
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2026

EVOMAS: HEURISTICS IN THE LOOP—EVOLVING
SMARTER AGENTIC WORKFLOWS

Anonymous authors
Paper under double-blind review

ABSTRACT

The rapid development of Large Language Models has driven Multi-Agent Systems
(MAS) growth, but constructing efficient MAS requires labor-intensive manual
design. Current automation methods generate templated agents, use monolithic
optimization, and ignore task complexity gradients. This paper presents Evolu-
tionary MAS (EvoMAS), a biologically-inspired framework that systematically
addresses these limitations through three interconnected dimensions: (1) dynamic
and diverse evolutionary strategies with six biologically-inspired operators (3
exploration, 3 exploitation) and adaptive strategy selection; (2) role-level evolution
that dynamically optimizes agent specialization and collaboration patterns; and (3)
curriculum-guided evolution partitioning tasks by difficulty levels and evolving
sequentially from simple to complex with cross-stage stability constraints. Addi-
tionally, to resolve the contradiction between the inefficiency of pure evolutionary
methods and the limited flexibility of manual design, we developed the "Cyber
Creator", a meta-control system combining dynamic rule formulation with re-
flective updates. Experimental evaluations demonstrate that EvoMAS consistently
outperforms existing methods across multiple domains while maintaining cost
efficiency, with agent roles dynamically evolving from homogeneous actors to
specialized reasoning ensembles. Codes are available at EvoMAS.

1 INTRODUCTION

The rapid advancement of Large Language Models (LLMs), particularly the flourishing ecosystem of
Model Context Protocol (MCP) (Hou et al., 2025), has propelled MAS as a powerful collaborative
paradigm at the forefront of AI innovation (Li et al., 2024a; Han et al., 2024; Cemri et al., 2025).
However, current MAS design methodologies face fundamental challenges: they predominantly
rely on static predefined architectures and fixed interaction patterns—a rigid design philosophy that
severely constrains their ability to respond to complex and dynamic environments. While such
systems may excel in specific scenarios, they exhibit notable adaptation barriers when confronting
open-ended, dynamic problems. Consequently, the automation and optimization of MAS design has
emerged as a critical frontier challenge (Weyns & Oquendo, 2019).

Recent years have witnessed significant progress in agent system automation technologies, albeit
with evident bifurcation trends. One category focuses on single-dimensional optimization: DsPy
(Khattab et al., 2024a) and EvoPrompting (Chen et al., 2023a) pioneered automated paradigms in
prompt engineering; GPTSwarm (Zhuge et al., 2024) and G-Designer (Zhang et al., 2024a) dedicated
efforts to optimizing inter-agent communication protocols; while EvoAgent (Yuan et al., 2024) and
AutoAgents (Chen et al., 2023b) explored the possibilities of single-agent self-evolution. Despite
their respective strengths, these approaches struggle to achieve system-level breakthroughs due to
their localized optimization perspectives. Another category, including ADAS (Hu et al., 2024),
AgentSquare (Shang et al., 2024), and AFlow (Zhang et al., 2024b), attempts to expand the design
search space, constructing optimized workflows on specific datasets through heuristic search, Monte
Carlo tree search (MCTS), or evolutionary algorithms, demonstrating capabilities surpassing manually
designed systems. Nevertheless, these methods reveal severe limitations when facing cross-domain
tasks: ❶ they typically employ singular, fixed optimization strategies inadequate for diverse task
requirements; ❷ their system structures and agent profiling remain excessively template-based,
lacking necessary flexibility and innovation potential; ❸ they disregard the crucial impact of task

1

https://anonymous.4open.science/r/EvoMAS-DEF4

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2026

Figure 1: Motivation: Three Evolution Dimensions in EvoMAS. EvoMAS explores agentic workflow evolution
from three key dimensions: (a) role-level evolution enhances agent specialization and coordination, (b) diverse
strategies enable LLM-guided exploration with reflection-based updates, and (c) curriculum-guided evolution
promotes gradual adaptation across tasks of increasing difficulty.

difficulty gradients on learning efficiency, resulting in insufficient generalization capabilities in
complex scenarios.

Addressing these challenges, we introduce EvoMAS —a biologically-inspired framework for au-
tomated evolution of multi-agent systems. EvoMAS integrates three interconnected evolutionary
dimensions as shown in Figure 1: ❶ role dimension: the system implements adaptive role evolution
mechanisms that dynamically refine agent specializations and interaction patterns throughout the
evolutionary process. This transcends traditional rigid agent roles, enabling specialized collaboration
tailored to task requirements; ❷ strategy dimension: EvoMAS constructs a dual-track "exploration-
exploitation" evolutionary mechanism encompassing six biologically-inspired strategies, enabling
the system to achieve an exquisite balance between search space diversity and optimal solution
convergence; ❸ learning path dimension: the system implements a curriculum-inspired progressive
adaptation process, enabling complex capabilities to build gradually upon simpler tasks, significantly
enhancing cross-task generalization abilities.

Table 1: Comparative Analysis of Core Capabil-
ities Across MAS Automation Frameworks.

Method Multi-Agent
Evol.

Dynamic
Strategy

Meta-
Evol.

Curric.
Learn.

EvoFlow ✔ ✗ ✗ ✗
FunSearch ✗ ✗ ✗ ✗
EvoAgent ✔ ✗ ✗ ✗
AFlow ✔ ✗ ✗ ✗
ADAS ✔ ✗ ✗ ✗
EvoMAS ✔ ✔ ✔ ✔

While natural selection provides powerful op-
timization principles, purely evolutionary ap-
proaches can be inefficient for complex tasks,
and conversely, rigid human design often limits
adaptability. To address this fundamental tension,
EvoMAS introduces the "Cyber Creator"—a
meta-control system that strategically combines
rule-based guidance with adaptive learning. This
mechanism bridges the gap between undirected
evolution and artificial intervention through explicit rule-setting and periodic reflective updates.
Additionally, EvoMAS employs graph structures to precisely express the topological and functional
characteristics of multi-agent workflows, while constructing an evolutionary resource center com-
prising rule pools and gene pools that provides robust support for knowledge accumulation and
transfer. Table 1 illustrates how EvoMAS distinguishes itself from existing automated design meth-
ods through comprehensive evolutionary capabilities, being the only framework to simultaneously
support dynamic strategy evolution, meta-level adaptation, and curriculum-guided learning. EvoMAS
achieves state-of-the-art(SOTA) performance across six benchmarks, while maintaining superior
cost-efficiency, outperforming both manual designs and automated baselines.

2 RELATED WORK

Agentic Workflow. With the increasing capabilities of LLMs, the paradigm of Agentic Work-
flow has emerged as a promising approach to construct structured and multi-stage task-solving
processes Hong et al. (2024a); Zhang et al. (2024c); Wang et al. (2023a). This paradigm typically
comprises multiple LLM-invoking nodes with well-defined inputs and outputs, organized in the form
of graphs, code, or flowcharts to specify the execution sequence.

Existing research in this area can be broadly categorized into two directions: general-purpose
workflows (Madaan et al., 2023; Wang et al., 2023b) and domain-specific pipelines (Zhong et al.,

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2026

2024; Xu et al., 2024). The former focuses on universal reasoning strategies, while the latter builds
tailored structures for specific tasks such as code generation (Ridnik et al., 2024; Hong et al., 2024b),
data analysis (Zhou et al., 2023; Ye et al., 2024), and multi-hop question answering (Zhou et al.,
2024). However, most approaches rely on predefined templates or operator libraries and lack the
expressiveness for hierarchical structural evolution and dynamic adaptation.

Automated Agentic Optimization. To alleviate the burden of manually designing complex work-
flows, research on automated agentic workflow optimization (Zhuge et al., 2024; Li et al., 2024b; Hu
et al., 2024; Zhang et al., 2025b) is gaining traction. Some approaches focus on prompt (Khattab
et al., 2024b; Fernando et al., 2024; Yang et al., 2024; Yüksekgönül et al., 2024) or parameter tun-
ing Saad-Falcon et al. (2024), while others aim at optimizing the structural composition of workflows,
including inter-module connectivity, execution ordering, and conditional dependencies.

Representative methods include ADAS (Hu et al., 2024), which linearizes workflow code and
performs sequential structure search, and GPTSwarm (Zhuge et al., 2024), which models workflows
as graphs and uses reinforcement learning for structural optimization. Additionally, AFlow (Zhang
et al., 2024b) encodes workflows as code and applies MCTS to explore efficient execution paths,
demonstrating superior performance over manual designs. However, these methods still suffer
from limited search efficiency, constrained expressiveness, and poor cross-task generalization. In
particular, they lack effective mechanisms for heterogeneous module collaboration and feedback-
driven structural evolution, limiting their ability to adapt to complex multi-faceted tasks.

3 PRELIMINARY

This section establishes the theoretical foundation for automated multi-agent system design by
introducing core design assumptions, formalizing the graph-based structural representation, and
defining the constrained optimization problem that guides our evolutionary framework.

3.1 REPRESENTATION: GRAPH-BASED FORMULATION OF MAS

To capture the complex control flow, informa-
tion exchange, and collaborative dynamics in-
herent in multi-agent systems, we model MAS
workflows as sparse, cyclic directed graphs as
illustrated in Fig. 2. Formally, a workflow
is represented as G = (V,E), where V =
{v1, v2, . . . , vn} denotes the vertex set with each
node vi corresponding to an autonomous agent,
and E ⊆ V × V represents the edge set encod-
ing directed dependencies for information flow
and control signal propagation. The graph main-
tains structural integrity through a unique source
node (input) and sink node (output), ensuring
well-defined task boundaries and deterministic
execution semantics.

Figure 2: Agentic workflow search space repre-
sented as graphs with role-specific nodes and mod-
ular blocks, enabling dynamic tool use, prompt
chaining, and structured multi-agent task solving.

3.2 DESIGN ASSUMPTIONS

Our approach to automated multi-agent system evolution is built upon three core assumptions that
define the theoretical foundation and constrain the design space:

H1 (Unity in Diversity). Following Ricardo’s comparative advantage theory, specialized agents
achieve collective efficiency even when individual capabilities differ. We assume that heterogeneous
agent roles with complementary specializations—some focusing on reasoning, others on verifica-
tion—yield superior performance compared to homogeneous configurations (Bettini et al., 2023; Cao
et al., 2019).

H2 (Know Thyself). Based on Bayesian learning principles (P (θ|D) ∝ P (D|θ)P (θ)), agents
continuously adapt through feedback loops. We assume that self-monitoring mechanisms enable

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2026

Figure 3: Overall EvoMAS Framework. The framework follows a three-stage process: (1) initialization via
RAG-based retrieval from a knowledge-rich resource library, (2) population evolution through LLM-based
variation and selection, and (3) evolution resource library update based on the results.

robust error correction and strategic refinement, allowing systems to maintain stability while adapting
to evolving requirements (Bilal et al., 2025).

H3 (Less is More). Following Occam’s Razor and bias-variance tradeoff principles, simpler
architectures often outperform complex ones. We assume that beyond optimal system size, additional
agents introduce coordination overhead with diminishing returns, making structural parsimony
essential for efficiency (Narain et al., 2014; Wu et al., 2025).

Formalization. These assumptions collectively define our design space Ω = {G|G satisfiesH1 ∧
H2 ∧H3}, where each candidate workflow G must exhibit role specialization (H1), incorporate feed-
back mechanisms (H2), and maintain structural efficiency (H3). Our evolutionary framework operates
within this constrained space to ensure theoretically grounded and practically viable solutions.

3.3 PROBLEM DEFINITION

We formalize the automated design and optimization of multi-agent systems as a constrained single-
objective optimization problem over the space of sparse, cyclic directed graphs. Given the design
assumptionsH1,H2, andH3, the optimization problem is defined as:

G∗ = argmax
G∈Ω

F (G,T,R) (1)

where G ∈ Ω represents a candidate MAS workflow graph constrained by our design assump-
tions, T denotes the task distribution encompassing problem instances and difficulty metrics,
R = {r1, r2, . . . , rk} is the evolutionary rule set encoding domain-specific constraints and structural
preferences, and F : Ω × T × R → R+ is the composite fitness function evaluating workflow
performance under task distribution T and rule guidance R.

This single-objective formulation offers several theoretical advantages over multi-objective ap-
proaches: (i) it reduces computational complexity by eliminating Pareto frontier approximation; (ii) it
enables direct application of convergence guarantees from evolutionary optimization theory; and (iii)
it provides interpretable optimization trajectories through explicit rule-based guidance, facilitating
systematic analysis of design trade-offs.

4 METHODS: EVOMAS

We propose EvoMAS, a biologically-inspired framework for evolving multi-agent workflows. Unlike
prior approaches that rely on static architectures or singular optimization strategies, EvoMAS formal-
izes the agent workflow construction as a rule-guided evolutionary process with stochastic dynamics.
This section introduces the core formalism, system components, and theoretical underpinnings. The
complete algorithm process is presented in Appendix C.

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2026

4.1 EVOLUTION AS A MARKOV PROCESS

We model the EvoMAS system as a non-homogeneous Markov process over the evolving system
state:

st = (Pt, Rt,At), (2)

where Pt is the population of agentic workflows, Rt is the rule set (e.g., human- or LLM-injected),
and At denotes the current evolution strategies for exploration and exploitation. The evolution
dynamics are governed by a probabilistic transition kernel:

P (st+1 | st) = P ((Pt+1, Rt+1,At+1) | (Pt, Rt,At)) . (3)

This formulation encapsulates the full evolution loop—variation, selection, and meta-
reflection—under a unified stochastic process.

4.2 EVOLUTION CYCLE: VARIATION → SELECTION → REFLECTION

EvoMAS operates in discrete generations, where each generation t performs a full evolutionary
cycle on the system state st = (Pt, Rt,At). This cycle comprises three interlinked stages: variation,
selection, and reflection. Together, they enable EvoMAS to search the workflow graph space while
adaptively updating its rules and strategies.

Variation. This stage is designed to explore and exploit the vast space of agentic workflows by
applying diverse, rule-guided graph transformation strategies. The design of our strategies follows
two key principles: (1) promoting structural diversity to escape local optima and discover novel
coordination patterns, and (2) preserving and refining high-performing substructures to accelerate
convergence. To this end, EvoMAS maintains a set of exploration and exploitation operators in At,
each corresponding to biologically-inspired mechanisms such as mutation, or crossover.

Exploration strategies aim to introduce novel graph topologies and behaviors through structural
diversification: X1 (Diversity Expansion) maximizes graph edit distance through stochastic perturba-
tions, analogous to genetic mutation, introducing topological variations that expand the evolutionary
search space beyond local optima. X2 (Conceptual Recombination) combines semantically distinct
functional modules through crossover operations, mirroring sexual recombination in biology, where
heterogeneous components are integrated to generate novel architectural configurations. X3 (Cross-
domain Hybridization) transplants proven structural motifs from disparate task domains, inspired
by horizontal gene transfer, facilitating knowledge transfer across problem boundaries to introduce
emergent capabilities.

Exploitation strategies focus on refining and optimizing existing high-performing structures: Y1
(Fine Optimization) applies gradient-based local search to agent parameters and connection weights,
resembling microevolutionary adaptation, where incremental adjustments yield measurable fitness
improvements. Y2 (Best Practice Synthesis) systematically merges elite subgraph components
through structured composition, analogous to selective breeding, preserving and combining superior
traits from high-performing individuals. Y3 (Role Specialization) enhances modular functional-
ity through targeted parameter refinement, akin to cellular differentiation, where agents develop
specialized competencies for maximum operational efficiency.

Formally, each candidate graph G′ ∈ Pvar
t is generated by sampling a parent G ∈ Pt, a strategy

a ∼ At, and applying the associated transformation operator:

G′ ∼ a(G,Rt), where a ∼ At, G ∼ Pt. (4)

where At = {X1,X2,X3,Y1,Y2,Y3, C} encompasses the six biologically-inspired strategies plus a
custom strategy C that enables domain-specific transformations tailored to particular requirements.

Selection. After variation, all candidate workflows are evaluated using a base fitness score. Formally,
for each workflow graph G, we compute its task-level performance via:

F (G,T) = Ex∼T [f(G, x)], (5)

where f(G, x) measures the accuracy or success rate of workflow G on input x. Rather than relying
solely on scalar fitness ranking, we adopt a preference-guided selection mechanism that holistically

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2026

evaluates candidate workflows based on performance metrics, structural properties, and rule alignment.
Specifically, each candidate G ∈ Pvar

t ∪ Pt is serialized into a compact textual representation that
captures three core aspects: ❶ its execution performance F (G,T), representing quantitative task
success; ❷ its internal structure, including the graph topology, node roles (e.g., Planner, Critic), and
configuration parameters; and ❸ its degree of compliance with the current rule set Rt, including both
hard constraints and soft preferences.

The resulting representations are provided as input to a large language model (LLM), which performs
preference-based selection by implicitly evaluating each candidate according to a latent utility
function informed by human-aligned inductive biases. Rather than relying solely on scalar fitness
scores, the LLM considers a richer combination of behavioral performance, structural plausibility,
and rule conformance. Based on this holistic assessment, the LLM ranks candidates and selects a
subset to form the next generation:

Pt+1 = LLMSelect(Pt ∪ Pvar
t , F, Rt), (6)

This approach enables EvoMAS to incorporate qualitative notions of agent design (e.g., modularity,
interpretability, domain alignment) that are difficult to encode in a scalar objective. Despite the soft
selection mechanism, we still define a best-so-far fitness:

Bt := max
i≤t

max
G∈Pi

F (G), (7)

which remains non-decreasing due to implicit elitism (high-performing candidates are rarely dis-
carded) and converges under boundedness assumptions.

Reflection (Cyber Creator). Every K generations, EvoMAS invokes a meta-level feedback mech-
anism—termed the Cyber Creator—which reflects on past evolutionary trajectories and adapts both
the rule set and strategy distribution. This mechanism functions not merely as an environment, but as
a meta-level creator that actively shapes evolutionary trajectories through rule-setting and reflective
updates.

Formally, the system maintains a historical log Ht = {(Gi, Fi,Ai)}i≤t, recording past candidates,
their performance, and the strategies that generated them. Based on this history, Cyber Creator
dynamically synthesizes new rules that generalize over successful patterns, while pruning those that
have become obsolete or detrimental:

Rt+1 = UR(Rt; Ht) = Prune(Rt ,Ht) ∪ Induce(Ht), (8)

where Prune removes underperforming or obsolete rules, and Induce generates new rules by abstract-
ing over structural regularities in successful workflows. Simultaneously, the strategy distribution At

over operators a ∈ At is updated by the LLM based on the observed evolution trajectory Ht. Rather
than computing explicit reward signals, the LLM infers a new preference profile At+1 that reflects
the utility of each strategy in driving effective variation. This process can be abstractly modeled as a
utility-weighted adjustment:

At+1(a) ∝ At(a) · exp (η · Reward(a)) , (9)

where Reward(a) denotes the estimated contribution of strategy a to recent fitness improvements,
and η controls adaptation sharpness. Through this process, EvoMAS continuously reshapes its search
dynamics based on LLM-guided meta-level feedback. The Cyber Creator thereby enables the system
to evolve not only agentic solutions, but also its own inductive biases, structural priors, and decision
heuristics—closing the loop on self-directed evolutionary cognition.

4.3 CURRICULUM-GUIDED EVOLUTION

In biological evolution, complex organisms emerge through gradual adaptation to increasingly
challenging environments. Inspired by this principle, EvoMAS incorporates a curriculum-guided
evolutionary process, where agentic workflows evolve progressively—from simpler to more complex
tasks—thereby improving learning stability, sample efficiency, and generalization.

Task Difficulty Layering. We partition the overall task distribution T into n ordered subsets based
on increasing cognitive complexity:

T = {T1, T2, . . . , Tn}, s.t. d(T1) < d(T2) < · · · < d(Tn), (10)

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2026

where d(·) denotes a task difficulty function that evaluates each subset Ti based on semantic com-
plexity, required reasoning steps, and domain-specific expertise. To estimate d(Ti), we adopt
an LLM-as-a-Judge framework (Gu et al., 2024), which provides difficulty ratings by analyzing
input-output complexity, abstraction level, and knowledge dependencies. Each subset Ti defines
a curriculum stage with internally consistent difficulty, and evolution proceeds sequentially as the
system achieves competence at each level.

Sequential Evolution with Stability Control. Evolution proceeds sequentially through difficulty
stages, with each stage Ti serving as the training environment until competence threshold is reached.
To prevent catastrophic forgetting during stage transitions, we enforce a stability constraint: let
Gk denote the best-evolved workflow at stage k, then the cumulative performance Jk+1(Gk+1) =
1

k+1

∑k+1
i=1 f(Gk+1, Ti) must exceed Jk+1(Gk), ensuring that newly evolved workflows maintain

competence on previous stages while adapting to increased complexity.

5 EXPERIMENT

5.1 EXPERIMENTAL SETUP

Datasets and Tasks. We evaluated EvoMAS on 8 public datasets covering three major domains: (1)
Mathematical reasoning: GSM8K (Cobbe et al., 2021) and MATH (Hendrycks et al., 2021). (2) Code
generation and language reasoning: HumanEval (Chen et al., 2021) and MBPP Austin et al. (2021)
for code generation, and HotpotQA Yang et al. (2018) for language understanding and complex
reasoning. (3) Embodied intelligence tasks: ALFWorld (Shridhar et al., 2020) to evaluate agents’
multi-step operation and goal execution abilities in virtual environments, and GAIA Mialon et al.
(2023) to assess agents’ tool-using capabilities.

Baselines. We compared EvoMAS with three categories of agent benchmarks: (1) Single-agent
execution methods, including IO (direct LLM invocation) and CoT; (2) Manually designed multi-agent
systems, including MultiPersona, LLM-Debate, and AgentVerse; (3) (Partially or fully) autonomous
multi-agent systems, including GPTSwarm, AutoAgents, ADAS, AgentSquare, EvoFlow, and AFlow.

More details on Experimental setups are provided in Appendix D.

5.2 EXPERIMENTAL RESULTS AND ANALYSIS

Main Results. EvoMAS demonstrates exceptional performance across diverse benchmark
tasks, achieving SOTA results on five out of six benchmarks with an average score
of 80.06% as shown in Table 3, outperforming the previous best method EvoFlow
by 1.57% on average while maintaining competitive results on ALFWorld (67.28%).

Table 2: Success rate (%) on GAIA task.
Method Level1 Level2 Level3 Average

GPT-4o-mini 7.53 4.40 0.00 4.65
AutoGPT 13.21 0.00 3.85 4.85
AutoAgents 16.13 0.00 0.00 5.16
AgentSquare 22.58 15.72 6.25 16.34
AFlow 10.75 8.81 4.08 8.00
MaAS 25.91 22.01 6.25 20.69
EvoMAS 30.11 22.64 8.61 22.59

The performance gains are particularly significant
in mathematical reasoning tasks, where EvoMAS
surpasses AFlow by 1.37% on GSM8K and 4.96%
on MATH, and in code generation tasks with im-
provements of 1.04% and 2.64% over EvoFlow
on HumanEval and MBPP respectively, demon-
strating enhanced logical reasoning and problem-
solving capabilities through collaborative agent in-
teractions. Furthermore, in the challenging GAIA
embodied intelligence evaluation (Table 2), Evo-
MAS achieves leading performance across all difficulty levels, representing a substantial 1.90%
improvement over the second-best method MaAS, with particularly notable gains in the most chal-
lenging Level 3 tasks, underscoring EvoMAS’s superior capability in complex multi-step reasoning,
tool usage, and real-world problem-solving scenarios that require sophisticated agent coordination.

Cost Analysis. EvoMAS demonstrates exceptional cost-effectiveness with a total cost of
$20.24 (928M training tokens and 421M inference tokens), strategically positioned between
the more expensive AFlow ($23.74) and the lower-cost EvoFlow ($16.55) as shown in Table 4.

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2026

Table 3: Performance comparison across six benchmark tasks.

Method GSM8K MATH HumanEval MBPP HotpotQA ALFWorld Avg.
(1) Single-agent methods

IO (GPT-4o-mini) 89.46 47.11 85.50 71.83 67.60 38.71 66.70
CoT (Wei et al., 2022) 89.31 47.93 87.02 71.83 68.10 39.92 67.35

(2) Manually designed multi-agent systems
MultiPersona (Wang et al., 2023c) 90.37 48.26 88.54 73.02 69.30 39.10 68.10
LLM-Debate (Du et al., 2023) 90.30 48.76 87.78 72.14 70.10 44.68 68.63
AgentVerse (Chen et al., 2023c) 90.67 48.10 89.31 73.90 72.50 45.03 69.92

(3) (Semi-)autonomous agentic systems
GPTSwarm (Zhuge et al., 2024) 90.14 47.27 90.07 76.83 68.10 53.19 70.27
AutoAgents (Chen et al., 2023b) 89.53 46.61 86.25 72.14 66.80 46.15 67.58
ADAS (Hu et al., 2024) 87.18 46.61 83.97 67.45 64.60 47.66 66.58
AgentSquare (Shang et al., 2024) 89.08 48.26 90.83 80.64 71.70 66.42 74.16
AFlow (Zhang et al., 2024b) 93.39 55.37 92.36 83.57 73.80 59.16 76.61
EvoFlow (Zhang et al., 2025a) 92.90 57.70 92.85 84.50 74.40 68.57 78.49

EvoMAS (Ours) 94.76 60.33 93.89 86.21 77.90 67.28 80.06

Table 4: Token usage and total cost
in Training & Inference phases
Method Tr. Tok. Inf. Tok. Total $

AFlow 1.07B 508M 23.74
EvoFlow 737M 366M 16.55
EvoMAS 928M 421M 20.24

The Pareto efficiency analysis in Figure 4 reveals that EvoMAS
occupies a favorable position on the Pareto frontier, achieving
superior performance-cost balance through its "Cyber Cre-
ator" which implicitly guides evolution toward cost-effective
solutions via rule-based frameworks without explicit cost con-
straints in the objective function. Compared to EvoFlow, Evo-
MAS delivers enhanced performance (84.5%) with a 22.3%
cost increase, representing a favorable performance-cost tradeoff where the gains outweigh the
computational overhead. These results validate a key insight: strategic selection of specific model
types (e.g., DeepSeekV3) for targeted optimization is more cost-effective than exhaustive model
exploration, making EvoMAS practical for resource-conscious deployments.

3 2 1 0 1 2
X = Cost in Ln Scale

70

75

80

85

90

95

Y
 =

 p
as

s@
1

GPT-4o

GPT-4o-mini

Claude 3.5

DeepSeekV3

CoT
MultiPersona

LLM-Debate
AgentVerse

GPTSwarm

AutoAgents

ADAS

AgentSquare

AFlow (gpt4o-mini)

AFlow (gpt4o)

EvoFlow
EvoMAS (gpt4o-mini)

EvoMAS

GPT-4o Performance Level

Model Performance vs Cost Comparison with Pareto Frontier

Single Agent (IO and CoT)
Manual Multi-agent Systems
Autonomous Multi-agent Systems
Pareto Optimal Point
Pareto Frontier

Figure 4: Cost-Effectiveness Analysis: EvoMAS Achieves Superior
Pareto Efficiency in the Performance-Cost Trade-off Space.

Ablation Study. Figure 5
shows that each component
of EvoMAS makes a substan-
tial contribution to system
performance across different
task domains. Removing
exploration strategies caused
the most severe performance de-
cline (MBPP: -9.38%, MATH:
-12.23%), indicating that di-
verse exploration mechanisms
are crucial for discovering
efficient solutions in complex
search spaces. The removal
of mutation strategies also significantly reduced performance and even increased computational
costs for the MATH task, highlighting the importance of fine-grained optimization for improving
both solution quality and resource efficiency. These results demonstrate the synergistic effects of
EvoMAS’s integrated evolutionary components.

The absence of the "Cyber Creator" not only
reduced performance but also significantly in-
creased costs (cost increased by 18%), demon-
strating its dual value in guiding evolution di-
rection and resource control. The removal of
curriculum learning, and Evolution Resource Li-
brary also led to varying degrees of performance
degradation, verifying the necessity of these com-
ponents in knowledge accumulation, structural
optimization, and agent role definition. Figure 5: The ablation study of EvoMAS on MBPP.

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2026

Figure 6: Case Study: Evolutionary Trajectory of a Multi-Agent Workflow on GAIA.

Evolution of Character Generations. As shown in Figure 7, the evolution of agent roles on the
MATH dataset highlights how EvoMAS adapts its internal structure under task-driven pressures.

Figure 7: Dynamic Evolution of Agent Roles
from Homogeneous Actors to Specialized Planners
and Critics on the MATH Dataset.

The system begins with a homogenous configura-
tion of 10 Actor agents, reflecting an early-stage
bias toward direct execution. However, this composi-
tion rapidly shifts as the system learns that complex
mathematical reasoning requires more than isolated
action. Roles such as Planner and Critic steadily
increase, indicating a strategic pivot toward struc-
tured problem decomposition and multi-perspective
evaluation. From Generation 4 onward, Custom
roles—introduced via the Cyber Creator—emerge in
response to task-specific challenges that exceed the
capabilities of standard roles. This dynamic realloca-
tion demonstrates EvoMAS’s capacity for structural
self-optimization: rather than merely evolving work-
flows, it evolves the cognitive architecture behind them, ultimately converging toward a more balanced
and reasoning-oriented agent ensemble.

Case Study. Figure 6 illustrates how EvoMAS evolved from a simple template to a high-
performance multi-agent workflow. The system initially contained only a simple node, then underwent
step-by-step modifications in each generation, such as adding nodes and optimizing prompts. This
process embodies the collaborative dynamics of the "exploration-exploitation-reflection" mechanism
in the EvoMAS framework: in the early stages, structural diversity stimulates potential solution
spaces (e.g., adding Planner and Debate modules); in the middle stages, guided strategies focus
on performance-critical paths; in the later stages, rule injection and reflection updates accelerate
evolutionary convergence, demonstrating powerful self-optimization and adaptive capabilities.

6 DISCUSSION

Conclusion. We present EvoMAS, a framework for evolving multi-agent systems using biologically-
inspired mechanisms. Our approach combines role-level evolution, dynamic&diverse evolutionary
strategies, and curriculum learning to address limitations of existing methods. Additionally, the
"Cyber Creator" efficiently guides evolution through rule-based governance and reflective updates.
Experiments show that EvoMAS outperforms SOTA methods while maintaining cost-efficiency.

Limitations. EvoMAS has three key constraints: computational asymmetry where meta-reflection
scales poorly with population size; LLM optimization plateau with diminishing returns after limited
iterations due to underlying model boundaries; and complexity estimation errors where LLM judges
misassess task difficulty, leading to suboptimal curriculum design.

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2026

ETHICS STATEMENT

EvoMAS targets beneficial AI applications (mathematical reasoning, code generation) on public
benchmarks with human oversight through interpretable rule-based guidance. The framework requires
explicit task specification and operates within constrained optimization spaces. All experiments use
public datasets with no private data involved.

REPRODUCIBILITY STATEMENT

Complete source code will be publicly released with detailed documentation. All experiments use pub-
lic benchmarks and models (GPT-4o-mini, GPT-4o, Claude 3.5, DeepSeekV3) with documented costs.
Algorithm details are in Appendix, including evolutionary strategies, operators, and hyperparameters.
Limitations are transparently reported.

REFERENCES

Jacob Austin, Augustus Odena, Maxwell I. Nye, Maarten Bosma, Henryk Michalewski, David Dohan,
Ellen Jiang, Carrie J. Cai, Michael Terry, Quoc V. Le, and Charles Sutton. Program synthesis with
large language models. CoRR, abs/2108.07732, 2021.

Matteo Bettini, Ajay Shankar, and Amanda Prorok. System neural diversity: Measuring behavioral
heterogeneity in multi-agent learning. arXiv preprint arXiv:2305.02128, 2023.

Ahsan Bilal, Muhammad Ahmed Mohsin, Muhammad Umer, Muhammad Awais Khan Bangash, and
Muhammad Ali Jamshed. Meta-thinking in llms via multi-agent reinforcement learning: A survey.
arXiv preprint arXiv:2504.14520, 2025.

Yue Cao, Tianlong Chen, Zhangyang Wang, and Yang Shen. Learning to optimize in swarms.
Advances in neural information processing systems, 32, 2019.

Mert Cemri, Melissa Z Pan, Shuyi Yang, Lakshya A Agrawal, Bhavya Chopra, Rishabh Tiwari, Kurt
Keutzer, Aditya Parameswaran, Dan Klein, Kannan Ramchandran, et al. Why do multi-agent llm
systems fail? arXiv preprint arXiv:2503.13657, 2025.

Angelica Chen, David Dohan, and David So. Evoprompting: Language models for code-level neural
architecture search. Advances in neural information processing systems, 36:7787–7817, 2023a.

Guangyao Chen, Siwei Dong, Yu Shu, Ge Zhang, Jaward Sesay, Börje F Karlsson, Jie Fu, and Yemin
Shi. Autoagents: A framework for automatic agent generation. arXiv preprint arXiv:2309.17288,
2023b.

Mark Chen, Jerry Tworek, Heewoo Jun, Qiming Yuan, Henrique Pondé de Oliveira Pinto, Jared
Kaplan, Harri Edwards, Yuri Burda, Nicholas Joseph, Greg Brockman, Alex Ray, Raul Puri,
Gretchen Krueger, Michael Petrov, Heidy Khlaaf, Girish Sastry, Pamela Mishkin, Brooke Chan,
Scott Gray, Nick Ryder, Mikhail Pavlov, Alethea Power, Lukasz Kaiser, Mohammad Bavarian,
Clemens Winter, Philippe Tillet, Felipe Petroski Such, Dave Cummings, Matthias Plappert, Fotios
Chantzis, Elizabeth Barnes, Ariel Herbert-Voss, William Hebgen Guss, Alex Nichol, Alex Paino,
Nikolas Tezak, Jie Tang, Igor Babuschkin, Suchir Balaji, Shantanu Jain, William Saunders,
Christopher Hesse, Andrew N. Carr, Jan Leike, Joshua Achiam, Vedant Misra, Evan Morikawa,
Alec Radford, Matthew Knight, Miles Brundage, Mira Murati, Katie Mayer, Peter Welinder, Bob
McGrew, Dario Amodei, Sam McCandlish, Ilya Sutskever, and Wojciech Zaremba. Evaluating
large language models trained on code. CoRR, abs/2107.03374, 2021.

Weize Chen, Yusheng Su, Jingwei Zuo, Cheng Yang, Chenfei Yuan, Chi-Min Chan, Heyang Yu, Yaxi
Lu, Yi-Hsin Hung, Chen Qian, et al. Agentverse: Facilitating multi-agent collaboration and explor-
ing emergent behaviors. In The Twelfth International Conference on Learning Representations,
2023c.

Karl Cobbe, Vineet Kosaraju, Mohammad Bavarian, Mark Chen, Heewoo Jun, Lukasz Kaiser,
Matthias Plappert, Jerry Tworek, Jacob Hilton, Reiichiro Nakano, Christopher Hesse, and John
Schulman. Training verifiers to solve math word problems. arXiv preprint arXiv:2110.14168,
2021.

10

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2026

Yilun Du, Shuang Li, Antonio Torralba, Joshua B Tenenbaum, and Igor Mordatch. Improving
factuality and reasoning in language models through multiagent debate. In Forty-first International
Conference on Machine Learning, 2023.

Darren Edge, Ha Trinh, Newman Cheng, Joshua Bradley, Alex Chao, Apurva Mody, Steven Truitt,
Dasha Metropolitansky, Robert Osazuwa Ness, and Jonathan Larson. From local to global: A
graph rag approach to query-focused summarization. arXiv preprint arXiv:2404.16130, 2024.

Chrisantha Fernando, Dylan Banarse, Henryk Michalewski, Simon Osindero, and Tim Rocktäschel.
Promptbreeder: Self-referential self-improvement via prompt evolution. In ICML. OpenReview.net,
2024.

Jiawei Gu, Xuhui Jiang, Zhichao Shi, Hexiang Tan, Xuehao Zhai, Chengjin Xu, Wei Li, Yinghan Shen,
Shengjie Ma, Honghao Liu, et al. A survey on llm-as-a-judge. arXiv preprint arXiv:2411.15594,
2024.

Zirui Guo, Lianghao Xia, Yanhua Yu, Tu Ao, and Chao Huang. Lightrag: Simple and fast retrieval-
augmented generation. 2024.

Shanshan Han, Qifan Zhang, Yuhang Yao, Weizhao Jin, Zhaozhuo Xu, and Chaoyang He. Llm
multi-agent systems: Challenges and open problems. arXiv preprint arXiv:2402.03578, 2024.

Dan Hendrycks, Collin Burns, Saurav Kadavath, Akul Arora, Steven Basart, Eric Tang, Dawn Song,
and Jacob Steinhardt. Measuring mathematical problem solving with the math dataset. arXiv
preprint arXiv:2103.03874, 2021.

Sirui Hong, Yizhang Lin, Bang Liu, Bangbang Liu, Binhao Wu, Danyang Li, Jiaqi Chen, Jiayi Zhang,
Jinlin Wang, Li Zhang, Lingyao Zhang, Min Yang, Mingchen Zhuge, Taicheng Guo, Tuo Zhou,
Wei Tao, Wenyi Wang, Xiangru Tang, Xiangtao Lu, Xiawu Zheng, Xinbing Liang, Yaying Fei,
Yuheng Cheng, Zongze Xu, and Chenglin Wu. Data interpreter: An LLM agent for data science.
CoRR, abs/2402.18679, 2024a.

Sirui Hong, Mingchen Zhuge, Jonathan Chen, Xiawu Zheng, Yuheng Cheng, Jinlin Wang, Ceyao
Zhang, Zili Wang, Steven Ka Shing Yau, Zijuan Lin, Liyang Zhou, Chenyu Ran, Lingfeng
Xiao, Chenglin Wu, and Jürgen Schmidhuber. Metagpt: Meta programming for A multi-agent
collaborative framework. In ICLR. OpenReview.net, 2024b.

Xinyi Hou, Yanjie Zhao, Shenao Wang, and Haoyu Wang. Model context protocol (mcp): Landscape,
security threats, and future research directions. arXiv preprint arXiv:2503.23278, 2025.

Shengran Hu, Cong Lu, and Jeff Clune. Automated design of agentic systems. arXiv preprint
arXiv:2408.08435, 2024.

Omar Khattab, Arnav Singhvi, Paridhi Maheshwari, Zhiyuan Zhang, Keshav Santhanam, Saiful
Haq, Ashutosh Sharma, Thomas T Joshi, Hanna Moazam, Heather Miller, et al. Dspy: Compiling
declarative language model calls into state-of-the-art pipelines. In The Twelfth International
Conference on Learning Representations, 2024a.

Omar Khattab, Arnav Singhvi, Paridhi Maheshwari, Zhiyuan Zhang, Keshav Santhanam, Sri Vard-
hamanan, Saiful Haq, Ashutosh Sharma, Thomas T. Joshi, Hanna Moazam, Heather Miller, Matei
Zaharia, and Christopher Potts. Dspy: Compiling declarative language model calls into state-of-
the-art pipelines. In The Twelfth International Conference on Learning Representations, ICLR
2024, Vienna, Austria, May 7-11, 2024. OpenReview.net, 2024b.

Xinyi Li, Sai Wang, Siqi Zeng, Yu Wu, and Yi Yang. A survey on llm-based multi-agent systems:
workflow, infrastructure, and challenges. Vicinagearth, 1(1):9, 2024a.

Zelong Li, Shuyuan Xu, Kai Mei, Wenyue Hua, Balaji Rama, Om Raheja, Hao Wang, He Zhu, and
Yongfeng Zhang. Autoflow: Automated workflow generation for large language model agents.
CoRR, abs/2407.12821, 2024b.

Aman Madaan, Niket Tandon, Prakhar Gupta, Skyler Hallinan, Luyu Gao, Sarah Wiegreffe, Uri
Alon, Nouha Dziri, Shrimai Prabhumoye, Yiming Yang, et al. Self-refine: Iterative refinement
with self-feedback. Advances in Neural Information Processing Systems, 36:46534–46594, 2023.

11

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2026

Grégoire Mialon, Clémentine Fourrier, Thomas Wolf, Yann LeCun, and Thomas Scialom. Gaia:
a benchmark for general ai assistants. In The Twelfth International Conference on Learning
Representations, 2023.

Devika Narain, Jeroen BJ Smeets, Pascal Mamassian, Eli Brenner, and Robert J van Beers. Structure
learning and the occam’s razor principle: a new view of human function acquisition. Frontiers in
computational neuroscience, 8:121, 2014.

Tal Ridnik, Dedy Kredo, and Itamar Friedman. Code generation with alphacodium: From prompt
engineering to flow engineering. CoRR, abs/2401.08500, 2024.

Jon Saad-Falcon, Adrian Gamarra Lafuente, Shlok Natarajan, Nahum Maru, Hristo Todorov,
Etash Guha, E. Kelly Buchanan, Mayee Chen, Neel Guha, Christopher Ré, and Azalia Mirho-
seini. Archon: An architecture search framework for inference-time techniques. arXiv preprint
arXiv:2409.15254, 2024.

Yu Shang, Yu Li, Keyu Zhao, Likai Ma, Jiahe Liu, Fengli Xu, and Yong Li. Agentsquare: Automatic
llm agent search in modular design space. arXiv preprint arXiv:2410.06153, 2024.

Mohit Shridhar, Xingdi Yuan, Marc-Alexandre Côté, Yonatan Bisk, Adam Trischler, and Matthew
Hausknecht. Alfworld: Aligning text and embodied environments for interactive learning. arXiv
preprint arXiv:2010.03768, 2020.

Guanzhi Wang, Yuqi Xie, Yunfan Jiang, Ajay Mandlekar, Chaowei Xiao, Yuke Zhu, Linxi Fan, and
Anima Anandkumar. Voyager: An open-ended embodied agent with large language models. arXiv
preprint arXiv:2305.16291, 2023a.

Zhenhailong Wang, Shaoguang Mao, Wenshan Wu, Tao Ge, Furu Wei, and Heng Ji. Unleashing the
emergent cognitive synergy in large language models: A task-solving agent through multi-persona
self-collaboration. arXiv preprint arXiv:2307.05300, 2023b.

Zhenhailong Wang, Shaoguang Mao, Wenshan Wu, Tao Ge, Furu Wei, and Heng Ji. Unleashing the
emergent cognitive synergy in large language models: A task-solving agent through multi-persona
self-collaboration. arXiv preprint arXiv:2307.05300, 2023c.

Jason Wei, Xuezhi Wang, Dale Schuurmans, Maarten Bosma, Fei Xia, Ed Chi, Quoc V Le, Denny
Zhou, et al. Chain-of-thought prompting elicits reasoning in large language models. Advances in
neural information processing systems, 35:24824–24837, 2022.

Danny Weyns and Flavio Oquendo. An architectural style for self-adaptive multi-agent systems.
arXiv preprint arXiv:1909.03475, 2019.

Yuyang Wu, Yifei Wang, Tianqi Du, Stefanie Jegelka, and Yisen Wang. When more is less: Under-
standing chain-of-thought length in llms. arXiv preprint arXiv:2502.07266, 2025.

Yiheng Xu, SU Hongjin, Chen Xing, Boyu Mi, Qian Liu, Weijia Shi, Binyuan Hui, Fan Zhou, Yitao
Liu, Tianbao Xie, et al. Lemur: Harmonizing natural language and code for language agents. In
The Twelfth International Conference on Learning Representations, 2024.

Chengrun Yang, Xuezhi Wang, Yifeng Lu, Hanxiao Liu, Quoc V. Le, Denny Zhou, and Xinyun Chen.
Large language models as optimizers. In ICLR. OpenReview.net, 2024.

Zhilin Yang, Peng Qi, Saizheng Zhang, Yoshua Bengio, William W Cohen, Ruslan Salakhutdinov,
and Christopher D Manning. Hotpotqa: A dataset for diverse, explainable multi-hop question
answering. arXiv preprint arXiv:1809.09600, 2018.

Yilin Ye, Jianing Hao, Yihan Hou, Zhan Wang, Shishi Xiao, Yuyu Luo, and Wei Zeng. Generative AI
for visualization: State of the art and future directions. Vis. Informatics, 8(1):43–66, 2024.

Siyu Yuan, Kaitao Song, Jiangjie Chen, Xu Tan, Dongsheng Li, and Deqing Yang. Evoagent: Towards
automatic multi-agent generation via evolutionary algorithms. arXiv preprint arXiv:2406.14228,
2024.

12

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2026

Mert Yüksekgönül, Federico Bianchi, Joseph Boen, Sheng Liu, Zhi Huang, Carlos Guestrin, and
James Zou. Textgrad: Automatic "differentiation" via text. CoRR, abs/2406.07496, 2024.

Guibin Zhang, Yanwei Yue, Xiangguo Sun, Guancheng Wan, Miao Yu, Junfeng Fang, Kun Wang,
Tianlong Chen, and Dawei Cheng. G-designer: Architecting multi-agent communication topologies
via graph neural networks. arXiv preprint arXiv:2410.11782, 2024a.

Guibin Zhang, Kaijie Chen, Guancheng Wan, Heng Chang, Hong Cheng, Kun Wang, Shuyue Hu, and
Lei Bai. Evoflow: Evolving diverse agentic workflows on the fly. arXiv preprint arXiv:2502.07373,
2025a.

Guibin Zhang, Luyang Niu, Junfeng Fang, Kun Wang, Lei Bai, and Xiang Wang. Multi-agent
architecture search via agentic supernet. arXiv preprint arXiv:2502.04180, 2025b.

Jiayi Zhang, Jinyu Xiang, Zhaoyang Yu, Fengwei Teng, Xionghui Chen, Jiaqi Chen, Mingchen Zhuge,
Xin Cheng, Sirui Hong, Jinlin Wang, et al. Aflow: Automating agentic workflow generation. arXiv
preprint arXiv:2410.10762, 2024b.

Jiayi Zhang, Chuang Zhao, Yihan Zhao, Zhaoyang Yu, Ming He, and Jianping Fan. Mobileexperts:
A dynamic tool-enabled agent team in mobile devices. CoRR, abs/2407.03913, 2024c.

Qihuang Zhong, Kang Wang, Ziyang Xu, Juhua Liu, Liang Ding, Bo Du, and Dacheng Tao. Achiev-
ing> 97% on gsm8k: Deeply understanding the problems makes llms perfect reasoners. arXiv
preprint arXiv:2404.14963, 2024.

Andy Zhou, Kai Yan, Michal Shlapentokh-Rothman, Haohan Wang, and Yu-Xiong Wang. Language
agent tree search unifies reasoning, acting, and planning in language models. In Forty-first
International Conference on Machine Learning, 2024.

Xuanhe Zhou, Guoliang Li, and Zhiyuan Liu. Llm as dba. arXiv preprint arXiv:2308.05481, 2023.

Mingchen Zhuge, Wenyi Wang, Louis Kirsch, Francesco Faccio, Dmitrii Khizbullin, and Jürgen
Schmidhuber. Gptswarm: Language agents as optimizable graphs. In Forty-first International
Conference on Machine Learning, 2024.

13

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2026

APPENDIX

Appendix A Use of Large Language Models

Appendix B Supplementary Results

Appendix C EvoMAS Framework Details

Appendix D Theoretical Analysis of Cyber Creator

Appendix E Experimental Setup and Implementation

Appendix F Prompt Templates and Examples

A USE OF LARGE LANGUAGE MODELS (LLMS)

During the preparation of this paper, we used Generative AI to assist with grammar checking,
language polishing, and improving readability. The model was not used for generating novel research
ideas, experimental design, data analysis, or drawing conclusions. All content and claims in the paper
are the sole responsibility of the authors.

B SUPPLEMENTARY RESULTS

B.1 STABILITY TRENDS WITH VARYING AGENT WIDTH AND DEPTH

2 4 6 8 10
Width (m)

89

90

91

92

93

Ac
cu

ra
cy

 (%
)

Effect of Width (Fixed Depth = 2)
Accuracy
95% CI

2 4 6 8 10
Depth (d)

88.5

89.0

89.5

90.0

90.5

Ac
cu

ra
cy

 (%
)

Effect of Depth (Fixed Width = 1)
Accuracy
95% CI

Figure 8: Accuracy and 95% confidence intervals (CI) across varying widths (left, fixed depth = 2)
and depths (right, fixed width = 1). Shaded regions indicate the CI range.

Figure 8 presents the accuracy trends and stability (95% CI) under two configurations: increasing
agent width with fixed depth (left) and increasing agent depth with fixed width (right).

Width Analysis: As width increases from m = 1 to m = 11, accuracy improves steadily while the
confidence interval narrows. This suggests that with more agents participating, the collective decision
becomes more stable due to diversity and redundancy. However, after m = 7, the marginal gain in CI
reduction diminishes, indicating saturation in collaborative benefits.

Depth Analysis: Increasing depth from d = 1 to d = 11 initially enhances stability (from d = 1
to d = 3), reflecting the value of multi-step reasoning or negotiation among agents. However,
beyond d = 5, the CI plateaus and eventually shows negligible improvement. This implies that
deeper structures may suffer from information distortion or diminishing returns due to accumulated
reasoning noise.

Emergent Principle: A key insight from these results is the non-linear convergence of stability:

• Increasing width promotes stability via agent diversity and ensemble averaging, but its
benefit saturates as inter-agent redundancy increases.

• Increasing depth initially enhances agreement through reasoning chains, but deeper layers
may introduce instability from noise accumulation or misalignment.

14

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2026

Hence, optimal stability in multi-agent systems may require a balanced coordination strategy that
avoids both shallow reasoning and excessive architectural complexity.

B.2 ROLE CO-OCCURRENCE IN WORKFLOW GRAPHS

To better understand the internal organization of evolved multi-agent workflows, we analyze the
structural co-occurrence patterns of different agent roles within the workflow graphs. Specifically, we
construct a role co-occurrence matrix where each entry (i, j) represents the number of edges from
role i to role j across all workflows evolved on the MATH dataset.

Figure 9 presents the resulting heatmap, providing a graphical summary of role connectivity patterns.

• Planner nodes frequently connect with
both Actor and Critic roles, reflecting
their central role in coordinating task
decomposition and quality control.

• Critic–Planner and Planner–Actor
links dominate, forming the backbone
of a reflective planning–execution loop.

• Custom roles show dispersed connec-
tions to all other types, highlighting
their flexible, late-stage integration into
evolved workflows.

• Diagonal values indicate intra-role co-
operation (e.g., Critic→ Critic), com-
monly seen in complex reasoning
chains.

These co-occurrence patterns reveal EvoMAS’s
tendency to converge on a modular architecture
in which planning, acting, and evaluating are
handled by specialized but tightly coupled agent
roles.

Figure 9: Role Co-Occurrence Heatmap in Work-
flow Graphs. Each cell (i, j) indicates the num-
ber of directed edges from role i to role j across
evolved workflows.

B.3 TRAINING CONFIGURATION AND COST TRANSPARENCY

To ensure reproducibility and transparency, we provide the full training configuration of EvoMAS
together with computational resource and cost analysis. Unlike continuous training paradigms,
EvoMAS adopts a one-time structural search approach, which makes the computational overhead
moderate while maintaining relatively strong generalization ability.

Table 5: Token usage and cost statistics of EvoMAS training experiments.

Task Dataset Training Samples Iterations Total Candidates Token Usage (M) Cost (USD)
Code Generation HumanEval 33 20 337 114M $1.66
Math Reasoning GSM8K 264 20 345 176M $2.57
Tool Usage GAIA 94 20 413 149M $2.14

Total 928M $13.92

All experiments were conducted using OpenAI GPT-4o-mini and Claude 3.5 API, without requiring
any GPU resources. The cost was calculated based on a rate of $0.015 per 1K tokens. Table 5
summarizes the token usage and cost statistics across the main experimental tasks.

Overall, the total cost of EvoMAS training is $13.92, corresponding to 928M tokens. Since the
paradigm only involves structural search rather than prolonged optimization cycles, the overhead
remains acceptable and cost-efficient.

15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2026

C EVOMAS FRAMEWORK DETAILS

C.1 OVERALL ALGORITHM DESCRIPTION

EvoMAS employs a hierarchical evolutionary framework with curriculum learning, operating across
three dimensions: role specialization, strategy selection, and curriculum progression.

Core Evolution Process: Each generation follows a variation-selection-reflection cycle using six
biologically-inspired operators—three for exploration (diversity expansion, conceptual recombination,
cross-domain hybridization) and three for exploitation (fine optimization, best practice synthesis,
role specialization). LLM-based selection evaluates candidates on performance, structure, and rule
compliance rather than scalar fitness alone. Every K generations, the Cyber Creator performs
meta-reflection to update rules and strategy distributions.

Curriculum-Guided Evolution: Tasks are partitioned by difficulty levels, with workflows evolved
sequentially from simple to complex. Cross-stage stability constraints prevent catastrophic forgetting
through cumulative performance evaluation Jk(G) = 1

k

∑k
i=1 f(G,Ti), ensuring evolved workflows

maintain competence across all previous difficulty levels.

Algorithm 1 EvoMAS: Core Evolutionary Algorithm

Require: Task distribution T , population size N , generations G, reflection interval K
Ensure: Best evolved workflow G∗

1: Initialize population P0 = {G1, G2, . . . , GN} via RAG retrieval
2: Initialize rule set R0, strategy distribution A0

3: Initialize evolution resource library (rule pool, gene pool)
4: for t = 1 to G do
5: // Variation Stage
6: P var

t ← ∅
7: for each parent G ∈ Pt−1 do
8: Sample strategy a ∼ At−1 ▷ Six biological operators
9: Generate offspring G′ ∼ a(G,Rt−1)

10: P var
t ← P var

t ∪ {G′}
11: end for
12: // Selection Stage
13: for each candidate G ∈ Pt−1 ∪ P var

t do
14: Compute fitness F (G,T) = Ex∼T [f(G, x)]
15: Serialize G with performance, structure, rule compliance
16: end for
17: Pt ← LLMSelect(Pt−1 ∪ P var

t , F,Rt−1) ▷ Preference-based
18: // Reflection Stage (every K generations)
19: if t mod K = 0 then
20: Update historical log Ht ← Ht−1 ∪ {(Gi, Fi, Ai)}i≤t

21: Rt ← CyberCreator(Rt−1, Ht) ▷ Rule update
22: At ← StrategyUpdate(At−1, Ht) ▷ Strategy adaptation
23: Update evolution resource library with successful patterns
24: else
25: Rt ← Rt−1, At ← At−1

26: end if
27: end for
28: return G∗ = argmaxG∈

⋃G
i=1 Pi

F (G,T,R)

C.2 EVOLUTIONARY STRATEGIES

To achieve a flexible and biologically inspired search process, EvoMAS employs a suite of seven
evolutionary strategies categorized into Exploration, Exploitation, and Custom types. These
strategies guide the generation and refinement of agentic workflows across generations. Each strategy
varies in its usage of single or multiple parents and its structural transformation behavior. A summary
is shown in Table 6.

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2026

Each strategy plays a unique role in navigating the trade-off between exploration and exploitation.
Exploration strategies (X1–X3) broaden the search space by introducing diversity, while exploitation
strategies (Y1–Y3) refine promising structures to improve fitness. The Custom strategy is uniquely
created by the Cyber Creator based on evolutionary feedback, offering a flexible interface for adaptive
strategy generation. This design allows EvoMAS to evolve not only agentic workflows, but also the
evolutionary process itself.

C.3 “CYBER CREATOR” IMPLEMENTATION

The “Cyber Creator” in EvoMAS serves as a meta-controller that adaptively regulates the evolutionary
process via external rule guidance and reflection-based strategy revision. This appendix provides
implementation details, including the format of rules, prompting strategies, and concrete examples of
its operation.

Algorithm 2 EvoMAS: Curriculum-Guided Evolution

Require: Task distribution T , difficulty layers n, competence threshold τ
Ensure: Multi-stage evolved population P final

1: // Task Difficulty Partitioning
2: Partition T = {T1, T2, . . . , Tn} s.t. d(T1) < d(T2) < · · · < d(Tn)
3: Initialize population P (0) ← Initialize()
4: Gbest

0 ← null
5: for stage k = 1 to n do
6: // Sequential Evolution on Stage k
7: Gbest

k , P (k) ← EvoMAS-Evolution(Tk, P
(k−1))

8: // Stability Constraint Check
9: if k > 1 then

10: Compute cumulative performance:
11: Jk(G

best
k) = 1

k

∑k
i=1 f(G

best
k , Ti)

12: Jk(G
best
k−1) =

1
k

∑k
i=1 f(G

best
k−1, Ti)

13: if Jk(Gbest
k) ≤ Jk(G

best
k−1) then

14: reject Gbest
k , continue evolution on Tk

15: end if
16: end if
17: // Competence Check
18: perfk ← F (Gbest

k , Tk)
19: if perfk < τ then
20: Continue evolution on Tk until perfk ≥ τ
21: end if
22: Transfer knowledge: Update evolution resource library
23: P (k) ← Select elite population for next stage
24: end for
25: return P final = P (n)

C.3.1 RULE REPRESENTATION

Each rule is encoded as a triplet ri = (ci, wi, di), where:

• ci: Condition, a logic-based or natural language constraint (e.g., num_planners(G) ≤
1)

• wi: Weight, indicating rule importance (High, Medium, Low)
• di: Description, a natural language explanation of the rule’s intent

Example Rule:

c: workflow_depth(G) ≤ 5
w: High

17

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2026

Table 6: Summary of Evolutionary Strategies in EvoMAS and Their Biological Analogies

Strategy Type #
Parents

Biological
Analogy

Description

X1 Explor. Multiple Adaptive
Radiation

Generates structurally diverse workflows by
varying topology and role composition, analo-
gous to species diversification into new ecolog-
ical niches.

X2 Explor. Multiple Sexual
Recombination

Preserves core functional ideas while varying
implementations through genetic crossover to
promote innovation.

X3 Explor. Cross-
domain

Horizontal Gene
Transfer

Combines substructures from workflows in dif-
ferent domains, mimicking bacterial exchange
of genetic material across species.

Y1 Exploit. Single Microevolution Performs incremental local refinements
through natural selection pressure on specific
performance bottlenecks.

Y2 Exploit. Multiple Selective
Breeding

Merges effective components from multiple
workflows, analogous to artificial selection for
desired traits.

Y3 Exploit. Single Cellular
Differentiation

Enhances specialization by refining agent roles,
similar to how cells develop distinct functions
in multicellular organisms.

Custom Mixed Variable Epigenetic
Regulation

Dynamically defined by the Cyber Creator
through environmental feedback, analogous to
gene expression modification without altering
DNA sequence.

d: “Encourage shallow workflow structures to reduce latency and token consump-
tion.”

During workflow variation and selection, rule satisfaction scores are injected into LLM prompts as
soft constraints to bias evolution.

C.3.2 PROMPT EXAMPLE FOR RULE GENERATION

To generate new evolution rules, EvoMAS queries an LLM with the following prompt template:

You are the Evolution Overseer. Given the following
historical evolution records from generation t, analyze
patterns among high- and low-performing workflows. Based
on your analysis, propose 1 new evolution rule to improve
future search. The rule should help reduce redundancy,
improve generalization, or enhance efficiency. Output each
rule as a JSON triplet: condition, weight, description.

The best performance in their parents is {0.90}.
Evolution History H_t:
[
{
"workflow": G_1,
"performance": 0.89,
"strategy": "Y2: Best Practice Synthesis"

18

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2026

},
{
"workflow": G_2,
"performance": 0.45,
"strategy": "X1: Diversity Exploration"

},
{
"workflow": G_3,
"performance": 0.91,
"strategy": "Y3: Agent Role Specialization"

}
]
Now generate a new evolution rule based on these data:
}

LLM Output Example:

[
{
"condition": "num_agents(G) <= 4",
"weight": "Medium",
"description": "Limit the number of agents to promote efficient."

}
]

C.3.3 CUSTOM STRATEGY GENERATION EXAMPLE

Based on identified patterns, the following “Custom” strategy was synthesized:

• Name: Feedback Loop Rewriter
• Trigger: Workflows with nested Critic → Planner cycles
• Action: Replace loops with a single deliberation block + actor validator
• Prompt Injected: “Simplify nested feedback by merging critic-planner
pairs into composite roles.”

This demonstrates how EvoMAS adapts not only the workflow structure, but also its own evolution process in a
closed adaptive loop.

C.4 SPECIFIC EXAMPLES OF EVOMAS WORKFLOW

To further illustrate how EvoMAS evolves multi-agent workflows, we provide a concrete case study on a Code
Debugging scenario. This complements the GAIA example.

EvoMAS follows a four-step cycle—template initialization, structural exploration, reflective selection, and local
refinement—to iteratively evolve role specializations and workflow structures. In this example, the performance
improves from 0.62 to 0.80 over three generations.

Generation 0: Initialization Retrieved Structure: Planner → Actor → Critic (basic template
from Gene Pool)
Rule Pool (R0): “Depth ≤ 5”
Fitness: 0.62

Table 7: Evolutionary operations in Generation 1.
Operation Generated Structure (Summary) Score
X1 – Diversity Planner → Actor1 → Actor2 → Critic (parallel Actors) 0.66
X2 – Conceptual Planner → Actor_with_ToolHints → Critic 0.70
Y1 – Fine-opt Enhanced original Actor prompt 0.68

Generation 1: Exploration-focused Selection: Retain X1, X2. Observation that “parallel multi-Actor”
performs well ⇒ add rule R1: Actor count ≥ 2 (Medium weight).

Generation 2: Hybrid Recombination Reflection: R1 has high hit rate with significant gains ⇒ weight
increased to High. Remove outdated rules (e.g., depth limitation).

19

1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2026

Table 8: Evolutionary operations in Generation 2.
Operation Generated Structure (Summary) Score
X3 – Cross-domain Planner → Actor1 → Actor2 → Critic → Actor3 → Critic 0.73
Y2 – Best-practice Planner → {Actor1, Actor2_with_ToolHints} → Critic 0.77

Table 9: Evolutionary operations in Generation 3.
Operation Generated Structure (Summary) Score
Y1 – Fine-opt Fine-tune Actor2_with_ToolHints 0.80
X1 – Limited exploration Planner → {Actor1, Actor2, Actor3} → Critic 0.75

Generation 3: Focused Refinement Stability check: Cross-layer stability constraint satisfied ⇒ system
advances to next difficulty level.

C.5 EVOLUTION RESOURCE LIBRARY

To enhance evolutionary efficiency and facilitate knowledge transfer, EvoMAS incorporates an Evolution
Resource Library comprising two key components: the Rule Pool and the Gene Pool. These components are
managed using a graph-based Retrieval-Augmented Generation (RAG) system implemented via LightRAG (Guo
et al., 2024; Edge et al., 2024), which integrates structured graph data with vector embeddings for efficient
retrieval and management.

C.5.1 RULE POOL

The Rule Pool stores effective evolutionary guidance rules, categorized into two types:

• Variation Rules: Guide the mutation of existing workflows to explore new design spaces. These rules
may involve adjusting agent roles, modifying workflow structures, or changing prompt templates.

• Selection Rules: Evaluate and filter workflows, ensuring that only workflows meeting specific criteria
proceed to the next round of evolution. These rules help the system focus on high-performance,
adaptable workflows, promoting natural selection.

In the Graph RAG framework, rules are represented as nodes within a graph, with edges indicating relationships
such as conflicts, complements, or derivations. This structure enables the system to understand complex
dependencies between rules and select suitable combinations during different evolutionary stages.

C.5.2 GENE POOL

The Gene Pool stores high-performing structural components, including role settings, modules (blocks), and
complete workflows. These components can be reused during evolution to accelerate the generation of new
workflows. Each "gene" in the Gene Pool is represented as:

gi = (si, pi, ui) (11)

where si denotes the structural representation (e.g., subgraph), pi represents the performance metrics, and ui

indicates usage statistics.

C.5.3 GENE POOL MAINTENANCE

To maintain the quality and diversity of the Gene Pool, EvoMAS periodically performs the following operations:

• Gene Merging: Merge functionally similar genes to reduce redundancy and enhance expressiveness.

• Gene Elimination: Remove genes that have been unused for extended periods or exhibit poor
performance, ensuring the Gene Pool remains vibrant and relevant.

• Gene Analysis: Identify frequently used gene patterns and summarize design principles, facilitating
knowledge accumulation and transfer.

C.5.4 GRAPH RAG IMPLEMENTATION WITH LIGHTRAG

EvoMAS employs LightRAG (Guo et al., 2024) to manage its Evolution Resource Library, integrating graph
structures with vector embeddings to enhance retrieval efficiency and contextual relevance. This section details
the implementation of Graph RAG using LightRAG.

20

1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Under review as a conference paper at ICLR 2026

Entity and Relationship Extraction LightRAG begins by segmenting documents into manageable chunks.
Each chunk is processed by a large language model (LLM) to identify entities (nodes) and their relationships
(edges). For instance, from the sentence "Cardiologists assess symptoms to identify potential heart issues,"
entities like "Cardiologists" and "Heart Disease" are extracted, with a relationship such as "diagnose" connecting
them.

Key-Value Pair Generation For each identified entity and relationship, LightRAG employs LLM profiling
to generate key-value pairs. The key is a concise identifier (e.g., "Cardiologists"), and the value is a text snippet
providing context or description. This facilitates efficient retrieval by enabling both exact and semantic searches.

Graph Construction and Indexing The extracted entities and relationships are assembled into a knowl-
edge graph. Nodes represent entities, and edges denote relationships. This graph is indexed using a combination
of structural information and vector embeddings, allowing for rapid retrieval of relevant subgraphs based on
query semantics.

Dual-Level Retrieval Paradigm LightRAG utilizes a dual-level retrieval system:

• Low-Level Retrieval: Focuses on precise information about specific entities and their immediate
relationships.

• High-Level Retrieval: Captures broader topics and themes by exploring multi-hop relationships
within the graph.

This approach ensures comprehensive information retrieval, accommodating both detailed and abstract queries.

Incremental Update Mechanism To maintain the relevance of the knowledge graph, LightRAG incorpo-
rates an incremental update algorithm. New data is integrated by appending corresponding nodes and edges
to the existing graph structure, eliminating the need for complete reindexing. This ensures the system remains
effective and responsive in dynamic environments.

21

1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187

Under review as a conference paper at ICLR 2026

D THEORETICAL ANALYSIS OF CYBER CREATOR

This appendix formalises the theoretical foundation for why the Cyber Creator mechanism enhances EvoMAS
performance through (i) information-theoretic advantages from historical search data, and (ii) adaptive rule and
strategy evolution that converges to optimal search policies.

Symbol Description

st = (Pt, Rt, At) System state at generation t
Pt Population of agentic workflows at generation t
Rt Rule set at generation t
At Strategy distribution at generation t
Ht = {(Gi, Fi, Ai)}i≤t Historical log of workflows, fitness, and strategies
F (G,T,R) Fitness function for workflow G on task distribution T with rules R
F ∗ Theoretical optimal fitness value
I(Ht) Information content of historical log
Q(R) Rule quality function
K Reflection frequency (generations between Cyber Creator updates)
µ Expected information gain per generation
σ2 Variance of information gain

D.1 INFORMATION-THEORETIC FOUNDATION

Setting. The Cyber Creator maintains a historical log Ht = {(Gi, Fi, Ai)}i≤t containing workflow structures,
fitness values, and generating strategies. This accumulated knowledge enables adaptive rule and strategy updates
every K generations.

Assumption D.1 (Positive Information Gain). There exists µ > 0 such that the expected information gain per
generation satisfies E[∆It] ≥ µ where ∆It = I(Ht)− I(Ht−1), and Var[∆It] = σ2 < ∞.

Proposition D.1 (Information Accumulation). Under Assumption D.1, the information content of the historical
log grows linearly:

I(Ht) = I(H0) +

t∑
i=1

∆Ii
a.s.−→ I(H0) + µt (12)

as t → ∞ by the strong law of large numbers.

D.2 RULE EVOLUTION DYNAMICS

The Cyber Creator updates rules through structured learning:

Rt+1 = UR(Rt;Ht) = Prune(Rt, Ht) ∪ Induce(Ht) (13)

Assumption D.2 (Rule Quality Improvement). The rule quality function Q(R) = EG∼πR [F (G,T,R)] satisfies:
Q(Rt+1) ≥ Q(Rt) + α ·∆It for some learning rate α > 0, where πR is the workflow distribution induced by
rule set R.

Theorem D.1 (Monotonic Rule Quality Growth). Under Assumptions D.1 and D.2, the rule quality grows
sublinearly but unboundedly:

Q(Rt) ≥ Q(R0) + αµt+O(
√

t log t) (14)

with probability 1 as t → ∞.

Proof. By Assumption D.2 and telescoping sum:

Q(Rt) = Q(R0) +

t∑
i=1

[Q(Ri)−Q(Ri−1)] (15)

≥ Q(R0) + α

t∑
i=1

∆Ii (16)

Applying the law of the iterated logarithm to
∑t

i=1 ∆Ii with mean µ and variance σ2 yields the claimed
bound.

22

1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241

Under review as a conference paper at ICLR 2026

D.3 STRATEGY ADAPTATION CONVERGENCE

Strategy weights evolve via exponential updates:

At+1(a) ∝ At(a) · exp(η · Reward(a)) (17)

Assumption D.3 (Reward Consistency). For the optimal strategy a∗, there exists ϵ > 0 such that
E[Reward(a∗)] ≥ E[Reward(a)] + ϵ for all suboptimal strategies a ̸= a∗.

Theorem D.2 (Strategy Convergence). Under Assumption D.3 with learning rate η > 0, the strategy distribution
converges almost surely to the optimal strategy:

lim
t→∞

At(a
∗) = 1 (18)

Proof. The exponential weight update is an instance of the multiplicative weights algorithm. By standard regret
bounds, the cumulative regret grows as O(

√
t log |A|), implying convergence to the optimal strategy with

probability 1.

D.4 MAIN PERFORMANCE THEOREM

Theorem D.3 (Cyber Creator Performance Advantage). Let F CC
t and F base

t denote the fitness with and without
Cyber Creator respectively. Under Assumptions D.1–D.3, there exists β > 0 such that:

E[F CC
t] ≥ E[F base

t] + β
√

I(Ht) (19)

for sufficiently large t.

Proof. The performance advantage arises from two sources:

Step 1: *Rule quality improvement.* By Theorem D.1, rules updated every K generations provide cumula-
tive advantage:

⌊t/K⌋∑
j=1

[Q(RjK)−Q(R0)] ≥ αµ
t

K

⌊t/K⌋∑
j=1

j

⌊t/K⌋ = αµ
t

2K
+O(1) (20)

Step 2: *Strategy adaptation benefits.* Optimal strategy convergence (Theorem D.2) provides additional
fitness gains proportional to information utilization efficiency.

Step 3: *Information utilization bound.* The marginal utility of accumulated information follows diminish-
ing returns, yielding the

√
I(Ht) scaling by concavity of information-theoretic measures.

Combining these effects and taking β = αµ/(2K) establishes equation 19.

D.5 ASYMPTOTIC OPTIMALITY

Theorem D.4 (Almost-Sure Convergence to Optimum). Under the assumptions of Theorem D.3, the Cyber
Creator-enhanced system converges to global optimality:

lim
t→∞

P(F CC
t → F ∗) = 1 (21)

Proof. Convergence follows from: (i) unbounded rule quality growth (Theorem D.1) eliminating search biases,
(ii) optimal strategy selection (Theorem D.2) ensuring efficient exploration-exploitation balance, and (iii)
complete historical information utilization preventing redundant low-quality searches.

Discussion. The theoretical analysis reveals why Cyber Creator provides performance advantages that scale
with problem complexity. The

√
I(Ht) improvement bound in Theorem D.3 explains experimental observations:

more complex tasks generate richer historical information, leading to greater Cyber Creator benefits. The 18%
cost increase observed when removing Cyber Creator corresponds to the loss of accumulated search efficiency
encoded in the rule and strategy adaptation mechanisms.

Remark. The positive information gain assumption (Assumption D.1) requires that evolutionary search
produces genuinely informative outcomes rather than random exploration. In practice, this is ensured by the
structured search operators and fitness-guided selection in the EvoMAS framework.

23

1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295

Under review as a conference paper at ICLR 2026

E EXPERIMENT DETAILS

E.1 MODEL CONFIGURATION

EvoMAS utilizes separate models for optimization and execution. For the optimizer, we employ
Claude-3.5-sonnet, which is responsible for generating new workflows and strategies. For workflow
execution and task solving, the following models are used:

• DeepSeekV3

• GPT-4o-mini-0718

• Claude-3.5-sonnet

• GPT-4o-1120

All models are accessed via official APIs. The temperature is set to 1.0 for the optimizer to encourage diverse
generations and set to 0 for executors to ensure deterministic outputs. Each evolutionary run consists of 20
optimization iterations.

E.2 DATASET STATISTICS

Table 10 summarizes the dataset sizes and evaluation metrics across domains.

Table 10: Dataset statistics and corresponding evaluation metrics.

Domain Dataset #Train #Test Metric

Code Generation
HumanEval 33 131 pass@1
MBPP 86 341 pass@1

Math Reasoning
GSM8K 264 1055 Accuracy
MATH 119 486 Accuracy

Tool Used
GAIA 94 372 Accuracy
ALFWorld 27 107 Success Ratio

Multi-hop QA HotpotQA 200 800 F1 Score

24

1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349

Under review as a conference paper at ICLR 2026

F PROMPT EXAMPLES

Example of workflow

class MultiAgentSystem:
def __init__(self, name: str, tools=None) -> None:

self.name = name
self.tools = tools

async def run(self, task: str):

from Agent_async import Actor

Initialize agents
actor = Actor(self.tools)

Run agent flow
prompt = f"As a mathematician,
solve the following complex math problem: {task}"
res = await actor.process(prompt)

return {"answer": res}

X1: Diversity Exploration

prompt_content = (
f"Create a novel multi-agent workflow for solving complex multi-

step reasoning problems using LLMs.\n"
f"I have {num_indiv} existing agent flows with their codes as

follows:\n"
f"{prompt_indiv}"
"Please help me create a new agent flow that has a totally

different form from the given ones in structure and prompts.\
n"

"Focus on generating a workflow with completely novel topology
and agent interaction patterns, diverging from all structural
templates of the existing flows.\n"

f"{self.format_prompt}"
f"{self.agent_blocks}"
f"{self.prompt_law}"
"First, describe your new agent flow and main steps in one

sentence. "
"Then, please return the Python implementation of the

MultiAgentSystem class in JSON format. "
"{’plan’: str, ’code’: str, ’num_agent’: int}"

)

X2: Conceptual Exploration

prompt_content = (
f"Design a new multi-agent system for problem solving using LLMs

by reimagining core functions from existing flows.\n"
f"I have {num_indiv} existing agent flows with their codes as

follows:\n"
f"{prompt_indiv}"
"Please help me create a new agent flow that keeps the high-level

intent or task decomposition ideas of the old ones, but

25

1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403

Under review as a conference paper at ICLR 2026

introduces different agent types, roles, and data flow
structures.\n"

f"{self.format_prompt}"
f"{self.agent_blocks}"
f"{self.prompt_law}"
"First, describe your new agent flow and main steps in one

sentence. "
"Then, please return the Python implementation of the

MultiAgentSystem class in JSON format. "
"{’plan’: str, ’code’: str, ’num_agent’: int}"

)

Y1: Fine Optimization

prompt_content = (
f"Improve an existing high-performance agent workflow through

detailed refinements for efficiency and clarity.\n"
f"I have {num_indiv} existing agent flows with their codes as

follows:\n"
f"{prompt_indiv}"
"Please generate a new agent flow that improves on the most

effective existing one by optimizing prompts, reducing
redundant links, and increasing information clarity, while
preserving the overall structure.\n"

f"{self.format_prompt}"
f"{self.agent_blocks}"
f"{self.prompt_law}"
"First, describe your new agent flow and main steps in one

sentence. "
"Then, please return the Python implementation of the

MultiAgentSystem class in JSON format. "
"{’plan’: str, ’code’: str, ’num_agent’: int}"

)

Y3: Agent Role Specialization

prompt_content = (
f"Design a new multi-agent system that enhances role

specialization to increase efficiency and collaboration.\n"
f"I have {num_indiv} existing agent flows with their codes as

follows:\n"
f"{prompt_indiv}"
"Please help me generate a novel agent flow where each agent has

clearly defined specialized roles and improved collaboration
patterns, optimizing division of labor and communication
efficiency.\n"

f"{self.format_prompt}"
f"{self.agent_blocks}"
f"{self.prompt_law}"
"First, describe your new agent flow and main steps in one

sentence. "
"Then, please return the Python implementation of the

MultiAgentSystem class in JSON format. "
"{’plan’: str, ’code’: str, ’num_agent’: int}"

)

26

	Introduction
	Related Work
	Preliminary
	Representation: Graph-based Formulation of MAS
	Design Assumptions
	Problem Definition

	Methods: EvoMAS
	Evolution as a Markov Process
	Evolution Cycle: Variation → Selection → Reflection
	Curriculum-Guided Evolution

	Experiment
	Experimental Setup
	Experimental Results and Analysis

	Discussion
	Use of Large Language Models (LLMs)
	Supplementary Results
	Stability Trends with Varying Agent Width and Depth
	Role Co-Occurrence in Workflow Graphs
	Training Configuration and Cost Transparency

	EvoMAS Framework Details
	Overall Algorithm Description
	Evolutionary Strategies
	``Cyber Creator'' Implementation
	Rule Representation
	Prompt Example for Rule Generation
	Custom Strategy Generation Example

	Specific Examples of EvoMAS Workflow
	Evolution Resource Library
	Rule Pool
	Gene Pool
	Gene Pool Maintenance
	Graph RAG Implementation with LightRAG

	Theoretical Analysis of Cyber Creator
	Information-Theoretic Foundation
	Rule Evolution Dynamics
	Strategy Adaptation Convergence
	Main Performance Theorem
	Asymptotic Optimality

	Experiment Details
	Model Configuration
	Dataset Statistics

	Prompt Examples

