Learning CAD Modeling Sequences via Projection and

Part Awareness
Yang Liu Daxuan Ren
Beijing Institute of Technology Nanyang Technological University
China, Beijing Singapore
liuyang@bit.edu.cn daxuan001@e.ntu.edu.sg
Yijie Ding Jianmin Zheng
Nanyang Technological University Nanyang Technological University
Singapore Singapore
yijie002@e.ntu.edu.sg ASIMZhengOntu.edu.sg
Fang Deng *

Beijing Institute of Technology
China, Beijing
dengfang@bit.edu.cn

B | csoumg=Qm@— | § CROo~E
@@éOWQ@@E@QEEm@AmXH@
—To@p@Ela | @ ¢« 8JPe-Voxg @
Le—[= [JOc=li-=[i Lemiea
~| ~e@== p A RT OcmEera
Eiilm]cn CAD O =a m &M
soHe 0ol —Dellpgh—-0eQ 10
~ T a@Ec@= BE==14R]
Al Bl=d=QU~§ Qo@—ueF
200%™, 0lo0E=H=n@® o m@==

Figure 1: CAD Library reconstructed by PartCAD

Abstract

This paper presents PartCAD, a novel framework for reconstructing CAD modeling
sequences directly from point clouds by projection-guided, part-aware geometry
reasoning. It consists of (1) an autoregressive approach that decomposes point
clouds into part-aware latent representations, serving as interpretable anchors for

*Corresponding author (dengfang @bit.edu.cn)

Preprint. Under review.

CAD generation; (2) a projection guidance module that provides explicit cues about
underlying design intent via triplane projections; and (3) a non-autoregressive de-
coder to generate sketch-extrusion parameters in a single forward pass, enabling
efficient and structurally coherent CAD instruction synthesis. By bridging geomet-
ric signals and semantic understanding, PartCAD tackles the challenge of recon-
structing editable CAD models—capturing underlying design processes—from 3D
point clouds. Extensive experiments show that PartCAD significantly outperforms
existing methods for CAD instruction generation in both accuracy and robustness.
The work sheds light on part-driven reconstruction of interpretable CAD models,
opening new avenues in reverse engineering and CAD automation.

1 Introduction

Computer-Aided Design (CAD) plays a central role in modern industrial manufacturing and product
development [1]]. While CAD models can be represented by point clouds, meshes, boundary represen-
tations (B-Reps), and constructive solid geometry (CSG), these representations primarily capture the
final geometry rather than the generative design process. In contrast, the modeling sequence represen-
tation defines the model through a sequence of modeling commands such as sketching, extrusion, and
Boolean operations that encode not only geometric construction but also high-level design intent and
the underlying semantic logic. These modeling sequences are fundamental for supporting editability,
version control, and downstream analysis [2]. However, recovering such sequences from raw 3D
data, especially from unstructured inputs like scanned point clouds, remains a challenging problem.
Manual reconstruction is labor-intensive and requires substantial domain expertise [3} 4} 5]]. Thus,
automating the conversion from point clouds into editable modeling workflows offers transformative
potential for reverse engineering, redesign, and knowledge transfer in CAD systems [6} [7].

This paper focuses on converting 3D point clouds into ordered parametric instructions—such as
sketches (e.g., line, arc, circle) and operations (e.g., extrusion) [8| 9]—that can be replayed or
edited in standard CAD environments [10} [11} [12]]. The problem by nature lies at the intersection
of geometric reasoning, program induction, and sequential learning. Recent works have framed
this as a sequence prediction problem, applying encoder-decoder architectures to map geometric
inputs to command sequences [13]. While effective for simple shapes, these approaches often fail
to scale to real-world models that require reasoning over intermediate constructions, hierarchical
dependencies, and geometric constraints. To mitigate this, other methods incorporate geometric
priors or sketch-based abstractions to guide the generation process [[14]. More recent hybrid models
combine low-level geometric cues with high-level structure to improve interpretability and output
validity, though many of them still focus on fitting continuous primitives rather than generating
symbolic instructions, limiting their ability to capture procedural intent [[15]].

Despite substantial advances in CAD modeling sequence generation, current techniques still exhibit
notable limitations. For instance, many approaches treat raw geometric input as a monolithic entity,
overlooking the procedural structure and hierarchical dependencies inherent to CAD modeling,
which in turn leads to inefficiencies in capturing design intent and guiding accurate reconstruction.
Another challenge lies in the sequential reasoning of CAD operations. Fully autoregressive methods
ensure sequential consistency but are highly vulnerable to error accumulation, where early mistakes
propagate and compound over subsequent steps [[16,[17]]. In contrast, non-autoregressive approaches
improve efficiency by generating sequences in parallel, but often struggle to capture hierarchical
dependencies and structural constraints, leading to incoherent or invalid outputs [[18|19]. In addition,
current methods lack explicit mechanisms to align high-level geometric features with stepwise
modeling instructions, limiting their ability to produce semantically consistent instructions. The
inherent one-to-many mapping between geometry and valid command sequences further introduces
ambiguity, complicating both learning and inference. These challenges lead to a fundamental question:
How can raw geometry be structured and interpreted to reflect the underlying design process and
guide the generation of accurate and semantically meaningful CAD instructions?

To answer this question, we introduce PartCAD, a semi-autoregressive framework that generates
structured CAD modeling instructions by leveraging implicit part abstractions and projection-guided
geometry. Rather than treating raw input as a whole, PartCAD autoregressively decomposes the
point cloud into a sequence of part-aware latent representations, each semantically aligned with a
simple modeling step, thereby providing procedural structure and capturing design intent. These

latents serve as anchors for CAD generation, guided by canonical triplane projections that explicitly
encode view-aligned geometric cues. To decode latents into parametric instructions, PartCAD adopts
a non-autoregressive decoding strategy that produces precise sketch—extrusion parameters in a single
forward pass. Several key techniques are introduced to bridge low-level geometry and high-level
semantics for coherent and interpretable CAD reconstruction. The main contributions of our work
include:

* PartCAD, a semi-autoregressive framework for parametric CAD generation, which decomposes
input point clouds into procedurally aligned part-aware latents and generates structured modeling
instructions with triplane projection guidance;

* an adaptive projection strategy to refine view-aligned geometry, and a hierarchical KNN aggrega-
tion kernel to extract robust triplane features;

* aprojection-guided decoding mechanism that integrates part-level semantics with both point-level
local features and global geometric context, enabling accurate CAD instruction generation in a
single forward pass.

Extensive experiments demonstrate that PartCAD achieves superior performance in learning CAD
instruction sequences and generalizes well across domains (see Figure [T for some models recon-
structed by PartCAD). The proposed approach provides new insights into reconstructing editable and
semantically meaningful CAD programs from raw geometry.

2 Related Works

Shape Representations: Various low-level shape representations such as point clouds, voxels, and
meshes are widely used to describe 3D geometry. These discrete formats have become standard
in modern 3D vision pipelines, supporting substantial progress in tasks like feature extraction,
segmentation, and classification [20} 21} 22} 23| 24]. With advances in geometric learning, recent
techniques enable translation across representations, for example, reconstructing meshes from point
clouds [25| [26] or converting voxel grids into implicit fields [27, 28]. Their outputs, however,
lack explicit structure and editability, and fail to convey the parametric representation needed for
downstream design, analysis and manipulation. Our goal is to translate raw geometric inputs,
particularly point clouds, into structured parametric representations suitable for procedural modeling.

Parametric CAD Learning: Parametric modeling aims to learn structured representations of CAD
models, with Constructive Solid Geometry (CSG) and Boundary Representation (B-Rep) being two
widely adopted paradigms. CSG constructs 3D shapes by hierarchically combining primitives (e.g.,
cubes, spheres, cylinders) through Boolean operations (e.g., union, intersection, difference), making
it well-suited for procedural tasks involving regular geometries and well-defined topologies. Recent
works have applied deep neural networks to infer CSG trees for inverse or generative design, showing
promising results on synthetic or simple shapes [29! [30, [31]]. However, its reliance on a limited
primitive vocabulary restricts expressiveness in modeling complex surfaces and high-level design
intent. In contrast, B-Rep explicitly represents geometry through vertices, edges, and faces, offering
high fidelity in capturing intricate geometric and topological details. Combined with deep learning,
recent methods have exploited B-Rep using graph neural networks and Transformer-based models
to learn spatial and connectivity-aware features [32} 33| 34} 135,136, [37]]. Nevertheless, learning with
B-Rep remains challenging due to its strict consistency constraints and sensitivity to topological
variations or geometric imperfections. Moreover, B-Rep focuses on final geometry rather than
the design process, limiting its capacity for sequential reasoning and intent-aware editing. Unlike
these works, we focus on learning parametric instruction sequences (e.g., sketch, extrusion, Boolean
operations) that describe 3D shapes through a step-by-step modeling process. These instructions
compactly encode both geometric structure and design logic in an interpretable form, aligning
naturally with procedural modeling workflows.

CAD Instruction Language Generation: Instruction language offers a procedural representation
of 3D modeling, where shapes are incrementally constructed via sequences of semantic commands.
Rather than directly defining geometries, CAD instruction captures the logic of the actual modeling
workflows, offering high interpretability and editability [38]]. Early methods used handcrafted rules,
templates, or grammars to encode domain-specific priors. Recently, generative paradigms have
emerged, leveraging the semantic and sequential nature of instruction sequences under supervised or

unsupervised learning [39} 40, 41]]. Autoencoder-based methods encode entire instruction sequences
into compact latent vectors and decode them holistically, capturing global dependencies and improving
stability [42]. Seq2Seq models formulate instruction generation as conditional sequence translation
from multimodal inputs (e.g., sketches, images, point clouds) to command sequences, aided by
attention mechanisms for long-range dependency and cross-modal alignment [43}144]]. Autoregressive
models further enhance local control and syntactic consistency by generating instructions token-by-
token [45) 146l 47, 48]]. Additionally, large-scale pre-trained models (e.g., large language models or
multimodal large models) have been introduced into CAD instruction generation [49} 50, 51,152, 53]
In contrast to existing paradigms, we propose a semi-autoregressive framework that first derives
part-aware latent representations in an autoregressive manner, followed by a projection-guided non-
autoregressive decoder to generate CAD instructions in a single forward pass. This design enables
precise semantic reasoning alongside efficient and structurally coherent instruction generation.

3 PartCAD for Inferring Modeling Sequences from Point Clouds

Step 1
21 e - — valid part «--» [1 .
. 2= L 3 Part Decomposition
f;z‘,«i«l @3 » < | - |8|— veldpart <
pcap | —> Part B S
> [2 < . > valid part «--» [1
Encoder Decoder ' l 5
A z < > |3 | — validpart «--»
H : E H
o
e B -] - invalid <o [o] Lyal
Step 3 CAD Instruction Generation
Predictor
Autoregressive Update Local
Lot Feature
Aggregation aucny

Step 2 Projection Guidance Part ,_a;em

i

,3 D.P;{nt Parameter Decoder
rojection {1
: > 8B 7
zy
- XY Projection(s) — I3 Global
- R | reaue |-
i Interaction
. -———‘-5j +
Adapt{ve i fe ey
Sampling) PC2D Jn
i e ; value Extrude KV i Sketch KV
] Encoder | " Projection Feature
XZ Projection(s) l
X ~ o (s ot [656 8 end)
EEFANEEE — ; ES
TR e N e || G | :
o1 {1l " + et i skt

- ext H —
valid @ @ duplicate O ’—‘ . i
point @@ paint YZ Projection(s) fpezd 1,142, 139, 161, } J

Figure 2: Overview of PartCAD Architecture. Starting from a point cloud &X', PartCAD generates

parametric CAD instructions in three steps: (1) Part Decomposition extracts a global point cloud

feature f}ff?’d and autoregressively decodes it into a sequence of part latents z1, . . . , zx; (2) Projection

Guidance predicts an orientation r,, for each z,, and derives canonical-aligned projections used to
extract triplane features fPe2d = {f2v 2z (uz1. (3) Instruction Generation decodes each part
latent by leveraging its projection features to generate instruction parameters {(c5<t, ¢oxt)} 2V,

Given the input point cloud X, our goal is to generate a sequence of structured parametric instructions
C = {cn})_,, where each sketch—extrusion pair compactly describes a constructive step in the
modeling process. Formally, each instruction ¢,, = (ckt, ¢¢**) consists of two components: ¢kt
encodes 2D primitives (line, arc, and circle in our work) to define the profile geometry of the sketch,
while &' specifies the corresponding solid operation via parameters such as orientation, origin,
extrusion distance, scaling, and Boolean operation type. Following [42} 43| 48], both components are
represented as discrete intervals obtained by quantizing continuous modeling parameters into fixed

vocabularies. More details about CAD sequence representation are provided in Appendix [A.1]

Inspired by the compositional nature of human CAD modeling, we introduce PartCAD, a semi-
autoregressive framework that translates unstructured point clouds into structured parametric in-
structions. Instead of treating instruction generation as a flat sequence prediction task, PartCAD
decomposes the input geometry into part-wise latent representations, each grounded in implicit design
intent. Given that design details are inherently embedded within canonical planes and different
perspective views encode distinct geometric and topological features, we extract triplane projection
features to provide low-level geometric guidance for each part latent. Finally, each part latent is

decoded leveraging local- and global-level features, enabling accurate CAD instruction generation
in a single forward pass. The rest of this section elaborates on these key techniques along with
optimization strategies. Further implementation details are provided in Appendix [A.2]

Autoregressive ImpliCit Part Decomposition: i Part Latent Decomposition Instruction Design Intent
Real-world CAD models are inherently compo- s e L |
sitional, comprising multiple parts with explicit

semantics and ordered construction logic. To
model this structure, we propose an autoregres-
sive formulation that incrementally decomposes
the input geometry into semantically meaning-

T
ful latent representations. Given a global feature —

P34 extracted from the input point cloud X,

the part decoder is initialized with a special start
embedding z; and sequentially generates a se-
ries of implicit part latents {z, }._,, each con-
ditioned on the previously decoded latents and
the shared global context. As shown in Figure 3]
each latent acts as a semantic anchor for gen-
erating a corresponding modeling instruction.
Formally, the generation process follows:

— -

Point Clouds

z
h.x

- -

Iy CAD Solid

Figure 3: Given a 3D point cloud, PartCAD pre-
dicts a sequence of implicit part latent z,, each
encodes a part-level decomposition and is aligned
with a modeling instruction that conveys explicit
design intent.

BIG

N
P(Z| f};ch) = H P(zp | Z<mf§,’C3d) 6]
n=1

To regulate this autoregressive process, we introduce a part discriminator that classifies whether each
generated latent corresponds to a valid modeling operation. The discriminator provides auxiliary
supervision to distinguish valid construction steps from redundant slots, enhancing instruction
alignment and termination control.

Triplane Projection Guidance: Inspired by Initial Projection Normal Filtering Grid Sampling
the observation that human CAD modeling of- 'y ;
ten sketches in canonical planes and visual- _ /Lj?(f\@ G

izes extrusions from side views, we propose a ’ X

projection-guided approach that converts 3D ge- ?T 7 M

ometry into structured 2D features for instruc- e e

tion decoding. These triplane projections cap- £%°

ture view-specific design intent and serve as an] i ? p

effective interface between raw point clouds and
parametric instruction synthesis. To this end,
we estimate an orientation from each part latent Figure 4: Illustration of adaptive projection. From
zn, rotate the input point cloud accordingly, and left to right: initial projection, after normal filter-
project it onto three canonical planes to extract ing, and final result with adaptive grid sampling.
aligned 2D features.

However, direct projections often introduce artifacts, such as points clustering along extrusion faces
and sparse coverage in curved regions. To mitigate this, we propose an adaptive projection strategy
that combines normal-based filtering and adaptive grid sampling. As illustrated in Figure 4] the
former removes points whose surface normals deviate from the projection direction (thresholded
by 6normal), While the latter resamples the filtered points into uniform grids, enforcing a spacing
constraint dgyiq to ensure balanced coverage and reduce redundancy.

To effectively capture structural cues from projection points, we design a hierarchical KNN aggre-
gation kernel tailored for triplane projections. After projection, geometrically distinct 3D regions
may collapse into adjacent 2D neighborhoods, making naive Euclidean KNN prone to ambiguity.
To address this, our kernel progressively refines k neighbor selection in three stages: (1) select the
nearest 3k candidates by 2D Euclidean distance; (2) filter to 2k points with similar radial distances
from the projection centroid; and (3) retain the final £ neighbors with the most similar surface normals
to enforce consistency. This results in a geometry-aware local neighborhood that preserves surface
semantics for downstream feature extraction. Formally, the final neighborhood index is defined as:

idxgna1 = TopKy, (|n; — nj[, j € TopKy(|ri — 75|, j € TopKa([pi — p;11))), (@)

where p; denotes the 2D projected coordinates, n; the surface normal, and r; the radial distance to
the centroid. After constructing the refined neighborhoods, projection features are extracted using
three EdgeConv-style layers. Empirically, our hierarchical kernel enables more accurate encoding of
sketch and extrusion structures. See Appendix [B|for additional comparisons and visualizations.

CAD Instruction Generation: Given the part-level representations from autoregressive decompo-
sition, our goal is to decode complete parametric instructions in a single forward pass. As shown
in Figure [2| (bottom right), we leverage the semantics encoded in each part latent z,,, as well as
the geometric cues preserved in its corresponding triplane projections fPe2d = {f2v_frz fyz}
Specifically, we employ two dedicated decoder branches: the top-view feature f;¥ is used for sketch
decoder Dgyy, while the side-view features f'* and f¥ are concatenated to guide the extrusion

decoder Dey. Mathematically, the generation process can be formulated as:

Cikt = Dskt(2n7 fﬁy)a CZXt = DEXt(Zn’ [ﬁz; f;llz]) (3)

To facilitate instruction decoding from part latents, we introduce two interaction mechanisms that
connect semantic embeddings with features extracted from triplane projections. First, a cross-
attention (CA) module aligns each part latent z,, with its associated point-level projection features
f, € RYV*d (o enable local feature aggregation. Second, a self-attention (SA) operates on global
features f,, = MaxPool(f,,) € R1*4 to facilitate contextual interaction.

CA(zp,f,) = softmax(anéa(anf{a)T/\/ di) (£, W), “4)
SA(f,) = softmax(fnWéa(anf?)T/\/ di) (E,W3), &)

where W&, Wg2, Wi and W&, W2, Wi# denote the learnable projection matrices, softmax is
applied row-wise across the attention scores, and dy, is the feature dimension of each head. The
output embeddings of the above interactions serve as inputs to the final decoding: the CA results
provide the query (), while the SA outputs act as the key and value K/V.

FW « LN(FFN(LN(F{~Y 4 Dropout(MHA(F{~Y K, V,,))))), [=1,2 (6)

Here, Fr(LO) = @, MHA denotes multi-head attention, LN is the Layer Normalization, and FFN is
the feed forward network. Finally, the output embeddings after the second decoder layer are fed into
two separate linear heads to generate the complete instruction:

Cn = (MLPsketch(Fy(lZSkEtCh)), MLPextruSion(FqgQ’EXtrUSion)))7 C= {Cn}ﬁle (7)

Optimization: As shown in Figure 2| we employ a multi-objective loss to jointly supervise the
training process. First, the Parameter losses (Lgyy and Lyt), defined as position-wise cross-entropy
over discretized instruction tokens, supervise sketch and extrusion prediction at each modeling step.
Second, the Rotation loss (L), formulated as cross-entropy over discretized orientation tokens,
encourages accurate estimation of canonical-aligned rotations for reliable triplane projection. Last,
we propose a Validity loss (L,1), implemented as binary cross-entropy between predicted validity
scores and one-hot labels, to guide the part decoder in distinguishing meaningful construction steps.
These labels indicate whether each sequence in the ground-truth instruction corresponds to a valid
modeling operation. The overall training objective is the weighted sum of the above components:

Etotal = Asktﬁskt + /\extﬁext + /\rotﬁrot + /\valﬁvah (8)

where Agkt, Aext, Arot and Aya1 are weight coefficients controlling the contribution of each term.

4 Experiments

Dataset: We train and evaluate our model on the DeepCAD dataset [42], and further perform
cross-dataset validation on the Fusion 360 Gallery [[12]. Both datasets provide executable modeling
instructions that can be rendered into 3D geometry via standard CAD kernels. Following prior
work [43]], we remove duplicate data based on geometry similarities, yielding ~ 140k training and
~ Tk test/validation samples. We generate point clouds by uniformly sampling 2,048 points from
the normalized CAD model. Instruction parameters are quantized to 8 bits, and each sequence is
organized into extrusion-sketch pairs (see Appendix [A.T]for details).

Implementation and Training: The latent dimension in PartCAD is set to 512. We use k = 40
neighbors for 3D point cloud encoding and &£ = 60 for projection feature extraction. For adaptive
point cloud projection, we set the normal threshold ¢,0rma1 = 0.5 and grid spacing dgriq = 1 X 106,
The model is trained for 200 epochs with a batch size of 32 using the AdamW optimizer [54]] (initial
learning rate 1 x 10~%) and an ExponentialLR scheduler. Loss weights are set as Mgt = 2, Aext = 1,
Aval = 5, and Aoy = 1. All experiments are conducted on 8 NVIDIA A100-40GB GPUs, with each
training run taking around 18 hours. During inference, instructions are generated by top-1 decoding
over the autoregressively predicted part latents. Additional details are provided in Appendix[A.2]

Evaluation metrics: To comprehensively evaluate the quality of the generated CAD sequences and
corresponding 3D shapes, we adopt three primary metrics: Chamfer Distance (CD), F1 Score, and
Invalid Rate (IR). CD measures geometric similarity as the bidirectional distance between predicted
and ground-truth shapes, each uniformly sampled with 8,192 points (scaled by 102 for readability).
We report both mean and median CD to reflect overall accuracy and robustness. Following [49) 48]],
we compute F1 scores for sketch and extrusion parameters to evaluate instruction-level consistency
using the Hungarian algorithm [55]. Moreover, the ratio of predictions that fail to generate valid
geometry using PythonOCC [10] is reported as the IR.

Baselines: We comprehensively compare our method with several representative CAD genera-
tion approaches, categorized into sequence generation-based [42, 43| and primitive fitting-based
[[15) 140, 14 [13]] methods. For sequence-based baselines, we evaluate the generated construction
instructions directly. For primitive-based methods, which predict geometry without explicit command
sequences, we assess performance using CD and IR to measure geometric fidelity and modeling
validity. All baselines are trained, fine-tuned, and tested using their official implementations, ensuring
fair comparison against strong existing methods. Full implementation details are provided in the

Appendix [A.3]
4.1 Evaluation Results

Design Instruction Generation Results: Table[I|reports the quantitative results of CAD instruction
generation on the DeepCAD dataset. The experiments demonstrate that our method outperforms all
sequence generation-based methods across all metrics. For instruction parameter indicators like F1
and IR, the results show that our method achieves more accurate parameter recovery with minimal
sequence-level errors. For geometric metrics such as median and mean CD, the results show that our
method yields more accurate shape reconstruction with higher fidelity to the ground-truth geometry.

Table 1: Quantitative results of sequence generation-based methods on the DeepCAD dataset [42]].
We report F1 scores for sketch parameters (Line, Arc, Circle) and extrusion parameters (Extrusion),
CD (mean and median) for geometric fidelity, and IR for modeling validity.

F1 Score CD (x10%)
Methods Line 1 Arc T Circle T Extrusion 1 Mean | Median | R |
DeepCAD [42] 69.37 15.45 60.26 87.56 44.53 17.49 8.51
DeepCAD™ [42] 71.54 18.50 58.13 87.88 39.65 8.33 5.39
TransCAD [43] 75.03 40.52 73.89 89.17 34.54 5.67 3.60
PartCAD (Ours) 82.82 56.06 81.06 95.56 4.93 0.238 0.91

We also compare our method with primitive Table 2: Quantitative results of primitive fitting-

fitting-based approaches in terms of geometric pased methods on the DeepCAD dataset [42] with
fidelity and modeling validity. As reported in median CD and IR metrics.

Table 2} our method achieves a lower median
CD and IR, indicating more accurate geometry Methods Median CD (x10%) | IR
and fewer invalid predictions. The higher F1

scores indicate accurate recovery of instruction Point2Cyl [1)] 0.493 3.72

. ExtrudeNet [[14] 0.371 24.51

parameters, while lower CD reflects that the gen- ¢g-ap [@0] 0.355 792

erated CAD models are geometrically consistent HNC-CAD [13] 0.841 6.94
with the input point clouds. Figure [3] presents

PartCAD (Ours) 0.238 0.91

qualitative comparisons with all baselines. As
illustrated, our method shows accurate and struc-
turally consistent reconstructions even on challenging cases involving complex sketches and multi-part
assemblies. In contrast, sequence generation baselines (DeepCAD, DeepCAD*, TransCAD) fail to

generate valid instructions or produce inconsistent geometries in some examples, while primitive
fitting-based methods (HNC-CAD, SECAD, Point2Cyl, ExtrudeNet) struggle to preserve fine-grained
details. More visual results are provided in Figure[I]and Appendix [C.1]

Cross Dataset Experiments: Following the Table 3: Quantitative results of cross-dataset exper-

protocol of prior works [39] 48| [43], we con- jments on the Fusion 360 Gallery [12], measured
duct the cross-dataset evaluation on Fusion 360 ip terms of median CD and IR.

Gallery to assess generalization perfor-
mance. Results presented in Table [3]show that Methods Median CD (x10%)] IR}
PartCAD significantly outperforms all sequence
generation-based methods in both median CD

Methods based on Primitive Fitting

and IR, reducing the median CD by an order Eii?;ig&t 8;‘?2 233'2885
of magnitude compared to baselines. While the ggcap 0.433 749
median CD is slightly higher than that of some gNC-CAD 3.785 6.83

primitive fitting-based methods, which bene-

fit from direct primitive-level alignment, our Methods based on Sequence Generation

method can provide parametric design history gz:ggig* Zigg 266'9208
with high validity, enabling more interpretable TransCAD 39 24 4.92
and editable CAD modeling. Representative re-

PartCAD (Ours) 1.130 1.31

sults are shown in Figure [6] where our method
reconstructs more complete and faithful CAD
models compared to all baselines, better capturing the underlying geometry from input point clouds.

Input GT Ours DeepCAD DeepCAD" TransCAD HNC-CAD SECAD Point2Cyl ExtrudeNet

NN \“ N NN

— < QU PN PN Py PN
- R
~ .

l

o o ‘ Invalid \ « <~
T e ﬁm]l gy gl A
C PP O ~ S S PSS

Figure 5: Qualitative results on the DeepCAD dataset [42]]. Each row shows input point clouds (left)
and the reconstructed CAD models by different methods (right). Compared with baseline methods,
PartCAD produces geometrically accurate and structurally coherent shapes from the input point
cloud, effectively preserving fine-grained details and part-wise layout.

Real Scan Experiments: To evaluate PartCAD . B on 4
in real-world applications, we 3D-printed sev- Scaming. Yoy QP N i
eral CAD models and captured their scans using m - . — J

a SIMSCAN-42 3D laser scanner. As shown = -
in Figure[7} PartCAD successfully reconstructs ~ Figure 7: Experiments on real-life scanned point
geometrically faithful CAD models from the clouds (middle) show our method accurately re-
scanned point clouds. Furthermore, to evaluate constructs real-world CAD models.

the robustness of PartCAD under imperfect input conditions, we conduct additional experiments to
assess the impact of degraded point cloud quality, including surface perturbations (e.g., noise con-
tamination) and partial inputs (e.g., missing regions or occlusions). Detailed settings and qualitative

visualizations are provided in Appendix[C.2]

Input GT Ours DeepCAD DeepCAD" TransCAD HNC-CAD SECAD Point2Cyl ExtrudeNet

« “ “
R RN
T

VI -veee
i i N : i o £

Pe=-9 -~-00E0Q L
COeW - Q¥ Y ¢

Figure 6: Qualitative results on the Fusion 360 Gallery [[12]. Our approach produces structurally
consistent CAD reconstructions with fine-grained geometric details. In contrast, DeepCAD* and
TransCAD occasionally fail to generate valid models, while HNC-CAD, SECAD, Point2Cyl, and
ExtrudeNet mainly recover coarse outlines but struggle to capture precise design features, often
resulting in shape distortions or noisy artifacts.

4.2 Ablation Study

To analyze the contribution of each core component in the proposed PartCAD framework, we conduct
ablations by selectively disabling key modules and report the results in Table[d In the part-awareness
branch, we remove the autoregressive part decoder and discriminator (w/o Part Decomp.), forcing
direct orientation prediction from the global point cloud feature. This ablation results in severe
degradation across all metrics, including a marked drop in F1 scores, increased mean and median
CD, and a higher IR. A similar trend is observed when discarding triplane projection guidance (w/o
Proj. Guidance) and relying solely on the global point cloud features. Notably, although retaining
projection guidance improves the validity of generated instructions (declining IR), disabling adaptive
sampling (w/o Adapt. Proj.) or replacing the hierarchical KNN kernel with standard Euclidean KNN
(w/o Hier. KNN) leads to noticeable drops in parametric performance (F1) and geometric fidelity (CD).
This indicates that these two components are essential for projection guidance to provide effective
geometric cues. Finally, in the instruction decoding branch, we remove local feature aggregation
(w/o Local Feat. Aggreg.) or disable global feature interaction (w/o Global Feat. Interact.). It can be
noted that omitting either attention mechanism leads to higher CD and lower F1 scores, underscoring
the necessity of both local and global information for accurate CAD instruction generation. Visual
results of the ablation experiments can be found in Appendix [C.3]

Table 4: Ablation study results on the DeepCAD dataset [42]. We report F1 scores for sketch
(weighted average over Line, Arc, Circle) and extrusion parameters, Chamfer Distance (CD) for
geometric fidelity, and Invalid Rate (IR) for instruction-level correctness.

. F1 Score 1 CD (x10%) |
Group Model Variant Sketch Extrusion Mean Median R}
Part Awareness w/o Part Decomp. 59.51 72.63 15.34 1.987 8.01
w/o Proj. Guidance 65.53 87.23 14.59 1.062 8.94
Projection Guidance w/o Adapt. Proj. 61.33 73.46 13.42 1282 5.79
w/o Hier. KNN 64.71 78.93 10.27 1.384 427

w/o Local Feat. Aggreg. 75.58 95.25 5.639 0.313 1.33
w/o Global Feat. Interact. 73.61 94.63 6.301 0.482 1.51

PartCAD (Full Model) 80.01 95.56 4.93 0.238 091

Instruction Generation

5 Discussions

Conclusion: We have introduced PartCAD, a semi-autoregressive framework designed for generating
structured CAD modeling instructions from point clouds. Our contributions include an implicit part
decomposition strategy that autoregressively derives interpretable part representations from point
clouds, a projection-guidance module that provides explicit geometric cues via triplane features,
and a non-autoregressive decoder that generates parametric instructions by fusing point- and part-
wise features. Extensive evaluations show that PartCAD outperforms existing baselines, achieving
significant improvements in both parametric accuracy and geometric fidelity.

Limitations and Future Work: There are several limitations in our current work. First, the
performance of the model is inherently constrained by the size and diversity of the training datasets.
Second, the mapping from geometry to parametric sequence can be intrinsically one-to-many,
introducing ambiguity that complicates both training and evaluation. Third, generating accurate
modeling instructions becomes increasingly challenging as object complexity grows, particularly
for geometrically intricate or hierarchically unstructured models. Some failure cases are discussed
in Appendix [D} In future, we plan to delve into more advanced reasoning mechanisms and richer
representations to resolve the ambiguity, optimize the instruction generation, and support intricate
shape designs, thereby enhancing the robustness and applicability of PartCAD.

Broader Impact: While this work has the potential to support educational tools for engineering and
design students and lower the barrier to entry for CAD design, its focus on sketch-extrusion alone
may constrain design creativity.

6 Acknowledgments

This work was supported in part by the National Natural Science Foundation of China (NSFC)
under the Distinguished Young Scholars Program (Grant 62025301), the NSFC Basic Science Center
Program (Grant 62088101), the MOE AcRF Tier 1 Grant of Singapore (RG12/22), and the China
Scholarship Council (Grant 202406030027).

10

References

(1]

(2]

(3]

[4

—_

[5

—

[6

—_

(7]

(8

—_—

(9]

(10]
(11]

(12]

[13]

(14]

[15]

(16]

(17]

(18]

(19]

Mikell Groover and EWIJR Zimmers. CAD/CAM: computer-aided design and manufacturing. Pearson
Education, 1983.

Jorge D Camba, Manuel Contero, and Pedro Company. Parametric cad modeling: An analysis of strategies
for design reusability. Computer-aided design, 74, 2016.

Gopal Sharma, Difan Liu, Subhransu Maji, Evangelos Kalogerakis, Siddhartha Chaudhuri, and Radomir
Méch. Parsenet: A parametric surface fitting network for 3d point clouds. In Proceedings of the European
conference on computer vision (ECCV), 2020.

Xiaogang Wang, Yuelang Xu, Kai Xu, Andrea Tagliasacchi, Bin Zhou, Ali Mahdavi-Amiri, and Hao
Zhang. Pie-net: Parametric inference of point cloud edges. In Advances in neural information processing
systems (NeurIPS), 2020.

Lequan Yu, Xianzhi Li, Chi-Wing Fu, Daniel Cohen-Or, and Pheng-Ann Heng. Ec-net: an edge-aware
point set consolidation network. In Proceedings of the European conference on computer vision (ECCV),
2018.

Dimitrios Mallis, Ali Sk Aziz, Elona Dupont, Kseniya Cherenkova, Ahmet Serdar Karadeniz, Moham-
mad Sadil Khan, Anis Kacem, Gleb Gusev, and Djamila Aouada. Sharp challenge 2023: Solving cad
history and parameters recovery from point clouds and 3d scans. overview, datasets, metrics, and baselines.
In Proceedings of the IEEE/CVF International Conference on Computer Vision (ICCV), 2023.

Mohsen Yavartanoo, Sangmin Hong, Reyhaneh Neshatavar, and Kyoung Mu Lee. Cnc-net: Self-supervised
learning for cnc machining operations. In Proceedings of the IEEE/CVF Conference on Computer Vision
and Pattern Recognition (CVPR), 2024.

Yaroslav Ganin, Sergey Bartunov, Yujia Li, Ethan Keller, and Stefano Saliceti. Computer-aided design as
language. In Advances in Neural Information Processing Systems (NeurIPS), 2021.

Wamiq Para, Shariq Bhat, Paul Guerrero, Tom Kelly, Niloy Mitra, Leonidas J Guibas, and Peter Wonka.
Sketchgen: Generating constrained cad sketches. In Advances in Neural Information Processing Systems
(NeurlPS), 2021.

Juergen Riegel, Werner Mayer, and Yorik van Havre. FreeCAD. https://www.freecad.org/, 2024.

Changjian Li, Hao Pan, Adrien Bousseau, and Niloy J Mitra. Free2cad: Parsing freehand drawings into
cad commands. ACM Transactions on Graphics (TOG), 41(4), 2022.

Karl DD Willis, Yewen Pu, Jieliang Luo, Hang Chu, Tao Du, Joseph G Lambourne, Armando Solar-
Lezama, and Wojciech Matusik. Fusion 360 gallery: A dataset and environment for programmatic cad
construction from human design sequences. ACM Transactions on Graphics (TOG), 40(4), 2021.

Xiang Xu, Pradeep Kumar Jayaraman, Joseph G Lambourne, Karl DD Willis, and Yasutaka Furukawa.
Hierarchical neural coding for controllable cad model generation. In International Conference on Machine
Learning (ICML), 2023.

Daxuan Ren, Jianmin Zheng, Jianfei Cai, Jiatong Li, and Junzhe Zhang. Extrudenet: Unsupervised inverse
sketch-and-extrude for shape parsing. In Proceedings of the European conference on computer vision
(ECCV), 2022.

Mikaela Angelina Uy, Yen-Yu Chang, Minhyuk Sung, Purvi Goel, Joseph G Lambourne, Tolga Birdal, and
Leonidas J Guibas. Point2cyl: Reverse engineering 3d objects from point clouds to extrusion cylinders. In
Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), 2022.

Samy Bengio, Oriol Vinyals, Navdeep Jaitly, and Noam Shazeer. Scheduled sampling for sequence
prediction with recurrent neural networks. In Advances in neural information processing systems (NeurIPS),
volume 28, 2015.

Marc’ Aurelio Ranzato, Sumit Chopra, Michael Auli, and Wojciech Zaremba. Sequence level training with
recurrent neural networks. In International Conference on Learning Representations (ICLR), 2015.

Jiatao Gu, James Bradbury, Caiming Xiong, Victor OK Li, and Richard Socher. Non-autoregressive neural
machine translation. In International Conference on Learning Representations (ICLR), 2017.

Yisheng Xiao, Lijun Wu, Junliang Guo, Juntao Li, Min Zhang, Tao Qin, and Tie-yan Liu. A survey on
non-autoregressive generation for neural machine translation and beyond. IEEE Transactions on Pattern
Analysis and Machine Intelligence (IEEE TPAMI), 45(10), 2023.

11

https://www.freecad.org/

[20]

[21]

(22]

(23]

(24]

[25]

(26]

[27]

(28]

[29]

(30]

(31]

(32]

[33]

(34]

[35]

(36]

(37]

Charles R Qi, Hao Su, Kaichun Mo, and Leonidas J Guibas. Pointnet: Deep learning on point sets for 3d
classification and segmentation. In Proceedings of the IEEE/CVF Conference on Computer Vision and
Pattern Recognition (CVPR), 2017.

Charles Ruizhongtai Qi, Li Yi, Hao Su, and Leonidas J Guibas. Pointnet++: Deep hierarchical feature
learning on point sets in a metric space. In Advances in neural information processing systems (NeurIPS),
2017.

Yue Wang, Yongbin Sun, Ziwei Liu, Sanjay E Sarma, Michael M Bronstein, and Justin M Solomon.
Dynamic graph cnn for learning on point clouds. ACM Transactions on Graphics (TOG), 38(5), 2019.

Vincent Sitzmann, Justus Thies, Felix Heide, Matthias NieBner, Gordon Wetzstein, and Michael Zollhofer.
Deepvoxels: Learning persistent 3d feature embeddings. In Proceedings of the IEEE/CVF Conference on
Computer Vision and Pattern Recognition (CVPR), 2019.

Lingjie Liu, Jiatao Gu, Kyaw Zaw Lin, Tat-Seng Chua, and Christian Theobalt. Neural sparse voxel fields.
Advances in Neural Information Processing Systems (NeurIPS), 2020.

Philipp Erler, Paul Guerrero, Stefan Ohrhallinger, Niloy J Mitra, and Michael Wimmer. Points2surf
learning implicit surfaces from point clouds. In Proceedings of the European conference on computer
vision (ECCV), 2020.

Rana Hanocka, Gal Metzer, Raja Giryes, and Daniel Cohen-Or. Point2mesh: a self-prior for deformable
meshes. ACM Transactions on Graphics (TOG), 39(4), 2020.

Jeong Joon Park, Peter Florence, Julian Straub, Richard Newcombe, and Steven Lovegrove. Deepsdf:
Learning continuous signed distance functions for shape representation. In Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition (CVPR), 2019.

Lars Mescheder, Michael Oechsle, Michael Niemeyer, Sebastian Nowozin, and Andreas Geiger. Occupancy
networks: Learning 3d reconstruction in function space. In Proceedings of the IEEE/CVF Conference on
Computer Vision and Pattern Recognition (CVPR), 2019.

Daxuan Ren, Jianmin Zheng, Jianfei Cai, Jiatong Li, Haiyong Jiang, Zhongang Cai, Junzhe Zhang, Liang
Pan, Mingyuan Zhang, Haiyu Zhao, et al. Csg-stump: A learning friendly csg-like representation for
interpretable shape parsing. In Proceedings of the IEEE/CVF international conference on computer vision
(ICCV), 2021.

Fenggen Yu, Zhiqin Chen, Manyi Li, Aditya Sanghi, Hooman Shayani, Ali Mahdavi-Amiri, and Hao
Zhang. Capri-net: Learning compact cad shapes with adaptive primitive assembly. In Proceedings of the
IEEE/CVF conference on computer vision and pattern recognition (CVPR), 2022.

Kacper Kania, Maciej Zieba, and Tomasz Kajdanowicz. Ucsg-net- unsupervised discovering of constructive
solid geometry tree. In Advances in Neural Information Processing Systems (NeurIPS), 2020.

Haoxiang Guo, Shilin Liu, Hao Pan, Yang Liu, Xin Tong, and Baining Guo. Complexgen: Cad reconstruc-
tion by b-rep chain complex generation. ACM Transactions on Graphics (TOG), 41(4), 2022.

Xiang Xu, Joseph Lambourne, Pradeep Jayaraman, Zhengqing Wang, Karl Willis, and Yasutaka Furukawa.
Brepgen: A b-rep generative diffusion model with structured latent geometry. ACM Transactions on
Graphics (TOG), 43(4), 2024.

Benjamin T Jones, Michael Hu, Milin Kodnongbua, Vladimir G Kim, and Adriana Schulz. Self-supervised
representation learning for cad. In Proceedings of the IEEE/CVF Conference on Computer Vision and
Pattern Recognition (CVPR), 2023.

Elona Dupont, Kseniya Cherenkova, Anis Kacem, Sk Aziz Ali, Ilya Arzhannikov, Gleb Gusev, and Djamila
Aouada. Cadops-net: Jointly learning cad operation types and steps from boundary-representations. In
International Conference on 3D Vision (3DV), 2022.

Pradeep Kumar Jayaraman, Aditya Sanghi, Joseph G. Lambourne, Karl D.D. Willis, Thomas Davies,
Hooman Shayani, and Nigel Morris. Uv-net: Learning from boundary representations. In Proceedings of
the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), 2021.

Joseph G Lambourne, Karl DD Willis, Pradeep Kumar Jayaraman, Aditya Sanghi, Peter Meltzer, and

Hooman Shayani. Brepnet: A topological message passing system for solid models. In Proceedings of the
IEEE/CVF conference on computer vision and pattern recognition (CVPR), 2021.

12

(38]

(39]

[40]

(41]

[42]

[43]

[44]

[45]

[46]

[47]

(48]

[49]

[50]

(51]

[52]

(53]

[54]

[55]

Yuezhi Yang and Hao Pan. Discovering design concepts for cad sketches. In Advances in Neural
Information Processing Systems (NeurIPS), 2022.

Weijian Ma, Minyang Xu, Xueyang Li, and Xiangdong Zhou. Multicad: Contrastive representation
learning for multi-modal 3d computer-aided design models. In Proceedings of the 32nd ACM International
Conference on Information and Knowledge Management (CIKM), 2023.

Pu Li, Jianwei Guo, Xiaopeng Zhang, and Dong-Ming Yan. Secad-net: Self-supervised cad reconstruction
by learning sketch-extrude operations. In Proceedings of the IEEE/CVF Conference on Computer Vision
and Pattern Recognition (CVPR), 2023.

Pu Li, Jianwei Guo, Huibin Li, Bedrich Benes, and Dong-Ming Yan. Sfmcad: Unsupervised cad reconstruc-
tion by learning sketch-based feature modeling operations. In Proceedings of the IEEE/CVF Conference
on Computer Vision and Pattern Recognition (CVPR), 2024.

Rundi Wu, Chang Xiao, and Changxi Zheng. Deepcad: A deep generative network for computer-aided
design models. In Proceedings of the IEEE/CVF international conference on computer vision (ICCV),
2021.

Elona Dupont, Kseniya Cherenkova, Dimitrios Mallis, Gleb Gusev, Anis Kacem, and Djamila Aouada.
Transcad: A hierarchical transformer for cad sequence inference from point clouds. In Proceedings of the
European conference on computer vision (ECCV), 2024.

Xueyang Li, Yu Song, Yunzhong Lou, and Xiangdong Zhou. Cad translator: An effective drive for text to
3d parametric computer-aided design generative modeling. In Proceedings of the 32nd ACM International
Conference on Multimedia (ACM MM), 2024.

Armen Avetisyan, Christopher Xie, Henry Howard-Jenkins, Tsun-Yi Yang, Samir Aroudj, Suvam Patra,
Fuyang Zhang, Duncan Frost, Luke Holland, Campbell Orme, et al. Scenescript: Reconstructing scenes
with an autoregressive structured language model. In Proceedings of the European conference on computer
vision (ECCV), 2024.

Weijian Ma, Shuaiqi Chen, Yunzhong Lou, Xueyang Li, and Xiangdong Zhou. Draw step by step:
Reconstructing cad construction sequences from point clouds via multimodal diffusion. In Proceedings of
the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), 2024.

Xiang Xu, Karl DD Willis, Joseph G Lambourne, Chin-Yi Cheng, Pradeep Kumar Jayaraman, and Yasutaka
Furukawa. Skexgen: Autoregressive generation of cad construction sequences with disentangled codebooks.
In International Conference on Machine Learning (ICML), 2022.

Mohammad Sadil Khan, Elona Dupont, Sk Aziz Ali, Kseniya Cherenkova, Anis Kacem, and Djamila
Aouada. Cad-signet: Cad language inference from point clouds using layer-wise sketch instance guided
attention. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition
(CVPR), 2024.

Mohammad Sadil Khan, Sankalp Sinha, Sheikh Talha Uddin, Didier Stricker, Sk Aziz Ali, and Muham-
mad Zeshan Afzal. Text2cad: Generating sequential cad designs from beginner-to-expert level text prompts.
In Advances in Neural Information Processing Systems (NeurIPS), 2024.

Sifan Wu, Amir Hosein Khasahmadi, Mor Katz, Pradeep Kumar Jayaraman, Yewen Pu, Karl Willis,
and Bang Liu. Cadvlm: Bridging language and vision in the generation of parametric cad sketches. In
Proceedings of the European conference on computer vision (ECCV), 2024.

Siyu Wang, Cailian Chen, Xinyi Le, Qimin Xu, Lei Xu, Yanzhou Zhang, and Jie Yang. Cad-gpt:
Synthesising cad construction sequence with spatial reasoning-enhanced multimodal llms. In Proceedings
of the AAAI Conference on Artificial Intelligence (AAAI), 2025.

Kamel Alrashedy, Pradyumna Tambwekar, Zulfiqar Zaidi, Megan Langwasser, Wei Xu, and Matthew
Gombolay. Generating cad code with vision-language models for 3d designs. In International Conference
on Learning Representations (ICLR), 2025.

Jingwei Xu, Zibo Zhao, Chenyu Wang, Wen Liu, Yi Ma, and Shenghua Gao. Cad-mllm: Unifying
multimodality-conditioned cad generation with mllm. arXiv preprint arXiv:2411.04954, 2024.

Ilya Loshchilov and Frank Hutter. Decoupled weight decay regularization. In International Conference on
Learning Representations (ICLR), 2019.

Harold W Kuhn. The hungarian method for the assignment problem. Naval research logistics quarterly,
2(1-2), 1955.

13

[56]

(571

(58]

(591

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez, L. ukasz
Kaiser, and Illia Polosukhin. Attention is all you need. In Advances in Neural Information Processing
Systems (NeurlIPS), 2017.

Anastasia Dubrovina, Fei Xia, Panos Achlioptas, Mira Shalah, Raphael Groscot, and Leonidas J. Guibas.
Composite shape modeling via latent space factorization. In Proceedings of the IEEE/CVF International
Conference on Computer Vision (ICCV), 2019.

Yongheng Zhao, Tolga Birdal, Haowen Deng, and Federico Tombari. 3d point capsule networks. In
Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), 2019.

Danila Rukhovich, Elona Dupont, Dimitrios Mallis, Kseniya Cherenkova, Anis Kacem, and Djamila
Aouada. Cad-recode: Reverse engineering cad code from point clouds. In Proceedings of the IEEE/CVF
International Conference on Computer Vision (ICCV), 2025.

14

NeurlIPS Paper Checklist

1. Claims

Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?

Answer: [Yes]

Justification: The abstract and introduction clearly state the central contributions of the paper:
a semi-autoregressive framework for CAD instruction generation that decomposes input
geometry into part-wise latent representations and decodes them using triplane projection
guidance. These claims are consistently supported by detailed methodological descriptions
and validated through both quantitative and qualitative experiments. The scope and limita-
tions of the approach are appropriately discussed, and no unsubstantiated or overgeneralized
claims are made. The presentation remains faithful to what is actually achieved in the work.

Guidelines:

e The answer NA means that the abstract and introduction do not include the claims
made in the paper.

* The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

* The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

* It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]

Justification: The paper discusses key limitations in Section [5|and Appendix [D] First, the
performance of the proposed model is bounded by the scale and diversity of available train-
ing data. Second, the inherently one-to-many nature of geometry-to-instruction mapping
introduces ambiguity that complicates both learning and evaluation. Third, the model’s
ability to generate accurate CAD instructions declines for complex or hierarchically unstruc-
tured geometries. We provide representative failure cases and discuss how these limitations
affect generalization and robustness. Additionally, we outline future directions to address
these issues through improved reasoning mechanisms and richer representations.

Guidelines:

* The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

* The authors are encouraged to create a separate "Limitations" section in their paper.

* The paper should point out any strong assumptions and how robust the results are to
violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

* The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

* The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

* The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

15

* If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

* While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs

Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?

Answer: [NA]

Justification: The paper does not contain theoretical results requiring formal assumptions or
proofs. The work focuses on algorithmic design, architectural innovations, and empirical
evaluation.

Guidelines:

* The answer NA means that the paper does not include theoretical results.

 All the theorems, formulas, and proofs in the paper should be numbered and cross-
referenced.

* All assumptions should be clearly stated or referenced in the statement of any theorems.

* The proofs can either appear in the main paper or the supplemental material, but if
they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

* Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

* Theorems and Lemmas that the proof relies upon should be properly referenced.

4. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]

Justification: The paper provides comprehensive implementation details, including archi-
tecture configurations, training hyperparameters, loss formulations, and dataset processing
steps. Key components such as autoregressive part decomposition, triplane feature guidance,
and CAD instruction generation are fully described in Section[3] Sectiond] and Appendix
All experimental protocols follow standard benchmarks with clearly stated evaluation
metrics. These details are sufficient to reproduce the main results even without access to the
source code. We also plan to release the source code and pretrained models upon publication
to further support reproducibility.

Guidelines:

» The answer NA means that the paper does not include experiments.

* If the paper includes experiments, a No answer to this question will not be perceived
well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

* If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

* Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

16

* While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.

(b) If the contribution is primarily a new model architecture, the paper should describe
the architecture clearly and fully.

(c) If the contribution is a new model (e.g., a large language model), then there should
either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code

Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer: [Yes]

Justification: We intend to release the full codebase and dataset access scripts publicly upon
paper acceptance. All implementation and training details are described in the main paper
and Appendix to support reproducibility.

Guidelines:

* The answer NA means that paper does not include experiments requiring code.

* Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

* While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

* The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https !
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

* The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

* The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

* At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

* Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLSs to data and code is permitted.

6. Experimental setting/details

Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]

Justification: We provide comprehensive details of our experimental settings, including
dataset preprocessing, training/test splits, model architecture and hyperparameters, optimizer
configurations, and loss weight settings in Section[d]and Appendix [A.2] All these details are
fully documented to ensure the results are understandable and reproducible.

Guidelines:

17

https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy

* The answer NA means that the paper does not include experiments.

* The experimental setting should be presented in the core of the paper to a level of detail
that is necessary to appreciate the results and make sense of them.

 The full details can be provided either with the code, in appendix, or as supplemental
material.

7. Experiment statistical significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [Yes]

Justification: All reported results are obtained through multiple carefully controlled runs with
consistent data splits and training configurations. The results are highly stable, and consistent
trends are observed across all baselines and experimental settings. These outcomes provide
strong support for the validity of our claims.

Guidelines:

* The answer NA means that the paper does not include experiments.

* The authors should answer "Yes" if the results are accompanied by error bars, confi-
dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

* The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

* The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

* The assumptions made should be given (e.g., Normally distributed errors).

¢ It should be clear whether the error bar is the standard deviation or the standard error
of the mean.

* It is OK to report 1-sigma error bars, but one should state it. The authors should
preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

* For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

o If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments compute resources

Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]

Justification: All experiments were conducted on 8 NVIDIA A100-PCIE-40GB GPUs,
using a batch size of 32 and training for 200 epochs. The average training time of the full
model was approximately 18 hours. All major experiments, including ablation studies and
cross-dataset evaluations, were performed under this setup. Detailed implementation and
resource settings are provided in Sectiond|and Appendix [A.2]to ensure reproducibility and
transparency.

Guidelines:

* The answer NA means that the paper does not include experiments.

* The paper should indicate the type of compute workers CPU or GPU, internal cluster,
or cloud provider, including relevant memory and storage.

* The paper should provide the amount of compute required for each of the individual
experimental runs as well as estimate the total compute.

* The paper should disclose whether the full research project required more compute
than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

18

9.

10.

Code of ethics

Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines]?

Answer: [Yes]

Justification: This research fully adheres to the NeurIPS Code of Ethics. It involves no human
subjects, personal data, or sensitive content and does not pose foreseeable risks related to
safety, privacy, fairness, or misuse. All experiments are conducted using publicly available
datasets with appropriate licenses. We have carefully reviewed the ethical guidelines and
confirm that our study complies with all relevant principles.

Guidelines:

e The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.

* If the authors answer No, they should explain the special circumstances that require a
deviation from the Code of Ethics.

* The authors should make sure to preserve anonymity (e.g., if there is a special consid-
eration due to laws or regulations in their jurisdiction).

Broader impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [Yes]

Justification: Our work has the potential to support educational tools for engineering and
design students by automating CAD modeling and lowering the barrier to entry for novice
users. This may improve accessibility and efficiency in industrial design workflows, particu-
larly in manufacturing, architecture, and engineering, by reducing design time and enabling
more interpretable modeling tools. However, as our method centers on sketch—extrusion
operations, it may constrain modeling flexibility in more complex or creative design scenar-
ios. Moreover, while the method itself does not pose direct societal risks, we recognize the
potential for misuse in automated design pipelines, such as the unauthorized replication of
copyrighted or proprietary structures. To mitigate such concerns, we advocate for ethical
deployment in compliance with intellectual property regulations and encourage future work
to expand the modeling expressiveness and reinforce responsible use in educational and
professional contexts.

Guidelines:

» The answer NA means that there is no societal impact of the work performed.

o If the authors answer NA or No, they should explain why their work has no societal
impact or why the paper does not address societal impact.

* Examples of negative societal impacts include potential malicious or unintended uses
(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

* The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

* The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

« If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

19

https://neurips.cc/public/EthicsGuidelines

11.

12.

13.

Safeguards

Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]

Justification: Our work does not involve high-risk models or datasets with potential for
misuse, such as large-scale generative models or scraped web data. The proposed method
focuses on CAD instruction synthesis from point clouds, with no foreseeable dual-use or
safety concerns.

Guidelines:

* The answer NA means that the paper poses no such risks.

* Released models that have a high risk for misuse or dual-use should be released with
necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

 Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

* We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

Licenses for existing assets

Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]

Justification: All datasets and code assets used in this paper are publicly available and
properly cited, including the DeepCAD dataset [42] and the Fusion 360 Gallery [12]], both
of which are distributed under open academic licenses. We strictly adhere to the terms of use
and include appropriate attribution to the original sources in the paper. We also use publicly
available codebases (e.g., PythonOCC [10Q]) that are released under permissive open-source
licenses, all of which are appropriately credited in the manuscript.

Guidelines:

» The answer NA means that the paper does not use existing assets.
 The authors should cite the original paper that produced the code package or dataset.

* The authors should state which version of the asset is used and, if possible, include a
URL.

* The name of the license (e.g., CC-BY 4.0) should be included for each asset.

* For scraped data from a particular source (e.g., website), the copyright and terms of
service of that source should be provided.

o If assets are released, the license, copyright information, and terms of use in the
package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

* For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

« If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

New assets

Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [Yes]

20

paperswithcode.com/datasets

14.

15.

16.

Justification: We introduce a new trained CAD instruction generation model (PartCAD),
which will be released with complete documentation, including architecture details, training
configuration, dependencies, and evaluation instructions. The documentation will be pro-
vided alongside the released model code and preprocessed data to ensure reproducibility
and ease of use.

Guidelines:

* The answer NA means that the paper does not release new assets.

» Researchers should communicate the details of the dataset/code/model as part of their
submissions via structured templates. This includes details about training, license,
limitations, etc.

* The paper should discuss whether and how consent was obtained from people whose
asset is used.

* At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

Crowdsourcing and research with human subjects

Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [NA]
Justification: This work does not involve any human subjects or crowdsourcing experiments.
Guidelines:

* The answer NA means that the paper does not involve crowdsourcing nor research with

human subjects.

* Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

* According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

Institutional review board (IRB) approvals or equivalent for research with human
subjects

Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [NA]

Justification: This work does not involve any form of crowdsourcing or research with human
subjects. All experiments are conducted using publicly available or synthetically generated
datasets.

Guidelines:
* The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

* Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

* We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

¢ For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

Declaration of LLM usage

21

Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.

Answer: [NA]

Justification: This work does not involve any large language models (LLMs) as part of the
core methodology. LLMs were not used in the development, implementation, or evaluation
of the proposed approach.

Guidelines:

* The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

¢ Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.

22

https://neurips.cc/Conferences/2025/LLM

Appendix Overview

This appendix provides supplementary information to support the main paper. Section [A]presents
detailed implementation settings for CAD sequence representation and the PartCAD framework. Sec-
tion |B| offers additional methodological insights into adaptive projection refinement and hierarchical
KNN aggregation. Section|C|reports additional experimental results and analyses. Section[D]provides
some failure cases and more discussion.

A Additional Implementation Details

A.1 CAD Representation

CAD Design Instructions

Clircle <

Orientation (9, d>, "{)

"> Loop

Line <=-f=—=, C) <--1-— Face = S
(:) <- Sketch e < Scaling Factor &

Are < L _) Translation (7%, Ty Tz)
X

Sketch Representation Extrusion Representation

CAD Parameterization

Start Token Extrusion Parameters Sketch Parameters End Token
v v
1 | 156 [139 | 130 [130 [139 | 430 [1se [1ze | 7 Jaor [e | i Jaa e s s [aa] s [aza] a1] e 1
1 | 156 | 130 | 164 [203 | 130 | 130 |30 [130 [o | s0 | 6 [130 [130 | 130 [266 [5 4 3 2 1 0 0 1
Sig::?:e 1 | 156 | 139 | 160 | 169 | 139 | 139 | 130 | 130 | o | 30 | 6 | 43 | 11 | 5 | 234 | 11 |26 | 43 | 5 | 234 | 11 | 266 1
1| 1s6 [139 [ie0 [151 [1se [ase [ase [ise | o [[e [t [as 2o 2o s [as [s [esa [[esy 1

-
Extrusion Sketch Plane Sketch Plane Boolean Scaling
Distance Origin Orientation Factor

CAD Sequence Representation

Figure 8: Illustration of CAD model and tokenized sequence representation.

We adopt a hierarchical CAD sequence representation structured as a sequence of extrusion-sketch
token pairs. As illustrated in the bottom part of Figure[8] we formulate each sequence as a solid
modeling instruction, consisting of extrusion parameters, sketch primitives, and start/end tokens.
Compared to primitive-level [42] or tightly packed autoregressive formats [49] 48], our representation
offers clearer semantic alignment with human design intent.

In the following, we detail the representation format and parameterization of each component.

Sketch Representation: As shown in the top-left part of Figure[8] each Sketch comprises one or
more Face, each bounded by one or more closed Loop. Each loop consists of geometric primitives
Curve, i.e., Line, Arc, or Circle, which are arranged in counterclockwise order to ensure consistency.
Each primitive is parameterized using several 2D coordinates (z, y) (or radius r for Circle):

* Line: Start Point and End Point

* Arc: Start Point, Midpoint, and End Point

¢ Circle: Leftmost Point and Radius
Extrusion Representation: As shown in the top-right part of Figure 8] each Extrusion instruction
consists of 10 parameters that define how a 2D sketch is transformed into a 3D solid, including the

Orientation, Translation, and Scaling Factor of the sketch plane, as well as the extrusion extent
and the Boolean operation type:

23

* Orientation: 3 parameters (6, ¢,) that define the sketch plane orientation via Euler angles
* Translation: 3 parameters (7, 7, 7.) specifying the sketch plane position
* Scaling Factor: 1 parameter o controlling the normalization of sketch size

¢ Extrusion Extent: 2 parameters (d*, d ™) indicating extrusion distances along and opposite
to the sketch normal

* Boolean Operation: 1 parameter 5 denoting the extrusion operation type, including new,
cut, join, and intersection

Tokenization and Quantization. To enable structured sequence representation, we follow [48] 49] to
introduce special tokens for parameter separation, including padding, start/end of sequence and end
markers for curves, loops, faces, sketches, and extrusions. All continuous parameters (except special
tokens and Boolean operation types) are uniformly quantized into 8-bit integers, as shown in Table[5]

Table 5: Token vocabulary in CAD sequence representation.

Token Token Token Description
Category Symbol Value
x 11,...,266 X coordinate
%iitg: Y 11,...,266 Y coordinate
r 11,...,266 Circle Radius
) 11,...,266
10} 11,...,266 Sketch Plane Orientation
~y 11,...,266
Extrusi o 11,...,266
’%r‘ﬁsm Ty 11,...,266 Sketch Plane Origin
oxen T 11,...,266
dr [11,...,266] Extrusion Distance Toward and
d- [11,...,266] Opposite Sketch Plane Normal
o [11,...,266] Sketch Scaling Factor
B8 {7,8,9,10} Boolean (New, Cut, Join, Intersect)
PAD 0 Padding token
SOS 1 Start of sequence
EOS 1 End of sequence
Special €s 2 End of sketch
Token ey 3 End of face
e 4 End of loop
€. 5 End of curve
€e 6 End of extrusion

Implementation Details. We set the maximum sequence length, i.e., the maximum number of
extrusion-sketch pairs per CAD model, to 10. Each sequence is padded to a fixed length of 110
tokens to ensure batching during training. Following [42]], each face contains up to 6 loops, and each
loop comprises at most 15 curve primitives. In addition, we follow [43]] to perform deduplication
based on geometric similarity. While the filtered dataset may still include models with similar shapes
(e.g., cubes or cylinders), variations in size, position, and orientation ensure that no exact sequence
duplicates remain in the final dataset.

A.2 Implementation Details for PartCAD Architecture

The PartCAD framework consists of three modules: (1) Autoregressive Implicit Part Decomposition,
(2) Triplane Projection Guidance, and (3) CAD Instruction Generation. Below, we detail the
architectural configurations and hyperparameters for each component.

Autoregressive Implicit Part Decomposition: The 3D point cloud encoder is implemented using
three stacked EdgeConv layers [22] with channel dimensions [12, 64, 64, 128], followed by global

24

max pooling. The input feature consists of 3D coordinates and surface normals, and the neighborhood
size is set to k = 40. The output global feature is projected via a linear projection head.

The autoregressive part decoder comprises four Transformer decoder layers [56], each with 8 attention
heads and a feed-forward network of hidden dimension 2048. It incorporates residual connections,
layer normalization, and a dropout rate of 0.2. For auxiliary supervision and orientation prediction,
we append two prediction heads:

Part Discriminator: The part discriminator, implemented as a single-layer MLP of size [512, 1],
outputs a scalar confidence score indicating whether the generated latent corresponds to a valid
modeling step.

Orientation Predictor: The orientation predictor, implemented as a single-layer MLP of size [512, 3],
predicts discretized sketch plane orientation tokens (6, ¢, 7y) used to align projections with canonical
CAD views.

Triplane Projection Guidance: With the predicted orientation (6,,, ¢y, ¥,) from each part latent,
we perform denumericalization to obtain a rotation matrix R,, = EulerToMatrix(6,,, ¢,,,V»). This
is then applied to the input point cloud X to produce a rotated geometry X*°* = R, - X, aligning it
with canonical CAD design views.

Based on X}°', we derive canonical-aligned triplane projections for subsequent adaptive sampling
and feature encoding. To enable reliable triplane encoding, we apply a projection refinement module
using thresholds d,0rmal = 0.5 (for normal filtering) and dgrig = 1 X 109 (for grid resampling).

The 2D projection encoder consists of three 2D EdgeConv layers with dimensions [12, 64, 64, 64].
Input features include 2D projected coordinates, associated normals, and radial distances to the
projection centroid. The local neighborhood size is set to & = 60. The encoder outputs per-point
features, which are subsequently used for instruction decoding.

CAD Instruction Generation: We use separate decoding branches for sketch and extrusion parameter
prediction. Each branch consists of: a local feature aggregation layer for aligning part latents with
point-level projection features via cross-attention, a global feature interaction layer for contextual
reasoning over triplane global features via self-attention, and two Transformer decoder layers (each
with 8 attention heads, a feed-forward dimension of 2048, and a dropout rate of 0.2) for final sequence
decoding. The output of each branch is passed through a linear layer to generate the predicted
instruction parameters.

Latent Dimensions: The latent dimensions for the part representations z,,, 3D point features fffgd,

and zy-plane features f2¥ are all set to 512. The x2- and yz-plane features f7~ and f2* are both set
to 256 for dimensional compatibility during feature concatenation, i.e., [f%; f¥*] € R®12.

Loss Implementation Details: We implement the multi-objective loss described in Section [3| which
combines supervision on instruction parameters with auxiliary objectives for orientation estimation
and part validity classification.

Parameter loss: The parameter loss consists of two parts, i.e., the sketch loss Lgy, and the extrusion
loss Lext- Let y; denote the ground-truth token at position ¢ and g; be the predicted logits, the loss is
computed using position-wise cross-entropy:

Toxt d Text d
skt ~skt t ~ext
Lo == > yilog i, Lo =—>_> yitlog i ©)
t=1i=1 t=1 i=1

Here, Ty, and Tyt denote the sequence lengths of sketch and extrusion tokens respectively, d = 267
is the vocabulary size, and y; ;, §; ; denote the one-hot target and softmax prediction for token ¢ and
class 1.

Rotation loss: The rotation parameter is treated as a discrete token similar to other instruction
parameters. Let 3;°® denote the one-hot target token and §;°® the predicted softmax probability at the
corresponding rotation position, the loss is computed as:

drot

Lot =— Y _ i log g} (10)
i=1

25

Validity loss: To supervise part validity, we define a binary label 37! € {0, 1} for each part latent,
indicating whether it corresponds to a valid modeling step. The prediction 72! € [0, 1] is obtained

via a sigmoid function. The validity loss is computed using binary cross-entropy:
1N
_ val ~val val ~val
»Cval = _N 7?71 (yn logyn + (1 —Yn)log(l ~ Yn)) (11)

Here, N denotes the number of part latents, 31¥?! is the ground-truth one-hot label indicating whether

n

the n-th part is valid, and 9! is the predicted validity score after sigmoid activation.

The total training objective is a weighted combination of all components:
ﬁtotal = Asktﬁskt +)\extﬁext + Arotﬁrot +)\vall:val (12)

In all experiments, we set the loss weights as Askt = 2, Aext = 1, Arot = 1, and Aya = 5.

A.3 Implementation Details for Baseline Methods

DeepCAD: For DeepCAD [42], we use its official open-source implementation. The model is first
trained for 1000 epochs with the sequence reconstruction objective, jointly optimizing a sequence
encoder and a latent decoder to reconstruct CAD sequences. In the second stage, the sequence
encoder is frozen, and a 4-layer PointNet++ point cloud encoder [21] (as provided in the official
implementation) is trained for 200 epochs using an MSE loss to align its output with the latent space.
At inference time, input point clouds are encoded into latent vectors, which are then decoded by the
pretrained decoder to generate CAD instruction sequences.

DeepCAD*: Since the original DeepCAD adopts a contrastive learning approach, where the point
cloud encoder is trained to align with sequence latents, it may suffer from information loss due to
weak geometry-instruction supervision. We provide DeepCAD*, a variant trained to directly decode
CAD instruction sequences from point cloud features. The decoder takes as input the extracted point
cloud features and a learned constant embedding, and is supervised with cross-entropy loss over
quantized instruction parameters. All remaining architecture (i.e., point cloud encoder and sequence
decoder), optimization scheme, and testing protocol follow the original DeepCAD setup, with the
model trained for 200 epochs.

TransCAD: For TransCAD [43]], since the official implementation is not provided, we reimplement
the framework based on the original paper details. The overall architecture consists of a point cloud
encoder (4-layer PointNet++), a Loop-Extrusion Decoder (4-layer Transformer decoder with 3-layer
MLP), two separate decoders (a 3-layer MLP for extrusion parameters and a 4-layer Transformer
decoder for loop parameters), and a Loop Refiner for quantization offset regression. All hyperpa-
rameters follow the specifications described in the original paper. Following their training setup, we
supervise CAD sequence types, quantized parameters, and continuous offsets for 200 epochs.

HNC-CAD: For HNC-CAD [13]], we adopt the official open-source implementation and use their
released pretrained codebook and model weights. Given the test CAD models, we convert them into
the primitive-based representation adopted by HNC-CAD and formulate the task as a conditional
generation problem. The predicted shapes are then evaluated using Chamfer Distance (CD) and
Invalid Rate (IR) to assess geometric fidelity and modeling correctness.

SECAD: For SECAD [40], we use the official implementation and pretrained model in their open-
source repository for testing. Given input point clouds, the model reconstructs CAD shapes, which
are evaluated using CD for geometric fidelity and IR for modeling validity.

Point2Cyl: For Point2Cyl [15]], we utilize the official open-source code and pretrained model
to generate CAD models from input point clouds. As the method does not produce construction
sequences, we evaluate its performance using CD and IR for fair comparison.

ExtrudeNet: For ExtrudeNet [[14], since no pretrained model is provided, we train the model from
scratch using the official codebase and follow their data preprocessing pipeline. The trained model is
used to reconstruct CAD shapes from input point clouds, which are evaluated using CD and IR.

26

B Additional Methodological Insights

B.1 Additional Details for Autoregressive Implicit Part Decomposition

In PartCAD, we perform implicit decomposition through an autoregressive scheme, enabling each
part to correspond to a procedural modeling action while conditioning on previous steps to capture
inter-part dependencies and avoiding the complexities of explicit geometric partitioning. Compared
to one-shot alternatives that attempt to generate all part latents simultaneously, this design yields more
stable outputs and avoids premature or invalid part proposals. Although autoregression inherently
reduces parallelism and may introduce error accumulation, we observed no significant drifting in
practice, aided by explicit supervision from the part discriminator and strong geometric priors from
rotation-guided projections. This design thus provides a balanced trade-off between procedural
fidelity and robustness, highlighting the value of autoregression as a principled mechanism for
modeling sequential CAD construction processes.

B.2 Additional Details for Adaptive Point Cloud Projection

2D Projection Plane

a
N

Sample

Points Nearest Captured

Missing Neighbors
N |
1 EN Grid Sampling ::
1 1
1 [[~ Projected e T Duplicate SOO Well-distributed
} 39&77 Surface Points } Q‘)‘%,, y Points } \{Bgr** y Points

Figure 9: A toy example of an xy-plane projection of a cylinder CAD shape.

While normal filtering effectively suppresses points that are mostly irrelevant to the design intent in the
current projection view, it remains insufficient to mitigate the clustering artifacts caused by projection
distortion. In particular, points from side surfaces are often compressed toward projection boundaries,
leading to over-concentration and reduced structural coverage. This degrades neighborhood quality
in KNN-based aggregation and compromises the fidelity of geometric features.

To address this, we introduce an adaptive grid sampling strategy to spatially regularize the projection
points. As illustrated in Figure[9] we visualize KNN neighborhoods for fixed sample points before
and after grid sampling. Before processing, neighbors are overly concentrated within a local region,
missing connections to global structural context. In contrast, grid-constrained resampling yields more
spatially balanced neighborhoods, providing more geometric cues for downstream feature extraction.
This strategy contributes to more reliable CAD instruction generation under projection guidance, as
confirmed by ablation experiments.

B.3 Additional Details for Hierarchical KNN Aggregation Kernel

While Euclidean-based KNN is widely used for point cloud feature extraction [22], it often struggles
in projection spaces where points from geometrically distinct surfaces become spatially adjacent after
flattening, especially in complex assemblies with nested or overlapping structures.

As illustrated in Figure[I0] (left), we provide a toy example by projecting a hollow cylindrical CAD
shape onto the xy-plane. In this scenario, naive Euclidean-based KNN (Figure |10} middle) produces
spatially adjacent yet structurally inconsistent neighborhoods, resulting in limited receptive fields and
unstructured pattern aggregation.

27

2D Projection Plane

y y y

Limited Broader

Reception Reception
Fields Field | \
AN A ‘
X - J\ i I \ x
- —f.—/ /
Nested Structure 1 Unstructured 1 Structured
Pattern Pattern
Projection Points Euclidean distance-based KNN Hierarchical kernel-based KNN

Figure 10: Euclidean distance-based KNN vs. hierarchical kernel-based KNN.

To address this, our hierarchical KNN aggregation kernel progressively refines neighborhood selection
based on spatial distance, radial constraint, and normal similarity (see Equation . As shown in
Figure[I0|(right), compared to Euclidean-based KNN, our method forms more semantically consistent
neighborhoods with broader receptive fields, better capturing the global CAD structure even in nested
regions. This improvement strengthens projection-based feature learning and improves downstream
CAD instruction generation.

C Additional Experiments

C.1 Additional CAD Modeling Visualization

To further illustrate the part-aware generation process of PartCAD, we present step-by-step modeling
visualizations in Figure We incrementally decode the predicted part latent sequence, where each
latent generates a sketch—extrusion pair that corresponds to a meaningful modeling operation. This
process continues until an invalid latent is encountered, indicating the end of the sequence. As shown
in the figure, PartCAD effectively extracts structural cues from the input point cloud and assembles a
complete CAD model through a composition of part-wise instructions. It is worth noting that for part
latents associated with sketch—extrusion pairs involving Boolean operations such as cut, join, and
intersection, skipping the preceding solid construction steps can lead to modeling failures, as these
operations rely on existing geometry to function properly.

In addition, we provide additional visualizations of reconstructed models from the generated CAD
instructions to demonstrate the robustness of PartCAD in handling complex modeling scenarios, as
shown in Figure [I2]and Figure[T3] These examples highlight two representative challenges in CAD
reconstruction. Specifically, Figure[12]illustrates cases involving complex sketch structures, where
the model successfully reconstructs detailed multi-contour and nested profiles. Figure[I3]presents
examples with complex topologies, including multi-body assemblies and solid modeling operations
(e.g., cut, join, or intersection). These visual results further demonstrate the effectiveness of PartCAD
in producing structurally coherent and geometrically faithful parametric CAD programs under diverse
and challenging design conditions.

C.2 Additional Ablation Study on Point Cloud Quality

Impact of Surface Perturbations: Reverse engineering from noisy or imperfect 3D scans is a
common challenge in real-world applications. To evaluate the robustness of PartCAD under such
conditions, we simulate surface-level perturbations by injecting controlled Gaussian noise into the
input point clouds. This setup mimics typical data acquisition errors observed in practical scenarios,
such as sensor noise, surface jitter, or minor misalignments.

Specifically, we simulate surface perturbations by adding Gaussian noise independently to each
coordinate of the input point cloud. Let p; € R? denote a point in the raw point cloud, and its
perturbed version p; is given by:

28

Input

Part Latent 1

Part Latent 2
@
\\‘
New — ':
i
f !
~ ,’I

Part Latent 3
[“~
\\
|
Cut — ':
|
f /
~ /I
W

Part Latent 5
-
Cut —
f
-
-

Result

Part Latent 2

Part Latent 3

b U
\
\
\
H
Join + ,I
|
/
- I’

Part Latent 4
L“ =,

Cut —

f
-
==
Result
Join
N\

Figure 11: Visualization of part-wise latent decoding. Each column shows the cumulative result of
decoding one additional latent, illustrating the progressive construction of the CAD model.

Iy Y)

an
A\ >
o - -
- @

'n'x&‘,?ﬁ

Figure 12: Qualitative visualization of reconstructed models with complex sketch structures. The

examples highlight PartCAD’s ability to recover intricate sketch layouts and maintain consistency
across nested geometric constraints.

pPi = Pi + €,

€ ~ N(0,wI).

(13)

Here, the noise €; is sampled independently for each point and each dimension. The standard

deviation w is defined relative to the geometric scale of the point cloud as:

w=¢-

||bmax - bmin ”

100

29

(14)

; 4

L4

Feod

Figure 13: Qualitative visualization of reconstructed models with complex topologies. These exam-
ples showcase PartCAD’s ability to handle multi-body relationships and solid modeling operations
while maintaining structural coherence.

where ||bmax — bmin|| denotes the diagonal length of the axis-aligned bounding box (AABB) of the
point cloud with £ € [0.5,1.0, 2.5, 5.0] controlling the relative noise intensity.

Figure[T4] presents qualitative visualizations of reconstructed CAD models generated from perturbed
point clouds. We observe that PartCAD maintains strong performance under low to moderate per-
turbation levels (e.g., £ = 0.5, 1.0, 2.5), successfully generating accurate and structurally consistent
modeling instructions. Even under more severe noise conditions (e.g., ¢ = 5.0), the framework
demonstrates notable resilience, producing plausible results that largely preserve the semantic and
geometric integrity of the original shapes. These results suggest that PartCAD is robust to realistic
surface-level imperfections that commonly arise in practical 3D data acquisition settings.

Input §=0 §=0.5 §=1.0 §=2.5 §=5.0

Input §=0 §=05 §=1.0 §=25 §=5.0

g g

Figure 14: Qualitative visualization of reconstructed CAD models under different levels of Gaussian
perturbation. We present four test examples from the DeepCAD dataset [42]. Each group of six
columns corresponds to one test case. The first column shows the original input, with the raw input
point cloud on top and the ground-truth CAD shape below. The remaining columns show results
under noise levels £ = 0.5, 1.0, 2.5, and 5.0, where the perturbation is applied independently to each
coordinate. The specific noise level used in each result is annotated above the corresponding column.

30

Impact of Partial Inputs: To assess the robustness of PartCAD under incomplete geometric input,
we conduct an ablation study by randomly removing a portion of points from the input point clouds,
simulating partial observations such as missing regions or occlusions. Specifically, we evaluate on
the test set of the DeepCAD dataset, where 5%, 10%, 25%, and 50% of points are randomly removed
and the resulting degraded point clouds are used for parametric instruction generation.

Figure [I5] presents qualitative visualizations of the reconstructed models under different levels of
incompleteness. We observe that PartCAD maintains strong modeling performance under mild to
moderate point removal, consistently generating well-structured and semantically coherent CAD
models. In some more challenging cases, however, substantial point loss (e.g., removal of 50% of
input points) may obscure critical geometric cues, potentially resulting in degraded model quality or
partial failure in instruction reconstruction.

Input 0% 5% 10% 25% 50% Input 0% 5% 10% 25% 50%
%4
it
) q‘) b J 4’ | 4‘ {‘ [[[[/|
l I I l I d s d s & psod s d 5 mveid
Input 0% 5% 10% 25% 50% Input 0% 5% 10% 25% 50%

H,\ i‘,\ i*,\ H,\ i‘_\ Invalid

g

<
SELED B
< <
Figure 15: Qualitative visualization of reconstructed CAD models under varying degrees of point
removal. We present four test examples from the DeepCAD dataset [42]]. The first column in each
block shows the original input, with the raw input point cloud on top and the ground-truth CAD

shape below. The remaining columns show results under 5%, 10%, 25%, and 50% point removal (red
points are removed). The percentage of missing points is indicated above each result.

C.3 Additional Ablation Study Visualization

We present qualitative comparisons of different ablated variants in Figure[I6] corresponding to the
ablation study reported in Section[d] Compared to the full model, the ablated variants may produce
geometric distortions, incomplete structures, redundant components, or imprecise modeling details
(e.g., inaccurate extrusion distances). These issues highlight the importance of each module in
ensuring accurate instruction generation and, therefore, faithful CAD modeling.

C.4 Additional Statistical Robustness Experiments

To validate the robustness of our method, we Table 6: Experimental results on the Fusion 360

further assess its perfqrmance consistency under Gallery [12], measured in terms of median CD and
repeated inference. Since model parameters are [R.

fixed after training, the main source of variabil-
ity lies in inference randomness and stochastic Median CD (x 10%) IR
point resampling in the Chamfer Distance com-
putation. To quantify this effect, we performed
10 independent inference runs without fixed ran-
dom seeds and report the mean and standard
deviation of the main metrics on DeepCAD and Fusion 360 Gallery datasets. The results in Tables|[6]
and[7)confirm that our method remains stable and robust under varying inference iterations.

Mean 1.144 1.321
Std 0.041 0.194

31

Input wl/o Part w/o Proj. w/o Adapt. wl/o Hier. w/o Local w/o Global PartCAD GT

Decomp. Guidance Proj. KNN Feat. Aggreg. Feat. Interact (Full Model)

~— NS \ ‘ \ - . \(‘) \Q)

w:" " 7 7 y Y
L *: \\) P of ¢ ~ p K R < ~ - <

[—
[A
[A

Figure 16: Visualization of ablation results. From left to right: input point cloud, reconstructed
models by different ablated variants, and ground-truth CAD model. Each column shows the impact
of individually disabling a core component.

Table 7: Statistical results on the DeepCAD dataset [42]. We report F1 scores for sketch parameters
(Line, Arc, Circle) and extrusion parameters (Extrusion), CD (mean and median) for geometric
fidelity, and IR for modeling validity.

F1 CD (x10%)
Line Arc Circle Extrusion Mean Median

Mean 82.852 56.124 81.156 95.599 4908 0.2373 0911
Std 0.129 0304 0.188 0.109 0.065 0.0009 0.038

IR

D Failure Cases and Discussion

While PartCAD demonstrates strong performance in generating structured CAD models from point
clouds, certain failure cases highlight the remaining challenges. We provide some representative
failure cases in Figure[I'7] where PartCAD successfully reconstructs the overall shape and topology
but exhibits some local errors, such as geometric displacement (left), a missing part (middle), and
an incomplete curved region (right). Based on our experiments, these issues arise from two primary
factors. First, converting continuous design parameters into discrete numerical representations can
lead to modeling precision loss, particularly in fine-grained or tightly constrained structures. Second,
complex or highly detailed sketches, especially those involving nested or intricate contours, can
challenge the model’s ability to capture localized geometric features.

Input GT Ours 3 Input GT Ours 3 Input GT Ours

O s

i
Displacement Missing Part | Incomplete Curve

Figure 17: Visualization of three failure cases. While the global structure is preserved, minor local
errors such as displacement, missing part, and incomplete profile can be observed.

Beyond the main contributions of this work, we also identify several insights that merit further
discussion.

¢ Modeling Ambiguity. In real-world CAD design, a unique shape can be constructed through
multiple valid modeling trajectories, reflecting diverse design philosophies and user preferences.
Defining an optimal path typically requires additional criteria (e.g., minimizing sequence length,
the number of sketch—extrusion pairs, or the use of specific primitives), which may diverge from
natural human modeling habits. While our current framework adopts a deterministic decoding

32

strategy, generating distributional outputs that capture multiple plausible construction sequences
remains a promising direction for future work. In addition, reward-based reinforcement learning
paradigms may offer viable paths for addressing this challenge.

Intermediate representation. Decomposing a complex shape into simpler intermediate repre-
sentations is a widely accepted consensus in geometric learning, as demonstrated in voxel- and
point-related tasks [57,58]]. Beyond the implicit decomposition in PartCAD, we also investi-
gated more explicit schemes, such as bypass tasks that segment input points into semantically
meaningful subsets or clustering parts based on feature similarity to provide stronger geometric
grounding, but these efforts yielded only marginal (or no) accuracy gains while incurring ad-
ditional computational and architectural complexity. However, we still believe that designing
effective intermediate representations remains a promising direction, as a well-chosen abstraction
could substantially simplify the generation of complex CAD modeling instructions.

Dataset Limitation. The size, diversity, and generalization capacity of high-quality datasets
remain a key bottleneck for building more powerful CAD generation models, especially when
targeting complex modeling scenarios. For example, incorporating additional basic primitives
(e.g., free-form curves) together with richer modeling operations (e.g., revolve, loft, chamfer)
would allow trained models to better adapt to real-world design tasks, and several recent works
have begun moving in this direction [59]. Moreover, current datasets exhibit long-tail distributions
in model part counts and may suffer from out-of-distribution issues (e.g., discrepancies in shape
scale or complexity from real-scan) both posing significant challenges to robust generalization
in practical applications. Our framework is naturally extensible to enriched datasets, and future
work will aim to exploit larger-scale corpora to further strengthen robustness and real-world
applicability.

33

	Introduction
	Related Works
	PartCAD for Inferring Modeling Sequences from Point Clouds
	Experiments
	Evaluation Results
	Ablation Study

	Discussions
	Acknowledgments
	Additional Implementation Details
	CAD Representation
	Implementation Details for PartCAD Architecture
	Implementation Details for Baseline Methods

	Additional Methodological Insights
	Additional Details for Autoregressive Implicit Part Decomposition
	Additional Details for Adaptive Point Cloud Projection
	Additional Details for Hierarchical KNN Aggregation Kernel

	Additional Experiments
	Additional CAD Modeling Visualization
	Additional Ablation Study on Point Cloud Quality
	Additional Ablation Study Visualization
	Additional Statistical Robustness Experiments

	Failure Cases and Discussion

