Under review as a conference paper at ICLR 2026

EVOMAS: HEURISTICS IN THE LOOP—EVOLVING
SMARTER AGENTIC WORKFLOWS

Anonymous authors
Paper under double-blind review

ABSTRACT

The rapid development of Large Language Models has driven Multi-Agent Systems
(MAS) growth, but constructing efficient MAS requires labor-intensive manual
design. Current automation methods generate templated agents, use monolithic
optimization, and ignore task complexity gradients. This paper presents Evolu-
tionary MAS (EvoMAS), a biologically-inspired framework that systematically
addresses these limitations through three interconnected dimensions: (1) dynamic
and diverse evolutionary strategies with six biologically-inspired operators (3
exploration, 3 exploitation) and adaptive strategy selection; (2) role-level evolution
that dynamically optimizes agent specialization and collaboration patterns; and (3)
curriculum-guided evolution partitioning tasks by difficulty levels and evolving
sequentially from simple to complex with cross-stage stability constraints. Addi-
tionally, to resolve the contradiction between the inefficiency of pure evolutionary
methods and the limited flexibility of manual design, we developed the "' Cyber
Creator'', a meta-control system combining dynamic rule formulation with re-
flective updates. Experimental evaluations demonstrate that EVoMAS consistently
outperforms existing methods across multiple domains while maintaining cost
efficiency, with agent roles dynamically evolving from homogeneous actors to
specialized reasoning ensembles. Codes are available at EvoMAS,

1 INTRODUCTION

The rapid advancement of Large Language Models (LLMs), particularly the flourishing ecosystem of
Model Context Protocol (MCP) (Hou et al.| | 2025)), has propelled MAS as a powerful collaborative
paradigm at the forefront of Al innovation (Li et al.| |2024a; Han et al.| 2024} (Cemri et al., [2025)).
However, current MAS design methodologies face fundamental challenges: they predominantly
rely on static predefined architectures and fixed interaction patterns—a rigid design philosophy that
severely constrains their ability to respond to complex and dynamic environments. While such
systems may excel in specific scenarios, they exhibit notable adaptation barriers when confronting
open-ended, dynamic problems. Consequently, the automation and optimization of MAS design has
emerged as a critical frontier challenge (Weyns & Oquendol 2019).

Recent years have witnessed significant progress in agent system automation technologies, albeit
with evident bifurcation trends. One category focuses on single-dimensional optimization: DsPy
(Khattab et al.| 2024a)) and EvoPrompting (Chen et al.,2023a) pioneered automated paradigms in
prompt engineering; GPTSwarm (Zhuge et al.,[2024)) and G-Designer (Zhang et al., 2024a) dedicated
efforts to optimizing inter-agent communication protocols; while EvoAgent (Yuan et al., 2024)) and
AutoAgents (Chen et al.,[2023b)) explored the possibilities of single-agent self-evolution. Despite
their respective strengths, these approaches struggle to achieve system-level breakthroughs due to
their localized optimization perspectives. Another category, including ADAS (Hu et al., [2024)),
AgentSquare (Shang et al.,[2024), and AFlow (Zhang et al., [2024b)), attempts to expand the design
search space, constructing optimized workflows on specific datasets through heuristic search, Monte
Carlo tree search (MCTS), or evolutionary algorithms, demonstrating capabilities surpassing manually
designed systems. Nevertheless, these methods reveal severe limitations when facing cross-domain
tasks: @ they typically employ singular, fixed optimization strategies inadequate for diverse task
requirements; @ their system structures and agent profiling remain excessively template-based,
lacking necessary flexibility and innovation potential; @ they disregard the crucial impact of task

https://anonymous.4open.science/r/EvoMAS-DEF4

Under review as a conference paper at ICLR 2026

a. Agent Role level’ s © %;% b. Dynamic & Diverse @s c. Curriculum-Guided
Evolution % %" Evolution Strategies 43 Evolution

{ i Task
! N)) WS i

e 0 =)
Mmoo ! m Reflecti

Q ‘@; . eflegtion difficulty grading
@+ / \ &

O

--------------- . 6 DA strategies() Y
! - : A aa'sa @ easy
) - B
) ", S S ‘ parent offspring Result) @ medium
| < | —x N : . i
N i / Evolution Pool) (Selection Pool) Gradual evolution
3. 50
Environment E3 Q% enoy medium hard

Figure 1: Motivation: Three Evolution Dimensions in EvoMAS. EvoMAS explores agentic workflow evolution
from three key dimensions: (a) role-level evolution enhances agent specialization and coordination, (b) diverse
strategies enable LLM-guided exploration with reflection-based updates, and (c) curriculum-guided evolution
promotes gradual adaptation across tasks of increasing difficulty.

difficulty gradients on learning efficiency, resulting in insufficient generalization capabilities in
complex scenarios.

Addressing these challenges, we introduce EvoMAS —a biologically-inspired framework for au-
tomated evolution of multi-agent systems. EvoMAS integrates three interconnected evolutionary
dimensions as shown in Figure [T} @ role dimension: the system implements adaptive role evolution
mechanisms that dynamically refine agent specializations and interaction patterns throughout the
evolutionary process. This transcends traditional rigid agent roles, enabling specialized collaboration
tailored to task requirements; @ strategy dimension: EvoMAS constructs a dual-track "exploration-
exploitation" evolutionary mechanism encompassing six biologically-inspired strategies, enabling
the system to achieve an exquisite balance between search space diversity and optimal solution
convergence; © learning path dimension: the system implements a curriculum-inspired progressive
adaptation process, enabling complex capabilities to build gradually upon simpler tasks, significantly
enhancing cross-task generalization abilities.

While natural selection provides powerful op- Tuple 1: Comparative Analysis of Core Capabil-

timization P““Clp,les’ purely evolutionary ap- jsies Across MAS Automation Frameworks.

proaches can be inefficient for complex tasks, Multi-Agent Dynamic Meta- | Curric
Method)

and conversely, rigid human design often limits Evol. Strategy Evol. | Learn.
adaptability. To address this fundamental tension, EvoFlow
EvoMAS introduces the '"Cyber Creator'—a Eﬂgiega;f?
meta-control system that strategically combines AFlow
rule-based guidance with adaptive learning. This _ADAS
mechanism bridges the gap between undirected EvoMAS
evolution and artificial intervention through explicit rule-setting and periodic reflective updates.
Additionally, EvoMAS employs graph structures to precisely express the topological and functional
characteristics of multi-agent workflows, while constructing an evolutionary resource center com-
prising rule pools and gene pools that provides robust support for knowledge accumulation and
transfer. Table[I]illustrates how EvoMAS distinguishes itself from existing automated design meth-
ods through comprehensive evolutionary capabilities, being the only framework to simultaneously
support dynamic strategy evolution, meta-level adaptation, and curriculum-guided learning. EvoMAS
achieves state-of-the-art(SOTA) performance across six benchmarks, while maintaining superior
cost-efficiency, outperforming both manual designs and automated baselines.

ANA S G R N
> > % % x
> > % % x
> x % x %

2 RELATED WORK

Agentic Workflow. With the increasing capabilities of LLMs, the paradigm of Agentic Work-
flow has emerged as a promising approach to construct structured and multi-stage task-solving
processes |Hong et al.| (2024al); Zhang et al.[(2024c); [Wang et al.| (2023a)). This paradigm typically
comprises multiple LLM-invoking nodes with well-defined inputs and outputs, organized in the form
of graphs, code, or flowcharts to specify the execution sequence.

Existing research in this area can be broadly categorized into two directions: general-purpose
workflows (Madaan et al., [2023; |Wang et al., [2023b) and domain-specific pipelines (Zhong et al.,

Under review as a conference paper at ICLR 2026

2024; Xu et al.,|2024). The former focuses on universal reasoning strategies, while the latter builds
tailored structures for specific tasks such as code generation (Ridnik et al.| 2024} [Hong et al.| [2024b),
data analysis (Zhou et al., [2023 |Ye et al., |2024), and multi-hop question answering (Zhou et al.,
2024). However, most approaches rely on predefined templates or operator libraries and lack the
expressiveness for hierarchical structural evolution and dynamic adaptation.

Automated Agentic Optimization. To alleviate the burden of manually designing complex work-
flows, research on automated agentic workflow optimization (Zhuge et al.,|2024; [Li et al., 2024b; Hu
et al., |2024; |[Zhang et al., [2025b) is gaining traction. Some approaches focus on prompt (Khattab
et al.}2024b} [Fernando et al.| 2024} |Yang et al.| 2024; [Yiiksekgoniil et al.l 2024) or parameter tun-
ing|Saad-Falcon et al.[(2024)), while others aim at optimizing the structural composition of workflows,
including inter-module connectivity, execution ordering, and conditional dependencies.

Representative methods include ADAS (Hu et al., 2024), which linearizes workflow code and
performs sequential structure search, and GPTSwarm (Zhuge et al., [2024)), which models workflows
as graphs and uses reinforcement learning for structural optimization. Additionally, AFlow (Zhang
et al., 2024b)) encodes workflows as code and applies MCTS to explore efficient execution paths,
demonstrating superior performance over manual designs. However, these methods still suffer
from limited search efficiency, constrained expressiveness, and poor cross-task generalization. In
particular, they lack effective mechanisms for heterogeneous module collaboration and feedback-
driven structural evolution, limiting their ability to adapt to complex multi-faceted tasks.

3 PRELIMINARY

This section establishes the theoretical foundation for automated multi-agent system design by
introducing core design assumptions, formalizing the graph-based structural representation, and
defining the constrained optimization problem that guides our evolutionary framework.

3.1 REPRESENTATION: GRAPH-BASED FORMULATION OF MAS

To capture the complex control flow, informa-
tion exchange, and collaborative dynamics in- s— -
herent in multi-agent systems, we model MAS | Nede~_ | |Block . Agentic Workflow :G.E)

workflows as sparse, cyclic directed graphs as ig',;,anne,g(§ 'R(m'm %
- il] EC f

Search Space

illustrated in Fig. P} Formally, a workflow [Qacer ||\ 787 0| o (O™
is represented as G = (V,E), where V = |[[Qeitc | : | U . g
{v1,v2, ..., v, } denotes the vertex set with each |l =" |||} é‘ﬂ(f’&ﬂ*’(D,
node v; corresponding to an autonomous agent, e || : T
and £ C V x V represents the edge set encod-

ing directed dependencies for information flow

and control signal propagation. The graph main- pjgyre 2: Agentic workflow search space repre-
tains structural integrity through a unique source opied as graphs with role-specific nodes and mod-

node (input) and sink node (output), ensuring yjar plocks, enabling dynamic tool use, prompt
well-defined task boundaries and deterministic chaining, and structured multi-agent task solving.

execution semantics.

B Taskinput o> Edge E
I8 Final answer

3.2 DESIGN ASSUMPTIONS

Our approach to automated multi-agent system evolution is built upon three core assumptions that
define the theoretical foundation and constrain the design space:

H1 (Unity in Diversity). Following Ricardo’s comparative advantage theory, specialized agents
achieve collective efficiency even when individual capabilities differ. We assume that heterogeneous
agent roles with complementary specializations—some focusing on reasoning, others on verifica-
tion—yield superior performance compared to homogeneous configurations (Bettini et al., 2023 |Cao
et al.,[2019).

Ho (Know Thyself). Based on Bayesian learning principles (P(0|D) « P(D|0)P(0)), agents
continuously adapt through feedback loops. We assume that self-monitoring mechanisms enable

Under review as a conference paper at ICLR 2026

school level math

roblems. The answer

format is latex.

retrieve

- ACY

Reflection and

o= — 2 RS o
:= Task description RAG {5} Parent population 2 LLM \ij' g &55
You need to solve middle 9 . . -
You need to solve middle J Optimal population

1/Cost

= - Evolution Resource =t B Und '
=5 Library N S\lt“e:sc,gy Update Pareto Font
= v & Final result
/%ﬁ Rule pool | ¢~ D@ Agentic genc pool -~ x N
| ! =] -
Block *&+ Workflow | 'S

: &® variation rule : i : . .8 Offspring population
l s == I ber Creator 3 Evolution experience
1 @) seloctionrute | Optimal population
[|
| but oty
__ J

I_ Library Update U
ry ~J

a. Population Init

Figure 3: Overall EvoMAS Framework. The framework follows a three-stage process: (1) initialization via
RAG-based retrieval from a knowledge-rich resource library, (2) population evolution through LLM-based
variation and selection, and (3) evolution resource library update based on the results.

robust error correction and strategic refinement, allowing systems to maintain stability while adapting
to evolving requirements (Bilal et al., [2025).

Hs (Less is More). Following Occam’s Razor and bias-variance tradeoff principles, simpler
architectures often outperform complex ones. We assume that beyond optimal system size, additional
agents introduce coordination overhead with diminishing returns, making structural parsimony
essential for efficiency (Narain et al.| 2014} Wu et al.| [2025).

Formalization. These assumptions collectively define our design space 2 = {G|G satisfies H; A
Ho A Hs}, where each candidate workflow G’ must exhibit role specialization (#1), incorporate feed-
back mechanisms (2), and maintain structural efficiency ({3). Our evolutionary framework operates
within this constrained space to ensure theoretically grounded and practically viable solutions.

3.3 PROBLEM DEFINITION

We formalize the automated design and optimization of multi-agent systems as a constrained single-
objective optimization problem over the space of sparse, cyclic directed graphs. Given the design
assumptions H1, Hs, and Hs, the optimization problem is defined as:

G* = argrélg%(F(G,T, R) (N

where G € 2 represents a candidate MAS workflow graph constrained by our design assump-
tions, 1" denotes the task distribution encompassing problem instances and difficulty metrics,
R = {ry,ra,...,ry} is the evolutionary rule set encoding domain-specific constraints and structural
preferences, and F' : Q x 7 x R — RT is the composite fitness function evaluating workflow
performance under task distribution 7" and rule guidance R.

This single-objective formulation offers several theoretical advantages over multi-objective ap-
proaches: (i) it reduces computational complexity by eliminating Pareto frontier approximation; (ii) it
enables direct application of convergence guarantees from evolutionary optimization theory; and (iii)
it provides interpretable optimization trajectories through explicit rule-based guidance, facilitating
systematic analysis of design trade-offs.

4 METHODS: EVOMAS

We propose EvoMAS, a biologically-inspired framework for evolving multi-agent workflows. Unlike
prior approaches that rely on static architectures or singular optimization strategies, EvoOMAS formal-
izes the agent workflow construction as a rule-guided evolutionary process with stochastic dynamics.
This section introduces the core formalism, system components, and theoretical underpinnings. The
complete algorithm process is presented in Appendix C.

Under review as a conference paper at ICLR 2026

4.1 EVOLUTION AS A MARKOV PROCESS

We model the EvOMAS system as a non-homogeneous Markov process over the evolving system
state:

St = (PtaRtaAt), (2)

where P; is the population of agentic workflows, R; is the rule set (e.g., human- or LLM-injected),
and A; denotes the current evolution strategies for exploration and exploitation. The evolution
dynamics are governed by a probabilistic transition kernel:

P(8t+1 \ St) = P((Pt+17Rt+1,At+1) | ('Pt,Rtht))« (3)

This formulation encapsulates the full evolution loop—variation, selection, and meta-
reflection—under a unified stochastic process.

4.2 EVOLUTION CYCLE: VARIATION — SELECTION — REFLECTION

EvoMAS operates in discrete generations, where each generation ¢ performs a full evolutionary
cycle on the system state s; = (P, R¢, A;). This cycle comprises three interlinked stages: variation,
selection, and reflection. Together, they enable EvoOMAS to search the workflow graph space while
adaptively updating its rules and strategies.

Variation. This stage is designed to explore and exploit the vast space of agentic workflows by
applying diverse, rule-guided graph transformation strategies. The design of our strategies follows
two key principles: (1) promoting structural diversity to escape local optima and discover novel
coordination patterns, and (2) preserving and refining high-performing substructures to accelerate
convergence. To this end, EVoOMAS maintains a set of exploration and exploitation operators in A,
each corresponding to biologically-inspired mechanisms such as mutation, or crossover.

Exploration strategies aim to introduce novel graph topologies and behaviors through structural
diversification: X} (Diversity Expansion) maximizes graph edit distance through stochastic perturba-
tions, analogous to genetic mutation, introducing topological variations that expand the evolutionary
search space beyond local optima. X5 (Conceptual Recombination) combines semantically distinct
functional modules through crossover operations, mirroring sexual recombination in biology, where
heterogeneous components are integrated to generate novel architectural configurations. X3 (Cross-
domain Hybridization) transplants proven structural motifs from disparate task domains, inspired
by horizontal gene transfer, facilitating knowledge transfer across problem boundaries to introduce
emergent capabilities.

Exploitation strategies focus on refining and optimizing existing high-performing structures:)
(Fine Optimization) applies gradient-based local search to agent parameters and connection weights,
resembling microevolutionary adaptation, where incremental adjustments yield measurable fitness
improvements.)o (Best Practice Synthesis) systematically merges elite subgraph components
through structured composition, analogous to selective breeding, preserving and combining superior
traits from high-performing individuals. s (Role Specialization) enhances modular functional-
ity through targeted parameter refinement, akin to cellular differentiation, where agents develop
specialized competencies for maximum operational efficiency.

var

Formally, each candidate graph G’ € P;* is generated by sampling a parent G € P;, a strategy
a ~ A, and applying the associated transformation operator:

G’ ~a(G,R;), wherea~ Ay, G~ Py. 4)
where Ay = { Xy, Xo, X3, Y1, V2, V5,C} encompasses the six biologically-inspired strategies plus a
custom strategy C that enables domain-specific transformations tailored to particular requirements.
Selection. After variation, all candidate workflows are evaluated using a base fitness score. Formally,
for each workflow graph GG, we compute its task-level performance via:

F(G? T) = E:z:~T[f(G7 .%')], (®)]

where f(G,) measures the accuracy or success rate of workflow G on input . Rather than relying
solely on scalar fitness ranking, we adopt a preference-guided selection mechanism that holistically

Under review as a conference paper at ICLR 2026

evaluates candidate workflows based on performance metrics, structural properties, and rule alignment.
Specifically, each candidate G € P}* U P; is serialized into a compact textual representation that
captures three core aspects: @ its execution performance F'(G,T'), representing quantitative task
success; @ its internal structure, including the graph topology, node roles (e.g., Planner, Critic), and
configuration parameters; and @ its degree of compliance with the current rule set Ry, including both
hard constraints and soft preferences.

The resulting representations are provided as input to a large language model (LLM), which performs
preference-based selection by implicitly evaluating each candidate according to a latent utility
function informed by human-aligned inductive biases. Rather than relying solely on scalar fitness
scores, the LLM considers a richer combination of behavioral performance, structural plausibility,
and rule conformance. Based on this holistic assessment, the LLM ranks candidates and selects a
subset to form the next generation:

Piy1 = LLMSelect(?Dt U ’P;/M, F, Rt), (6)

This approach enables EVOMAS to incorporate qualitative notions of agent design (e.g., modularity,
interpretability, domain alignment) that are difficult to encode in a scalar objective. Despite the soft
selection mechanism, we still define a best-so-far fitness:
By := max max F(G 7
TS Gep, (@), ™
which remains non-decreasing due to implicit elitism (high-performing candidates are rarely dis-
carded) and converges under boundedness assumptions.

Reflection (Cyber Creator). Every K generations, EVOMAS invokes a meta-level feedback mech-
anism—termed the Cyber Creator—which reflects on past evolutionary trajectories and adapts both
the rule set and strategy distribution. This mechanism functions not merely as an environment, but as
a meta-level creator that actively shapes evolutionary trajectories through rule-setting and reflective
updates.

Formally, the system maintains a historical log H; = {(G;, F;, .A,-)},;St, recording past candidates,
their performance, and the strategies that generated them. Based on this history, Cyber Creator
dynamically synthesizes new rules that generalize over successful patterns, while pruning those that
have become obsolete or detrimental:

Riv1 =Ur(Ry; Hy) = Prune(Ry, Hy) U Induce(Hy), 8)

where Prune removes underperforming or obsolete rules, and Induce generates new rules by abstract-
ing over structural regularities in successful workflows. Simultaneously, the strategy distribution .A;
over operators a € A; is updated by the LLM based on the observed evolution trajectory H;. Rather
than computing explicit reward signals, the LLM infers a new preference profile A that reflects
the utility of each strategy in driving effective variation. This process can be abstractly modeled as a
utility-weighted adjustment:

Air1(a) oc Ag(a) - exp (1 - Reward(a)) , 9)

where Reward(a) denotes the estimated contribution of strategy a to recent fitness improvements,
and 7 controls adaptation sharpness. Through this process, EvoMAS continuously reshapes its search
dynamics based on LLM-guided meta-level feedback. The Cyber Creator thereby enables the system
to evolve not only agentic solutions, but also its own inductive biases, structural priors, and decision
heuristics—closing the loop on self-directed evolutionary cognition.

4.3 CURRICULUM-GUIDED EVOLUTION

In biological evolution, complex organisms emerge through gradual adaptation to increasingly
challenging environments. Inspired by this principle, EvOMAS incorporates a curriculum-guided
evolutionary process, where agentic workflows evolve progressively—from simpler to more complex
tasks—thereby improving learning stability, sample efficiency, and generalization.

Task Difficulty Layering. We partition the overall task distribution 7" into n ordered subsets based
on increasing cognitive complexity:

T={T\Ts,....,T,}, st d(T1)<dTp)<-<dT,), (10)

Under review as a conference paper at ICLR 2026

where d(-) denotes a task difficulty function that evaluates each subset T; based on semantic com-
plexity, required reasoning steps, and domain-specific expertise. To estimate d(T;), we adopt
an LLM-as-a-Judge framework (Gu et al., 2024), which provides difficulty ratings by analyzing
input-output complexity, abstraction level, and knowledge dependencies. Each subset T; defines
a curriculum stage with internally consistent difficulty, and evolution proceeds sequentially as the
system achieves competence at each level.

Sequential Evolution with Stability Control. Evolution proceeds sequentially through difficulty
stages, with each stage T; serving as the training environment until competence threshold is reached.
To prevent catastrophic forgetting during stage transitions, we enforce a stability constraint: let
G, denote the best-evolved workflow at stage k, then the cumulative performance Jj+1(Ggy1) =

k—}rl Zf:ll (Gri1 7.Ti) must exce.ed Jk+1 .(G k)s §nsuring that newlly evolved workflows maintain
competence on previous stages while adapting to increased complexity.

5 EXPERIMENT

5.1 EXPERIMENTAL SETUP

Datasets and Tasks. We evaluated EvoMAS on 8 public datasets covering three major domains: (1)
Mathematical reasoning: GSM8K (Cobbe et al,[2021) and MATH (Hendrycks et al.l[2021). (2) Code
generation and language reasoning: HumanEval (Chen et al., [2021)) and MBPP |Austin et al.[(2021)
for code generation, and HotpotQA [Yang et al.| (2018) for language understanding and complex
reasoning. (3) Embodied intelligence tasks: ALFWorld (Shridhar et al.| 2020) to evaluate agents’
multi-step operation and goal execution abilities in virtual environments, and GAIA |Mialon et al.
(2023) to assess agents’ tool-using capabilities.

Baselines. We compared EvoMAS with three categories of agent benchmarks: (1) Single-agent
execution methods, including IO (direct LLM invocation) and CoT; (2) Manually designed multi-agent
systems, including MultiPersona, LLM-Debate, and AgentVerse; (3) (Partially or fully) autonomous
multi-agent systems, including GPTSwarm, AutoAgents, ADAS, AgentSquare, EvoFlow, and AFlow.

More details on Experimental setups are provided in Appendix D.

5.2 EXPERIMENTAL RESULTS AND ANALYSIS

Main Results. EvoMAS demonstrates exceptional performance across diverse benchmark
tasks, achieving SOTA results on five out of six benchmarks with an average score
of 80.06% as shown in Table outperforming the previous best method EvoFlow
by 1.57% on average while maintaining competitive results on ALFWorld (67.28%).
The ptegfornl?mcle gains are Farﬁiculegly S;Egnifli/i/inst Table 2: Success rate (%) on GAIA task.
in mathematical reasoning tasks, where Evo
surpasses AFlow by 1.37% on GSM8K and 4.96% Method Levell Level2 Level3 Average
on MATH, and in code generation tasks with im- GPT-40-mini ~ 7.53 4.40 0.00 4.65
provements of 1.04% and 2.64% over EvoFlow AutoGPT 1321 0.00 3.85 4.85
on HumanEval and MBPP respectively, demon- AutoAgents 16.13 ~ 0.00 0.00 5.16
strating enhanced logical reasoning and problem- AgentSquare 22.58 1572 6.25 16.34
. e p : AFlow 10.75 8.81 4.08 8.00
solving capabilities through collaborative agent in-
. : . MaAS 2591 22.01 6.25 20.69
teractions. Furthermore, in the challenging GAIA
.. . . EvoMAS 30.11 22.64 8.61 22.59
embodied intelligence evaluation (Table[2), Evo-
MAS achieves leading performance across all difficulty levels, representing a substantial 1.90%
improvement over the second-best method MaAS, with particularly notable gains in the most chal-
lenging Level 3 tasks, underscoring EvoOMAS’s superior capability in complex multi-step reasoning,
tool usage, and real-world problem-solving scenarios that require sophisticated agent coordination.

Cost Analysis. EvoMAS demonstrates exceptional cost-effectiveness with a total cost of
$20.24 (928M training tokens and 421M inference tokens), strategically positioned between
the more expensive AFlow ($23.74) and the lower-cost EvoFlow ($16.55) as shown in Table

7

Under review as a conference paper at ICLR 2026

Table 3: Performance comparison across six benchmark tasks.

Method GSM8K MATH HumanEval MBPP HotpotQA ALFWorld Avg.
(1) Single-agent methods
10 (GPT-40-mini) 89.46 47.11 85.50 71.83 67.60 38.71 66.70
CoT (Wei et al.|[2022) 89.31 47.93 87.02 71.83 68.10 39.92 67.35
(2) Manually designed multi-agent systems
MultiPersona (Wang et al.[[2023c) 90.37 48.26 88.54 73.02 69.30 39.10 68.10
LLM-Debate (Du et al.|[2023) 90.30 48.76 87.78 72.14 70.10 44.68 68.63
AgentVerse (Chen et al.|[2023c) 90.67 48.10 89.31 73.90 72.50 45.03 69.92
(3) (Semi-)autonomous agentic systems
GPTSwarm (Zhuge et al.|2024) 90.14 47.27 90.07 76.83 68.10 53.19 70.27
AutoAgents (Chen et al.|[2023b) 89.53 46.61 86.25 72.14 66.80 46.15 67.58
ADAS (Hu et al.[[2024) 87.18 46.61 83.97 67.45 64.60 47.66 66.58
AgentSquare (Shang et al.|[2024) 89.08 48.26 90.83 80.64 71.70 66.42 74.16
AFlow (Zhang et al.[[2024b) 93.39 55.37 92.36 83.57 73.80 59.16 76.61
EvoFlow (Zhang et al.[|2025a) 9290 57.70 92.85 84.50 74.40 68.57 78.49
EvoMAS (Ours) 94.76 60.33 93.89 86.21 77.90 67.28 80.06

The Pareto efficiency analysis in Figure[d]reveals that EvoOMAS
occupies a favorable position on the Pareto frontier, achieving
superior performance-cost balance through its "Cyber Cre-
ator" which implicitly guides evolution toward cost-effective
solutions via rule-based frameworks without explicit cost con-
straints in the objective function. Compared to EvoFlow, Evo-
MAS delivers enhanced performance (84.5%) with a 22.3%

Table 4: Token usage and total cost
in Training & Inference phases

Method Tr. Tok. Inf. Tok. Total $

AFlow 1.07B 508M 23.74
EvoFlow 737M 366M 16.55
EvoMAS 928M 421M 20.24

cost increase, representing a favorable performance-cost tradeoff where the gains outweigh the

computational overhead. These results validate a key insight:

strategic selection of specific model

types (e.g., DeepSeekV3) for targeted optimization is more cost-effective than exhaustive model
exploration, making EvoMAS practical for resource-conscious deployments.

Ablation Study. Figure [3] Mode Performance vs Cost Comparison with Parto Frontir

shows that each component °
of EvOMAS makes a substan- SPLerrts

AFlow (gpido)

g
8

tial contribution to system =
performance across different
task domains. Removing
exploration strategies caused
the most severe performance de- ST
cline (MBPP: -9.38%, MATH:
-12.23%), indicating that di- 2l a
verse exploration mechanisms
are crucial for discovering
efficient solutions in complex
search spaces. The removal

®
&

Y = pass@l1
5

-
3

~
3

EVoMAS (gptdo-mini)
EvoFlow]
“mrrow (gptdo-mini)

AgentSquare

GPTSwam

AgentVerse
MultiPerso 8
[AutoAgents| [LLV-Debae|

© Single Agent (I0 and CoT)
® Manual Multi-agent Systems
Autonomous Multi-agent Systems
@ Pareto Optimal Point
=== Pareto Frontier

ADAS

-1 0 1 2
X = Cost in Ln Scale

Figure 4: Cost-Effectiveness Analysis: EvoMAS Achieves Superior
Pareto Efficiency in the Performance-Cost Trade-off Space.

of mutation strategies also significantly reduced performance and even increased computational
costs for the MATH task, highlighting the importance of fine-grained optimization for improving
both solution quality and resource efficiency. These results demonstrate the synergistic effects of

EvoMAS’s integrated evolutionary components.

The absence of the "Cyber Creator" not only -
reduced performance but also significantly in-
creased costs (cost increased by 18%), demon-
strating its dual value in guiding evolution di- ;
rection and resource control. The removal of
curriculum learning, and Evolution Resource Li-
brary also led to varying degrees of performance

Ablation Study on MBPP and MATH Benchmarks
Ablated c s Ablated

ost == Baseline

degradation, verifying the necessity of these com-
ponents in knowledge accumulation, structural

optimization, and agent role definition. Figure 5: The ablation study of EvoMAS on MBPP.

Under review as a conference paper at ICLR 2026

Final workflow

Performance (Acc%)

fact .3

E @ { o R1: Diversity Exploration O ¥1: Fine optimization

| i . .

‘"((*’ o X2: Conceptual Exploration O Y2: Best Practice Synthesis

o X3: Cross-domain Recombination o Y3: Agent Role Specialization O Custom

1 5 10 15 20
Number of generations

Figure 6: Case Study: Evolutionary Trajectory of a Multi-Agent Workflow on GAIA.

Evolution of Character Generations. As shown in Figure[7] the evolution of agent roles on the
MATH dataset highlights how EvoMAS adapts its internal structure under task-driven pressures.
The system begins with a homogenous configura- Discrete Role Count Evolution (MATH Dataset, Total=10)

tion of 10 Actor agents, reflecting an early-stage
bias toward direct execution. However, this composi-
tion rapidly shifts as the system learns that complex
mathematical reasoning requires more than isolated
action. Roles such as Planner and Critic steadily
increase, indicating a strategic pivot toward struc-
tured problem decomposition and multi-perspective
evaluation. From Generation 4 onward, Custom
roles—introduced via the Cyber Creator—emerge in
response to task-specific challenges that f:xceed the Figure 7: Dynamic Evolution of Agent Roles
qapabllltles of standard roles. This dynamlc realloca- ¢ Homogeneous Actors to Specialized Planners
tion demonstrates EvoOMAS’s capacity for structural ;4 Critics on the MATH Dataset.
self-optimization: rather than merely evolving work-

flows, it evolves the cognitive architecture behind them, ultimately converging toward a more balanced
and reasoning-oriented agent ensemble.

Number of Roles

Case Study. Figure [f] illustrates how EvoMAS evolved from a simple template to a high-
performance multi-agent workflow. The system initially contained only a simple node, then underwent
step-by-step modifications in each generation, such as adding nodes and optimizing prompts. This
process embodies the collaborative dynamics of the "exploration-exploitation-reflection" mechanism
in the EVOMAS framework: in the early stages, structural diversity stimulates potential solution
spaces (e.g., adding Planner and Debate modules); in the middle stages, guided strategies focus
on performance-critical paths; in the later stages, rule injection and reflection updates accelerate
evolutionary convergence, demonstrating powerful self-optimization and adaptive capabilities.

6 DISCUSSION

Conclusion. We present EvoOMAS, a framework for evolving multi-agent systems using biologically-
inspired mechanisms. Our approach combines role-level evolution, dynamic&diverse evolutionary
strategies, and curriculum learning to address limitations of existing methods. Additionally, the
"Cyber Creator" efficiently guides evolution through rule-based governance and reflective updates.
Experiments show that EvoOMAS outperforms SOTA methods while maintaining cost-efficiency.

Limitations. EvoMAS has three key constraints: computational asymmetry where meta-reflection
scales poorly with population size; LLM optimization plateau with diminishing returns after limited
iterations due to underlying model boundaries; and complexity estimation errors where LLM judges
misassess task difficulty, leading to suboptimal curriculum design.

Under review as a conference paper at ICLR 2026

ETHICS STATEMENT

EvoMAS targets beneficial Al applications (mathematical reasoning, code generation) on public
benchmarks with human oversight through interpretable rule-based guidance. The framework requires
explicit task specification and operates within constrained optimization spaces. All experiments use
public datasets with no private data involved.

REPRODUCIBILITY STATEMENT

Complete source code will be publicly released with detailed documentation. All experiments use pub-
lic benchmarks and models (GPT-40-mini, GPT-40, Claude 3.5, DeepSeekV3) with documented costs.
Algorithm details are in Appendix, including evolutionary strategies, operators, and hyperparameters.
Limitations are transparently reported.

REFERENCES

Jacob Austin, Augustus Odena, Maxwell I. Nye, Maarten Bosma, Henryk Michalewski, David Dohan,
Ellen Jiang, Carrie J. Cai, Michael Terry, Quoc V. Le, and Charles Sutton. Program synthesis with
large language models. CoRR, abs/2108.07732, 2021.

Matteo Bettini, Ajay Shankar, and Amanda Prorok. System neural diversity: Measuring behavioral
heterogeneity in multi-agent learning. arXiv preprint arXiv:2305.02128, 2023.

Ahsan Bilal, Muhammad Ahmed Mohsin, Muhammad Umer, Muhammad Awais Khan Bangash, and
Muhammad Ali Jamshed. Meta-thinking in llms via multi-agent reinforcement learning: A survey.
arXiv preprint arXiv:2504.14520, 2025.

Yue Cao, Tianlong Chen, Zhangyang Wang, and Yang Shen. Learning to optimize in swarms.
Advances in neural information processing systems, 32, 2019.

Mert Cemri, Melissa Z Pan, Shuyi Yang, Lakshya A Agrawal, Bhavya Chopra, Rishabh Tiwari, Kurt
Keutzer, Aditya Parameswaran, Dan Klein, Kannan Ramchandran, et al. Why do multi-agent lIm
systems fail? arXiv preprint arXiv:2503.13657, 2025.

Angelica Chen, David Dohan, and David So. Evoprompting: Language models for code-level neural
architecture search. Advances in neural information processing systems, 36:7787-7817, 2023a.

Guangyao Chen, Siwei Dong, Yu Shu, Ge Zhang, Jaward Sesay, Borje F Karlsson, Jie Fu, and Yemin
Shi. Autoagents: A framework for automatic agent generation. arXiv preprint arXiv:2309.17288,
2023b.

Mark Chen, Jerry Tworek, Heewoo Jun, Qiming Yuan, Henrique Pondé de Oliveira Pinto, Jared
Kaplan, Harri Edwards, Yuri Burda, Nicholas Joseph, Greg Brockman, Alex Ray, Raul Puri,
Gretchen Krueger, Michael Petrov, Heidy Khlaaf, Girish Sastry, Pamela Mishkin, Brooke Chan,
Scott Gray, Nick Ryder, Mikhail Pavlov, Alethea Power, Lukasz Kaiser, Mohammad Bavarian,
Clemens Winter, Philippe Tillet, Felipe Petroski Such, Dave Cummings, Matthias Plappert, Fotios
Chantzis, Elizabeth Barnes, Ariel Herbert-Voss, William Hebgen Guss, Alex Nichol, Alex Paino,
Nikolas Tezak, Jie Tang, Igor Babuschkin, Suchir Balaji, Shantanu Jain, William Saunders,
Christopher Hesse, Andrew N. Carr, Jan Leike, Joshua Achiam, Vedant Misra, Evan Morikawa,
Alec Radford, Matthew Knight, Miles Brundage, Mira Murati, Katie Mayer, Peter Welinder, Bob
McGrew, Dario Amodei, Sam McCandlish, Ilya Sutskever, and Wojciech Zaremba. Evaluating
large language models trained on code. CoRR, abs/2107.03374, 2021.

Weize Chen, Yusheng Su, Jingwei Zuo, Cheng Yang, Chenfei Yuan, Chi-Min Chan, Heyang Yu, Yaxi
Lu, Yi-Hsin Hung, Chen Qian, et al. Agentverse: Facilitating multi-agent collaboration and explor-
ing emergent behaviors. In The Twelfth International Conference on Learning Representations,
2023c.

Karl Cobbe, Vineet Kosaraju, Mohammad Bavarian, Mark Chen, Heewoo Jun, Lukasz Kaiser,
Matthias Plappert, Jerry Tworek, Jacob Hilton, Reiichiro Nakano, Christopher Hesse, and John
Schulman. Training verifiers to solve math word problems. arXiv preprint arXiv:2110.14168,
2021.

10

Under review as a conference paper at ICLR 2026

Yilun Du, Shuang Li, Antonio Torralba, Joshua B Tenenbaum, and Igor Mordatch. Improving
factuality and reasoning in language models through multiagent debate. In Forty-first International
Conference on Machine Learning, 2023.

Darren Edge, Ha Trinh, Newman Cheng, Joshua Bradley, Alex Chao, Apurva Mody, Steven Truitt,
Dasha Metropolitansky, Robert Osazuwa Ness, and Jonathan Larson. From local to global: A
graph rag approach to query-focused summarization. arXiv preprint arXiv:2404.16130, 2024.

Chrisantha Fernando, Dylan Banarse, Henryk Michalewski, Simon Osindero, and Tim Rocktischel.
Promptbreeder: Self-referential self-improvement via prompt evolution. In /CML. OpenReview.net,
2024.

Jiawei Gu, Xuhui Jiang, Zhichao Shi, Hexiang Tan, Xuehao Zhai, Chengjin Xu, Wei Li, Yinghan Shen,
Shengjie Ma, Honghao Liu, et al. A survey on llm-as-a-judge. arXiv preprint arXiv:2411.15594,
2024.

Zirui Guo, Lianghao Xia, Yanhua Yu, Tu Ao, and Chao Huang. Lightrag: Simple and fast retrieval-
augmented generation. 2024.

Shanshan Han, Qifan Zhang, Yuhang Yao, Weizhao Jin, Zhaozhuo Xu, and Chaoyang He. Llm
multi-agent systems: Challenges and open problems. arXiv preprint arXiv:2402.03578, 2024.

Dan Hendrycks, Collin Burns, Saurav Kadavath, Akul Arora, Steven Basart, Eric Tang, Dawn Song,
and Jacob Steinhardt. Measuring mathematical problem solving with the math dataset. arXiv
preprint arXiv:2103.03874, 2021.

Sirui Hong, Yizhang Lin, Bang Liu, Bangbang Liu, Binhao Wu, Danyang Li, Jiaqi Chen, Jiayi Zhang,
Jinlin Wang, Li Zhang, Lingyao Zhang, Min Yang, Mingchen Zhuge, Taicheng Guo, Tuo Zhou,
Wei Tao, Wenyi Wang, Xiangru Tang, Xiangtao Lu, Xiawu Zheng, Xinbing Liang, Yaying Fei,
Yuheng Cheng, Zongze Xu, and Chenglin Wu. Data interpreter: An LLM agent for data science.
CoRR, abs/2402.18679, 2024a.

Sirui Hong, Mingchen Zhuge, Jonathan Chen, Xiawu Zheng, Yuheng Cheng, Jinlin Wang, Ceyao
Zhang, Zili Wang, Steven Ka Shing Yau, Zijuan Lin, Liyang Zhou, Chenyu Ran, Lingfeng
Xiao, Chenglin Wu, and Jiirgen Schmidhuber. Metagpt: Meta programming for A multi-agent
collaborative framework. In ICLR. OpenReview.net, 2024b.

Xinyi Hou, Yanjie Zhao, Shenao Wang, and Haoyu Wang. Model context protocol (mcp): Landscape,
security threats, and future research directions. arXiv preprint arXiv:2503.23278, 2025.

Shengran Hu, Cong Lu, and Jeff Clune. Automated design of agentic systems. arXiv preprint
arXiv:2408.08435, 2024.

Omar Khattab, Arnav Singhvi, Paridhi Maheshwari, Zhiyuan Zhang, Keshav Santhanam, Saiful
Haq, Ashutosh Sharma, Thomas T Joshi, Hanna Moazam, Heather Miller, et al. Dspy: Compiling
declarative language model calls into state-of-the-art pipelines. In The Twelfth International
Conference on Learning Representations, 2024a.

Omar Khattab, Arnav Singhvi, Paridhi Maheshwari, Zhiyuan Zhang, Keshav Santhanam, Sri Vard-
hamanan, Saiful Haq, Ashutosh Sharma, Thomas T. Joshi, Hanna Moazam, Heather Miller, Matei
Zaharia, and Christopher Potts. Dspy: Compiling declarative language model calls into state-of-
the-art pipelines. In The Twelfth International Conference on Learning Representations, ICLR
2024, Vienna, Austria, May 7-11, 2024. OpenReview.net, 2024b.

Xinyi Li, Sai Wang, Siqi Zeng, Yu Wu, and Yi Yang. A survey on llm-based multi-agent systems:
workflow, infrastructure, and challenges. Vicinagearth, 1(1):9, 2024a.

Zelong Li, Shuyuan Xu, Kai Mei, Wenyue Hua, Balaji Rama, Om Raheja, Hao Wang, He Zhu, and
Yongfeng Zhang. Autoflow: Automated workflow generation for large language model agents.
CoRR, abs/2407.12821, 2024b.

Aman Madaan, Niket Tandon, Prakhar Gupta, Skyler Hallinan, Luyu Gao, Sarah Wiegreffe, Uri
Alon, Nouha Dziri, Shrimai Prabhumoye, Yiming Yang, et al. Self-refine: Iterative refinement
with self-feedback. Advances in Neural Information Processing Systems, 36:46534-46594, 2023.

11

Under review as a conference paper at ICLR 2026

Grégoire Mialon, Clémentine Fourrier, Thomas Wolf, Yann LeCun, and Thomas Scialom. Gaia:
a benchmark for general ai assistants. In The Twelfth International Conference on Learning
Representations, 2023.

Devika Narain, Jeroen BJ Smeets, Pascal Mamassian, Eli Brenner, and Robert J van Beers. Structure
learning and the occam’s razor principle: a new view of human function acquisition. Frontiers in
computational neuroscience, 8:121, 2014.

Tal Ridnik, Dedy Kredo, and Itamar Friedman. Code generation with alphacodium: From prompt
engineering to flow engineering. CoRR, abs/2401.08500, 2024.

Jon Saad-Falcon, Adrian Gamarra Lafuente, Shlok Natarajan, Nahum Maru, Hristo Todorov,
Etash Guha, E. Kelly Buchanan, Mayee Chen, Neel Guha, Christopher Ré, and Azalia Mirho-
seini. Archon: An architecture search framework for inference-time techniques. arXiv preprint
arXiv:2409.15254, 2024.

Yu Shang, Yu Li, Keyu Zhao, Likai Ma, Jiahe Liu, Fengli Xu, and Yong Li. Agentsquare: Automatic
llm agent search in modular design space. arXiv preprint arXiv:2410.06153, 2024.

Mohit Shridhar, Xingdi Yuan, Marc-Alexandre C6té, Yonatan Bisk, Adam Trischler, and Matthew
Hausknecht. Alfworld: Aligning text and embodied environments for interactive learning. arXiv
preprint arXiv:2010.03768, 2020.

Guanzhi Wang, Yuqi Xie, Yunfan Jiang, Ajay Mandlekar, Chaowei Xiao, Yuke Zhu, Linxi Fan, and
Anima Anandkumar. Voyager: An open-ended embodied agent with large language models. arXiv
preprint arXiv:2305.16291, 2023a.

Zhenhailong Wang, Shaoguang Mao, Wenshan Wu, Tao Ge, Furu Wei, and Heng Ji. Unleashing the
emergent cognitive synergy in large language models: A task-solving agent through multi-persona
self-collaboration. arXiv preprint arXiv:2307.05300, 2023b.

Zhenhailong Wang, Shaoguang Mao, Wenshan Wu, Tao Ge, Furu Wei, and Heng Ji. Unleashing the
emergent cognitive synergy in large language models: A task-solving agent through multi-persona
self-collaboration. arXiv preprint arXiv:2307.05300, 2023c.

Jason Wei, Xuezhi Wang, Dale Schuurmans, Maarten Bosma, Fei Xia, Ed Chi, Quoc V Le, Denny
Zhou, et al. Chain-of-thought prompting elicits reasoning in large language models. Advances in
neural information processing systems, 35:24824-24837, 2022.

Danny Weyns and Flavio Oquendo. An architectural style for self-adaptive multi-agent systems.
arXiv preprint arXiv:1909.03475, 2019.

Yuyang Wu, Yifei Wang, Tianqi Du, Stefanie Jegelka, and Yisen Wang. When more is less: Under-
standing chain-of-thought length in llms. arXiv preprint arXiv:2502.07266, 2025.

Yiheng Xu, SU Hongjin, Chen Xing, Boyu Mi, Qian Liu, Weijia Shi, Binyuan Hui, Fan Zhou, Yitao
Liu, Tianbao Xie, et al. Lemur: Harmonizing natural language and code for language agents. In
The Twelfth International Conference on Learning Representations, 2024.

Chengrun Yang, Xuezhi Wang, Yifeng Lu, Hanxiao Liu, Quoc V. Le, Denny Zhou, and Xinyun Chen.
Large language models as optimizers. In /ICLR. OpenReview.net, 2024.

Zhilin Yang, Peng Qi, Saizheng Zhang, Yoshua Bengio, William W Cohen, Ruslan Salakhutdinov,
and Christopher D Manning. Hotpotqa: A dataset for diverse, explainable multi-hop question
answering. arXiv preprint arXiv:1809.09600, 2018.

Yilin Ye, Jianing Hao, Yihan Hou, Zhan Wang, Shishi Xiao, Yuyu Luo, and Wei Zeng. Generative Al
for visualization: State of the art and future directions. Vis. Informatics, 8(1):43—-66, 2024.

Siyu Yuan, Kaitao Song, Jiangjie Chen, Xu Tan, Dongsheng Li, and Deqing Yang. Evoagent: Towards

automatic multi-agent generation via evolutionary algorithms. arXiv preprint arXiv:2406.14228,
2024.

12

Under review as a conference paper at ICLR 2026

Mert Yiiksekgoniil, Federico Bianchi, Joseph Boen, Sheng Liu, Zhi Huang, Carlos Guestrin, and
James Zou. Textgrad: Automatic "differentiation" via text. CoRR, abs/2406.07496, 2024.

Guibin Zhang, Yanwei Yue, Xiangguo Sun, Guancheng Wan, Miao Yu, Junfeng Fang, Kun Wang,
Tianlong Chen, and Dawei Cheng. G-designer: Architecting multi-agent communication topologies
via graph neural networks. arXiv preprint arXiv:2410.11782, 2024a.

Guibin Zhang, Kaijie Chen, Guancheng Wan, Heng Chang, Hong Cheng, Kun Wang, Shuyue Hu, and
Lei Bai. Evoflow: Evolving diverse agentic workflows on the fly. arXiv preprint arXiv:2502.07373,
2025a.

Guibin Zhang, Luyang Niu, Junfeng Fang, Kun Wang, Lei Bai, and Xiang Wang. Multi-agent
architecture search via agentic supernet. arXiv preprint arXiv:2502.04180, 2025b.

Jiayi Zhang, Jinyu Xiang, Zhaoyang Yu, Fengwei Teng, Xionghui Chen, Jiaqi Chen, Mingchen Zhuge,
Xin Cheng, Sirui Hong, Jinlin Wang, et al. Aflow: Automating agentic workflow generation. arXiv
preprint arXiv:2410.10762, 2024b.

Jiayi Zhang, Chuang Zhao, Yihan Zhao, Zhaoyang Yu, Ming He, and Jianping Fan. Mobileexperts:
A dynamic tool-enabled agent team in mobile devices. CoRR, abs/2407.03913, 2024c.

Qihuang Zhong, Kang Wang, Ziyang Xu, Juhua Liu, Liang Ding, Bo Du, and Dacheng Tao. Achiev-
ing> 97% on gsm8k: Deeply understanding the problems makes llms perfect reasoners. arXiv
preprint arXiv:2404.14963, 2024.

Andy Zhou, Kai Yan, Michal Shlapentokh-Rothman, Haohan Wang, and Yu-Xiong Wang. Language
agent tree search unifies reasoning, acting, and planning in language models. In Forty-first
International Conference on Machine Learning, 2024.

Xuanhe Zhou, Guoliang Li, and Zhiyuan Liu. LIm as dba. arXiv preprint arXiv:2308.05481, 2023.

Mingchen Zhuge, Wenyi Wang, Louis Kirsch, Francesco Faccio, Dmitrii Khizbullin, and Jiirgen
Schmidhuber. Gptswarm: Language agents as optimizable graphs. In Forty-first International
Conference on Machine Learning, 2024.

13

Under review as a conference paper at ICLR 2026

APPENDIX

Use of Large Language Models
Supplementary Results

EvoMAS Framework Details
Theoretical Analysis of Cyber Creator
Experimental Setup and Implementation
Prompt Templates and Examples

A USE OF LARGE LANGUAGE MODELS (LLMS)

During the preparation of this paper, we used Generative Al to assist with grammar checking,
language polishing, and improving readability. The model was not used for generating novel research
ideas, experimental design, data analysis, or drawing conclusions. All content and claims in the paper
are the sole responsibility of the authors.

B SUPPLEMENTARY RESULTS

B.1 STABILITY TRENDS WITH VARYING AGENT WIDTH AND DEPTH

Effect of Width (Fixed Depth = 2) Effect of Depth (Fixed Width = 1)
—e— Accuracy Accuracy

93} 95% CI 90.5 95% ClI
g 9ot g 90.0
o) o
Coa1 £ 895
=1 =1
V] 9]
2 2

90 89.0

89 I Il Il Il Il Il 885 Il Il Il Il Il

2 4 6 8 10 2 4 6 8 10
Width (m) Depth (d)

Figure 8: Accuracy and 95% confidence intervals (CI) across varying widths (left, fixed depth = 2)
and depths (right, fixed width = 1). Shaded regions indicate the CI range.

Figure [§| presents the accuracy trends and stability (95% CI) under two configurations: increasing
agent width with fixed depth (left) and increasing agent depth with fixed width (right).

Width Analysis: As width increases from m = 1 to m = 11, accuracy improves steadily while the
confidence interval narrows. This suggests that with more agents participating, the collective decision
becomes more stable due to diversity and redundancy. However, after m = 7, the marginal gain in CI
reduction diminishes, indicating saturation in collaborative benefits.

Depth Analysis: Increasing depth from d = 1 to d = 11 initially enhances stability (from d = 1
to d = 3), reflecting the value of multi-step reasoning or negotiation among agents. However,
beyond d = 5, the CI plateaus and eventually shows negligible improvement. This implies that
deeper structures may suffer from information distortion or diminishing returns due to accumulated
reasoning noise.

Emergent Principle: A key insight from these results is the non-linear convergence of stability:

* Increasing width promotes stability via agent diversity and ensemble averaging, but its
benefit saturates as inter-agent redundancy increases.

* Increasing depth initially enhances agreement through reasoning chains, but deeper layers
may introduce instability from noise accumulation or misalignment.

14

Under review as a conference paper at ICLR 2026

Hence, optimal stability in multi-agent systems may require a balanced coordination strategy that
avoids both shallow reasoning and excessive architectural complexity.

B.2 ROLE CO-OCCURRENCE IN WORKFLOW GRAPHS

To better understand the internal organization of evolved multi-agent workflows, we analyze the
structural co-occurrence patterns of different agent roles within the workflow graphs. Specifically, we
construct a role co-occurrence matrix where each entry (i, j) represents the number of edges from
role 7 to role j across all workflows evolved on the MATH dataset.

Figure 9] presents the resulting heatmap, providing a graphical summary of role connectivity patterns.

. Role Co-Occurrence Heatmap in Workflow Graphs
* Planner nodes frequently connect with

both Actor and Critic roles, reflecting
their central role in coordinating task
decomposition and quality control.

* Critic-Planner and Planner-Actor
links dominate, forming the backbone
of a reflective planning—execution loop.

* Custom roles show dispersed connec-
tions to all other types, highlighting
their flexible, late-stage integration into
evolved workflows.

* Diagonal values indicate intra-role co-
operation (e.g., Critic — Critic), com-
monly seen in complex reasoning
chains.

These co-occurrence patterns reveal EvOMAS’s
tendency to converge on a modular architecture
in which planning, acting, and evaluating are
handled by specialized but tightly coupled agent
roles.

Actor

Source Role
Planner

Critic

Custom
-
~
w
~N

Planner Critic Custom

Connected To

Actor

Figure 9: Role Co-Occurrence Heatmap in Work-
flow Graphs. Each cell (4, j) indicates the num-
ber of directed edges from role ¢ to role j across
evolved workflows.

B.3 TRAINING CONFIGURATION AND COST TRANSPARENCY

To ensure reproducibility and transparency, we provide the full training configuration of EvoMAS
together with computational resource and cost analysis. Unlike continuous training paradigms,
EvoMAS adopts a one-time structural search approach, which makes the computational overhead
moderate while maintaining relatively strong generalization ability.

Table 5: Token usage and cost statistics of EvoMAS training experiments.

Task Dataset Training Samples | Iterations | Total Candidat Token Usage (M) | Cost (USD)
Code Generation | HumanEval 33 20 337 114M $1.66
Math Reasoning | GSM8K 264 20 345 176M $2.57
Tool Usage GAIA 94 20 413 149M $2.14
Total 928M $13.92

All experiments were conducted using OpenAl GPT-40-mini and Claude 3.5 API, without requiring
any GPU resources. The cost was calculated based on a rate of $0.015 per 1K tokens. Table
summarizes the token usage and cost statistics across the main experimental tasks.

Overall, the total cost of EvoOMAS training is $13.92, corresponding to 928M tokens. Since the
paradigm only involves structural search rather than prolonged optimization cycles, the overhead
remains acceptable and cost-efficient.

15

Under review as a conference paper at ICLR 2026

C EVOMAS FRAMEWORK DETAILS

C.1 OVERALL ALGORITHM DESCRIPTION

EvoMAS employs a hierarchical evolutionary framework with curriculum learning, operating across
three dimensions: role specialization, strategy selection, and curriculum progression.

Core Evolution Process: Each generation follows a variation-selection-reflection cycle using six
biologically-inspired operators—three for exploration (diversity expansion, conceptual recombination,
cross-domain hybridization) and three for exploitation (fine optimization, best practice synthesis,
role specialization). LLM-based selection evaluates candidates on performance, structure, and rule
compliance rather than scalar fitness alone. Every K generations, the Cyber Creator performs
meta-reflection to update rules and strategy distributions.

Curriculum-Guided Evolution: Tasks are partitioned by difficulty levels, with workflows evolved
sequentially from simple to complex. Cross-stage stability constraints prevent catastrophic forgetting

through cumulative performance evaluation Jj,(G) = + Zle f(G,T;), ensuring evolved workflows
maintain competence across all previous difficulty levels.

Algorithm 1 EvoMAS: Core Evolutionary Algorithm

Require: Task distribution 7', population size N, generations G, reflection interval K
Ensure: Best evolved workflow G*

1: Initialize population Py = {G1, G, ..., Gn} via RAG retrieval

2: Initialize rule set Ry, strategy distribution A

3: Initialize evolution resource library (rule pool, gene pool)

4: fort =1to G do

5: // Variation Stage
6 Prar
7: for each parent G € P,_; do
8: Sample strategy a ~ A;_1 > Six biological operators
9: Generate offspring G’ ~ a(G, Ry—1)
10 PPor « pPrerU{G'}
11: end for

12: // Selection Stage
13: for each candidate G € P,_; U P/ do

14: Compute fitness F(G,T) = E,wr[f (G, z)]

15: Serialize GG with performance, structure, rule compliance

16: end for

17: P, + LLMSelect(P;—1 U PP F, Ry_1) > Preference-based

18: // Reflection Stage (every K generations)
19: if £t mod K = 0 then

20: Update historical log H;, < H;_1 U {(G;, F;, A;) }i<i

21: R; + CyberCreator(R;_1, H;) > Rule update
22: A; « StrategyUpdate(A;—1, Hy) > Strategy adaptation
23: Update evolution resource library with successful patterns

24: else

25: Ry + R;_1, At — At,1

26: end if

27: end for

28: return G* = argmaxge e p, F(G, T, R)

C.2 EVOLUTIONARY STRATEGIES

To achieve a flexible and biologically inspired search process, EvoMAS employs a suite of seven
evolutionary strategies categorized into Exploration, Exploitation, and Custom types. These
strategies guide the generation and refinement of agentic workflows across generations. Each strategy
varies in its usage of single or multiple parents and its structural transformation behavior. A summary
is shown in Table

16

Under review as a conference paper at ICLR 2026

Each strategy plays a unique role in navigating the trade-off between exploration and exploitation.
Exploration strategies (X;—Xg3) broaden the search space by introducing diversity, while exploitation
strategies (Y1—Y3) refine promising structures to improve fitness. The Custom strategy is uniquely
created by the Cyber Creator based on evolutionary feedback, offering a flexible interface for adaptive
strategy generation. This design allows EvoMAS to evolve not only agentic workflows, but also the
evolutionary process itself.

Mathematical Formulation of the Operators. For completeness, we provide formal graph-
theoretic definitions of the six biologically inspired operators. All operators are modeled as transfor-
mations on workflow graphs:

Oiig—>g, GtHGt+1. (11)

A workflow is represented as a directed agent graph G = (V, E).

Exploration Operators (X;-X3). X; (Diversity Expansion) introduces new nodes and edges:

GL+1 = (‘/L U AV FE, U AE) AV C Vaew- (12)

X5 (Conceptual Recombination) recombines functional subgraphs:

Gt+1 = (Va) ‘/177 Ea UEb)7 Gas Gb Cc Gt- (]3)

X3 (Cross-domain Hybridization) integrates motifs from an external workflow:

Giy1=aGy+ (1 —a)G™, a € 10,1]. (14)

Exploitation Operators (Y;-Y3). Y; (Fine Optimization) refines local parameters via gradient-
or feedback-based updates:

€t+1 = 0t -n ng(Gt, 915) (15)
Y, (Best Practice Synthesis) selects and consolidates high-performing candidates:
Giy1 = argglggf(GL (16)

where €2 denotes the elite pool.

Y3 (Role Specialization) updates node roles through a specialization function:
pitY = ¢(P5t)) : (17)

These mathematical formulations give rigorous, operator-level definitions of the evolutionary pro-
cesses summarized in Table[f] clarifying how EvoMAS conducts structured graph transformations
during evolution.

C.3 “CYBER CREATOR” IMPLEMENTATION

The “Cyber Creator” in EvoMAS serves as a meta-controller that adaptively regulates the evolutionary
process via external rule guidance and reflection-based strategy revision. This appendix provides
implementation details, including the format of rules, prompting strategies, and concrete examples of
its operation.

17

Under review as a conference paper at ICLR 2026

Algorithm 2 EvoMAS: Curriculum-Guided Evolution

Require: Task distribution 7', difficulty layers 7, competence threshold T
Ensure: Multi-stage evolved population P7na!
1: // Task Difficulty Partitioning

2: Partition T = {T},To, ..., T} s.t. d(T1) < d(T3) < -+ < d(Ty)
3: Initialize population P(®) <— Initialize()

4: Gbest «+ null

5: for stage k = 1 ton do

6: /I Sequential Evolution on Stage k

7. Gbest P(F) « EvoMAS-Evolution(T},, P(*~1)
8: // Stability Constraint Check

9: if £ > 1 then

10: Compute cumulative performance:

1 Te(GRet) = § Soiy F(Ge, Th)

12: Tr(GReth) = £ 300, F(GR T2)

13: if Ji(Ghest) < Ji(Ghest) then

14: reject Gz“"“, continue evolution on 7}
15: end if

16: end if

17: // Competence Check
18: per fi, < F(Gbest, Ty,)
19: if per fi, < 7 then

20: Continue evolution on T}, until per fr, > 7

21: end if

22: Transfer knowledge: Update evolution resource library
23: P®) « Select elite population for next stage

24: end for

25: return Pfinal = p(n)

C.3.1 RULE REPRESENTATION

Each rule is encoded as a triplet r; = (¢;, w;, d;), where:
* ¢;: Condition, a logic-based or natural language constraint (e.g., num_planners (G) <
1
* w;: Weight, indicating rule importance (High, Medium, Low)
* d;: Description, a natural language explanation of the rule’s intent
Example Rule:
c: workflow_depth(G) < 5
w: High
d: “Encourage shallow workflow structures to reduce latency and token consump-

tion.”

During workflow variation and selection, rule satisfaction scores are injected into LLM prompts as
soft constraints to bias evolution.

C.3.2 PROMPT EXAMPLE FOR RULE GENERATION

To generate new evolution rules, EVOMAS queries an LLM with the following prompt template:

You are the Evolution Overseer. Given the following
historical evolution records from generation ¢, analyze
patterns among high- and low-performing workflows. Based
on your analysis, propose 1 new evolution rule to improve

18

Under review as a conference paper at ICLR 2026

Table 6: Summary of Evolutionary Strategies in EVoOMAS and Their Biological Analogies

Strategy Type # Biological Description
Parents Analogy
X1 Explor. Multiple Adaptive Generates structurally diverse workflows by
Radiation varying topology and role composition, analo-
gous to species diversification into new ecolog-
ical niches.

Xo Explor. Multiple Sexual Preserves core functional ideas while varying

Recombination ~ implementations through genetic crossover to
promote innovation.

X3 Explor. Cross- Horizontal Gene Combines substructures from workflows in dif-

domain Transfer ferent domains, mimicking bacterial exchange
of genetic material across species.

Y, Exploit. Single Microevolution ~ Performs incremental local refinements
through natural selection pressure on specific
performance bottlenecks.

Yo Exploit. Multiple Selective Merges effective components from multiple

Breeding workflows, analogous to artificial selection for
desired traits.

Y; Exploit. Single Cellular Enhances specialization by refining agent roles,

Differentiation similar to how cells develop distinct functions

in multicellular organisms.
Customr Mixed Variable Epigenetic Dynamically defined by the Cyber Creator
Regulation through environmental feedback, analogous to

gene expression modification without altering
DNA sequence.

future search.

improve generalization,
rule as a JSON triplet:

The rule should help reduce redundancy,

or enhance efficiency.
condition,

Output each

weight, description.

The best performance in their parents is {0.90}.
Evolution History H_t:

[
{

"workflow":

"performance":

"strategy":

"workflow":

"performance":

"strategy":

"workflow":

"performance":

"strategy":

G_1,
0.89,
"Y2:

G_2,
0.45,
"X1:

G_3,
0.91,
"Y3:

19

Best Practice Synthesis"

Diversity Exploration"

Agent Role Specialization"

generate a new evolution rule based on these data:

Under review as a conference paper at ICLR 2026

LLM Output Example:
[
{
"condition": "num_agents (G) <= 4",
"weight": "Medium",
"description": "Limit the number of agents to promote efficient."

}
]

C.3.3 CUSTOM STRATEGY GENERATION EXAMPLE

Based on identified patterns, the following “Custom” strategy was synthesized:

* Name: Feedback Loop Rewriter
» Trigger: Workflows with nested Critic — Planner cycles
* Action: Replace loops with a single deliberation block + actor validator

¢ Prompt Injected: “Simplify nested feedback by merging critic-planner
pairs into composite roles.”

This demonstrates how EvoMAS adapts not only the workflow structure, but also its own evolution process in a
closed adaptive loop.

C.4 SpECIFIC EXAMPLES OF EVOMAS WORKFLOW

To further illustrate how EvoMAS evolves multi-agent workflows, we provide a concrete case study on a Code
Debugging scenario. This complements the GAIA example.

EvoMAS follows a four-step cycle—template initialization, structural exploration, reflective selection, and local
refinement—to iteratively evolve role specializations and workflow structures. In this example, the performance
improves from 0.62 to 0.80 over three generations.

Generation 0: Initialization Retrieved Structure: Planner =+ Actor = Critic (basic template
from Gene Pool)

Rule Pool (Rp): “Depth < 57

Fitness: 0.62

Table 7: Evolutionary operations in Generation 1.

Operation Generated Structure (Summary) Score
X1 — Diversity Planner — Actor; — Actors — Critic (parallel Actors) 0.66
X2 — Conceptual | Planner — Actor_with_ToolHints — Critic 0.70
Y1 - Fine-opt Enhanced original Actor prompt 0.68

Generation 1: Exploration-focused Selection: Retain X1, X2. Observation that “parallel multi-Actor”
performs well = add rule R;: Actor count > 2 (Medium weight).

Table 8: Evolutionary operations in Generation 2.

Operation Generated Structure (Summary) Score
X3 — Cross-domain | Planner — Actor; — Actore — Critic — Actors — Critic 0.73
Y2 — Best-practice Planner — {Actory, Actora_with_ToolHints} — Critic 0.77

Generation 2: Hybrid Recombination Reflection: R; has high hit rate with significant gains = weight
increased to High. Remove outdated rules (e.g., depth limitation).

Table 9: Evolutionary operations in Generation 3.

Operation Generated Structure (Summary) Score
Y1 — Fine-opt Fine-tune Actors_with_ToolHints 0.80
X1 — Limited exploration | Planner — {Actory, Actorz, Actors} — Critic 0.75

Generation 3: Focused Refinement Stability check: Cross-layer stability constraint satisfied = system
advances to next difficulty level.

20

Under review as a conference paper at ICLR 2026

C.5 EVOLUTION RESOURCE LIBRARY

To enhance evolutionary efficiency and facilitate knowledge transfer, EvoOMAS incorporates an Evolution
Resource Library comprising two key components: the Rule Pool and the Gene Pool. These components are
managed using a graph-based Retrieval-Augmented Generation (RAG) system implemented via LightRAG (Guo!
et al. 2024} |[Edge et al, [2024), which integrates structured graph data with vector embeddings for efficient
retrieval and management.

C.5.1 RULE PooL

The Rule Pool stores effective evolutionary guidance rules, categorized into two types:

* Variation Rules: Guide the mutation of existing workflows to explore new design spaces. These rules
may involve adjusting agent roles, modifying workflow structures, or changing prompt templates.

¢ Selection Rules: Evaluate and filter workflows, ensuring that only workflows meeting specific criteria
proceed to the next round of evolution. These rules help the system focus on high-performance,
adaptable workflows, promoting natural selection.

In the Graph RAG framework, rules are represented as nodes within a graph, with edges indicating relationships
such as conflicts, complements, or derivations. This structure enables the system to understand complex
dependencies between rules and select suitable combinations during different evolutionary stages.

C.5.2 GENE PooL

The Gene Pool stores high-performing structural components, including role settings, modules (blocks), and
complete workflows. These components can be reused during evolution to accelerate the generation of new
workflows. Each "gene" in the Gene Pool is represented as:

gi = (si,pi, us) (18)

where s; denotes the structural representation (e.g., subgraph), p; represents the performance metrics, and u;
indicates usage statistics.

C.5.3 GENE POOL MAINTENANCE

To maintain the quality and diversity of the Gene Pool, EvoMAS periodically performs the following operations:

* Gene Merging: Merge functionally similar genes to reduce redundancy and enhance expressiveness.

* Gene Elimination: Remove genes that have been unused for extended periods or exhibit poor
performance, ensuring the Gene Pool remains vibrant and relevant.

* Gene Analysis: Identify frequently used gene patterns and summarize design principles, facilitating
knowledge accumulation and transfer.

C.5.4 GRAPH RAG IMPLEMENTATION WITH LIGHTRAG

EvoMAS employs LightRAG (Guo et al.,|2024) to manage its Evolution Resource Library, integrating graph
structures with vector embeddings to enhance retrieval efficiency and contextual relevance. This section details
the implementation of Graph RAG using LightRAG.

Entity and Relationship Extraction LightRAG begins by segmenting documents into manageable chunks.
Each chunk is processed by a large language model (LLM) to identify entities (nodes) and their relationships
(edges). For instance, from the sentence "Cardiologists assess symptoms to identify potential heart issues,"
entities like "Cardiologists" and "Heart Disease" are extracted, with a relationship such as "diagnose" connecting
them.

Key-Value Pair Generation For each identified entity and relationship, LightRAG employs LLM profiling
to generate key-value pairs. The key is a concise identifier (e.g., "Cardiologists"), and the value is a text snippet
providing context or description. This facilitates efficient retrieval by enabling both exact and semantic searches.

Graph Construction and Indexing The extracted entities and relationships are assembled into a knowl-
edge graph. Nodes represent entities, and edges denote relationships. This graph is indexed using a combination
of structural information and vector embeddings, allowing for rapid retrieval of relevant subgraphs based on
query semantics.

21

Under review as a conference paper at ICLR 2026

Dual-Level Retrieval Paradigm LightRAG utilizes a dual-level retrieval system:

* Low-Level Retrieval: Focuses on precise information about specific entities and their immediate
relationships.

* High-Level Retrieval: Captures broader topics and themes by exploring multi-hop relationships
within the graph.

This approach ensures comprehensive information retrieval, accommodating both detailed and abstract queries.

Incremental Update Mechanism To maintain the relevance of the knowledge graph, LightRAG incorpo-
rates an incremental update algorithm. New data is integrated by appending corresponding nodes and edges
to the existing graph structure, eliminating the need for complete reindexing. This ensures the system remains
effective and responsive in dynamic environments.

22

Under review as a conference paper at ICLR 2026

D THEORETICAL ANALYSIS OF CYBER CREATOR

This appendix formalises the theoretical foundation for why the Cyber Creator mechanism enhances EvoMAS
performance through (i) information-theoretic advantages from historical search data, and (ii) adaptive rule and
strategy evolution that converges to optimal search policies.

Symbol Description

sy = (Pr, Ry, Ay) System state at generation ¢

P, Population of agentic workflows at generation ¢

R Rule set at generation ¢

At Strategy distribution at generation ¢

H, = {(G4, F;, A;) }i<¢ Historical log of workflows, fitness, and strategies

F(G,T,R) Fitness function for workflow G on task distribution 7" with rules R
F~ Theoretical optimal fitness value

I(H,) Information content of historical log

Q(R) Rule quality function

K Reflection frequency (generations between Cyber Creator updates)
I Expected information gain per generation

o2 Variance of information gain

D.1 INFORMATION-THEORETIC FOUNDATION

Setting. The Cyber Creator maintains a historical log H; = {(Gj, F}, A;) }i<: containing workflow structures,
fitness values, and generating strategies. This accumulated knowledge enables adaptive rule and strategy updates
every K generations.

Assumption D.1 (Positive Information Gain). There exists p > 0 such that the expected information gain per
generation satisfies B[AIL] > uwhere AI, = I(H,) — I(H;—1), and Var|ALL] = 0® < oc.

Proposition D.1 (Information Accumulation). Under Assumption[D.I] the information content of the historical

log grows linearly:
¢

I(Hy) = I(Ho) + Y AL “* I(Ho) + pt (19)

i=1

as t — oo by the strong law of large numbers.

D.2 RULE EVOLUTION DYNAMICS

The Cyber Creator updates rules through structured learning:
Rt+1 = UR(Rt;Ht) = Prune(Rth) UIHdUCC(Ht) (20)

Assumption D.2 (Rule Quality Improvement). The rule quality function Q(R) = Eg~nry [F(G, T, R)] satisfies:
Q(Ri41) > Q(R:) + a - AL for some learning rate o« > 0, where g is the workflow distribution induced by
rule set R.

Theorem D.1 (Monotonic Rule Quality Growth). Under Assumptions[D.1|and the rule quality grows
sublinearly but unboundedly:

Q(R:) > Q(Ro) + aut + O(y/tlogt) (2]

with probability 1 as t — oco.

Proof. By Assumption[D.2]and telescoping sum:

Q(R:) = Q(Ro) + Z[Q(Ri) — Q(Ri_1)] (22)
> Q(Ro) +a) AL (23)

Applying the law of the iterated logarithm to 25:1 AI; with mean z and variance ¢ yields the claimed
bound. 0

23

Under review as a conference paper at ICLR 2026

D.3 STRATEGY ADAPTATION CONVERGENCE

Strategy weights evolve via exponential updates:
Ait1(a) x Ai(a) - exp(n - Reward(a)) 249

Assumption D.3 (Reward Consistency). For the optimal strategy a*, there exists € > 0 such that
E[Reward(a™)] > E[Reward(a)] + € for all suboptimal strategies a # a*.

Theorem D.2 (Strategy Convergence). Under Assumption@with learning rate 1 > 0, the strategy distribution
converges almost surely to the optimal strategy:

lim A:(a”) =1 (25)

t— oo

Proof. The exponential weight update is an instance of the multiplicative weights algorithm. By standard regret

bounds, the cumulative regret grows as O(1/tlog|A|), implying convergence to the optimal strategy with
probability 1. O

D.4 MAIN PERFORMANCE THEOREM

Theorem D.3 (Cyber Creator Performance Advantage). Let FLC and F* denote the fitness with and without
Cyber Creator respectively. Under Assumptions@-@ there exists 3 > 0 such that:

E[F{] > E[F/"] + B+/I(Hy) (26)
for sufficiently large t.

Proof. The performance advantage arises from two sources:

#*Step 1:** *Rule quality improvement.* By Theorem [D.1] rules updated every K generations provide cumula-
tive advantage:

[t/K]| " [t/ K]] "
; [Q(Rx) = Q(Ro)] = ap ;] = ek oW 7

##Step 2:** *Strategy adaptation benefits.* Optimal strategy convergence (Theorem[D.2) provides additional
fitness gains proportional to information utilization efficiency.

Step 3: *Information utilization bound.* The marginal utility of accumulated information follows diminish-
ing returns, yielding the /I (H¢) scaling by concavity of information-theoretic measures.

Combining these effects and taking 3 = ay/(2K) establishes equation O

D.5 ASYMPTOTIC OPTIMALITY

Theorem D.4 (Almost-Sure Convergence to Optimum). Under the assumptions of Theorem m the Cyber
Creator-enhanced system converges to global optimality:

lim P(Ff€ — F*) =1 (28)
t— o0

Proof. Convergence follows from: (i) unbounded rule quality growth (Theoremm eliminating search biases,
(ii) optimal strategy selection (Theorem [D.2)) ensuring efficient exploration-exploitation balance, and (iii)
complete historical information utilization preventing redundant low-quality searches. O

Discussion. The theoretical analysis reveals why Cyber Creator provides performance advantages that scale
with problem complexity. The /I (H¢) improvement bound in Theoremexplains experimental observations:
more complex tasks generate richer historical information, leading to greater Cyber Creator benefits. The 18%
cost increase observed when removing Cyber Creator corresponds to the loss of accumulated search efficiency
encoded in the rule and strategy adaptation mechanisms.

Remark. The positive information gain assumption (Assumption |D.1) requires that evolutionary search
produces genuinely informative outcomes rather than random exploration. In practice, this is ensured by the
structured search operators and fitness-guided selection in the EvoMAS framework.

24

Under review as a conference paper at ICLR 2026

E EXPERIMENT DETAILS

E.1 MODEL CONFIGURATION

EvoMAS utilizes separate models for optimization and execution. For the optimizer, we employ
Claude-3.5-sonnet, which is responsible for generating new workflows and strategies. For workflow
execution and task solving, the following models are used:

* DeepSeekV3

* GPT-40-mini-0718

¢ Claude-3.5-sonnet

¢ GPT-40-1120
All models are accessed via official APIs. The temperature is set to 1.0 for the optimizer to encourage diverse

generations and set to O for executors to ensure deterministic outputs. Each evolutionary run consists of 20
optimization iterations.

E.2 DATASET STATISTICS
Table[I0] summarizes the dataset sizes and evaluation metrics across domains.

Table 10: Dataset statistics and corresponding evaluation metrics.

Domain Dataset #Train #Test Metric

Code Generation HumanEval 33 131 pass@1
MBPP 86 341 pass@1

Math Reasoning GSMSK 264 1055 Accuracy
MATH 119 486 Accuracy
GAIA 94 372 Accuracy

Tool Used

001 Use ALFWorld 27 107 Success Ratio
Multi-hop QA HotpotQA 200 800 F1 Score

25

Under review as a conference paper at ICLR 2026

F PROMPT EXAMPLES

Example of workflow

class MultiAgentSystem:

def _ init_ (self, name: str, tools=None) -> None:
self.name = name
self.tools = tools

async def run(self, task: str):

from Agent_async import Actor

Initialize a S

actor = Actor(self.tools)

Run

prompt

res = await actor.process (prompt)
return { : res}

X1: Diversity Exploration

prompt_content = (
f

£

[

X2: Conceptual Exploration

prompt_content = (
£

£

26

Under review as a conference paper at ICLR 2026

h

Y1: Fine Optimization

prompt_content = (
f

f

f

[y

Y3: Agent Role Specialization

prompt_content = (
f

f

£

[y

27

	Introduction
	Related Work
	Preliminary
	Representation: Graph-based Formulation of MAS
	Design Assumptions
	Problem Definition

	Methods: EvoMAS
	Evolution as a Markov Process
	Evolution Cycle: Variation → Selection → Reflection
	Curriculum-Guided Evolution

	Experiment
	Experimental Setup
	Experimental Results and Analysis

	Discussion
	Use of Large Language Models (LLMs)
	Supplementary Results
	Stability Trends with Varying Agent Width and Depth
	Role Co-Occurrence in Workflow Graphs
	Training Configuration and Cost Transparency

	EvoMAS Framework Details
	Overall Algorithm Description
	Evolutionary Strategies
	``Cyber Creator'' Implementation
	Rule Representation
	Prompt Example for Rule Generation
	Custom Strategy Generation Example

	Specific Examples of EvoMAS Workflow
	Evolution Resource Library
	Rule Pool
	Gene Pool
	Gene Pool Maintenance
	Graph RAG Implementation with LightRAG

	Theoretical Analysis of Cyber Creator
	Information-Theoretic Foundation
	Rule Evolution Dynamics
	Strategy Adaptation Convergence
	Main Performance Theorem
	Asymptotic Optimality

	Experiment Details
	Model Configuration
	Dataset Statistics

	Prompt Examples

