains have no fundamental superiority to computers, humans cannot effectively
solve arbitrary instances of computationally hard problems. Yet, we routinely prove theorems and have build
up a rich trove of results. But we only do so in our respective areas of expertise. Hence, one may argue
that within these areas, and equipped with prior knowledge and experience, theorem proving is tractable.
If so, can we program corresponding solvers into a computer? The history of artificial intelligence provides
some caution. Hand coded rules in expert systems and natural language processing have proven difficult
due to their immense complexity, while learned approaches are currently superior. Likewise, instead of hand
crafting tractable subclasses, it seems more promising to learn them.

As a mathematical model for tractable subclasses, we consider sparse solutions of linear systems. These
are NP -hard and in (2), we have already identified some adaptable and tractable subclasses. The solution
vector x is a model for a proof, as both are hard to compute. The linear combination x = Xz, together with
the non-linear minimal sparsity, composes a candidate solution x form elementary pieces in the columns of
X, similar to assembling a proof form known tricks, techniques, lemmas and theorems.

Of course, this solution strategy is of no use if we do not know X. Likewise, humans need to acquire their
expertise, either through training or research. An important component of both, is the solution of many
related and often simplified problems. For a student, these are split into episodes, ordered by prerequisites
into a curriculum tree. Likewise, for our mathematical model, we learn a tree of subclasses Xi from simple
samples, i.e. pairs (Ak, bk) in the respective classes.

As we will see (Remark 3.4), the combined knowledge of all leaf nodes [X1, X2, . . . ] in the curriculum tree
is not sufficient to solve all problems in the root node X0 because in an expansion x = X0z0 =

∑
iXizi, the

zi combined generally have less sparsity than z0 and are thus more difficult to find. Therefore, at each tree
node we compress our knowledge into matrices with less columns and more sparse z. This step is similar to
summarizing reoccurring proof steps into a lemma and the using it as a black box in subsequent classes.
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Greedy Search and Heuristics Similar to ℓ1 minimization, greedy algorithms like orthogonal matching
pursuit

jn+1 = argmax
j

∣∣AT·j(Axn − b)
∣∣

Sn+1 = Sn ∪ {jn+1}
xn+1 = argmin

supp(x)⊂Sn+1
∥Ax− b∥2

2,

also find global ℓ0-minimizers under RIP assumptions Foucart & Rauhut (2013). Instead of systematically
searching through an exponentially large set of candidate supports S, the first line provides a criterion to
greedily select the next support index, based on the correlation of a column A·j with the residual Axn − b.
Applied to the modified problem (2) with prior knowledge X, the method changes to

jn+1 = argmax
j

∣∣XT
·jA

T (AXzn − b)
∣∣

Sn+1 = Sn ∪ {jn+1}
zn+1 = argmin

supp(z)⊂Sn+1
∥AXz − b∥2

2.

In the first row, the learned knowledge X modifies the index selection and thus provides a learned greedy
criterion or heuristic. The learning of X, however, implicitly depends on a meta-heuristic as explained in
Remark 3.4 below. From this perspective, the proposed methods are related to greedy and heuristic search
methods in AI Russell et al. (2010); Sutton & Barto (2018); Holden (2021).

ℓ0-Minimization without RIP This paper is mainly concerned with minimally sparse solutions of sys-
tems with non-NSP or non-RIP matrices A. A common approach in the literature for these systems is
ℓp-minimization with p < 1, which resembles the ℓ0-norm more closely than the convex ℓ1 norm. While
sparse recovery can be guaranteed for weaker variants of the RIP Candès et al. (2008); Chartrand & Staneva
(2008); Foucart & Lai (2009); Sun (2012); Shen & Li (2012), these problems are again NP hard Ge et al.
(2011). Nonetheless, iterative solvers for ℓp-minimization or non-RIP A often show good results Candès et al.
(2008); Chartrand & Wotao Yin (2008); Foucart & Lai (2009); Daubechies et al. (2010); Lai et al. (2013);
Woodworth & Chartrand (2016).

ℓ0-Minimization with Learning Similar to our approach, many papers study prior information for
under-determined linear systems Ax = b. Similar to this paper, ℓ1 synthesis März et al. (2022) considers
solutions of the form x = Xz, in case x is not sparse in the standard basis and for random A. The papers Bora
et al. (2017); Hand & Voroninski (2018); Huang et al. (2018); Dhar et al. (2018); Wu et al. (2019b) assume
that the solution x is in the range of a neural network x = G(z;w), with weights pre-trained on relevant
data, and then minimize minz ∥AG(z;w) − b∥2. Alternatively, the deep image prior Ulyanov et al. (2020)
and compressed sensing applications Veen et al. (2020); Jagatap & Hegde (2019); Heckel & Soltanolkotabi
(2020) use the architecture of an untrained network as prior and minimize the weights minw ∥AG(z;w)− b∥2
for some latent input z. These papers assume i.i.d. Gaussian A or the Restricted Eigenvalue Condition
(REC) and use the prior to select a suitable candidate among all non-unique solutions. In contrast, in the
present paper, we aim for the sparsest solution and use the prior to address the hardness of the problem for
difficult A.

The paper Wu et al. (2019a) considers an auto-encoder mechanism to find measurement matrices A, not only
X, as in our case. Several other papers that combine compressed sensing with machine learning approximate
the right hand side to solution map b → x by neural networks Mardani et al. (2018); Shi et al. (2017).

Transfer Learning The progression through a tree splits the learning problem into separate episodes on
different but related data sets. This is reminiscent of empirical studies on transfer- Donahue et al. (2014);
Yosinski et al. (2014) and meta-learning Hospedales et al. (2020) in neural networks.
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1.1 Notations

We use c and C for generic constants, independent of dimension, variance or ψ2 norms that can change in
each formula. We write a ≲ b, a ≳ b and a ∼ b for a ≤ cb, a ≥ cb and ca ≤ b ≤ Cb, respectively. We denote
index sets by [n] = {1, . . . , n} and restrictions of vectors, matrix rows and matrix columns to J ⊂ [n] by vJ ,
MJ· and M·J , respectively.

2 Easy and Hard Problems

In this section, we summarize an easy to hard progression from Welper (2021) that allows us to progress
from one node to the next, in the curriculum tree below.

2.1 ℓ0-Minimization with Prior Knowledge

For given matrix A ∈ Rm×n and vector b ∈ Rm, we consider the ℓ0-minimization problem

min
x∈Rn

∥x∥0, s.t. Ax = b

from the introduction. We have seen that this problem is NP -hard in general, but tractable for suitable
subclasses. While the RIP and NSP conditions are rigid classes, fully determined by the matrix A, we now
consider some more flexible ones, based on the prior knowledge that the solution is in some subset

C<t := {x ∈ Rn : x = Xz, z is t-sparse},

parametrized by some matrix X ∈ Rn×p and with only mild assumptions on A, to be determined below.
We may regard X’s columns as solution components and hence assume that they are s-sparse, as well, for
some s > 0, so that the solutions x = Xz in class are st sparse. Although the condition seems linear on first
sight, the sparsity requirement of z can lead to non-linear behavior as explored in detail in Welper (2021).
As usual, we relax the ℓ0 to ℓ1 norm and solve the convex optimization problem

min
x∈Rn

∥z∥1, s.t. AXz = b. (3)

Of course any solver requires explicit knowledge of X, which we discuss in detail in Section 2.2. For now, let
us assume X is known. Two extreme cases are noteworthy. First, without prior knowledge X = I, we retain
standard ℓ1-minimization

min
x∈Rn

∥x∥1, s.t. Ax = b,

which provides correct solutions for the ℓ0-minimization problem if A satisfies the null-space property (NSP)
or the restricted isometry property (RIP), typically for sufficiently random A.

Second, if instead of the matrix A, the prior knowledge X is sufficiently random, we can reduce the null-
space property of A to a much weaker stable rank condition on A. In that case, the product AX satisfies a
RIP with high probability (Kasiviswanathan & Rudelson (2019) and Theorem 2.4 below) and hence we can
recover a unique sparse z. Since X is also sparse, this leads to a sparse solution x = Xz of the linear system
Ax = b. However, we need some more structure to ensure that x is indeed the ℓ0 optimizer. One possibility is
to assume that all sparse solutions of Ax = b are unique, which is similar to the RIP without any restrictive
limitations on the constants and therefore much weaker. Alternatively, in Section 5, we consider reductions
from NP -complete problems to ℓ0-minimization. These come with efficient verification of solutions, which
we use to ensure that x = Xz is the ℓ0-minimizer, see Remark 5.2.

2.2 Learning Prior Knowledge

We have seen that subclasses C<t of ℓ0-minimization problems may be tractable, given suitable prior knowl-
edge encoded in the matrix X. Hence, we need a plausible model to acquire this knowledge. To this end,
we consider a teacher - student scenario, with a teacher that provides sample problems and a student that
infers knowledge X from the samples.

4



Under review as submission to TMLR

The training samples must be chosen with care. Indeed, to be plausible for a variety of machine learning
scenarios, we assume that the student receives samples (A, bi), but not the corresponding solutions xi. On
first sight, this poses a cyclic problem: We need X to efficiently solve for xi, but we need xi to find X.

To resolve this issue, we train only on a subset of easy problems Ceasy ⊂ C<t. These must be sufficient to fully
recover X and at the same time solvable by the student, without prior knowledge of X, by some method

Solve(A, b): Compute the ℓ0-minimizer of Ax = b, x ∈ Ceasy.

This requires a careful balance, which remains a major assumption in this section and is resolved by a cur-
riculum tree in Section 3. For comparison, the presence of easy problems may also play a role in gradient
descent training of neural networks Allen-Zhu & Li (2020). At this point, we do not consider the imple-
mentation of the solver. It can be plain ℓ1-minimization, or ℓ1-minimization with prior knowledge from a
previous learning episodes as discussed in Section 3 below.

In order to recover the matrix X from the easy samples Ceasy, the student combines the corresonding solutions
into a matrix Y (as columns). Since Ceasy is contained in C<t, they must be of the form Y = XZ for some
t-sparse matrix Z. Given that Y contains sufficiently many independent samples form the class C<t, sparse
factorization algorithms Aharon et al. (2006); Gribonval & Schnass (2010); Spielman et al. (2012); Agarwal
et al. (2014); Arora et al. (2014b;a); Neyshabur & Panigrahy (2014); Arora et al. (2015); Barak et al. (2015);
Schnass (2015); Sun et al. (2017a;b); Rencker et al. (2019); Zhai et al. (2020) can recover the matrices X
and Z up to scaling Γ and permutation P .

SparseFactor(Y ): Factorize Y into X̄ = XPΓ and Z̄ = Γ−1P−1Z for some permutation P and
diagonal scaling Γ.

Scale: Scale the columns of X̄ so that AX̄ satisfies the RIP .

The permutation is irrelevant, but we need proper scaling for ℓ1 minimizers to work, computed by Scaling,
which is a simple normalization in Welper (2021) and an application dependent function in the experiments
in Section 5. We combine the discussion into the following learning algorithm.

Algorithm 1 Training of easy problems Ceasy.
function Train(A, b1, . . . , bq)

For all l ∈ [q], compute yl = Solve(A, bl).
Combine all yl into the columns of a matrix Ȳ .
Compute X̄, Z̄ = SparseFactor(Ȳ )
return Scale(X̄).

end function

Remark 2.1. In general Ȳ and X̄ have the same column span and thus every x ∈ C<t is given by

x = X̄z = Ȳ u.

Why don’t we skip the sparse factorization? While z is t-sparse by construction, u = Y +x is generally not.
Hence, even if Y is sufficiently random for AY to satisfy an RIP, it is not clear that it allows us to recover
u by the modified ℓ1-minimization (3).

2.3 Results

This section contains rigorous results for the algorithms of the last sections.

2.3.1 Learning Prior Knowledge

We need a suitable model of random matrices, where as usual the ψ2 norm is defined by ∥X∥ψ2 :=
supp≥1 p

−1/2E [|X|p]1/p.
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Definition 2.2. A matrix M ∈ Rn×p is s/n-Bernoulli-Subgaussian if Mjk = ΩjkRjk, where Ω is an i.i.d.
Bernoulli matrix and R is an i.i.d. Subgaussian matrix with

E [Ωjk] = s

n
, E [Rjk] = 0, E

[
R2
jk

]
= ν2, ∥Rjk∥ψ2 ≤ νCψ. (4)

We call M restricted s/n Bernoulli-Subgaussian if in addition

Pr [Rjk = 0] = 0, E [|Rjk|] ∈
[

1
10 , 1

]
, E

[
R2
jk

]
≤ 1, Pr [|Rjk| > τ ] ≤ 2e

−τ2
2 . (5)

Next, we define the easy class Ceasy as a slightly sparser version of C<t and generate the training data by
drawing random samples.

(A1) The easy class Ceasy is defined by pairs (A, bl) for bl = AXzl with columns zl of t̄/2p restricted
Bernoulli-Subgaussian matrix Z ∈ Rp×q with

c log q ≤ t̄ ≤ t, q > cp2 log2 p,
2
p

≤ t̄

p
≤ c

√
p
. (6)

The vectors zl have expected sparsity t̄ and thus the corresponding solutions Xzl have expected sparsity st̄.
In order for them be easier than the full class C<t, we generally choose t̄ < t. Next, we require the student
to be accurate on easy problems, with a safety margin

√
2 on sparsity:

(A2) For all
√

2t̄ sparse columns zl of Z, we have Solve(A,AXzl) = Xzl.

Since the student shall only recover the class X, at this point, it is not strictly necessary that the solutions
Xzl are global ℓ0 minimizers, which can, however, be ensured by the teacher in selecting the class X. Finally,
we need the following technical assumption.

(A3) X has full column rank.

Although this implies that X has more rows than columns, that is generally not true for AX used in the
sparse recovery (3). The assumption results from the sparse factorization Spielman et al. (2012), where X
represents a basis. Newer results Agarwal et al. (2014); Arora et al. (2014b;a; 2015); Barak et al. (2015)
consider over-complete bases with less rows than columns and coherence conditions and may eventually
allow a weaker assumption. Anyways, with the given setup, we can recover X from easy training samples as
claimed in the previous sections.
Theorem 2.3 (Welper (2021), Theorem 4.2). Assume that (A1), (A2) and (A3) hold. Then there are
constants c > 0 and C ≥ 0 independent of the probability model, dimensions and sparsity, and a tractable
implementation of SparseFactor so that with probability at least

1 − Cp−c

the output X̄ of Algorithm 1 is a scaled permutation permutation X̄ = XPΓ of the matrix X that defines
the class C<t.

The result follows from Theorem 4.2 in Welper (2021) with some minor modifications described in Appendix
A.1.

2.3.2 ℓ0-Minimization with Prior Knowledge

After we have learned X, we need to ensure that we can solve all problems in class C<t by (3), not only the
easy ones. We do so here for random X and leave partially deterministic cases to Section 4.
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(A4) The matrix X ∈ Rn×p is s/n
√

2 Bernoulli-Subgaussian with

∥A∥2
F

∥A∥2 ≥ CC4
ψ

nt

sϵ2
log
(

3p
ϵt

)
(7)

and ψ2-norm bound Cψ in the Bernoulli-Subgaussian model (4).

The left hand side ∥A∥2
F /∥A∥2 is the stable rank of A. With the scaling

Scale(X̄) =
√
n

∥A∥F
, (8)

we obtain the following result, with some minor modifications from the reference described in Appendix A.1.
Theorem 2.4 (Welper (2021), Theorem 4.2). Assume we choose (8) for Scale and that (A1) and (A4)
hold. Then there are constants c > 0 and C ≥ 0 independent of the probability model, dimensions and
sparsity, and a tractable implementation of SparseFactor so that with probability at least

1 − Cp−c

the matrix X has full column rank, s-sparse columns and AX and satisfies the RIP

(1 − ϵ)∥v∥2 ≤ ∥AX̄v∥2 ≤ (1 + ϵ)∥v∥2 (9)

for all 2t-sparse vectors v ∈ Rp. Hence, for ϵ < 4/
√

41 ≈ 0.6246, we can solve all problems in C<t by ℓ1
minimization (3).

In conclusion, if we train on easy samples in Ceasy, we can recover X and thus with the modified ℓ1-
minimization (3) solve all problems in class C<t, even the ones which we could not solve before training.

2.4 Implementation of the Student Solver?

While most assumptions are of technical nature the two critical ones are:

1. Implementation of Solve? If we implement Solve by plain ℓ1-minimization, A must satisfy the st̄-
NSP. This poses strong assumptions on A and if it satisfies the slightly stronger st-NSP, all problems
in C<t can be solved by ℓ1-minimization, rendering the training of X obsolete. We resolve the issue
in the next section by a hierarchy of problem classes, which allow us to use prior knowledge from
lower level classes to implement Solve.

2. Can we learn classes X that are not fully random? Some partially deterministic cases are considered
in Section 4.

3 Iterative Learning

3.1 Overview

We have seen that we can learn to solve all problems in a class C<t, if we are provided with samples from an
easier subclass Ceasy. The easy class must be sufficiently rich and at the same time its sample problems must
be solvable without prior training. This results in a delicate set of assumptions, which we have hidden in the
existence of Solve, in the last section. The situation becomes much more favorable if we do not try to learn
C<t at once, but instead iteratively proceed from easy to harder and harder problems. This way, we can
implement Solve by the outcomes of previous learning episodes, instead of uninformed plain ℓ1 minimizers.
To this end, we order multiple problem classes into a curriculum, similar to a human student who progresses
from easy to hard classes ordered by a set of prerequisites. Likewise, we consider a collection of problem
classes Ci, indexed by some index set i ∈ I and organized in a tree, e.g.

7
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C1

C2

C4 C5

C3

C6

with root node C0 and where each class Ci has children Cj , j ∈ child(i). The student starts learning the
leaves and may proceed to a class Ci only if all prerequisite or child classes have been successfully learned.
As before each class is given by a matrix Xi with si sparse columns and sparsity t

Ci := {x ∈ Rn : x = Xiz, z is t-sparse}.

The difficulty of each class roughly corresponds to the sparsity, with the easiest at the leaves and then less
and less sparsity towards the root of the tree. In order to learn each class Ci, the corresponding easy problems
are constructed as in the last section

Ceasy,i := {x ∈ Rn : x = Xiz, z is t̄-sparse},

which are identical to Ci but with sparser vectors z.

In order to progress through the curriculum, we have to carefully connect each parent to its children. First,
we assume that the combined knowledge of all children contains the knowledge of the parent, i.e.

Xi =
∑

j∈child(i)

XjWj =: Xchild(i)Wchild(i). (10)

for some matrices Wj . Next, we carefully calibrate the sparsity of all matrices to obtain a proper easy/hard
split. We assume that the columns of Xi are si sparse and the columns of Wchild(i) are t/t̄ sparse with

t/t̄ ≥ 1, sit̄ ≤ sjt, j ∈ child(i). (11)

Then every element in the parent class satisfies x = Xizi = Xchild(i)Wchild(i)zi =: Xchild(i)zchild(i). Hence,
if it is easy for the parent ∥zi∥0 ≤ t̄, it is hard for the combined knowledge of the children ∥zchild(i)∥0 ≤ t.
But given our prerequistes, we can already solve all hard children problems and implement Solve by the ℓ1
minimization (3) with prior knowledge Xchild(i).
Remark 3.1. Technically, this requires that AXchild(i) is t-NSP, not only all AXj, j ∈ child(i) separately.
This is a relatively mild extra assumption because typically the NSP depends only logarithmically on the
number of columns in X·.

With the implementation of Solve, we can now learn the full parent class Ci by Algorithm 1 and then proceed
through the full tree by induction. The split (10), roughly models a set of university courses, where higher
level courses recombine concepts from multiple prerequisite courses. In summary, we have the sparsities

x ∈ Child problems⇝ x = Xchild(i)zchild(i), ∥zchild(i)∥0 ≤ t, ∥x∥0 ≤ sjt,

x ∈ Ceasy,i ⇝ x = Xizi, ∥zi∥0 ≤ t̄, ∥x∥0 ≤ sit̄,

x ∈ Ci ⇝ x = Xizi, ∥zi∥0 ≤ t, ∥x∥0 ≤ sit.

It remains to learn the leaves, for which we cannot rely on any prior knowledge. To this end, note that
by construction (10), we can expect the columns of the parent Xi to be a factor t/t̄ > 1 less sparse than
the columns of the children Xj , j ∈ child(i). Hence, in a carefully constructed curriculum, the tree nodes’
Xi become more sparse towards the bottom of the tree and ideally have unit sparsity O(1) at the leaves.
This ensures that the leave node classes can be solved by brute force in sub-exponential time. For some
applications this may be costly, while for others, like SAT reductions to compressed sensing and related
problems discussed in Section 5, this is routinely done for moderately sized problems Holden (2021).
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Remark 3.2. All problems x in class Ci are t2/t̄-sparse linear combinations of Xchild(i). Hence, if AXchild(i)
satisfies the t2/t̄ instead of only a t-NSP, the student can solve all problems in Ci, without training Algorithm
1. Practically, she can jump a class, but it is increasingly difficult to jump all classes, which would render
the entire learning procedure void.
Remark 3.3. The easy/hard split is achieved by some matrix satisfying a t̄ but not a t RIP. In Section 2
this matrix is A, so that this setup is very limiting. In this section, this is the matrix AXchild(i) and therefore
at the digression of the teacher and to a large extend independent on the problem matrix A.
Remark 3.4. The sparse factorization in Algorithm 1 condenses the knowledge Xchild(i) into Xi, allowing
more sparse zi than zchild(i) and as a consequence to tackle more difficult, or less sparse, problems x. This
condensation is crucial to progress in the curriculum, but is in itself a meta-heuristic to consolidate knowledge.
It is comparable to Occam’s razor and the human preference for simple solutions. More flexible meta-
heuristics are left for future research.

3.2 Learnable Trees

The algorithm of the last section is summarized in Algorithm 2. All assumptions together with some technical
ones are contained in the following definition.
Definition 3.5. We call a tree of problem classes Ci, i ∈ I learnable if

1. Xi = Xchild(i)Wchild(i) for all j ∈ child(i), where Xi has si sparse columns and Wchild(i) has t/t̄ ≥ 1
sparse columns so that sit̄ ≤ sjt.

2. Each node has at most γ children.

3. For each tree node i, the matrix Xi has full column rank.

4. For all tree nodes i the matrix product A[Scale(Xchild(i))] satisfies the null space property of order√
2t.

In addition we have the following implementations

5. On each tree node, we have implementations of Scale.

6. We have a solver SolveL for the leave nodes, satisfying Assumption (A2).

The teacher generates learning problems according to

7. On each node i, the sampling of training problems satisfies Assumption (A1) with X = Xi.

Deferring existence of learnable trees to Section 4 below, for now we assume that a teacher has already
constructed such a tree. Then, as reasoned in the last section, we can recover the knowledge X0 of the root
class C0, up to permutation and scaling in polynomial time. For a formal proof, see Appendix A.3.
Proposition 3.6. Let Ci, i ∈ I be learnable according to Definition 3.5. Then, there exits an implementation
of SparseFactor and constants c > 0 and C ≥ 0 independent of the probability model, dimensions and
sparsity, so that with probability at least

1 − Cγs
log γ

log(cst/t̄)
0 p−c

the output X̄i = TreeTrain(Ci) of Algorithm 2 is a scaled permutation Scale(X̄i) = Scale(XiP ) of Xi

for some permutation matrix P .
Remark 3.7. The results states that we can recover the root node up to permutation and scaling. It is not
strictly required that the solutions in the corresponding class Ci are global ℓ0 minimizers, although, of course,
this is the intended use case. This depends on the choice of the curriculum Xi and is ensured separately in
the applications in Sections 5.3.2 and 5.3.3.

9
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The biggest problem with learning hard problems C<t from easy problems Ceasy in Theorem 2.3 is the need
for a solver for the easy problems, as discussed in Section 2.4. The hierarchical structure of Proposition 3.6
completely eradicates this assumption, except for the leave nodes, which ideally have sparsity O(1) so that
brute force solvers are a viable option.

Algorithm 2 Tree training
SolveX : Solve the modified ℓ1-minimization (3) with the given matrix X
SolveL: Solver for leave nodes.
Train(A, b1, . . . , bq,Solve): Algorithm 1 using the given solver subroutine.

function TreeTrain(class Ci)
Get matrix A and training samples b1, . . . , bq from teacher.
if Ci has children then

Compute Xj = TreeTrain(Cj) for j ∈ child(i)
Concatenate all child matrices X = [Xj ]j∈child(i)
return Xi = Train(A, b1, . . . , bq,SolveX)

else if Ci has no children then
return Xi = Train(A, b1, . . . , bq,SolveL)

end if
end function

3.3 Cost

Let us consider the cost of learnable trees from Definition 3.5. The number of nodes grows exponentially in
the depth of the tree, but the depth only grows logarithmically with regard to the sparsity s0 of the root
node, given that we advance the sparsities si as fast as (11) allows.
Lemma 3.8. Let s0 be the sparsity of the root node of the tree. Assume that each node of the tree has at
most γ children and that sit̄ ≳ csjt for c ≥ 0 and all j ∈ child(i). Then the tree has at most

γN+1 = γs
log γ

log(ct/t̄)
0

nodes.

The proof is given in Appendix A.2. Since on each node, the number of training samples and the runtime
of the training algorithm are both polynomial, this lemma ensures that the entire curriculum is learned in
polynomial time, with an exponent depending on γ, and the ratio t/t̄.

4 A tree Construction

In the last section, we have seen that we can learn difficult classes, given a suitable training curriculum. In
this section, we argue that such curricula exist. Definition 3.5 and Proposition 3.6 state several conditions
on classes Ci and their matrices Xi that allow the student to successfully learn the entire tree. While these
are mainly simple dimensional requirements, the most severe is the NSP condition of A[Scale(Xchild(i))].
By Kasiviswanathan & Rudelson (2019) or Theorem 2.4 this is expected for random Xi. For a more realistic
model scenario, we add a deterministic component.

The deterministic part guarantees that every global ℓ0-minimizer

min
x∈Rn

∥x∥0, s.t. Ax = b (12)

can be learned, by a dedicated curriculum, for arbitrary right hand side b and only minor rank assumptions
on A. The random part is a placeholder for further solutions in class, to obtain a more realistic model.
Remark 4.1. The model shall demonstrate that learning of any deterministic problem is possible, but is is
not intended as a practical curriculum design.

10
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4.1 Tree Result

Given A and x, we construct a partially random learnable tree whose root class contains x and each Xi has
p columns for some p > 0. To this end, we first partition the support supp(x) into non-overlapping patches
{J1, . . . , Jq} = J and then place the corresponding sub-vectors of x into q columns of the matrix

Sjl :=
{
xj j ∈ Jl
0 else. (13)

The columns are spread into the leave classes of the following learnable tree, were κ(·) denotes the condition
number.
Proposition 4.2. Let A ∈ Rm×n and split x ∈ Rn into q = 2L, L ≥ 1 components S given by (13). If

1. AS has full column rank.

2. On each tree node, we have implementations of Scale.

3. SolveL satisfies Assumption (A2) on the leave nodes.

4.

t ≳ log p2 + log3 p, 1 ≲ t ≲ √
p (14)

5.
min
J∈J

∥A·J∥2
F

∥A·J∥2 ≳ tκ(AS)L+ tκ(AS) log cqp
t

(15)

for some generic constant c, with probability at least

1 − 2 exp
(

−c 1
κ(AS) min

J∈J

∥A·J∥2
F

∥A·J∥2

)
there is a learnable binary tree of problem classes Ci, i ∈ I of depth L, given by matrices Xi and sparsity t
so that

1. The root class C0 contains x.

2. The parents are constructed from the children Xi = Xchild(i)Wchild(i), where Wchild(i) has t/t̄ = 2
sparse columns.

3. The columns of the leave nodes’ Xi are |J | sparse.

4. Each class’ matrix Xi contains p columns, consisting of columns of S, i.e. pieces of x, in the leaves
and sums thereof in the interior nodes. All other entries are random (dependent between classes) or
zero.

In short, curricula that allow us to learn the root class do exist, even if we add some deterministic structure
to ensure that the classes contain some meaningful result. More sophisticated classes are left for future
research.

Note that x can be recovered even if it is not a global ℓ0 minimizer. This has to be ensured separately by
the designer of the curriculum. The only restriction on x is Assumption 1 that AS has full column rank. In
case x is indeed a global ℓ0 minimizer, this assumption is automatically satisfied by the following lemma,
with z = [1, 1, . . . ]T . The proof is in Appendix A.4.
Lemma 4.3. Assume the columns of S ∈ Rn×q have non-overlapping support and z ∈ Rq with non-zero
entries. If the vector x = Sz is the solution of the ℓ0-minimization problem 12, then the columns of AS are
linearly independent.

11
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Proposition 4.2 leaves the implementation of Scale open. The function is necessary because the sparse
factorization of Y = XZ into X and Z in Algorithm 1 is not unique up to permutation and scaling. Two
options are as follows:

1. If AX satisfies the RIP, all columns of AX must have unit size up to the RIP constants. Hence a
reasonable scaling of X ensures equality ∥(AX)·i∥ = 1. However, the proof only shows that TAX
is RIP for some preconditioner T , depending on the condition of the deterministic part AS. This is
sufficient for the NSP, which is invariant under left preconditioning and hence ensures ℓ1 recovery.
However, this is not informative for scaling X, unless the teacher provides the preconditioned matrix
TA instead of A.

2. The teacher can ensure that the training samples Z are scaled, e.g. by sampling entries from a
discrete set {−1, 0, 1}, which allows the student to recover the scaling.

Another major assumption in Proposition 4.2 is the existence of a leave node solver SolveL. We can use a
brute force approach if we manage to achieve enough sparsity |J | in the leave nodes, which we estimate next.
Since minJ∈J

∥A·J∥2
F

∥A·J∥2 ≤ |J |, in the most favorable case minJ∈J
∥A·J∥2

F

∥A·J∥2 ∼ |J | and for t as small as possible in
(14), the condition (15) reduces to

|J | ≳ Lt+ t log(2Lp) ≳ Lt+ t log p ≳ L log p+ (log p)2, (16)

posing a limit on the minimal support size we can achieve at the leaves of the tree. In order to eliminate L,
let us assume that all J are of equal size and set s = ∥x∥0. Since the tree has 2L leaves, this implies that
s = |J |2L and thus log s = log |J | + L ≥ L. Thus, condition (16) reduces to

|J | ≳ log s log p+ (log p)2. (17)

Hence, on the leave nodes, a brute force SolveL search of |J | sparse solutions, considers about n|J| ≥ nlog s

possible supports (ignoring p for the time being, which is at the teachers discretion). While significantly
better than ns possible supports for finding x directly, the former number is not of polynomial size. In order
to drive down the search size to O(1), we can iterate the tree construction and build new trees designed to
enable the student to find every column in the leave nodes Xi with one full tree per column. At the break
between curricula, this requires the teacher to provide the samples (A, bk) with bk = A(Xi)·k for every leave
node column (Xi)·k, which is a much stronger requirement than just providing arbitrary samples form the
child classes in the interior nodes. Since this is more costly, we calculate in the next section that this still
leads to a total tree of polynomial size.

4.2 Tree Extension

The curriculum in Proposition 4.2 shrinks the support size from s to log s. In order to reduce the size further,
we may build a new curriculum for every column in every leave Xi, if these columns can be split with full
rank of AS, yielding p2L ≤ ps new curricula. The assumption seems plausible for the random parts and is
justified for the deterministic part by the following Lemma (together with Lemma 4.3), proven in Appendix
A.4.
Lemma 4.4. Assume the columns of S ∈ Rn×q have non-overlapping support and z ∈ Rq with non-zero
entries. If the vector x = Sz is the solution of the ℓ0-minimization problem 12, then the columns S·k, k ∈ [q]
are global ℓ0 optimizers of

S·k ∈ min
x∈Rn

∥x∥0 subject to Ax = AS·k.

Remark 4.5. Within each curriculum, the teacher provides samples form each class. At the break between
different curricula, the teacher must provide the more restrictive samples b = Ax with columns x of leave
node Xi. If this can be avoided in a more careful tree construction is left for future research.

12
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Since we aim for leave column support size |J | ∼ 1 and its lower bound (17) contains the number p of
columns in each Xi, which is at the teachers disposal, we shrink it together with the initial (sub-)curriculum
support size s by choosing p ∼ s.

Remark 4.6. By choosing a large constant in p ∼ s or alternatively p ∼ sα, for the more difficult curricula,
p can be larger than m. But by (16), towards the simpler curricula p must become small so that eventually
p ≤ m and the matrix AXi has more rows that columns. Depending on the kernel of AXi, this may void ℓ0
or ℓ1-minimization and allow simpler constructions towards the bottom of the curriculum tree.

We iteratively repeat the procedure until the leave support |J | ∼ O(1) is of unit size. The total number
#(s) of required (sub-)curricula for initial support size s satisfies the recursive formula

#(s) ∼ ps#
(
log s log p+ (log p)2) ≥ s2#

(
(log s)2)

By induction, one easily verifies that #(s) ≲ s3, so that we use only a polynomial number of curricula,
each of which can be learned in polynomial time. In conclusion, combining all problem classes into one
single master tree, this yields a curriculum for a student to learn the root C0 in polynomial time,
including a predetermined solution x. The problem classes can be fairly large at the top of the tree
and must be small at the leaves. At the breaks between different curricula, the training samples must be of
unit size containing only one column of the next tree.

4.3 Construction Idea

In Proposition 4.2, all class matrices Xi are derived from the single matrix

X := SZT +DR(I − ZZT ). (18)

The first summand is the deterministic part, with components S of x defined in (13) and arbitrary matrix
Z with sparse orthogonal columns that boosts the number of columns form q to the desired p. The second
summand is the random part with sparse random matrix R. The projector (I − ZZT ) ensures that it does
not interfere with the deterministic part and D is a scaling matrix to balance both parts.

We choose Z and the support of R so that, upon permutation of rows and columns X is a block matrix

X =

B1
. . .

Bq


with each block containing one piece xJ . The tree is constructed out of these blocks as follows in case q = 4
and analogously for larger cases.

X0 =


B1
B2
B3
B4


X1 =


B1
B2



B1


B2



X2 =

B3
B4


B3



X4



See Appendices A.5.1 and A.6 for details.
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5 Applications

5.1 3SAT and 1-in-3-SAT

For an example applications, we consider reductions from the NP -complete 3SAT and 1-in-3-SAT to sparse
linear systems (The paper Ayanzadeh et al. (2019) considers the other direction). The problems are defined
as follows.

• Literal: boolean variable or its negation, e.g. : x or ¬x.

• Clause: disjunction of one or more literals, e.g.: x1 ∨ ¬x2 ∨ x3.

• 3SAT: satisfiability of conjunctions of clauses with three literals. For a positive result, at least one
literal in each clause must be true.

• 1-in-3-SAT: As 3SAT, but for a positive result, exactly one literal in each clause must be true.

Both problems are NP -complete an can easily be transformed into each other. In this section, we reduce
a 1-in-3-SAT problem with clauses ck, k ∈ [m] and boolean variables xi, i ∈ [n] to a sparse linear system,
following techniques from Ge et al. (2011). For each boolean variable xi, we introduce two variables yi ∈ R
corresponding to xi and zi ∈ R corresponding to ¬xi for i ∈ [n]. For each clause ck, we define a pair of
vectors Ck, Dk. The vector Ck has a one in each entry i for which the corresponding literal (not variable) xi
is contained in the clause ck and likewise Dk has a one in each entry i for which the literal ¬xi is contained
in ck. All other entries of Ck and Dk are zero. It is easy to see that

y ∈ {0, 1}n and zi = ¬yi
⇒ Exactly one literal in ck is true if and only if CTk y +DT

k z = 1. (19)

We combine the linear conditions into the linear system

A :=



· · · CT1 · · · · · · DT
1 · · ·

...
...

· · · CTm · · · · · · DT
m · · ·

. . . . . .
Inn Inn

. . . . . .


, b :=



1
...
1
1
...

1
...


(20)

with some extra identity blocks that together with the ℓ0-minimization

min
y,z∈Rn

∥y∥0 + ∥z∥0 subject to A

[
y
z

]
= b. (21)

ensure that y ∈ {0, 1}n, when possible.
Lemma 5.1. The clauses ck corresponding to Ck and Dk, k ∈ [m] are 1-in-3 satisfiable if and only if (21)
has a n sparse solution.

Proof. The i-th row of the identity blocks is yi + zi = 1. The solution is either 2-sparse or 1-sparse with
yi = 1, zi = 0 or yi = 0, zi = 1. Hence the solution is at most n sparse. The latter two cases are true for all
i if and only if y and z combined are n sparse. Then the pair (yi, zi) matches a boolean variable (xi,¬xi)
and the result follows from (19).

14
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5.2 Model Class

The 1-in-3-SAT reduction is not suitable for our curriculum learning because the solutions have non-negative
entries and therefore cannot be the result of a mean-zero random sampling, required for RIP properties.
Therefore, we consider the following larger class

A =
[
A11 A12
In/2 In/2

]
∈ Rm×n, b =

[
b1
b2

]
∈ Rn

for two sparse matrices A1j ∈ {0, 1}(m−n/2)×(n/2) and arbitrary solution vectors x ∈ Rn or x ∈ {−1, 0, 1}n.
As in Lemma 5.1, the two identity blocks ensure that any solution x of Ax = b must have support at least
∥x∥0 ≥ ∥b2∥0. In the 1-in-3-SAT case, equality corresponds to satisfiable problems. Likewise, we ensure that
all training problems satisfy ∥x∥0 = ∥b2∥0, which automatically implies that they are global ℓ0 optimizers.
Remark 5.2. If ∥x∥0 = ∥b2∥0, then x is a global ℓ0 minimizer.

5.3 Curricula

We consider several example curricula. The first is a realization of the construction in Proposition 4.2. The
following two add some extra structure to ensure global ℓ0 minimization properties. The Second for all
columns of each Xi in the curriculum and the third for all sparse linear combinations of columns of Xi, i.e.
all elements in the corresponding problem class Ci.

5.3.1 Curriculum I

We first consider a realization of the curriculum in Proposition 4.2, as shown in Figure 1. The ∗ entries are
mean-zero random ±1 and the x entries are (different) random {0, 1}. The latter have non-zero mean, which
is not amenable to RIP conditions and used as a model for the deterministic part of the theory. Formally,
the curriculum satisfies the construction (M1) – (M8) in the proof of Proposition 4.2 with the index sets[

1, . . . , |J |︸ ︷︷ ︸
J1

, . . . , n− |J |, . . . , n︸ ︷︷ ︸
Jq

]
,

[
1, . . . , |K|︸ ︷︷ ︸

K1

, . . . , p− |K|, . . . , p︸ ︷︷ ︸
Kq

]
and Z =

[
e1 e|K|+1 e2|K|+1 . . .

]
with unit basis vectors ek for the first index in each block Ki.


x ∗ . . . ∗
x ∗ . . . ∗
x ∗ . . . ∗
x ∗ . . . ∗



x ∗ . . . ∗
x ∗ . . . ∗



...
...

x ∗ . . . ∗
x ∗ . . . ∗



...
...

Figure 1: Xi matrices for a curriculum (M1) – (M8) and Proposition 4.2. x can be different in each row and
∗ are random entries.

5.3.2 Curriculum II

For none of the solutions in the problem classes in Curriculum I we know if they are global ℓ0 minimizers.
While this is not necessarily an issue for the tree construction, as outlined in Remark 3.7, it is not fully
satisfactory and global minimizers can be obtained as follows. First, we split the columns according to the
identity blocks in A, as shown in Figure 2. Each component in the upper block y or ∗, has exactly one
corresponding component in the lower block z or + so that for each pair at most one entry is non-zero. As
a result each column has the required sparsity to guarantee that it is a global ℓ0 minimum by Remark 5.2.
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

y ∗ . . . ∗
y ∗ . . . ∗
y ∗ . . . ∗
y ∗ . . . ∗
z + . . . +
z + . . . +
z + . . . +
z + . . . +





y ∗ . . . ∗
y ∗ . . . ∗

z + . . . +
z + . . . +



...
...


y ∗ . . . ∗
y ∗ . . . ∗

z + . . . +
z + . . . +



...
...

Figure 2: Xi matrices for a curriculum with ℓ0 minimal columns.

5.3.3 Curriculum III

In Curriculum II the columns of Xi are global ℓ0 minimizers, but their linear combinations in the classes
Ci or the training samples are generally not, which can be fixed by the modification in Figure 3. All blocks
individually work as before, but instead of allowing all possible sparse linear combinations of the columns,
we only allow one non-zero contribution from each block column. This ensures the sparsity requirements in
Remark 5.2 so that all problems in class are global ℓ0 minimizers.

Since the y and z entries are non-negative, this allows us to build a curriculum to learn one arbitrary 1-in-3-
SAT problem in a larger class of mostly random signed problems. If we can build an entire curriculum that
is fully contained in 1-in-3-SAT itself remains open.

5.4 Numerical Experiments

Table 1 contains results for Curricula II and III. All ℓ1-minimizations problems are solved by gradient
descent in the kernel of Ax = b and the sparse factorization is implemented by ℓ4-maximization Zhai et al.
(2020). Solutions on the leave nodes are given instead of brute force solved. As in Welper (2021), Algorithm
1 contains an additional grader that sorts out wrong solutions from Solve, which often depend on the
gradient descent accuracy. Scale is implemented by snapping the output of SparseFactor to the discrete
values {−1, 0, 1}, which allows exact recovery of all nodes Xi, without numerical errors. Further details are
given in Appendix C.

• Curriculum II: We train three tree nodes on two levels. Grader tests to accuracy 10−4. The results
are the average of 5 independent runs.

• Curriculum III: We train one tree node. The training sample matrices (20) are preconditioned per
node, not globally as in Proposition 4.2, below. Grader tests to accuracy 10−3. The results are the
average of 2 independent runs.

Table 1 contains the results. It includes average ranks to show that the systems AX are non-trivial with non-
zero kernel and the row %Validate shows the percentage of correctly recovered training samples according
to the grader. A major bottleneck is the number of training samples for each node, which scales quadratically
for ℓ4 maximization (but only linear for unique factorization without algorithm Spielman et al. (2012)), up

16



Under review as submission to TMLR



y ∗
y ∗

y ∗
y ∗

. . .
z +
z +

z +
z +

.. .




y ∗

y ∗

. . .
z +

z +

.. .



...
...



y ∗

y ∗
. . .

z +

z +
.. .



...
...

Figure 3: Xi matrices for a curriculum with ℓ0 minimal columns.

Curr. I Curr. II
Depth 0 1 0
m 96 96 121
n 128 128 162
p
(
Xchild(i)

)
102 102 459

Rank
(
AXchild(i)

)
96.00 62.80 113.00

# Samples 10000 10000 90000
% Validate 0.55 0.91 0.98
#(Xstudent = X) 5/5 7/10 2/2

Table 1: Results of numerical experiments, Section 5.4, averaged over all runs and all nodes of given depth.
The second but last row shows the percentage of successful training solutions, according to the grader. The
last row shows the number of successfully recovered Xi for the given level out of the total number of trials.

to log factors. The last line shows that in the majority of cases we can recover the tree nodes Xi. The misses
depend on solver parameters as e.g. iteration numbers and the size of random matrices.

6 Conclusion

Although sparse solutions of linear systems are generally hard to compute, many subclasses are tractable. In
particular, the prior knowledge x = Xz with sparse z allows us to solve problems with only mild assumptions
on A. We learn X from a curriculum of easy samples and condensation of knowledge at every tree node. The
problems in each class must be compatible so that AX satisfies the null space property. To demonstrate the
feasibility of the approach, we show that the algorithms can learn a class X of non-trivial size that contains
an arbitrary solution x.
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The results provide a rigorous mathematical model for some hypothetical principles in human reasoning,
including expert knowledge and its training in a curriculum. To be applicable in practice, further research
is required, e.g.:

• The mapping of SAT type problems into sparse linear problems lacks several invariances, e.g. a
simple reordering of terms may invalidate acquired knowledge. The reduction of SAT or other
problems to sparse linear solvers is similar to feature engineering in machine learning.

• For sparse factorization, the required number of samples scales quadratically, up to a log factor,
which is the biggest computational bottleneck in the numerical experiments. However, the current
implementation uses a standard method and does not use that the parent class Xi can be construted
from its children (10).

• The curriculum is designed so that knowledge can be condensed by sparse factorization, which in
itself is a meta-heuristic. One may need to dynamically adapt the condensation heuristic to real data.
Since sparse factorization algorithms themselves often rely on ℓ1 minimization, similar approaches
as discussed in the paper are conceivable.

• Not all relevant knowledge can be combined into one root class X0 so that AX0 satisfies the null
space property. Hence, one may need several roots or rather a knowledge graph, together with a
decision criterion which node to use for a given problem.
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A Details and Proofs

A.1 Easy and Hard Problems: Theorems 2.3, 2.4

Theorem 2.3 contains some small changes to the original reference Welper (2021). In the original version
(A1) contains two extra inequalities

n ≥ c̄1p log p, 1
p

≤ s

n
≤ c̄2,
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which are used to ensure that X has full rank Welper (2021), Proof of Theorem 4.2 with (A3), Item 4. We
assume this directly in (A3) and leave out the inequalities.

For Theorem 2.4, the reference Welper (2021) requires the extra assumption that Ax = b has unique st sparse
solutions, which is only used to verify that solutions of Solve are correct. In our case, this is implicitly
contained in (A2), instead.

A.2 Tree Size: Lemma 3.8

Lemma A.1 (Lemma 3.8 restated). Let s0 be the sparsity of the root node of the tree. Assume that each
node of the tree has at most γ children and that sit̄ ≳ csjt for c ≥ 0 and all j ∈ child(i). Then the tree has
at most

γN+1 = γs
log γ

log(ct/t̄)
0

nodes.

Proof. Let ℓi be the level of a node, i.e. the distance to the root node, and N the maximal level of all nodes.
Each level has at most γN−i nodes and thus the full tree has at most

N∑
i=0

γN−i = γN+1 − 1
γ − 1 ≤ γγN

nodes.

It remains to estimate N . By induction on the assumption sit̄ ≥ csjt we have

sj ≤
(
t̄

ct

)ℓj
s0

and thus, since necessarily sj ≥ 1, we conclude that

s0 ≥
(
ct

t̄

)N
.

Plugging in γN =
(
ct
t̄

)N log γ
log ct/t̄ the number of nodes is bounded by

γγN = γ

(
ct

t̄

)N log γ
log ct/t̄

≤ γs
log γ

log ct/t̄
0 .

A.3 Learnable Trees: Proposition 3.6

Proposition A.2 (Proposition 3.6 restated). Let Ci, i ∈ I be learnable according to Definition 3.5. Then,
there exits an implementation of SparseFactor and constants c > 0 and C ≥ 0 independent of the proba-
bility model, dimensions and sparsity, so that with probability at least

1 − Cγs
log γ

log(cst/t̄)
0 p−c

the output X̄i = TreeTrain(Ci) of Algorithm 2 is a scaled permutation Scale(X̄i) = Scale(XiP ) of Xi

for some permutation matrix P .

Proof. The result follows from inductively applying Theorem 2.3 on each node of the tree, starting at its
leaves. The assumptions of Theorem 2.3 are easily matched with the given ones, except for (A2), which we
verify separately for leave and non-leave nodes.
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1. Leave Nodes: For the leave nodes (A2) is assumed. This is required because the globally sparsest
solution of Ax = b may not be unique, in which case (A2) ensures that we pick an in class solution.

2. Non-Leave Nodes: Let z be a column of the training sample Z and x = Xiz. By (10), we have

x = Xiz = Xchild(i)Wchild(i)z =: Xchild(i)w

with t sparse w because Wchild(i) has t/t̄ sparse columns and z is
√

2t̄ sparse, with probability at
least 1 − 2p−c (see the proof of Theorem 2.3, Item 2, in Welper (2021)). Since AXchild(i) satisfies
the

√
2t-RIP, the correct solution x is recovered by the modified ℓ1-minimization (3) and hence by

SolveXi .

Finally, we add up the probabilities. By Theorem 2.3, the probability of failure on each node is at most
Cp−c. By Lemma 3.8, there are at most γs

log γ
log(ct/t̄)
0 nodes and thus the result follows from a union bound.

A.4 Split of Global ℓ0 Minimizers

This section contains two lemmas that state the splits of ℓ0 minimizers are again ℓ0 minimizers and that
they are linearly independent.
Lemma A.3 (Lemma 4.3 restated). Assume the columns of S ∈ Rn×q have non-overlapping support and
z ∈ Rq with non-zero entries. If the vector x = Sz is the solution of the ℓ0-minimization problem 12, then
the columns of AS are linearly independent.

Proof. Let xi be the columns of S and assume that the Axi, i ∈ [t] are linearly dependent. Then there exists
a non-zero y ∈ Rt such that

∑t
i=1 Axiyi = 0. Without loss of generality, let y1 ̸= 0 so that

Ax1 = −A
t∑
i=2

xi
yi
y1
.

We use this identity to eliminate x1:

b = Ax = A

t∑
i=1

xizi,= Ax1z1 +A

t∑
i=2

xizi,= A

t∑
i=2

xizi

(
1 − yi

y1
z0

)
=: Ax̄.

Since all xi have disjoint support and all zi are non-zero, we have ∥x̄∥0 < ∥x∥0, which contradicts the
assumption that x is a ℓ0 minimizer and thus all Axi, i ∈ [n] must be linearly independent.

Lemma A.4 (Lemma 4.4 restated). Assume the columns of S ∈ Rn×q have non-overlapping support and
z ∈ Rq with non-zero entries. If the vector x = Sz is the solution of the ℓ0-minimization problem 12, then
the columns S·k, k ∈ [q] are global ℓ0 optimizers of

S·k ∈ min
x∈Rn

∥x∥0 subject to Ax = AS·k.

Proof. Assume the statement is wrong. Then for some k ∈ [q] there is a yk with

∥yk∥0 ≤ ∥S·k∥0, Ayk = AS·k.

Define
x̄ := ykzk +

∑
l ̸=k

S·lzl.
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Then, we have
Ax̄ = Aykzk +A

∑
l ̸=k

S·lzl. = A
∑
l

S·lzl = ASz = Ax

and since all S·l have disjoint support and zl ̸= 0

∥x̄∥0 = ∥yk∥0 +
∑
l ̸=k

∥S·l∥0 <
∑
l

∥S·l∥0 = ∥x∥0.

This contradicts the assumption that x is a global ℓ0 minimiser and hence all S·k must be ℓ0 minimizers as
well.

A.5 Tree Nodes for Proposition 4.2

This section contains the construction of the matrices X in the tree nodes used in Proposition 4.2.

A.5.1 Construction of X

We follow the idea outlined in Section 4.3. For given matrix A and vector x, we construct a decomposition
matrix X ∈ Rn×p and z so that x = Xz for t-sparse z and AX satisfies the null space property. The
first condition ensures that x is contained in the class C<t and the second provides solvers Solve. This
construction will be used in subsequent sections to define nodes in the curriculum tree. We start with some
simple definitions

(M1) By Sm×n we denote all matrices in Rm×n whose columns have non-overlapping support.

(M2) 1 :=
[
1 · · · 1

]T with dimensions derived from context.

We split x into q non-overlapping components, which we combine into the columns of a matrix S ∈ Sn×q so
that x = S1. The matrix S has q columns, which is generally less than the p columns we desire for a rich
class given by X. A convenient way out is to choose some matrix Z ∈ Rp×q with orthonormal columns so
that x = SZTZ1 = SZT z with z := Z1. To ensure sparsity of z and for later tree construction, we confine
Z to Sp×q.

(M3) S ∈ Sn×q with non-zero columns.

(M4) Z ∈ Sp×q with ℓ2-normalized columns.

While the matrix SZT has the same dimensions as X, it is generally low rank and cannot satisfy the NSP.
Furthermore, we want a rich class matrix X with further possible random solutions. To this end, we add in
a random matrix R, but only on blocks of SZT that are non-zero to keep sparsity. We define R as follows

(M5) Partition the support of x and [p] into disjoint sets

J := {supp(X·l) : l ∈ [q]}, K := {Kl : l ∈ [q]}, supp(Z·l) ⊂ Kl, l ∈ [q]

so that each set J ∈ J corresponds to the support of one component of x in the columns of S and
likewise for Z. We also need matching pairs [J,K] of blocks

J K := {[supp(X·l), supp(Z·l)] : l ∈ [q]},

originating form the same respective columns of S and Z.
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(M6) R ∈ Rn×p is block matrix

Rjk =
{

i.i.d random j, k ∈ [J,K] ∈ J K
0 else,

whose random entries satisfy

E [Rjk] = 0, E
[
R2
jk

]
= 1, ∥Rjk∥ψ2 ≤ Cψ

for some constant Cψ and are absolutely continuous with respect to the Lebesgue measure.

Finally, we need a scaling matrix that will be determined below.

(M7) D ∈ Rn×n is a diagonal scaling matrix to be determined below.

Then, we define the following class matrix

(M8)
X := SZT +DR(I − ZZT ), (22)

which is random on the kernel of ZT and matches the previously constructed SZT on the orthogonal
complement.

The following lemma summarises several elementary properties of the matrices and vectors in (M1) - (M8)
that are used in the proofs below. In particular, they satisfy x = Xz for z = Z1.
Lemma A.5. For the construction (M1) - (M8) we have:

1. ZTZ = I.

2. ZZT is an orthogonal projector.

3. Let supp(Z·l) ⊂ K ∈ K for some column l. Then

(ZZT )KL =
{
ZKlZ

T
Kl if K = L

0 else.

4. (ZZT )KL = 0 for all K ̸= L ∈ K.

5. (ZZT )KK is an orthogonal projector for all K ∈ K.

6. For all u ∈ Rp we have ∑
K∈K

∥∥(ZZT )KKuK
∥∥2 =

∥∥ZTu∥∥2
.

7. For all u ∈ Rp we have ∑
K∈K

∥∥(I − ZZT )K·u
∥∥2 ≤ ∥u∥2

.

8. For z = Z1, we have ZZT z = z.

9. For x = S1 and z = Z1, we have SZT z = x.

10. For x = S1 and z = Z1, we have Xz = x.

Proof. 1. Since Z is normalized and Z ∈ Sp×q, all columns are orthonormal.

2. ZZT is symmetric and with Item 1 we have (ZZT )(ZZT ) = Z(ZTZ)ZT = ZZT .
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3. We have (ZZT )KL =
∑q
l=1(Z·lZ

T
·l )KL =

∑q
l=1 ZKlZ

T
Ll, which reduces to the formula in the lemma

because K ̸= L are disjoint and suppZ·l ⊂ K.

4. Follows directly from Item 3.

5. Follows directly from Item 3 because the vectors ZKl is normalized.

6. For every K ∈ K, let l ∈ [q] be the corresponding index with supp(Z·l) ⊂ K. Then, we have

∑
K∈K

∥∥(ZZT )KKuK
∥∥2 =

q∑
K,l=1

∥∥ZKlZTKluK∥∥2

=
q∑

K,l=1
(ZTKluK)2 =

q∑
l=1

(ZT·l u)2 =
∥∥ZTu∥∥2

,

where in the first equality we have used Item 3, in the second that all ZKl are normalized and in
the third that supp(ZKl) ⊂ K.

7. From Item 3, we have

(I − ZZT )K·u = uK −
∑
L∈K

(ZZT )KLuL = uK − (ZZT )KKuK .

Since by Item 5 the matrix (I − ZZT )KK is a projector, it follows that

∑
K∈K

∥∥(I − ZZT )K·u
∥∥2 =

∑
K∈K

∥∥(I − ZZT )KKuK
∥∥2

≤
∑
K∈K

∥∥(I − ZZT )KK
∥∥2 ∥uK∥2 ≤ ∥u∥2

.

8. With Item 1 we have ZZT z = ZZTZ1 = Z1 = z.

9. With Item 1 we have SZT z = SZTZ1 = S1 = x.

10. Follows directly from the previous items.

A.5.2 Expectation and Concentration

For the proof of RIP and null space properties, we need expectation and concentration results for ∥AXu∥
for an arbitrary u.
Lemma A.6. Let u ∈ Rp, A ∈ Rm×n and X be the matrix defined in (22). Then

E
[
∥AXu∥2] =

∥∥ASZTu∥∥2 +
∑

[J,K]∈J K

∥AD·J∥2
F

[
∥uK∥2 −

∥∥(ZZT )KKuK
∥∥2]

.

Proof. Since R is zero outside of the blocks RJK for [J,K] ∈ J K, we have

Xu = [SZT +DR(I − ZZT )]u = SZTu+
∑

[J,K]∈J K

D·JRJK(I − ZZT )K·u
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and thus

E
[
∥AXu∥2] = E


∥∥∥∥∥∥SZTu+

∑
[J,K]∈J K

D·JRJK(I − ZZT )K·u

∥∥∥∥∥∥
2


=
∥∥ASZTu∥∥2 +

∑
[J,K]∈J K

∥∥AD·JRJK(I − ZZT )K·u
∥∥2

=
∥∥ASZTu∥∥2 +

∑
[J,K]∈J K

∥AD·J∥2
F

∥∥(I − ZZT )K·u
∥∥2
,

where in the second line we have used that all blocks RKJ are independent and in the third we have used
Lemma B.1. We simplify the last term

∥∥(I − ZZT )K·u
∥∥2 =

∥∥∥∥∥uK −
∑
L∈K

(ZZT )KLuL

∥∥∥∥∥
2

=
∥∥uK − (ZZT )KKuK

∥∥2

= ∥uK∥2 −
∥∥(ZZT )KKuK

∥∥2
,

where the second and third lines follow from Items 4 and 5 in Lemma A.5, respectively. Hence, we obtain

E
[
∥AXu∥2] =

∥∥ASZTu∥∥2 +
∑

[K,J]∈J K

∥AD·K∥2
F

[
∥uK∥2 −

∥∥(ZZT )KKuK
∥∥2]

.

If AS has orthonormal columns, we can simplify the expectation. Since this is generally not true, we rename
A → M , which will be a preconditioned variant of A later.
Lemma A.7. Let u ∈ Rp and M ∈ Rm×n. With X, S and D defined in (22), assume that MS has
orthonormal columns and the diagonal scaling is chosen as Dj = ∥M·J∥−1

F for all j in block J ∈ J . Then

E
[
∥MXu∥2

]
= ∥u∥2

.

Proof. The result follows from Lemma A.6 after simplifying several terms. First, since MS has orthonormal
columns, we have (MS)T (MS) = I and thus∥∥MSZTu

∥∥2 = uTZ(MS)T (MS)ZTu = uTZZTu =
∥∥ZTu∥∥2

.

Second, for arbitrary j ∈ J , by definition of the scaling D, we have

∥MD·J∥2
F = ∥M·J∥2

F |Dj |2 = ∥M·J∥2
F ∥M·J∥−2

F = 1.

Finally, form Lemma A.5 Item 6, we have∑
K∈K

∥∥(ZZT )KKuK
∥∥2 =

∥∥ZTu∥∥2
.

Plugging into Lemma A.6, we obtain

E
[
∥MXu∥2

]
=
∥∥MSZTu

∥∥2 +
∑

[J,K]∈J K

∥MD·J∥2
F

[
∥uK∥2 −

∥∥(ZZT )KKuK
∥∥2]

.

=
∥∥ZTu∥∥2 +

 ∑
[J,K]∈J K

∥uK∥2

−
∥∥ZTu∥∥2

= ∥u∥2
.
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Next, we prove concentration inequalities for the random matrix X.
Lemma A.8. Let u ∈ Rp and M ∈ Rm×n. With X, S and D defined in (22), assume that MS has
orthonormal columns and the diagonal scaling is chosen as Dj = ∥M·J∥−1

F for all j in block J ∈ J . Then∥∥∥∥MXu∥2 − ∥u∥
∥∥∥
ψ2

≤ CC2
ψ max
J∈J

∥M·J∥
∥M·J∥F

∥u∥ .

Proof. The result follows from Lemma B.4 after we have vectorized R. To this end, let vec(·) be the
vectorization, which identifies a matrix Ra×b with a vector in (Ra) ⊗ (Rb)′ for any dimensions a, b. Then,
since for all matrices ABu = (A⊗ uT ) vec(B), we have

MD·JRJK(I − (ZZT )K·u =
[
MD·J ⊗ uT (I − (ZZT )TK·

]
vec (RJK)

so that

MXu = [MSZT +MDR(I − ZZT )]u

= MSZTu+
∑

[J,K]∈J K

MD·JRJK(I − ZZT )K·u

= MSZTu+
∑

[J,K]∈J K

[
MD·J ⊗ uT (I − ZZT )TK·

]
vec (RJK)

=: B + AR,

with the block matrix and vectors

A :=
[
MD·J ⊗ uT (I − ZZT )TK·

]
[J,K]∈J K

R := [vec (RJK)][J,K]∈J K

B := MSZTu.

Using Lemma B.2 in the fist equality and Lemma A.7 in the last, we have

∥A∥2
F + ∥B∥2 = E

[
∥AR + B∥2

]
= E

[
∥MXu∥2

]
= ∥u∥2.

Furthermore, we have

∥A∥ ≤

 ∑
[J,K]∈J K

∥∥MD·J ⊗ uT (I − ZZT )TK·
∥∥2

1/2

=

 ∑
[J,K]∈J K

∥MD·J∥2 ∥∥(I − ZZT )K·u
∥∥2

1/2

= max
J∈J

∥MD·J∥

(∑
K∈K

∥∥(I − ZZT )K·u
∥∥2
)1/2

≤ max
J∈J

∥MD·J∥ ∥u∥ ,

where in the last inequality we have used Lemma A.5, Item 7. Thus, with Lemma B.4, we have

∥∥MXu∥ − ∥u∥∥ψ2
=
∥∥∥∥∥AR + B∥ −

(
∥A∥2

F + ∥B∥2
)1/2

∥∥∥∥
ψ2

≤ CC2
ψ ∥A∥ ≤ CC2

ψ max
J∈J

∥MD·J∥ ∥u∥ .
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We can further estimate the right hand side with the definition of diagonal scaling D

∥MD·J∥ = ∥M·JDJJ∥ = ∥M·J∥
∥M·J∥F

,

which completes the proof.

A.5.3 RIP of MX

We do not show the RIP for AX directly, but for a preconditioned variant. Since we determine the pre-
conditioner later, we first state results for a generic matrix MX. With the expectation and concentration
inequalities from the previous section, the proof of the RIP is standard, see e.g. Baraniuk et al. (2008);
Foucart & Rauhut (2013); Kasiviswanathan & Rudelson (2019). We first show a technical lemma.
Lemma A.9. Let A ∈ Rm×n and assume that there is a ϵ

4 cover N ⊂ Sn−1 of the unit sphere Sn−1 with

|∥Axi∥ − 1| ≤ ϵ

2 for all xi ∈ N .

Then
(1 − ϵ) ∥x∥ ≤ ∥Ax∥ ≤ (1 + ϵ) ∥x∥ for all x ∈ Rn.

Proof. Let x ∈ Sn−1 be the maximizer of the norm so that ∥Ax∥ = ∥A∥. Then, there is a element xi ∈ N
in the cover with ∥x− xi∥ ≤ ϵ

4 and we obtain the upper bound

∥A∥ = ∥Ax∥ ≤ ∥Axi∥ + ∥A(x− xi)∥ ≤ ∥Axi∥ + ∥A∥ ϵ4
⇒
(

1 − ϵ

4

)
∥A∥ ≤ ∥Axi∥

⇒ ∥A∥ ≤ 1 + ϵ/2
1 − ϵ/4 ≤ 1 + ϵ.

With the upper bound and the given assumptions, for arbitrary x ∈ Sn−1, we estimate the lower bound by

∥Ax∥ ≥ ∥Axi∥ − ∥A(x− xi)∥ ≥ ∥Axi∥ − (1 + ϵ) ∥x− xi∥

≥
(

1 − ϵ

2

)
− (1 + ϵ) ϵ4 = 1 − ϵ

2 − ϵ

4 − ϵ2

4 ≥ 1 − ϵ.

The bounds extend from the sphere to all x ∈ Rn by scaling.

For the following RIP result, we add in an isometry W ∈ Rp×p′ , with ∥W ·∥ = ∥·∥, which allows us to
construct tree nodes Xi from its children by (10) below.
Lemma A.10. Let W ∈ Rp×p′ be an isometry and for M ∈ Rm×n, with X, S and D defined in (22), assume
that MS has orthonormal columns and the diagonal scaling is chosen as Dj = ∥M·J∥−1

F for all j in block
J ∈ J . If minJ∈J

∥M·J∥2
F

∥M·J∥2 ≥ 2tC4
ψ

cϵ2 log 12ep
tϵ , then with probability at least 1 − 2 exp

(
− c

2
ϵ2

C4
ψ

minJ∈J
∥M·J∥2

F

∥M·J∥2

)
the matrix MXW satisfies the RIP

(1 − ϵ) ∥z∥ ≤ ∥MXWz∥ ≤ (1 + ϵ) ∥z∥ for all z with ∥z∥0 ≤ t.

Proof. Fix a support T ⊂ [p′] with |T | = t and let ΣT ⊂ Rp′ be the subspace of all vectors supported on T .
By standard volumetric estimates Baraniuk et al. (2008); Vershynin (2018) there is a ϵ

4 cover N of the unit
sphere in ΣT of cardinality

|N | ≤
(

12
ϵ

)t
.
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Since ∥Wzi∥ = ∥zi∥, zi ∈ N , by Lemma A.8 and a union bound, we obtain

Pr [∃zi ∈ N : |∥MXWzi∥ − 1| ≥ ϵ] ≤ 2
(

12
ϵ

)t
exp

(
−c ϵ

2

C4
ψ

min
J∈J

∥M·J∥2
F

∥M·J∥2

)
.

Let us assume that the event fails and thus |∥MXWzi∥ − 1| ≤ τ for all zi ∈ N . Then, by Lemma A.9, we
have

(1 − ϵ) ∥z∥ ≤ ∥MXWz∥ ≤ (1 + ϵ) ∥z∥ for all z ∈ ΣT .

There are
(
p
t

)
≤
(
ep
t

)t supports T of size t and thus, by a union bound we obtain

(1 − ϵ) ∥z∥ ≤ ∥MXWz∥ ≤ (1 + ϵ) ∥z∥ for all z with ∥z∥0 ≤ t

with probability of failure bounded by

2
(ep
t

)t(12
ϵ

)t
exp

(
−c ϵ

2

C4
ψ

min
J∈J

∥M·J∥2
F

∥M·J∥2

)

= 2 exp
(

−c ϵ
2

C4
ψ

min
J∈J

∥M·J∥2
F

∥M·J∥2 + t log 12ep
tϵ

)

≤ 2 exp
(

− c

2
ϵ2

C4
ψ

min
J∈J

∥M·J∥2
F

∥M·J∥2

)

if
t log 12ep

tϵ
≤ c

2
ϵ2

C4
ψ

min
J∈J

∥M·J∥2
F

∥M·J∥2 ⇔ min
J∈J

∥M·J∥2
F

∥M·J∥2 ≥
2tC4

ψ

cϵ2
log 12ep

tϵ
.

A.5.4 Null Space Property of AX

The matrix MS in the RIP results must have orthonormal columns, which is not generally true for M = A.
However, this is true with a suitable preconditioner that we construct next. The null space property is
invariant under preconditioning, which allows us to eliminate it, later.
Lemma A.11. Let M ∈ Rm×q with m ≥ q have full column rank. Then there is a matrix T ∈ Rm×m with
condition number κ(T ) = κ(M) such that TM has orthonormal columns.

Proof. Let M = UΣV T be the singular value decomposition of M . Define

T := DUT , D−1 := diag[σ1, . . . , σq, σ, . . . , σ]

for q ≤ m singular values σi and remaining m− q values σ in the interval [σ1, . . . , σq]. Then, we have

MTTTTM = (V ΣTUT )(UDT )(DUT )(UΣV T ) = V ΣTDTDΣV T = V V T = I,

where we have used that ΣTDTDΣ = I. By construction, T has singular values σ1, . . . , σq and one extra
value σ bounded by the former so that

κ(T ) = σ1

σq
= κ(M).

Lemma A.12. Let A ∈ Rm×n and T ∈ Rm×m be invertible. Then

∥A∥F
∥A∥

≤ κ(T )∥TA∥F
∥TA∥

.
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Proof. We first show that
∥TA∥F ≥

∥∥T−1∥∥−1 ∥A∥F .

Indeed ∥x∥ ≤
∥∥T−1

∥∥ ∥Tx∥ implies ∥Tx∥ ≥
∥∥T−1

∥∥−1 ∥x∥ and thus applied to the columns aj of A, we have

∥TA∥2
F =

n∑
j=1

∥Taj∥2 ≥
n∑
j=1

∥∥T−1∥∥−2 ∥aj∥2 =
∥∥T−1∥∥−2 ∥A∥2

F .

With this estimate, we obtain

κ(T )∥TA∥F
∥TA∥

≥ ∥T∥
∥∥T−1∥∥ ∥∥T−1

∥∥−1 ∥A∥F
∥T∥ ∥A∥

= ∥A∥F
∥A∥

.

Corollary A.13. Let W ∈ Rp×p′ be an isometry and for X, S and D defined in (22), assume that AS
has full column rank and minJ∈J

∥A·J∥2
F

∥A∥2
·J

≥ 2tC4
ψ

cϵ2 κ(AS) log 12ep
tϵ . Then there is an invertible matrix T ∈

Rm×m so that with the diagonal scaling Dj = ∥TA·J∥−1
F for all j in block J ∈ J with probability at least

1 − 2 exp
(

− c
2
ϵ2

C4
ψ

1
κ(AS) minJ∈J

∥A·J∥2
F

∥A·J∥2

)
the matrix TAXW satisfies the RIP

(1 − ϵ) ∥z∥ ≤ ∥TAXWz∥ ≤ (1 + ϵ) ∥z∥ for all z with ∥z∥0 ≤ t.

Proof. Since the matrix AS has full column rank by Lemmas A.11 and A.12, there is an invertible matrix T
such that

κ(T ) = κ(AS), TAS has orthogonal columns
∥A·J∥F
∥A·J∥

≤ κ(T )∥TA·J∥F
∥TA·J∥

for all J ∈ J .

Thus, the corollary follows from Lemma A.10 with M = TA.

The last corollary allows us to recover x = S1 by ℓ1-minimization

min
x∈Rn

∥x∥1 subject to TAx = b,

preconditioned by some matrix T . This problem is not yet solvable by the student, who generally has no
access to the matrix T , which is only used by the teacher for the construction of X. However, the matrix T is
unnecessary for ℓ1 recovery because the RIP implies the null space property, which is sufficient for recovery
and independent of left preconditioning.
Corollary A.14. Let W ∈ Rp×p′ be an isometry and for X, S and D defined in (22), assume that AS
has full column rank and minJ∈J

∥A·J∥2
F

∥A·J∥2 ≥ 2tC4
ψ

cϵ2 κ(AS) log 12ep
tϵ . Then there is an invertible matrix T ∈

Rm×m so that with the diagonal scaling Dj = ∥TA·J∥−1
F for all j in block J ∈ J with probability at least

1 − 2 exp
(

− c
2
ϵ2

C4
ψ

1
κ(AS) minJ∈J

∥A·J∥2
F

∥A·J∥2

)
the matrix AXW satisfies the null space property of order t

∥zT ∥1 < ∥zT̄ ∥1 for all z ∈ ker(AXW ) and T ⊂ [p], |T | ≤ t.

with complement T̄ of T .
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Proof. Setting ϵ = 1
3 , changing t → 2t and adjusting the constants accordingly, with the given conditions

and probabilities, the matrix TAX satisfies the
(
2t, 1

3
)
-RIP. Thus, by Foucart & Rauhut (2013), proof of

Theorem 6.9, TAX satisfies

∥zT ∥1 <
1
2 ∥z∥1 for all z ∈ ker(TAX) and T ⊂ [p], |T | ≤ t.

This directly implies the null space property of order t

∥zT ∥1 < ∥zT̄ ∥1 for all z ∈ ker(TAX) and T ⊂ [p], |T | ≤ t.

Since T is invertible, ker(TAX) = ker(AX), so that also AX satisfies the null space property.

Remark A.15. For Corollaries A.13 and A.14, we are particularly interested in applications where x = S1
is the global ℓ0-minimizer of Ax = b in 12. Then the full column rank condition of AS is automatically
satisfied by Lemma A.3.

A.6 Model Tree: Proposition 4.2

Proposition A.16 (Proposition 4.2 restated). Let A ∈ Rm×n and split x ∈ Rn into q = 2L, L ≥ 1
components S given by (13). If

1. AS has full column rank.

2. On each tree node, we have implementations of Scale.

3. SolveL satisfies Assumption (A2) on the leave nodes.

4.

t ≳ log p2 + log3 p, 1 ≲ t ≲ √
p (23)

5.

min
J∈J

∥A·J∥2
F

∥A·J∥2 ≳ tκ(AS)L+ tκ(AS) log cqp
t

(24)

for some generic constant c, with probability at least

1 − 2 exp
(

−c 1
κ(AS) min

J∈J

∥A·J∥2
F

∥A·J∥2

)

there is a learnable binary tree of problem classes Ci, i ∈ I of depth L, given by matrices Xi and sparsity t
so that

1. The root class C0 contains x.

2. The parents are constructed from the children Xi = Xchild(i)Wchild(i), where Wchild(i) has t/t̄ = 2
sparse columns.

3. The columns of the leave nodes’ Xi are |J | sparse.

4. Each class’ matrix Xi contains p columns, consisting of columns of S, i.e. pieces of x, in the leaves
and sums thereof in the interior nodes. All other entries are random (dependent between classes) or
zero.
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Proof. We build a matrix X according to (M1) - (M8) and use the extra matrix W in Corollary A.14 to
build a tree out of it. In the following, we denote by p̄ the number of columns in X and by p the number
of columns in the class matrices Xi that we are going to construct. By assumption, the support of x is
partitioned into patches {J1, . . . , Jq} = J for which we define a corresponding partition K = {K1, . . . ,Kq}
of [p̄] with all Ki of equal size and Z by

Zkl :=
{

1 k = kl
0 else

for some choices kl ∈ Kl. The index sets J and K are naturally combined by their indices to obtain the
pairs J K. With these choices, the matrix X is given by (M1) - (M8).

X is non-zero only on blocks [J,K] ∈ J K, which allows us to build a tree, whose nodes we index by i in a
suitable index set I with leave nodes i ∈ [q]. Each node i is associated with a subset Ki ⊂ [q] that is a union
of two children Ki =

⋃
j∈child(i) Kj , starting with leave nodes Ki ∈ K, i ∈ [q], e.g.

{1, 2, 3, 4}

{1, 2}

{1} {2}

{3, 4}

{3} {4}

We now define matrices Xi on each node, starting with the leaves

Xi := X·Ki

for leave i and then inductively by joining the two child matrices

Xi :=
[
Xj1 Xj2

]
W̄i, W̄i = 1√

2

[
IKj1 ,Kj1
IKj2 ,Kj2

]
for child(i) = {j1, j2}. It is easy to join all W̄i matrices leading up to node i into a single isometry Wi so
that

Xi =
[
X1 · · · Xq

]
Wi.

which implies

Xchild(i) =
[
Xj1 Xj2

]
=
[
X1 · · · Xq

]
Wchild(i), Wchild(i) =

[
Wj1 Wj2

]
,

where again Wchild(i) is an isometry because the columns of Wj1 and Wj2 have non-overlapping support. By
Lemma 3.8 the tree has at most 2L+1 nodes and thus, if

min
J∈J

∥A·J∥2
F

∥A·J∥2 ≥
2tC4

ψ

cϵ2
κ(AS) log 12ep̄

tϵ
(25)

by Corollary A.14 and union bound over all tree nodes, with probability at least

1 − 42L exp
(

− c

2
ϵ2

C4
ψ

1
κ(AS) min

J∈J

∥A·J∥2
F

∥A·J∥2

)
all nodes Xchild(i) satisfy the t-NSP. For this probability to be close to one, log 2L must be smaller than say
half the exponent

L ≳ log 2L ≤ − c

4
ϵ2

C4
ψ

1
κ(AS) min

J∈J

∥A·J∥2
F

∥A·J∥2 ⇔ min
J∈J

∥A·J∥2
F

∥A·J∥2 ≳
tC4

ψ

ϵ2
κ(AS) log s.
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Combining this with the NSP condition (25), if

min
J∈J

∥A·J∥2
F

∥A·J∥2 ≳
tC4

ψ

ϵ2
κ(AS)L+

tC4
ψ

ϵ2
κ(AS) log 12ep̄

tϵ
,

with probability at least

1 − 2 exp
(

− c

2
ϵ2

C4
ψ

1
κ(AS) min

J∈J

∥A·J∥2
F

∥A·J∥2

)
all nodes Xchild(i) satisfy the t-NSP. This yields the statements in the proposition if we choose ϵ ∼ 1 and
Cψ ∼ 1, without loss of generality.

Let us verify the remaining properties of learnable trees. By construction, we have t/t̄ = 2 and γ = 2 and
p̄ = qp. Since all random samples in X are absolutely continuous with respect to the Lebesgue measure, the
probability of rank deficit Xi is zero. The remaining assumptions are given, with the exception of the first
two inequalities in (A1). Renaming the number of training samples q, whose name is already used otherwise
here, to r, they state that t ≥ c log r and r > cp2 log2 p and thus imply that t ≥ log p2 + log3 p, which is
sufficient since the number of training samples r is at the disposal of the teacher.

B Technical Supplements

Lemma B.1. Let R ∈ Rn×p be a i.i.d. random matrix with mean zero entries of variance one. Then for
any A ∈ Rm×n and u ∈ Rp we have

E
[
∥ARu∥2] = ∥A∥2

F ∥u∥2.

Proof. Since E [RikRjl] = δijδkl, we have

E
[
∥ARu∥2] = E [⟨ARu,ARu⟩]

= E

∑
ijkl

ukRik(ATA)ijRjlul


=
∑
ijkl

(ATA)ijukulE [RikRjl]

=
∑
ik

(ATA)iiukuk

= ∥A∥2
F ∥u∥2.

Lemma B.2. Let A ∈ Rm×n be a matrix, b ∈ Rm be a vector and x ∈ Rn a i.i.d. random vector with
E [xj ] = 0, E

[
x2
j

]
= 1. Then

E
[
∥Ax+ b∥2

]
= ∥A∥2

F + ∥b∥2
.

Proof. Since b is not random, we have

E
[
∥Ax+ b∥2

]
= E

[
∥Ax∥2

]
+ ∥b∥2 = ∥A∥2

F + ∥b∥2
,

where in the last equality we have used Lemma B.1 with Rn×1 matrix R = x and u = [1] ∈ R1.

The following result is a slight variation of Vershynin (2018), Theorem 6.3.2.
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Lemma B.3. Let A ∈ Rm×n be a matrix, b ∈ Rm be a vector and x ∈ Rn a i.i.d. random vector with
E [xj ] = 0, E

[
x2
j

]
= 1 and ∥x∥ψ2

≤ Cψ. Then

Pr
[∣∣∣∥Ax+ b∥2 − ∥A∥2

F − ∥b∥2
∣∣∣ ≥ ϵ

(
∥A∥2

F + ∥b∥2
)]

≤ 8 exp
[

−cmin(ϵ2, ϵ)∥A∥2
F + ∥b∥2

C4
ψ∥A∥2

]
.

Proof. We decompose
∥Ax+ b∥2 − ∥A∥2

F − ∥b∥2 = ∥Ax∥2 + 2 ⟨Ax, b⟩ + ∥b∥2 − ∥A∥2
F − ∥b∥2

=
(

∥Ax∥2 − ∥A∥2
F

)
+ 2 ⟨Ax, b⟩

so that

Pr
[
±
(

∥Ax+ b∥2 − ∥A∥2
F − ∥b∥2

)
≥ ϵ

(
∥A∥2

F + ∥b∥2
)]

≤ Pr
[
±
(

∥Ax∥2 − ∥A∥2
F

)
± 2 ⟨Ax, b⟩ ≥ ϵ

(
∥A∥2

F + ∥b∥2
)]

≤ Pr
[
±
(

∥Ax∥2 − ∥A∥2
F

)
≥ ϵ ∥A∥2

F

]
+ Pr

[
±2 ⟨Ax, b⟩ ≥ ϵ ∥b∥2

]
.

It remains to estimate the two probabilities on the right hand side. Since E
[
x2
j

]
= 1, we have Cψ ≳ 1 and

thus from the proof of Theorem 6.3.2 in Vershynin (2018), we have

Pr
[
±
(
∥Ax∥2 − ∥A∥2

F

)
≥ ϵ∥A∥2

F

]
≤ 2 exp

[
−cmin(ϵ2, ϵ) ∥A∥2

F

C4
ψ∥A∥2

]
and from Hoeffding’s inequality, we have

Pr
[
±2 ⟨Ax, b⟩ ≥ ϵ∥b∥2] ≤ 2 exp

[
−cϵ2 ∥b∥4

C2
ψ∥AT b∥2

]
≤ 2 exp

[
−cϵ2 ∥b∥2

C4
ψ∥AT ∥2

]
.

The following result is a slight variation of Vershynin (2018), Theorem 6.3.2.
Lemma B.4. Let A ∈ Rm×n be a matrix, b ∈ Rm be a vector and x ∈ Rn a i.i.d. random vector with
E [xj ] = 0, E

[
x2
j

]
= 1 and ∥x∥ψ2

≤ Cψ. Then∥∥∥∥∥Ax+ b∥ −
(

∥A∥2
F + ∥b∥2

)1/2
∥∥∥∥
ψ2

≤ CC2
ψ ∥A∥

for some constant C ≥ 0.

Proof. We use a standard argument, e.g. from the proof of Theorem 6.3.2 in Vershynin (2018). An elementary
computation shows that for δ2 = min(ϵ2, ϵ) and any a, b ∈ R, we have

|a− b| ≥ δb, ⇒ |a2 − b2| ≥ ϵb2.

With a = ∥Ax+ b∥ and b =
(

∥A∥2
F + ∥b∥2

)1/2
and Lemma B.3, this implies

Pr
[∣∣∣∣∥Ax+ b∥ −

(
∥A∥2

F − ∥b∥2
)1/2

∣∣∣∣ ≥ δ
(

∥A∥2
F + ∥b∥2

)1/2
]

≤ 8 exp
[

−cδ2 ∥A∥2
F + ∥b∥2

C4
ψ∥A∥2

]
.

This shows Subgaussian concentration and thus the ψ2-norm of the lemma.
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C Implementation Details

Details for the implementation in Section 5.4:

1. The teacher provides a left preconditioned matrix TA in every tree node. This allows RIP instead of
weaker NSP conditions, as in Corollary A.13 versus Corollary A.14. For Curriculum II T is uniform
for all tree nodes, for Curriculum III, it is computed individually for each node.

2. Unlike (18) in the split X := SZT +DR(I −ZZT ) between deterministic and random part, we use
no balancing D in the experiments.

3. As a result, all tree node Xi have entries in {−1, 0, 1} so that we implement Scale by snapping to
these discrete values.
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