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Abstract

Out-of-distribution (OOD) generalization is chal-
lenging because distribution shifts come in many
forms. Numerous algorithms exist to address spe-
cific settings, but choosing the right training algo-
rithm for the right dataset without trial and error
is difficult. Indeed, real-world applications often
involve multiple types and combinations of shifts
that are hard to analyze theoretically.

Method. This work explores the possibility of
learning the selection of a training algorithm for
OOD generalization. We propose a proof of con-
cept (OOD-Chameleon) that formulates the selec-
tion as a multi-label classification over candidate
algorithms, trained on a dataset of datasets repre-
senting a variety of shifts. We evaluate the ability
of OOD-Chameleon to rank algorithms on unseen
shifts and datasets based only on dataset charac-
teristics, i.e. without training models first, unlike
traditional model selection.

Findings. Extensive experiments show that the
learned selector identifies high-performing algo-
rithms across synthetic, vision, and language
tasks. Further inspection shows that it learns
non-trivial decision rules, which provide new
insights into the applicability of existing algo-
rithms. Overall, this new approach opens the
possibility of better exploiting and understanding
the plethora of existing algorithms for OOD gen-
eralization. Code: https://github.com/
LiangzeJdiang/0O0D-Chameleon

1. Introduction

Out-of-distribution (OOD) generalization refers to a model’s
ability to remain accurate when the distributions of training
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Figure I. Choosing the right training algorithm is an often-
overlooked key factor in OOD generalization. (a) Different
training algorithms perform differently on different distribution
shifts. (b) We propose to automate the selection of a learning
algorithm. We train a selector (OOD-Chameleon) on a “dataset
of datasets” that exemplifies a variety of shifts. (¢) For a novel
task/dataset, the learned selector predicts the best algorithm to
train a robust model.

and test data differ. “OOD” is a catch-all term that encom-
passes many types of distribution shifts (Wiles et al., 2021;
Ye et al., 2022; Nagarajan et al., 2020). In medical imaging
for example (Oakden-Rayner et al., 2020), a model may
process scans from various demographics (covariate shift),
pathologies (label shift), and co-occurrences of patient at-
tributes (spurious correlations). In many applications, these
shifts are combined, making a theoretical analysis challeng-
ing (Wiles et al., 2021; Yang et al., 2023; Jeon et al., 2025).

The trade-offs of learning algorithms. There exists a
multitude of algorithms' designed to improve OOD gen-
eralization, from standard ERM (Vapnik, 2000) to simple
interventions such as Resampling (Japkowicz & Stephen,

'In this work, “algorithm” refers to a method, or particular element
thereof that takes the training data and produces a trained model.
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2002), GroupDRO (Sagawa et al., 2019), and much more
complex ones (Liu et al., 2023a). However, each algorithm
usually targets specific distribution shift settings (Figure 1a).
Indeed, numerous studies by Gulrajani & Lopez-Paz (2020)
and others (Wiles et al., 2021; Nguyen et al., 2021; Ye et al.,
2022; Liang & Zou, 2022; Benoit et al., 2023; Yang et al.,
2023) showed that no single intervention surpasses ERM
across a range of datasets. The reason is that OOD gener-
alization is fundamentally underspecified (D’ Amour et al.,
2022; Teney et al., 2022) and different methods make differ-
ent assumptions that can each shine in different conditions.
This means that choosing the right learning algorithm for
a given situation is important to improve OOD general-
ization. This possibility has thus been tantalizing:

“It would be helpful for practitioners to be able to
select the best algorithms without comprehensive
evaluations and comparisons.” (Wiles et al., 2021)

However, identifying the right algorithm without trial and
error is challenging due to the intricate interplay between
the algorithms’ inductive biases and the complex types of
shifts in real-world data. Moreover, the trial-and-error might
be impossible because of the lack of OOD evaluation data.

This paper proposes to learn to predict, given a dataset,
the best learning algorithm for training a robust model.
This a priori prediction contrasts with traditional model
selection that first requires training many models or relies
on restrictive heuristics (e.g. accuracy/agreement on the line
or activation coverage, see Garg et al. (2022); Baek et al.
(2022); Miller et al. (2021); Teney et al. (2023); Liu et al.
(2023b)). Concurrent work by Bell et al. (2024) selects
algorithms for spurious correlations only, based on past per-
formance on benchmarks most similar to the new task. We
similarly rely on past performance, but (i) we do not require
any training run for the new tasks, (ii) we address more
types of shifts and (iii) we use non-linear learnable predic-
tors instead of non-parametric nearest-neighbor retrieval.

OOD-Chameleon. We frame the algorithm selection as
a multi-label classification over a set of representative al-
gorithms.? We train our model to predict the algorithms’
suitability given some dataset descriptor (Figure 1b), such as
dataset size, degrees of shifts, etc. As training examples, we
build a dataset of datasets representing diverse types, mag-
nitudes, and combinations of shifts, by re-sampling existing
datasets with fine-grained annotations, such as CelebA (Liu
et al., 2015) or CivilComments (Borkan et al., 2019)). The

2We consider algorithms with proven efficacy on different types
of shifts that are actually used in ML deployments, and not only
in one-off academic papers (see discussion in Section 4): ERM,
GroupDRO, Oversample, Undersample, and Logits adjustment.

model thus learns to exploit the algorithms’ performance in
a variety of conditions. It can then recommend an appropri-
ate algorithm for any new task (Figure 1c).

Results. We evaluate the model on seven applications in
synthetic (Sagawa et al., 2020) , vision (CelebA, MetaShift,
OfficeHome, etc.) and language domains (CivilComments,
MultiNLI). The model is capable of selecting suitable algo-
rithms for unseen shifts and datasets, achieving significantly
lower test error than any static choice of algorithm. We
verify that it achieves this by learning non-trivial, non-linear
relations between dataset characteristics and algorithms’
performance. Crucially, we examine the learned model to
extract its decision rules, which reveal which dataset charac-
teristics are important for various algorithms to outperform
one another.

Contributions. Our findings support a positive answer to
the title: OOD generalization can be improved by learning
to better use existing algorithms. This helps in dealing with
complex types of shifts that are difficult to study theoreti-
cally, and provides insights on the applicability of existing
algorithms. Our contributions are summarized as follows.

* We are the first to identify and formalize the problem of
algorithm selection for OOD generalization (§2).

* We present a solution (OOD-Chameleon) that takes in
dataset characteristics and predicts the suitability of can-
didate algorithms to train a robust model (§2.2).

* We show with extensive experiments that OOD-
Chameleon (i) adaptively chooses suitable algorithms
(§4), (ii) learns non-trivial data/algorithm interactions
(§4.5) that transfer to unseen shifts and datasets (§4.3—
4.4), (iii) reveals which dataset properties make algo-
rithms outperform one another (§4.5).

¢ We release a tool for future research (§3) to construct
datasets with controlled and potentially mixed shift
types, and magnitudes, including spurious correlations,
label shifts and covariate shifts.

2. OOD-Chameleon: Algorithm Selection for
OOD Generalization

2.1. Is the Selection of the Best Algorithm Possible?

The no-free-lunch theorem (Wolpert & Macready, 1997)
prevents a universal solution to the selection of the best
learning algorithm. But distribution shifts appearing in real-
world data are not arbitlrary3 (Wiles et al., 2021; Goldblum
et al., 2024). A learning approach could thus be trained
for effective algorithm selection on a particular distribution

31f shifts were arbitrary, inductive reasoning and machine learning
would not be possible (Wolpert, 1996).
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of distribution shifts. Moreover, measurable properties of
a dataset can be indicative of an imbalance/shift, and thus
of the suitability of algorithms. We therefore propose to
train a selector that takes dataset characteristics as input (e.g.
dataset size, degree of distribution shifts), and predicts the
suitability of various candidate algorithms.

Conjecture 1 (Learnability). There exists a learnable
mapping from measurable dataset characteristics (e.g., size,
feature imbalance, shift indicators) to algorithm suitability,
such that a selector trained on a sufficiently diverse and
densely sampled distribution of distribution shifts can gen-
eralize to unseen, but related, shifts within the support of
the training distribution.

This assumption is crucial since there is no guarantee (just
like any other learning method) for the selector to generalize
beyond the support of the training distribution of distribution
shifts. Yet, as we will present, our approach encompasses
a wide variety of shift types and magnitudes, which can be
densely sampled as training data for the selector.

Distribution shift taxonomy. We consider the common
distribution shift taxonomy based on three types (Yang et al.,
2023): covariate shifts (CS), label shifts (LS), and spuri-
ous correlations (SC). The first two correspond to changes
in P(X) and P(Y) where X and Y represent inputs and
class labels. To formalize spurious features, we view X
as containing core features X . always predictive of Y, and
possibly other features X, whose presence is also indicated
by an attribute A. A spurious correlation means that A and
X, are correlated with Y in the training data, even though
X, cannot be relied on to make correct predictions on test
data. This implies therefore a shift of P(Y|X).

To measure OOD performance, we use standard worst-
group (WG) error on test data, where groups G € Y x A
are class—attribute combinations (Sagawa et al., 2019). WG
performance is also what we will (indirectly) optimize for.
The rationale is that it is independent of the test distribution
and can thus be addressed by considering only the distribu-
tion (imbalances) of training data. WG performance thus
promotes general robustness to distribution shifts.

We focus primarily on the most common setting in OOD
generalization (Yong et al., 2022) where the training data
includes labels of a potentially spurious attribute A. We also
evaluate the use of pseudo attributes in Appendix F.

2.2. Algorithm Selection as a Supervised Learning Task

Our eventual goal is to train robust models on future (yet
unknown) tasks. A task is defined by the training and
test splits that make up a dataset D = D" U D'* =
{(zs,v:) by U{(2,y;)} . Training a model means run-
ning a learning algorithm A(-) to obtain a parametrized

model: A(D"™) = hy. The OOD performance of A is de-
fined as the WG error of hy on D*.

We propose OOD-Chameleon to automate the choice of
the best algorithm among M candidates for unseen tasks.
This is motivated by the many existing results showing that
different algorithms perform differently in different condi-
tions (see Section 1). OOD-Chameleon will learn to choose
among candidate algorithms based on their past performance
in a variety of conditions. To do so, we build a meta-dataset
D as the training data, which is a dataset of datasets rep-
resenting a variety of distribution shifts (Section 3). Each
jth dataset is associated with an algorithm .4,,, and its WG
performance Pj,, € [0,1] on the dataset. Formally, the
meta-dataset is defined as a collection of triplets:

D = {f(D;r)a A?m ij} (1)
where (DY) is a dataset descriptor (Rivolli et al., 2022).

Dataset descriptors. To make the learning tractable, we
need a function f : Supp(D¥) — R! that summarizes
various dataset properties in a fixed-length vector. Recent
work examined properties relevant to the performance of
learning algorithms (Nagarajan et al., 2020; Hermann et al.,
2023; Yang et al., 2024; Chen et al., 2022; Ye et al., 2022;
Wang et al., 2024) but most cannot be measured without first
training a model, defeating our purpose. Others (Arango
et al., 2023; Oxztiirk et al., 2022) used trivial properties (e.g.
number of classes) that are clearly insufficient in our case.

We consider two sets of properties for our dataset descrip-
tors: (i) distribution shift characteristics and (ii) data
complexity characteristics. The former set includes the
shift magnitudes defined in Section 2.1 (ds, dis, dcs) and
the availability of the spurious feature (r).* These are pro-
vided as ground truth or estimated (see Appendix F). The
latter set includes the size of the training set n and the input
dimensionality d. We leave for future work the possibility of
learning descriptors end-to-end with the algorithm selection.

Training an algorithm selector. We can now use D
(Eq. 1) to train an algorithm selector (typically a neural net-
work) that predicts, given the training set of a task, the most
suitable algorithm. We can formulate this concept either as
aregression or a classification. To implement the selector as
a regression, we train a model ¢(w, ) : f(D¥) x A — R
that maps a dataset descriptor f(D') and algorithm identi-
fier A° to a predicted performance. We could train it for the
regression objective:

n}li)n E]D) [/MSE (Q('LU, {f(D;r)’ Am}>7ij> (2)

*Similar concepts include signal/noise ratio (Yang et al., 2024),
magnitude (Wang et al., 2024; Joshi et al., 2023), simplicity (Qiu
etal., 2024), spurious/core information ratio (Sagawa et al., 2020).

By abuse of notation, A is an algorithm’s 1-hot identifier here.
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where Lysg is the mean square error. The selector can then
predict the performance of several algorithms on an unseen
task. The top prediction is used to train a robust model.

The alternative implementation as a multi-label classifica-
tion task is motivated by the fact that neural networks are
easier to train for classification than regression (Devroye
et al., 2013). A classification also aligns better with the goal
of selecting algorithms rather than estimating their absolute
performance. We choose a multi-label formulation rather
than a single-label/multi-class because the algorithms do
not compete against one another, and multiple algorithms
can sometimes be equally suitable.

Specifically, we define the training classification labels as
follows. For jth dataset in D, we have M (the number
of algorithms) records {f(D}"), Ap,, P M_|. We ag-
gregate each such set of M records into a single train-
ing sample {f(D"),Ya} where Y4 € {0,1}* is a one-
or multi-hot vector indicating the suitability of the candi-
date algorithms. An algorithm is considered suitable if
(Pjm — min,, Pj,,) < € for a small threshold ¢ (we use
0.05 for all experiments and perform ablation study in Ap-
pendix E.2). This aggregation converts performance num-
bers into discrete labels, which acts as a sort of “denoising”
since algorithms with close performance are deemed sim-
ilarly suitable. We use these labels to train a multi-label
classifier ¢(w, -) : f(D*™) — {0,1}M for the objective:

Hgn Ep Locr (O(Uh f(D;r))7YA> 3)

where Lpcg is the binary cross-entropy. Unless noted,
OOD-Chameleon refers to this multi-label classification im-
plementation. We use the simplest objective for clarity and
proof-of-concept; future work can adjust the objective for de-
sirable properties, such as a DRO-like objective (Rahimian
& Mehrotra, 2022) or a multi-task objective.

Applying the algorithm selector. The trained selector can
then predict the suitability of algorithms on an unseen task.
When multiple algorithms are predicted as suitable at test-
time, the one with the fop prediction logit (which corre-
sponds to the most confident one) is used to train a robust
model, see Appendix E.3 for an ablation study on test-time
algorithm selection strategies.

2.3. Discussion and Summary

OOD-Chameleon can be seen as a data-driven performance
prediction, or a learned a priori model selection (i.e. be-
fore training any target model). A related line of work is
the data-driven selection among pre-trained vision mod-
els (Zhang et al., 2023; Achille et al., 2019; Oztiirk et al.,
2022). In all cases, the intuition is to exploit knowledge of
past performance in known conditions for new tasks. In
our case, (i) due to the supervised classification formula-

tion, classical results from statistical learning theory apply
to the algorithm selector , and (ii) the data-driven view is
particularly valuable as it handles complex shifts that are
difficult to analyze theoretically. For example, a label shift
is effectively addressed with class balancing (Idrissi et al.,
2022). It is much less clear, however, how to address a label
shift combined with a covariate shift and a mild spurious
correlation, for example Garg et al. (2023).

In summary, building OOD-Chameleon proceeds in
three steps (see also Figure 1b).

1. Obtaining a collection of datasets with a variety
of distribution shifts (see Section 3).

2. Assembling the meta-dataset (D), i.e. pre-
computing dataset descriptors and training mod-
els with the candidate algorithms to obtain their
“ground truth” performance.

3. Training the algorithm selector (¢) on D.

3. A Tool to Construct Distribution Shifts

We now describe the construction of the dataset collection,
which exemplifies various shift types and magnitudes. The
same tool can be used for future research to obtain datasets
with controlled, mixed-type shifts. It takes as input a dataset
that have fine-grained annotations (i.e. each sample is anno-
tated with its class label and one or more attributes), such as
CelebA (Liu et al., 2015) or CivilComments (Borkan et al.,
2019), and outputs a dataset with controlled distribution
shifts by resampling the source dataset.

Quantifying the distribution shifts. To have precise con-
trol over the degree of shifts, we need an unambiguous way
to quantify them. Assuming the test set is balanced (i.e. all
groups are equally represented), then how imbalanced/bi-
ased the training data is (to test data) directly reflects the
degree of shifts. Therefore, we define the following degrees:

* Spurious correlation (dy.): The ratio of training sam-
ples whose class label and attribute agree, i.e. where
a correct classification of the attribute entails a correct
classification of the class.

* Label shift (d)s): The imbalanceness of training class
label distribution.

* Covariate shift (d.s): The imbalanceness of training
attribute distribution.

See Figure 2 for an illustrative example with a 2-way classi-
fication of shapes with two color attributes, where | - | is the
set cardinality, and ) , |G;| = n the size of training set Db,
with |G;| being the number of samples in each group. These
degrees are in [0, 1] by definition and 0.5 means the absence
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Figure 2. Illustration of the quantification of distribution shifts.
In this example, dsc =3/8, dis=0.5, and des =5/8.

of a shift. In practice, we can use different class-attribute
pairs available in datasets such as CelebA or CivilComments
(see Table 9 for some pairs). Different class-attribute pairs
naturally induce different availabilities of spurious features,
depending on how the attributes are embedded in the data.

Constructing datasets. Next, given a desired training set
size n and a triple (dcs, dis, ds.) € [0,1]3 that indicates a
desired degree of shifts, we could solve linear equations (the
ones in Figure 2, plus ) _, |G;| = n) to obtain the necessary
number of samples per group G; to achieve these proper-
ties in the training set. The test set D' is balanced, i.e.
|Gi| = nte/num. of groups. We sample the corresponding
number of samples from the source dataset and compose
them into a task with desired properties. We then perform
this process many times with different properties to obtain
many different datasets. See Appendix B for details and
Figure 7 for example datasets.

4. Experiments

We evaluate OOD-Chameleon on seven applications from
three domains: synthetic (Sagawa et al., 2020), vision
(CelebA (Liu et al., 2015), MetaShift (Liang & Zou,
2022), OfficeHome (Venkateswara et al., 2017), Colored-
MNIST (Arjovsky et al., 2020), and language (CivilCom-
ments (Borkan et al., 2019), MultiNLI (Williams et al.,
2017)). See details of the datasets in Appendix A. As we
will show, all cases benefit from the adaptive selection. We
also verify that it achieves this by learning non-trivial de-
cision rules that are transferrable across tasks. Finally, we
examine the learned selector to understand when the algo-
rithms can outperform one another.

4.1. Experimental Setup

For each domain (synthetic, vision, language), we create a
meta-dataset [D then train an algorithm selector. See Appen-
dices C-D for details. We then evaluate the generalizability
of the algorithm selector on unseen tasks with properties
disjoint from ID. We report the 0—1 accuracy (higher is bet-
ter), which considers an algorithm prediction as correct if

it is in the set of “suitable” algorithms (as defined in Sec-
tion 2.2). We also report the worst-group error (lower is
better) of models trained with the selected algorithms, av-
eraged across unseen tasks. The former evaluates the algo-
rithm selection itself. The latter evaluates the actual benefits
in error reduction by relying on the algorithm selector.

Candidate algorithms. We select five algorithms, namely
ERM (Vapnik, 2000), GroupDRO (Sagawa et al., 2019),
oversampling minority groups (Japkowicz & Stephen,
2002), undersampling majority groups, and logits adjust-
ment (Menon et al. (2021); Nguyen et al. (2021); Kini et al.
(2021), which encourages a relative larger margin for the
minority groups. We choose to focus on algorithms (i) with
strong proven performance, competitive or superior to more
complex ones (Nguyen et al., 2021; Gulrajani & Lopez-Paz,
2020; Idrissi et al., 2022; Yang et al., 2023), (ii) that do not
require extensive hyperparameter tuning, (iii) that each ad-
dress different types of shifts (Nguyen et al., 2021), (iv) that
clearly belong to different families, namely regularization-,
reweighting-, and margin-based approaches. Building OOD-
Chameleon on other existing algorithms is a direct extension
that however requires more computational resources, which
we thus leave for future work.

Algorithm selection baselines and ablations.

* Random selection: randomly selecting algorithms.

* Global best: choosing the single best algorithm accord-
ing to its performance on all tasks in the meta-dataset.

* Naive descriptors: using trivial dataset properties
from Oztiirk et al. (2022) as input to train the selec-
tor, instead of our dataset descriptors. This evaluates if
our descriptors provide relevant information.

* Oracle selection: upper bound, which uses the best
algorithm for each dataset.

* Regression: selector trained from the regression (Eq. 2).

Models.  The algorithm selector is implemented as an
MLP unless otherwise noted. We evaluate other implemen-
tations in Table 5. As for target models, the synthetic exper-
iments (Section 4.2) follow Sagawa et al. (2020) and use a
linear model, which is sufficient to solve the synthetic task.
The vision experiments (Section 4.3) use linear probing on a
pre-trained ResNet18 (He et al., 2015) or CLIP model (ViT-
B/32) (Radford et al., 2021). We show in Appendix E.1
that OOD-Chameleon is effective for both linear probing
and fine-tuning paradigms. The language experiments (Sec-
tion 4.4) use linear probing on a pre-trained BERT (Devlin
et al., 2019) or a BERT fine-tuned on CivilComments. In all
cases, we train for long enough to ensure convergence with
identical hyperparameters across runs. The rationale is that
hyperparameter search should not be allowed since OOD
validation data cannot be relied on (otherwise it could be
simply used as training data to achieve OOD generalization).
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Figure 3. (Left) Discrepancy in performance among algorithms. Across many tasks, we compare pairs of algorithms (e.g. L-G means
comparing Logits adjustment and GroupDRO) and show the distribution of performance differences in worst-group test error. (Middle) The
generalizability of the algorithm selector improves with a larger meta-dataset. (Right) We estimate the importance of each piece of the
dataset descriptor with leave-one-descriptor-out training of the algorithm selector.

4.2. Synthetic Experiments

Data. We consider a binary classification following
closely the synthetic example from Sagawa et al. (2020).
The group distribution is implicitly defined from the defi-
nition of inputs as z = [r., z,] € R?*? with z. and z, of
dimension d generated from Gaussian distributions:

xc|y~N(y1,03Id), $a|y~J\/(a1,afId).

The availability of the spurious features is defined as r =
02 /o2. We create ~ 7,000 tasks for I spanning different
dsc, dis, dcs, training sizes n, dimensionality d, availability 7,
and another ~ 2,000 for evaluation (details in Appendix C).

Results. Table 1 first confirms, from the gap between
random selection and oracle selection, that the ability to
choose the right algorithm provides substantial benefits. We
show that OOD-Chameleon is accurate at predicting the
most suitable algorithm on unseen tasks. Both the 0-1
accuracy and the worst-group error are substantially better
than the baselines.

Additional results in Figure 3 (left) indeed show that dif-
ferent algorithms perform differently across tasks/datasets.
Figure 3 (middle) shows that OOD-Chameleon is more
accurate with the meta-dataset scaled up. Yet, it already sig-
nificantly outperforms the best non-parametrized baseline
(“Global best”) with a relatively small (~ 200) meta-dataset.
In Figure 3 (right), we conduct a leave-one-descriptor-out
training of OOD-Chameleon, excluding one element from
the descriptor at a time. The drops in accuracy (compared
to the leftmost bar) show that every element provides useful
information. Those that matter most are the input dimen-
sionality d, then the availability r and degree dg. of the
spurious correlation.

4.3. Vision Experiments

Data. We generate 720 tasks from CelebA (Liu et al.,
2015), again with various data sizes, types of shifts, spurious

Table 1. Results on the synthetic tasks. The learned algorithm
selector approaches the performance of the oracle selection.

Methods 0-1 ACC. (%) 1 WG error (%) | Remarks
Oracle selection 100 19.0 Upper bound
Random selection 6294106 24.040.1 Non-parametrized
Global best 72.540.7 227401 Non-parametrized
Naive descriptors 521401 23.940.2 Oztiirk et al. (2022)
Regression 79.7+0.7 20.440.3 Equation 2
OOD-Chameleon 86.310.4 19.9.0.1 Equation 3

features, etc. We simulate different availabilities of the spu-
rious feature by using different attribute annotations from
CelebA, e.g. mouth slightly open as class label and
wearing lipstick as spurious attribute (details in Ap-
pendix D). With MetaShift, we similarly use {cat, dog}
as classes and {indoor, outdoor} as attributes to gener-
ate 129 tasks. With OfficeHome, we created 100 tasks by
randomly sampling a pair of domains and a pair of classes
for each dataset (e.g. classifying {pen, knife} in {Art,
Clipart}). For each task of OfficeHome, the number of
samples of each group is naturally imbalanced, creating dif-
ferent distribution shifts by design. With Colored-MNIST,
we use the digits as classes and colors as attributes to gen-
erate 180 tasks. We build the meta-dataset with 80% of the
CelebA tasks to train the selector, then evaluate it either on
the remaining 20% of CelebA tasks, or on the MetaShift,
OfficeHome, Colored-MNIST tasks, respectively.

The availability of spurious features. Unlike with syn-
thetic data, there is no straightforward measure of the
availability r for real-world data. We use a proxy r =
>y ly/ > 4 la Where I, (resp. o) is the average distance be-
tween every sample and the center of the cluster of its class
(resp. attribute). Distances are measured in the embedding
space of the corresponding pre-trained model (Section 4.1).
Intuitively, the availability is higher when the cluster w.r.t.
the attribute is more compact than to the label (see details
and discussions in Appendix D.1).
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Table 2. Results on vision tasks. The selector is trained on a meta-dataset built from CelebA, and then evaluated on a separate set of tasks
from CelebA (Left) as well as MetaShift (Right). It remains accurate across datasets, meaning that it learns generalizable decision rules.

CelebA MetaShift
Methods ResNet18 CLIP (ViT-B/32) ResNet18 CLIP (ViT-B/32)
0-1 ACC. 1 WG error | 0-1 ACC. 1 WG error | 0-1 ACC. 1 WG error | 0-1 ACC. 1 WG error |

Oracle selection 100 449 102 100 36.3 103 100 36.4 103 100 24.5 103
Random selection 28.5 105 53.4 106 27.0 103 454 Lo 333 408 43.1 100 34.1 103 323 101
Global best 357 410 513 105 32.6 104 434 194 394 1o3 424 Lo0 364 103 31.7 104
Naive descriptors 64.5 +0.9 49.7 +0.5 66.8 +0.6 40.7 +0.4 68.8 +0.7 40.3 +0.3 66.6 +0.3 28.1 +0.4
Regression 53.6 411 49.8 105 46.7 109 41.2 403 51.2 403 40.9 102 49.2 103 28.3 402
OOD-Chameleon 75.0 113 47.7 102 78.5 108 39.1 102 80.6 1.7 39.0 103 76.7 105 27.2 103

Table 3. Comparison with static algorithm selection, i.e. using the same one used on all test tasks. OOD-Chameleon performs much
better by adaptively choosing an algorithm for each task. It approaches the performance of an oracle selection, as well as its distribution
of cases where each algorithm is used (see the colored bars where each color represents a different algorithm).

CelebA MetaShift
Methods ResNet18 CLIP (ViT-B/32) ResNet18 CLIP (ViT-B/32)
Alg. Selection ~ WGerror |  Alg. Selection ~ WGerror |  Alg. Selection ~ WGerror |  Alg. Selection ~ WG error |

Oracle Selection 44.9 10.2 36.3 +0.3 36.4 10.3 24.5 0.3
ERM 57.8 +0.4 49.1 10.2 47.1 +o.3 35.6 +0.3
GroupDRO 52.5 +0.4 45.7 +0.2 45.0 +0.3 334 +0.3
Logits adjustment 53.1 o5 414 106 40.5 103 28.0 10.4
Undersamp]e 49.8 +0.5 41.6 +0.2 40.1 +0.3 28.3 +0.3
Oversample 52.4 +0.2 45.8 +0.2 45.1 +0.2 33.2 +0.4
OOD-Chameleon 47.7 +0.2 39.1 +0.2 39.0 +0.3 27.2 +0.3

Results. In Table 2, we observe again that OOD-
Chameleon performs well in selecting suitable algorithms
for unseen tasks. Most importantly, the selector trained on a
meta-dataset constructed from CelebA also performs well
on MetaShift (Table 2), OfficeHome and Colored-MNIST
(the latter two are in Appendix G) This means that it learned
generalizable relations between dataset properties and
algorithms’ performance, not idiosyncratic patterns spe-
cific to one dataset.

In Table 3, we compare with single-algorithm baselines,
i.e. using the same algorithm for all tasks. Our adaptive
selection performs much better, confirming the premise
that no single algorithm is a solution to all OOD scenarios.
Interestingly, the proportions of cases where each algorithm
is selected closely resemble those of the oracle (see the
colored bars). In Appendix F, we evaluate our model with
estimated dataset descriptors, e.g. for cases where attributes
are not available at test time. The predictions of the selector
remain accurate without further adaptation. In Appendix I,
we show that a selector trained on datasets of smaller data
sizes can generalize to larger ones; and we compare our
approach with ensemble, which is much more expensive.

4.4. NLP Experiments

Data. The setup is analogous to the vision experi-
ments (Section 4.3). We generate 720 tasks from

CivilComments (Borkan et al., 2019) and 180 from
MultiNLI (Williams et al., 2017) (details in Appendix D).

Results. Table 4 and Table 18 in the appendix show that
OOD-Chameleon is also effective in the language domain.
The results closely align with those on vision tasks and
confirm the findings from Section 4.3.

4.5. What Does OOD-Chameleon Learn?

Now we examine the decision rules learned by the selector.
We first evaluate its complexity. To do so, we compare in
Table 5 several implementations of the algorithm selector
and make the following observations.

* First, a linear model performs significantly worse than an
MLP. This shows that the MLP learns non-trivial rules
and that there exist non-linear relations between dataset
characteristics and the performance of algorithms.

* Second, a k-NN model is also significantly worse than
an MLP. This shows that our model works not only by
memorizing a large number of example tasks, which a
k-NN also does. On the contrary, accurate predictions on
unseen datasets require non-trivial generalization.

* Third, a simple decision tree performs almost as well as
an MLP (details in Appendix J). Unlike an MLP, a tree is
intrinsically interpretable, which offers the possibility of
discovering new insights about existing algorithms.
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Table 4. Results on NLP tasks. The selector is trained on a meta-dataset built from CivilComments, then evaluated on a separate set of
tasks from CivilComments as well as MultiNLI. It remains accurate across datasets, meaning that it learns generalizable decision rules.

CivilComments MultiNLI
Methods BERT BERT (Finetuned) BERT BERT (Finetuned)
0-1 ACC. 1 WG error | 0-1 ACC. 1 WG error | 0-1 ACC. 7t WG error | 0-1 ACC. 1 WG error |

Oracle selection 100 53.7 103 100 194 1o4 100 559 103 100 54.2 106
Random selection 14.5 +0.7 66.6 +0.4 50.0 +0.4 23.5 +0.2 19.8 +0.3 67.1 +0.2 20.5 +0.5 63.6 +0.7
Global best 29.9 +0.8 62.7 +0.4 55.9 +1.2 229 +0.3 344 +0.4 63.6 +0.6 27.2 +0.6 61.4 +0.5
Naive dCSCI‘iptOI‘S 68.8 +1.9 57.2 +0.4 81.1 +0.8 21.7 +0.3 64.3 +0.8 59.2 +0.4 68.2 +0.5 57.4 +0.4
Regression 513 110 57.6 10.4 479 107 22.6 10.4 577 108 59.4 102 40.8 +0.3 60.6 10.2
OOD-Chameleon 819 41, 55.8 10.4 90.9 114 20.7 102 794 106 58.3 102 744 19 56.6 100

Table 5. Alternative implementations of the algorithm selector.
The lower performance of linear and k-NN models supports the im-
portance of non-trivial, non-linear relations between dataset char-
acteristics and algorithm performance (experiments on CelebA).

ResNet18 CLIP (ViT-B/32)
Implementation 0-1 ACC.1T WGerror] 0-1ACC.1T WG error |
Linear 634 41.0 496 +0.3 676 +1.8 42.1 40.3
k-NN 38.6 +0.7 49.3 +0.2 50.0 +1.3 41.5 +0.4
Decision tree 73.1 108 48.1 103 74.3 +o0.7 394 105
MLP 75.0 113 47.7 102 78.5 108 391 192

Interpreting decision trees. We visualize in Figures 10—
11 the rules learned by selectors implemented as decision
trees (see Figure 4 for a simplified illustration). Interpreting
these trees leads to the following recommendations on the
applicability of algorithms. (i) Undersample is preferred
when the size of the dataset is not too small and the distri-
bution shifts are severe. (i) When there are indeed only
a small number of samples but relatively large shifts, one
could resort to Logits adjustment. This aligns with Nguyen
et al. (2021) who suggested that Logits adjustment should
be more effective than Undersample when the number of
unique samples is low for minority groups. (iii) GroupDRO
is more useful when there are enough samples and rela-
tively large distribution shifts. (iv) For mild shifts, ERM
or Oversample are the best options. Overall, such observa-
tions provide rich material for future investigations on the
applicability of existing learning algorithms.

O Logits adjustment
O Oversample

M/ Q’ong
O Undersample l SC
(© GroupbRO \ Sma||’£ Large
{ CS }

{15}
O M N ,; { i )
Figure 4. Simplified illustration of a learned model selector im-
plemented as a decision tree (see Figures 1011 for full versions).

Attributing algorithm effectiveness to data characteris-
tics. To complement the general rules revealed by decision
trees, we look at factors affecting local decisions between
any two algorithms. We perform a leave-one-descriptor-
out training of pairwise algorithm selectors, i.e. which con-
sider only two candidate algorithms. We plot the results in
Figure 5. For a chosen pair of algorithms, each bar shows a
drop in performance relative to the full descriptors (leftmost
bar). This drop indicates the importance of a specific piece
of information for distinguishing the two algorithms. In the
case of Oversample/Undersample for example, the data size
(n) and degree of spurious correlation (dg.) are the most im-
portant. This observation is consistent with the analysis in
(Nguyen et al., 2021) that implies that, while undersampling
can cope with more distribution shifts than oversampling,
it is inferior when the number of samples in the minority
group is small (i.e. when n or dg. is too small).

95
Removed
=90 descriptor
B B N/A
8 85 N n
< X dsc
g 80 [} d/s
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F 75 [==]yg
70
Oversample/ Undersample/ GroupDRO/
Undersample ERM Logit adjust.

Figure 5. Leave-one-descriptor-out training of pairwise algo-
rithm selectors. The drops in accuracy reveal the importance of
various factors in the suitability of one algorithm vs. another.

We also observe that the importance of the different pieces
of information varies for other pairs of algorithms (Fig-
ure 5 middle/right bars). We can thus identify which char-
acteristics of the data are important in practice for specific
algorithms to outperform one another. These are rich ob-
servations for future work that could confront them with
existing theories on the applicability of these algorithms.
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5. Related Work

OOD generalization is a wide field of study, see e.g. Liu
et al. (2021b) for a survey. The conclusion from several
studies is that there is no one-fits-all solution to distribution
shifts (Gulrajani & Lopez-Paz, 2020; Wiles et al., 2021;
Nguyen et al., 2021; Ye et al., 2022; Liang & Zou, 2022;
Yang et al., 2023; Bell et al., 2024). Indeed, a standard ERM
baseline is generally very effective, but there also exist a
variety of training algorithms with demonstrated benefits in
specific OOD settings. This motivates our goal of improving
the selection among existing algorithms, which we seek to
automate with a data-driven approach.

Algorithm selection. Model selection (Forster, 2000;
Raschka, 2020) and algorithm selection (Rice, 1976; Ker-
schke et al., 2019) are integral parts of machine learning
workflows. In the context of OOD generalization, recent
work (Liu et al., 2023b; Baek et al., 2022; Garg et al., 2022;
Miller et al., 2021; Lu et al., 2023) proposes heuristics to
predict a models’ OOD performance on unlabeled target
data. These heuristics have downsides: (i) they can only be
estimated after training one or several models, (ii) they re-
quire (unlabeled) test data, and (iii) they rely on unverifiable
assumptions (Teney et al., 2023). A major difference of our
work is to aim for a priori selection of the best algorithm,
i.e. before training on the target data.

Concurrent work by Bell et al. (2024) identifies a motivation
similar to ours. They propose to select among algorithms
to deal specifically with spurious correlations, based on the
algorithms’ past performance on benchmarks similar to the
target data. The differences with our work are: (i) we use a
learning approach rather than a simple similarity; (ii) our
learning process relies on semi-synthetic data rather than
existing benchmarks, which helps cover a broader set of
distribution shifts; (iii) we consider label shifts, covariate
shifts and their combinations, not only spurious correlations.

Meta-learning. Our approach learns from a “dataset of
datasets” i.e. a distribution of tasks, which is a principle
of meta-learning (Vilalta & Drissi, 2002; Hospedales et al.,
2022). Most similarly to us, Achille et al. (2019); Oztiirk
et al. (2022); Arango et al. (2023); Zhang et al. (2023) learn
to select among pretrained models for downstream tasks,
or for outlier detection Zhao et al. (2021). Contrary to us,
these works first require training multiple candidate models
and they do not target OOD generalization.

AutoML. Our approach relates to AutoML, which aims
to automate ML workflows, often by trial-and-error (Hutter
et al., 2019; He et al., 2021). Our work differs in that (1) it
aims for a priori algorithm selection; (2) it can provide new
insights on the applicability of existing algorithms.

6. Conclusions

This paper highlighted the importance of algorithm selection
for OOD generalization. We described a data-driven solu-
tion to automate this selection, by turning it into a standard
supervised multi-label classification problem. Crucially, we
demonstrated empirically that training our algorithm selec-
tor on a collection of semi-synthetic datasets is sufficient
to learn decision rules that generalize to unseen shifts and
datasets. This is a strong empirical result, since the model
could as well have overfitted to idiosyncratic properties of
example shifts and datasets. Instead, it learns generalizable
relations between dataset properties and algorithms’ perfor-
mance. We verified that the selection relies on non-trivial
patterns, and also ruled out the possibility that it simply
memorizes a large number of example cases.

Limitations and future work.

* Algorithm baselines: We focused on algorithms known
to be reliable, simple but effective in different settings
(and often superior to fancier ones, see Idrissi et al.
(2022)). Future extension will include more algorithms
and their variations, e.g. by including some of their
hyperparameters in the search space.

* Learnable dataset descriptors: We hand-designed
interpretable dataset descriptors, but they depend on
attribute annotations and might miss important infor-
mation. The next step is to learn descriptors end-to-
end with the selector, e.g. with Set Transformers or
Dataset2Vec (Lee et al., 2019; Jomaa et al., 2021).

* Generalization to other shift types: We considered
three types of shifts (spurious correlations, label shifts,
covariate shifts) and their combination, which covers
most, if not all, shifts studied in the literature. However,
generalizing to other shift types might require additional
curation. For example, covariate shifts can happen in
many forms except for the attribute distribution shifts
we studied.

* Generalization to broader scenarios: Our tool to quan-
tify distribution shifts applies to binary classification
with binary attributes, which is the default setting in
studying spurious correlations. Extension to multiple
classes and multiple attributes is valuable. Besides, opti-
mizing a combination of multiple relevant performance
metrics, instead of a single one, is promising.

* Real-world evaluation: A crucial next step is to study
how the algorithm selector trained on a semi-synthetic
dataset collection generalizes to real-world tasks, such
as WILDS (Koh et al., 2021; Sagawa et al., 2022).

* Understanding algorithms’ applicability: We ex-
tracted insights from the trained selector, which could be
used to form the basis of future investigations on the ap-
plicability and inductive bias of many other algorithms.
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Appendix

The appendix provides the following additional details and results.

» Appendix A provides an overview of the used source datasets.

» Appendix B details the construction of datasets with desired distribution shifts.

» Appendix C describes the data and detailed setup of the controlled experiments of Section 4.2.

* Appendix D describes the data and detailed setup of the realistic experiments of Sections 4.3 and 4.4.

* Appendix E contains various ablation studies (hyperparameters, training paradigms, etc).

» Appendix F presents additional results on the use of estimated dataset descriptors as input to the selector.
* Appendix G presents additional results on vision tasks of Section 4.3.

» Appendix H presents additional results on language tasks of Section 4.4.

* Appendix I presents additional results on efficiency considerations.

¢ Appendix J shows additional details of the algorithm selector implemented by a decision tree of Section 4.5.

A. Dataset Overview

In our experiments, we create tasks with distribution shifts by subsampling from 6 real-world datasets from computer
vision and natural language processing domains. Here we provide details for each of them. Some content in this section is
borrowed from (Yang et al., 2023), and we appreciate their clean and concise dataset summary. For visual examples, see
Table 6 and Table 7.

CelebA. CelebA (Liu et al., 2015) is a large-scale face attributes dataset commonly used in facial recognition, attribute
prediction, and generative modeling research. It contains over 200,000 celebrity images covering approximately 10,000
identities, each annotated with 40 binary facial attributes (e.g., smiling, eyeglasses, blond hair) and 5 landmark locations
(e.g., eyes, nose, mouth corners). The images exhibit substantial variability in pose, lighting, background, and occlusion.
The standard task involves predicting facial attributes or generating/editing facial images using these annotations. The
dataset is publicly available for non-commercial research use.

MetaShift. MetaShift (Liang & Zou, 2022) is a general method of creating image datasets from the Visual Genome project.
Here, we make use of the pre-processed Cat vs. Dog dataset, where the goal is to distinguish between the two animals.
The spurious attribute is the image background, where cats and more likely to be indoors, and dogs are more likely to be
outdoors. We use the “unmixed” version generated from the authors’ codebase.

OfficeHome. OfficeHome (Venkateswara et al., 2017) is a multi-class image classification dataset commonly used in
domain adaptation research. It consists of around 15,500 images across 65 object categories (e.g., keyboard, pen, mug),
drawn from four visually distinct domains: Art, Clipart, Product, and Real-World. The standard task is to classify the object
category across varying domain pairs. The dataset is publicly available for non-commercial research use.

Colored-MNIST. Colored-MNIST (Arjovsky et al., 2020) is a synthetic variant of the MNIST dataset commonly used
to study spurious correlations and domain generalization. It is constructed by coloring the grayscale MNIST digits with
label-dependent or label-independent color schemes to introduce a spurious correlation between digit class and color.
Multiple environments are created by varying the strength of this correlation, allowing researchers to evaluate models’
robustness to distribution shifts. The standard task is digit classification under different color-based domain shifts.

CivilComments. CivilComments (Borkan et al., 2019) is a binary classification text dataset, where the goal is to predict
whether a internet comment contains toxic language. The spurious attribute is whether the text contains reference to eight
demographic identities (male, female, LGBTQ, Christian, Muslim, other religions, Black, and White).

MultiNLI. MultiNLI (Williams et al., 2017) is a text classification dataset with 3 classes, where the target is the natural
language inference relationship between the premise and the hypothesis (neutral, contradiction, or entailment). The spurious
attribute is whether negation appears in the text, as negation is highly correlated with the contradiction label.
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Table 6. Example inputs for Colored-MNIST (Arjovsky et al., 2020), CelebA (Liu et al., 2015), MetaShift (Liang & Zou, 2022) and
OfficeHome (Venkateswara et al., 2017). The table is adapted from (Yang et al., 2023).

Dataset Examples

Colored-MNIST

=

CelebA

MetaShift

OfficeHome

Table 7. Example inputs for CivilComments (Borkan et al., 2019) and MultiNLI (Williams et al., 2017). The table is borrowed from (Yang
et al., 2023).

Dataset Examples

“Munchins looks like a munchins. The man who dont want to show his taxes, will tell you everything...”
CivilComments “The democratic party removed the filibuster to steamroll its agenda. Suck it up boys and girls.”
“so you dont use 0il? no gasoline? no plastic? man you ignorant losers are pathetic.”

“The analysis proves that there is no link between PM and bronchitis.”
MultiNLI “Postal Service were to reduce delivery frequency.”
“The famous tenements (or lands) began to be built.”

B. Construction of the Meta-dataset

In Section 3, we describe a framework that allows for constructing datasets with diverse distribution shifts by sampling
from synthetic distributions or existing datasets, here we provide more details and examples. There are two use cases
in Section 4.2, Section 4.3&4.4 respectively, where in both cases we know the distribution of each group (recall that the
combinations of different values of attribute a and class y form different groups). Specifically, in Section 4.2, we have the
group distributions as Gaussian distributions so that we can sample the desired numbers of samples from those distributions,
while in Section 4.3 and 4.4 we have a decent amount of samples in each group of the fine-grained annotated real-world
datasets used (CelebA, MetaShifts, OfficeHome, Colored-MNIST for vision tasks and CivilComments, MultiNLI for NLP
tasks), and we can then also sample the desired numbers of samples from each group.

In Section 3, we define the degrees of distribution shifts as a function of the number of samples for each group. Therefore, to
obtain a dataset with specific degrees of distribution shifts, one only needs to solve the number of samples for each group
and sample them from the group distribution. Note that the number of samples can be scaled up or down depending on
the expected size of the dataset. All of the constraints to be solved are therefore:

g, = 191Gl G+ Gs] (G A+ 1%
SC Zz|gl| ) S Zz|gl| }) CS Zl|gz| )
> 1Gil =n, (IG:] = 0) 4

Ogdscgla OSdISSI’ Ogdcsgla

Solving the constraints gives the feasible solution set of the degrees of distribution shifts, as shown in Figure 6. We see that
not any value in the cube can be chosen because of the constraint |G;| > 0 for Vi.
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Solution Set of Inequalities Forming a Closed Shape
0,1,1)

0.2
% © 1000

Figure 6. The feasible degrees of spurious correlation (dsc), covariate shift (dcs) and label shift (ds).

Generating datasets with diverse characteristics. We then generate datasets with a desired size, distribution shifts, and
availability of the spurious feature. More precisely, we vary the following.

 The degrees of distribution shifts (as long as they are picked from the feasible solution set in Figure 6).
* The size of the dataset.

* The group distributions (for simulating different availabilities of the spurious feature). For synthetic experiments, they are
more controllable in that the group distributions are known and the availability of spurious feature is well-defined (see
Section 4.2). For vision tasks and NLP tasks, we respectively use CelebA and CivilComments to create the dataset of
datasets. Since they are annotated with various labels, we can use different pairs of them as label Y and spurious attribute
A. See Table 9 on the pairs we choose. Each different label-attribute pair results in different group distributions, and how
“spurious” the spurious attribute is.

* For the synthetic experiments (Section 4.2), we additionally vary the dimensionality of the data points d (See Table 8).

See Figure 7 for example tasks generated from CelebA. We summarize the characteristics of the generated datasets in the
following sections.

Data size: 1000 Data size: 500
Spurious correlation: 0.12, label shift: 0.26, covariate shift: 0.80  Spurious correlation: 0.82, label shift: 0.41, covariate shift: 0.33

=\l
vs{’:? &
\piy [e_a- e

e
p R AG.

count: 46 : count: 243

Hair color v.s. Gender Hair color v.s. Gender

count: 618

Figure 7. Example datasets (only training set is shown for each) with different data size and distribution shifts, generated from CelebA.
The meta-dataset is composed of many more such datasets, each exhibiting different characteristics.
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C. Controlled Experiments: Datasets and Detailed Setup

We provide details on the experimental setup of the controllable experiments of Section 4.2.

Dataset of datasets. In total, we created 9,240 tasks, see Table 8 for the statistics for these tasks. Specifically, we generate
the training sets of the tasks with the combinations of values in Table 8, and for the degrees of distribution shifts, we consider
2 cases: (1) 3 shifts (spurious correlation, covariate shift and label shift) all present each in different degrees, we uniformly
sampled 30 different triple degrees, and (2) there is only 1 shift present, in this case for each shift we consider 9 different
values shown in the table (therefore in total 3 *+ 9 — 2 = 25 different triple degrees). We generate their test sets with the same
number of samples as its training set for each dataset, but keep the number of samples the same for all groups (therefore
balanced test sets with all d(.y = 0.5). We randomly split these datasets into 4:1 as the dataset of datasets for training the
algorithm selector, and the unseen datasets for evaluation.

Table 8. Statistics for the dataset of datasets in controllable synthetic experiments.

Statistics Value

Size of training set {200, 500, 1000, 2000, 3000, 5000, 10000}
Input dimensionality {2, 10, 50, 100}

Availability r = 02 /o2 {1, 5, 10, 20, 50, 100}

3 shifts randomly sampled 30 feasible degrees (Figure 6)
1 shift {0.01, 0.05, 0.1, 0.3,0.5, 0.7, 0.9, 0.95, 0.99}

Algorithm selector. We use 4-layer MLPs to parameterize the algorithm selector, because we found a shallower or simpler
model underfits while a deeper model does not provide more improvements.

Tasks. To solve the tasks defined by each dataset in the dataset of datasets, we use Adam optimizer with default
hyperparameters, along with L2 regularization. We train for 1000 epochs to ensure convergence on this synthetic example.

D. Datasets and Detailed Setup of the Vision and NLP Experiments
D.1. Availability of the Spurious Features

In the controllable experiments in Section 4.2, we compute the availability of spurious features as r = o2 /02, following the
spurious-core information ratio defined in Sagawa et al. (2020). The higher the r, the more signal there is about the spurious
attribute in the spurious features, relative to the signal about the label in the core features.

However, in real-world data (Section 4), it is not straightforward how to generate the dataset of datasets with diverse r. In
Section 4.3, we use different attribute pairs in CelebA (Liu et al., 2015) (one as the label attribute, i.e. the attribute we want
to classify, and the other as spurious attribute) as shown in Table 9 (Left), to account for different availability of spurious
features. Intuitively, the obviousness of different types of attributes (in terms of size, color, etc) signifies different availability
of the spurious feature (caused by the attribute).

Similarly, we use different attribute pairs in CivilComments (Borkan et al., 2019), as shown in Table 9 (Right) to ensure a
diverse availabilities of spurious feature in the created tasks.

Table 9. Attribute pairs in CelebA (Liu et al., 2015) (Left) and CivilComments (Borkan et al., 2019) (Right) that are used to construct
different availability of the spurious feature.

CelebA CivilComments
Label Spurious attribute Label  Spurious attribute
Mouth Slightly Open  Wearing Lipstick Male
Attractive Smiling Toxicit Female
Black Hair Male oxlaty Black
Oval Face High Cheekbones White
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By using different attribute pairs, we are able to generate tasks with different availabilities. However, unlike the controllable
experiments, here there is no straightforward way of quantifying the availability of spurious feature. Therefore, as mentioned
in Section 4.3, we use a proxy availability which is the average distances of the samples’ embeddings to their labels
or attributes clustering center, respectively. Specifically, we first obtain the samples embeddings {z;};; from the used
backbone (ResNet18/CLIP or BERT/BERT (fine-tuned)) and then compute the clustering center of each label and attribute
as v, and p,. The availability r is then:

_ 2yl

’r‘ = —_—
Za la
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This definition is intuitively similar to what is defined for availability in controllable experiments, where we had 7 = 02 /o2
Intuitively, a smaller average distance w.r.t. attributes signify an easier spurious feature and therefore, higher availability. Only
with Equation 5, we are able to compute availability for any tasks, and thus enables transferring the algorithm selector trained
from CelebA tasks, to unseen tasks from other datasets (i.e. MetaShift (Liang & Zou, 2022), OfficeHome (Venkateswara
et al., 2017), Colored-MNIST (Arjovsky et al., 2020) and MultiNLI (Williams et al., 2017))

D.2. Detailed Experimental Setup

We provide the detailed experimental setup for the vision experiments in Section 4.3 and NLP experiments in Section 4.4.

Dataset of datasets. In total, we create 720 tasks from CelebA (Liu et al., 2015), see Table 10 for the statistics for these
datasets. Specifically, we generate the training sets of the datasets with the combinations of values in Table 10, and for the
degrees of distribution shifts, we consider 2 cases: (i) 3 shifts (spurious correlation, covariate shift and label shift) all present
each in different degrees, we uniformly sample 30 different triple degrees, and (ii) there is only 1 shift present, in this case
for each shift we consider 10 different values (therefore in total 30 different triple degrees). We generate their test sets with
half the number of samples as their training set for each dataset, but keep the number of samples the same for all groups
(therefore balanced test sets with all d(.y = 0.5). We randomly split the generated CelebA tasks into 4:1 training and test
splits, and use the training part for the meta-dataset D.

For evaluation, we first evaluate on the unseen tasks from CelebA. In addition, we create 129 datasets from MetaShift (Liang
& Zou, 2022) ({cat, dog} and {indoor, outdoor} split) and 180 datasets from Colored-MNIST (Arjovsky et al.,
2020) for evaluation, where we follow the same generation procedure. The generated number of tasks for MetaShift and
Colored-MNIST is smaller because: (i) These two datasets only have one attribute annotated (indoor/outdoor and colors,
respectively), so we can only consider 1 attribute-label pair and hence one availability of spurious features. (ii) Their number
of samples per group for MetaShift is not as sufficient as CelebA, making some of the datasets infeasible (i.e. the Equation 4
as no solution for some dataset characteristics). We also create 100 tasks from OfficeHome for evaluation, from a slightly
different procedure, see OfficeHome paragraph in Appendix G.

For NLP experiments, we follow a similar process and generated 720 tasks from CivilComments (Borkan et al., 2019) and
generat 180 tasks from MultiNLI (Williams et al., 2017).

Algorithm selector. We use a 2-layer MLP (with hidden size 100) to parameterize the algorithm selector, because we
found a shallower or simpler model underfits while a deeper model does not provide more improvements.

Tasks. To solve the tasks defined by each dataset in the dataset of datasets, we either do (1) linear probing on ResNet18 or
CLIP (ViT-B/32) or (2) fine-tuning ResNet18. In the first case (all tables except for Table 11), we use Adam optimizer with
default hyperparameters, along with L2 regularization. We train for 1000 epochs to ensure convergence. In the second case
(Table 11), we use SubpopBench (Yang et al., 2023) and its default hyperparameters to fine-tune ResNet18. We use basic
data augmentations (resize, crop, etc).
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Table 10. Statistics for the dataset of datasets in vision and NLP experiments.

Statistics Value

Size of training set {200, 500, 1000}

Input dimensionality N/A

Availability 4 different attribute pairs, see Table 9

3 shifts randomly sampled 30 feasible degrees (Figure 6)

1 shift randomly sampled 10 degrees in (0, 1) for each type of shifts

Table 11. Evaluation of training paradigms for tasks. The algorithm selector generalizes well with both linear probing and fine-tuning.

Linear probing Fine-tuning
Methods 01 ACC
a 4 " WGerrorl 0-1ACC.1T WG error |
Oracle Selection 100 449 o0 100 32.3 104
Regression 53.6 +1.1 49.8 105 73.6 £13 34.5 103

OOD-Chameleon 75.0 +13 47.7 100 67.8 113 34.8 104

E. Ablation Studies
E.1. Different Training Paradigms

Here we conduct an ablation study of the training paradigms for the tasks. This is necessary to check because, solving the
tasks by different training paradigms affects the algorithms’ OOD performance P;,, and therefore changes the distribution
of meta-dataset D = { f(D}"), Ay, Pjr }. In Table 11, we verify that the algorithm selector works well with both linear
probing and fine-tuning with CelebA tasks. The results indicate that the learned algorithm selector can also accurately select
suitable algorithms when the models for the tasks become over-parametrized in the case of fine-tuning.

E.2. Algorithm Suitability Threshold e

In Section 2.2, we convert the algorithm selection problem into a multi-label classification task, because multiple algorithms
can be suitable for a given dataset/task. This involves defining a small threshold e. Specifically, an algorithm is considered
suitable if (Pj,, — min,, Pj,,) < € for a small threshold e. We have used 0.05 for all our experiments, and here we provide
an ablation study on it, in Table 12. The method proves robust to other choices than the ¢ = 0.05 used throughout the paper.
Intuitively, when € is too big, the meta-dataset loses discriminative power; too small, it is subject to noise.

Table 12. Ablation study on e. Worst-group error is shown (lower is better).

€ CelebA (ResNet) | CelebA (CLIP) | etaShift (ResNet) | MetaShift (CLIP)

0.0 48.3 39.8 39.9 27.7
0.025 48.1 39.6 39.7 27.3
0.05 47.7 39.1 39.0 27.2
0.10 48.0 394 39.6 27.8

E.3. Algorithm Selection Strategies at Test Time

As discussed in Section 2.2, multiple algorithms can be predicted as suitable for a dataset/task at test time, due to our
multi-label classification formulation. When this is indeed the case, we always select the algorithm with the highest
prediction logits, which corresponds to the one the algorithm selector is the most confident in. An alternative would be to
use binary predictions, and if multiple algorithms are predicted to be suitable, randomly select one of them. Here we show
that, empirically, the former option (top logits) is much better, in Table 13.
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Table 13. Comparison of test-time algorithm selection criteria. Worst-group error is shown, lower is better.

Selection criterion | CelebA (ResNet) | CelebA (CLIP) | MetaShift (ResNet) | MetaShift (CLIP)
Top logits (used elsewhere) 47.7 39.1 39.0 27.2
Binary predictions 48.5 39.8 394 27.4

E.4. Performance Metrics

In our experiments, we mostly use the worst-group (WG) error as the performance metric. The rationale is that it is
independent of the test distribution and can thus be addressed by considering only the distribution (imbalances) of training
data. WG performance thus promotes general robustness to distribution shifts and has been used in many prior works.

However, our formulation is compatible with other performance metrics. The algorithm selection should work as long as
there are useful relations to be learned between the data descriptors, the algorithms and the performance metrics. Here we
investigate an alternative metric, the averaged-group error, in Table 14. The conclusions are similar to those in Section 4 —
the algorithm selector can still select suitable algorithms with averaged-group error as the performance metric.

Table 14. Training and evaluating the algorithm selector with averaged-group error. Lower is better.

‘CelebA (ResNet) CelebA (CLIP) MetaShift (ResNet) MetaShift (CLIP)

Oracle selection ‘ 33.8 26.4 24.6 14.8
Random selection 36.6 29.5 27.8 18.1
Global best 35.7 28.0 26.9 16.6
Naive descriptors 35.8 27.7 26.7 16.9
Regression 355 28.3 27.0 16.4
OOD-Chameleon 35.1 27.2 26.3 159

F. Algorithm Selection with Estimated Dataset Descriptors

Here we study the scenarios where the information to compute dataset descriptors, such as the attribute for each sample (Liu
et al., 2021a), cannot be obtained at test time. Recent works (Liu et al., 2021a; Kirichenko et al., 2022; Qiu et al., 2023; Lee
et al., 2022; Pagliardini et al., 2022) for OOD generalization aim to eliminate the need for attribute annotation by either:
(i) infer the attribute annotation and then use them to run algorithms that require attribute annotation, (ii) run ERM on
the training set assuming that the ERM learns the spurious feature, and then build invariant classifier on top of the ERM
classifier (e.g. fit a model that disagrees with the ERM).

We leverage the above first line of research, i.e. inferring the attribute annotation and use them to compute the dataset
descriptors on the target training set. Then, we can use OOD-Chameleon to select the suitable algorithms. We infer
the attributes by clustering the embeddings from frozen backbones, following Sohoni et al. (2020); You et al. (2024).
The intuition is that different attributes, such as cows in grass or desert, can be considered as ’subclasses’ or “hidden
stratifications’, and they are observed to be separable in the feature space of the deep models. Hence, for example we can
infer which cows belong to which environment, by clustering on their embeddings. In particular, the training samples are
passed through the backbone of the task (i.e. ResNet18 or CLIP in our case), and get the embeddings. For each semantic
class, we cluster the corresponding samples with K-means and assign different attributes to different clusters. This gives each
sample its inferred attribute annotation. We can then use these inferred attribute annotations to compute dataset descriptors,
where they are used to compute the degree of spurious correlation d. and covariate shift d.s, as well as the availability of
spurious features r (see Appendix D.1 on how we compute the availability).

With the inferred dataset descriptors, we use the algorithm selector to predict suitable algorithms. In Tab 15, we show that
the suitable algorithms are still predictable with estimated dataset descriptors. Interestingly, while having performance drops
in most cases, using estimated dataset descriptors boosts the performance on MetaShift with ResNet18.
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Table 15. OOD-Chameleon with inferred attributes (and dataset descriptors) on CelebA and MetaShift. 0—1 Accuracy (higher is better) is
shown.

Methods Attribute CelebA MetaShift
ResNet]8 CLIP ResNet18 CLIP
esiet (VIT-B/32) esiet (VIT-B/32)
Oracle Selection N/A 100 100 100 100
Regression v 53.6 +1.1 46.7 +0.9 51.2 +0.3 49.2 +0.3
OOD-Chameleon v 75.0 +1.3 78.5 +40.8 80.6 +0.7 76.7 +0.5
Regression X 52.1 409 50.2 11 53.7 406 477 410
OOD-Chameleon X 73.2 +0.6 72.0 +1.1 83.4 +0.8 72.6 +0.5

G. Additional Results on Vision Tasks

Colored-MNIST. In Section 4.3, we see that when training the algorithm selector on tasks built from CelebA, the algorithm
selector is not only able to select suitable algorithms on unseen tasks of CelebA but also on unseen tasks of MetaShift.
This suggests the learned data/algorithm relation is robust and transferrable across data domains. Here we provide more
experiments on Colored-MNIST as a further support, in particular, we train on the same CelebA meta-dataset and evaluate
the algorithm selector on Colored-MNIST tasks (Arjovsky et al., 2020). In Colored-MNIST dataset, there are images of 10
digits from 0-9 and the digits are divided into 2 classes (i.e. 0—4 is class 0, 5-9 is class 1). In addition, the two classes of
digits are in two different colors (e.g. red and green). When the colors of the digits correlate with the shapes of digits, a
spurious correlation occurs. We create 180 tasks from Colored-MNIST, each task exhibits different magnitudes of spurious
correlation (SC), label shift (LS) and covaraite shifts (CS) and the size of datasets span {200, 500, 1000}. In Table 16, we
see that the algorithm selector proves to be effective on Colored-MNIST as well.

Table 16. Results on algorithm selection for unseen Colored-MNIST tasks. Algorithm selectors are trained on the meta-dataset
generated from CelebA and evaluated on unseen Colored-MNIST tasks. ResNet18 and CLIP (ViT-B/32) refer to the models used in the
tasks.

Colored-MNIST

Methods

ResNet18 CLIP (ViT-B/32)
0-1 ACC. 1 WG error | 0-1 ACC. 1 WG error |
Oracle Selection 100 21.1 403 100 13.3 104
Random Selection 293 111 28.1 403 393 405 19.0 403
Global Best 50.1 +0.7 25.1 +0.4 63.3 +1.2 16.0 +0.2
Regression 79.4 +0.5 23.8 +0.3 54.2 +0.9 16.1 +0.4
OOD-Chameleon 82.7 +0.8 23.5 +0.4 75.3 +0.7 15.6 +0.4

OfficeHome. We additionally verify our approach with OfficeHome (Venkateswara et al., 2017). In OfficeHome, the there
exists 65 classes of objects (such as Mug, Pen, Spoon, Knife, and other objects typically found in Office and Home settings.)
and each of the classes have samples in 4 different domains: Artistic images, Clip Art, Product images and Real-World
images. The samples of each domain and object pair are uneven.

We sampled tasks from OffceHome by randomly sampling pairs of domain and object (e.g. {pen, knife} in {Art,
Clipart}), and then collect the corresponding samples from OfficeHome. We created 100 tasks in total, and evaluate the
trained algorithm selector from CelebA on these tasks, in Table 17. The results show that OOD-Chameleon is still able to
select suitable algorithms, evidenced by the lowest worst-group error across the 100 tasks. This provides strong additional
support for the utility of our approach to select suitable algorithms across datasets and diverse types of shifts.
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Table 17. Results on algorithm selection for unseen OfficeHome tasks (worst-group error is shown, lower is better). Algorithm selectors
are trained on the meta-dataset generated from CelebA and evaluated on unseen OfficeHome tasks. ResNet18 and CLIP (ViT-B/32) refer
to the models used in the tasks.

Office-Home (ResNet) ‘ Office-Home (CLIP)

Oracle selection (14.8) (11.4)
Random selection 19.3 15.1
Global best 18.2 14.4
Naive descriptors 18.8 14.6
Regression 18.5 14.3
OOD-Chameleon 17.9 13.5

H. Additional Results on NLP Tasks

In Figure 18, we show a comparison with single-algorithm baselines, i.e. using the same algorithm for all tasks, on
CivilComments and MultiNLI tasks. Similar to vision experiments (Table 3), our adaptive selection performs much better,
confirming the premise that no single algorithm is a solution to all OOD scenarios.

Table 18. Comparison with static algorithm selection. Observations are similar to Table 3.

CivilComments MutliNLI
Methods BERT BERT (Finetuned) BERT BERT (Finetuned)
Alg. Selection ~ WGerror |  Alg. Selection ~ WGerror |  Alg. Selection ~ WGerror|  Alg. Selection WG error |

Oracle Selection 53.7 +o3 19.4 104 559 to.3 54.2 106
ERM 78.2 +0.4 28.2 +0.7 76.1 +0.6 68.2 +0.4
GI'OUPDRO 59.5 +0.3 24.0 40.2 62.2 +0.4 646 40.3
Logits adjustment 77.5 +0.5 229 192 77.6 +0.5 64.0 +0.5
Undersample 57.7 o5 21.6 +0.3 59.1 +0.2 572 403
Oversample 59.7 +o0.3 24.1 4o0.2 62.8 +o.5 63.5 0.7
OOD-Chameleon 55.8 +0.4 20.7 +0.2 58.3 +0.2 56.6 +0.2

I. Additional Results on Efficiency Considerations

The main point of training an algorithm selector is to amortize its cost in the long run. L.e. the selector is trained once to
generalize to unseen datasets and shifts, as addressed in our experiments.

I.1. Comparison with Ensemble, A Baseline with Much Higher Cost

In the paper, we compared baselines with similar costs to solve a downstream task. We now additionally compare our method
with an additional baseline of uniformly ensembling multiple methods’ predictions, whose computational requirement is
multiple times higher than our method for each new downstream task. Our method performs significantly better than this
much more expensive one, as shown in Table 19.

Table 19. Comparison between OOD-Chameleon and Ensemble.
‘ CelebA (ResNet) CelebA (CLIP) MetaShift (ResNet) MetaShift (CLIP)

Uniform ensemble 50.8 42.6 41.1 29.6
OOD-Chameleon 47.7 39.1 39.0 27.2

L.2. Generalizing from Small Datasets to Larger Ones

One potential of the algorithm selector is training on datasets with smaller data sizes and then using it to select suitable
algorithms on larger datasets at test time, which could further amortize the cost. Here we provide preliminary experiments
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on this front. The algorithm selector is now trained with datasets of size smaller than or equal to 1k and used to select
algorithms for datasets of size 2k and 3k. As shown in Table 20, we see that the algorithm selector still accurately predicts
suitable algorithms.

Table 20. Performance on CelebA with varying data sizes.

Data size ‘ CelebA (ResNet) CelebA (CLIP)
up to 1000 (i.e. results in Table 2) 75.0 78.5
2000 81.7 83.8
3000 80.4 79.3

This concurs with our hypothesis that, by training on a meta-dataset of datasets with a range of smaller sizes, the model can
learn to generalize to larger datasets by identifying patterns of the algorithms’ performance w.r.t data sizes. We already
showed (in Figure 3-right) that the variability in dataset size during training was critical.

J. Additional Details on the Decision Trees

Here we include more analysis when the algorithm selector is implemented by decision trees, which is omitted in the main
paper due to space constraints. In Figure 8 and Figure 9, we show the decision rules implemented by a (depth-3) decision
tree when directly training on the CelebA meta-dataset. Since the problem is a binary multi-label classification task, the
‘value’ part is a list of size (5, 2), and the rows correspond to ’ERM’, ’GroupDRO’, OverSample’, *Logits adjustment’,
"UnderSample’, respectively. One point that is not shown in the figures is that the final predictions are achieved by selecting
the algorithm with the largest logit/probability (as mentioned in Section 2.2) when several of them are favorable. From the
two figures, we see that different pieces of the descriptor are important in different cases: when ResNet-18 is used to run the
algorithms, data size n, degree of label shifts d;s and the availability » are important to inform the algorithm selection; while
the degree of spurious correlation d., degree of label shifts d; and the availability r are important in the case of CLIP.

Decision trees trained to mimic (the best-performing) MLP algorithm selectors. To understand what has been learned
by the MLP-parametrized algorithm selector, we also investigate training a decision tree to directly mimic the function
implemented by the MLP. In our experiments, it gives a similar performance to the previous version of the decision tree, but
it has the advantage of understanding the decision rule as a standard multi-class classification (hence the decision rules are
more understandable). Specifically, we obtain the predictions of the trained MLP (the predictions are one-hot since we pick
the algorithm with the highest predicted logit/probability, as mentioned in Section 2.2) on the meta-dataset and use them to
train a decision tree. To make the trees more interpretable, we convert the degree of shift by |d(.) — 0.5| (where | - | is the
absolute value) since by design the strength of shift is only identified by how far it is from 0.5 (balanced). In Figure 10 and
Figure 11, we show the learned trees. We can see clearly how the different data characteristics determine the choice of the
best algorithms. See Section 4.5 on more discussions on these two figures.

Overall, these decision rules of the tree can further help practitioners understand the applicability of the existing algorithms.
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Figure 8. Visualization of a algorithm selector implemented as a decision tree, trained on the CelebA meta-dataset with ResNet18
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Figure 9. Same as Figure 8, with CLIP (ViT-B/32) architectures.
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Figure 10. Visualization of a decision tree algorithm selector trained to mimic the one-hot predictions (obtained by selecting the top
logits) of the best-performing (MLP) algorithm selector obtained from CelebA meta-dataset with ResNet18 models. Since it is trained on
one-hot labels, this version of the tree thus has the advantage of understanding the decision rule as a standard multi-class classification. To
make the decision rule even more interpretable, we convert degrees of shift with |d(.y — 0.5| where | - | is the absolute value. This accounts

for the fact that, by design, the strength of shift is only identified by how far it is from 0.5 (balanced). See Figure 4 for a simplified version
of this tree.

djg <0.195
entropy = 2.322

class = Logits Adjustment

Tru:/ Na‘lse

dy. <0.285 dg. <0.26
entropy = 2.294 entropy = 1.745

class = ERM class = Undersample

i ;

.

djy <0.09
entropy = 2.255

class = ERM

)

class = Logits Adjustment

r=1.564
entropy = 1.844

r<1273
entropy = 1.51

class = Undersample

L\

/

N

r=<0.987
entropy = 1.862

class = GroupDRO

entropy = 2.195

class = ERM

entropy = 2.26

class = Oversample

entropy = 1.509

class = Undersample

entropy = 1.862

class = Oversample

entropy = 1.05

class = Undersample

entropy = 1.692

class = Logits Adjustment

Figure 11. Same as Figure 10, with CLIP (ViT-B/32) architectures.
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