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ABSTRACT

Machine Learning models are often trained on proprietary and private data that
cannot be shared, though the trained models themselves are distributed openly
assuming that sharing model weights is privacy preserving, as training data is not
expected to be inferred from the model weights. In this paper, we present Training-
Like Data Reconstruction (TLDR), a network inversion-based approach to recon-
struct training-like data from trained models. To begin with, we introduce a com-
prehensive network inversion technique that learns the input space corresponding
to different classes in the classifier using a single conditioned generator. While in-
version may typically return random and arbitrary input images for a given output
label, we modify the inversion process to incentivize the generator to reconstruct
training-like data by exploiting key properties of the classifier with respect to the
training data. Specifically, the classifier is expected to be relatively more confident
and robust in classifying training samples, and the gradient of the classifiers out-
put with respect to the classifier’s weights is also expected to be lower for training
data than for random inverted samples. Using these insights, along with some
prior knowledge about the images, we guide the generator to produce data closely
resembling the original training data. To validate our approach, we conduct empir-
ical evaluations on multiple standard vision classification datasets, demonstrating
that leveraging these robustness and gradient properties enables the reconstruction
of data semantically similar to the original training data, thereby highlighting the
potential privacy risks involved in sharing machine learning models.

1 INTRODUCTION

Machine learning models have become an essential tool across a wide range of domains, including
healthcare, finance, and security, where the need for data privacy is paramount. These models are
often trained on proprietary or sensitive data, which cannot be shared openly, yet the trained models
themselves are commonly distributed to facilitate various applications. In federated learning, for
example, model weights are shared under the assumption that they do not expose the underlying
training data, thereby preserving privacy. However, recent research suggests that this assumption
may not be valid, as it may be possible to infer and reconstruct training or similar data by analyzing
the model weights.

This potential privacy risk arises from the fact that trained ML models implicitly encode informa-
tion about the data they were trained on. In model inversion attacks, adversaries aim to exploit this
information to reconstruct training data from the model parameters. While these attacks have been
demonstrated in controlled settings, where models are typically over-parameterized or overly sim-
plistic, the risks associated with sharing models trained on large, complex and multi-class datasets
are yet been fully explored.

Previous research to reconstruct training data has primarily focused on restricted scenarios, such
as binary classifiers with fully connected layers trained on a few hundred samples in a dataset.
However, these settings are far removed from real-world applications, where models are typically
trained on larger, more complex, and multi-class datasets with regularization techniques like dropout
and weight decay that prevent over-fitting and memorization.

In restricted settings, over-parameterized models can easily memorize portions of the training data,
leading to successful reconstructions. For under-parameterized models, where there is no possibility
of memorization and the models generalize well, reconstructions are typically more difficult as these
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models have limited capacity to store detailed representations of individual samples from the training
data, making it harder to exploit the model’s learned parameters to reconstruct the data. Also in fully
connected layers, each input feature is assigned dedicated weights, which may make reconstruction
easier as the model captures more direct associations between inputs and outputs. While as in
convolutional layers, due to the weight-sharing mechanism, where the same set of weights is applied
across different parts of the input, the reconstruction becomes more challenging.

In this paper, we introduce Training-Like Data Reconstruction (TLDR), a novel approach to recon-
struct training-like data from vision classifiers with convolutional layers trained on large, complex,
and multi-class datasets. We specifically explore reconstruction in the context of convolutional
neural networks (CNNs) that incorporate commonly used non-linearities like ReLU, batch normal-
ization, regularisation techniques like dropout and weight decay and demonstrate that training-like
data reconstruction is still possible, even in these realistic and unrestricted settings.

At the core of our approach is a network inversion technique that learns the input space correspond-
ing to different classes within a classifier using a single conditioned generator trained to generate a
diverse set of samples from the input space with desired labels guided by a combination of losses
including cross-entropy, KL Divergence, cosine similarity and feature orthogonality. Inverted sam-
ples generated through network inversion are often random, and while inversion may occasionally
produce training-like data, our goal is to specifically encourage the generator to reconstruct training-
like data. To achieve this, we leverage several key insights and properties of the classifier in relation
to its training data.

First, model confidence is a crucial signal. The classifier, having been trained on the data, is expected
to be more confident in its predictions on training samples compared to randomly generated, inverted
samples. This stems from the fact that training data is considered in-distribution for the model,
while random inverted samples tend to be out-of-distribution. Thus, by generating samples that
the classifier is more confident in, we can guide the generator toward producing data similar to the
training set. Mathematically, this can be expressed as:

P (yin|xin; θ) ≫ P (yood|xood; θ)

Where P (y|x; θ) represents the softmax output of the classifier for a given input x, θ are the
model’s parameters, xin refers to in-distribution data (i.e. training samples), and xood refers to out-
of-distribution data (i.e. randomly generated, inverted samples).

Second, the robustness to perturbations is another important property. During training, the model
learns to generalize across slight variations in the training data, making it relatively more robust to
perturbations around these samples compared to random inverted samples. Hence we specifically
encourage the generator to generate samples that are robust to perturbations when passed through
the classifier. Formally, we express this as:

∂fθ(xin)

∂xin
≪ ∂fθ(xood)

∂xood

This equation highlights that the classifier is less sensitive to perturbations for xin compared to xood,
where fθ(x) is the model output for input x.

Finally, we exploit gradient properties of the model. Since the classifier has already been optimized
on the training data, the gradient of the loss with respect to the model’s weights is expected to be
lower for training data compared to random inverted samples. By minimizing the gradient with
respect to the model’s weights for the generated samples, we can guide the generator to produce
samples that more closely resemble the training data, since those would exhibit lower gradient mag-
nitudes. This can be formalized as:

∥∇θL(fθ(xin), yin)∥ ≪ ∥∇θL(fθ(xood), yood)∥

Where L represents the loss function, fθ(x) is the model output for input x, and ∇θ is the gradient
with respect to the model weights θ.

By combining these three signals—model confidence, robustness to perturbations, and gradient be-
havior—along with prior knowledge about the images we guide the inversion process to reconstruct
samples that semantically resemble the original training data.
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Our main contributions in this paper include:

1. A comprehensive approach to the inversion of convolutional vision classifiers using a single
conditioned generator.

2. The introduction of soft vector conditioning and intermediate matrix conditioning to en-
courage diversity in the inversion process.

3. The use of network inversion to reconstruct training-like data by exploiting key properties
of the classifier in relation to its training data, such as model confidence, robustness to
perturbations, and gradient behavior.

To validate our approach, we conduct extensive inversion and reconstruction experiments on multi-
ple standard vision classification datasets, including MNIST, FashionMNIST, SVHN, and CIFAR-
10. Our empirical verification demonstrates that the proposed method is capable of reconstructing
training-like data across different domains, even when the models are trained with regularization
techniques like dropout, weight decay and batch normalization. These findings highlight the poten-
tial privacy risks associated with sharing machine learning models, as they may inadvertently expose
information about the training data.

2 RELATED WORKS

Network inversion has emerged as a powerful method for exploring and understanding the internal
mechanisms of neural networks. By identifying input patterns that closely approximate a given out-
put target, inversion techniques provide a way to visualize the information processing capabilities
embedded within the network’s learned parameters. These methods reveal important insights into
how models represent and manipulate data, offering a pathway to expose the latent structure of neu-
ral networks. While inversion techniques primarily began as tools for understanding models, their
application to extracting sensitive data has sparked significant concerns. Neural networks inherently
store information about the data they are trained on, and this has led to the potential for training
data to be reconstructed through inversion attacks. Early works in this space, particularly on over-
parameterized models with fully connected networks, demonstrated that it was possible to extract
portions of the training data due to the model’s tendency to memorize data. This raises significant
privacy concerns, especially in cases where models are trained on proprietary or sensitive datasets,
such as in healthcare or finance.

Early research on inversion for multi-layer perceptrons in (Kindermann & Linden, 1990), derived
from the back-propagation algorithm, demonstrates the utility of this method in applications like
digit recognition highlighting that while multi-layer perceptrons exhibit strong generalization capa-
bilities—successfully classifying untrained digits—they often falter in rejecting counterexamples,
such as random patterns. Subsequently (Jensen et al., 1999) expanded on this idea by proposing
evolutionary inversion procedures for feed-forward networks that stands out for its ability to iden-
tify multiple inversion points simultaneously, providing a more comprehensive view of the network’s
input-output relationships. The paper (Saad & Wunsch, 2007) explores the lack of explanation ca-
pability in artificial neural networks (ANNs) and introduces an inversion-based method for rule
extraction to calculate the input patterns that correspond to specific output targets, allowing for the
generation of hyperplane-based rules that explain the neural network’s decision-making process.
(Wong, 2017) addresses the problem of inverting deep networks to find inputs that minimize certain
output criteria by reformulating network propagation as a constrained optimization problem and
solving it using the alternating direction method of multipliers.

Model Inversion attacks in adversarial settings are studied in (Yang et al., 2019), where an attacker
aims to infer training data from a model’s predictions by training a secondary neural network to
perform the inversion, using the adversary’s background knowledge to construct an auxiliary dataset,
without access to the original training data. The paper (Kumar & Levine, 2020) presents a method
for tackling data-driven optimization problems, where the goal is to find inputs that maximize an
unknown score function by proposing Model Inversion Networks (MINs), which learn an inverse
mapping from scores to inputs, allowing them to scale to high-dimensional input spaces. While
(Ansari et al., 2022) introduces an automated method for inversion by focusing on the reliability of
inverse solutions by seeking inverse solutions near reliable data points that are sampled from the
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forward process and used for training the surrogate model. By incorporating predictive uncertainty
into the inversion process and minimizing it, this approach achieves higher accuracy and robustness.

The traditional methods for network inversion often rely on gradient descent through a highly non-
convex loss landscape, leading to slow and unstable optimization processes. To address these chal-
lenges, recent work by (Liu et al., 2022) proposes learning a loss landscape where gradient descent
becomes efficient, thus significantly improving the speed and stability of the inversion process. Sim-
ilarly Suhail (2024) proposes an alternate approach to inversion by encoding the network into a
Conjunctive Normal Form (CNF) propositional formula and using SAT solvers and samplers to find
satisfying assignments for the constrained CNF formula. While this method, unlike optimization-
based approaches, is deterministic and ensures the generation of diverse input samples with desired
labels. However, the downside of this approach lies in its computational complexity, which makes it
less feasible for large-scale practical applications.

In reconstruction (Haim et al., 2022) studies the extent to which neural networks memorize training
data, revealing that in some cases, a significant portion of the training data can be reconstructed
from the parameters of a trained neural network classifier. The paper introduces a novel recon-
struction method based on the implicit bias of gradient-based training methods and demonstrate that
it is generally possible to reconstruct a substantial fraction of the actual training samples from a
trained neural network, specifically focusing on binary MLP classifiers. Later (Buzaglo et al., 2023)
improve upon these results by showing that training data reconstruction is not only possible in the
multi-class setting but that the quality of the reconstructed samples is even higher than in the bi-
nary case. Also revealing that using weight decay during training can increase the susceptibility to
reconstruction attacks.

The paper (Balle et al., 2022) addresses the issue of whether an informed adversary, who has knowl-
edge of all training data points except one, can successfully reconstruct the missing data point given
access to the trained machine learning model. The authors explore this question by introducing con-
crete reconstruction attacks on convex models like logistic regression with closed-form solutions.
For more complex models, such as neural networks, they develop a reconstructor network, which,
given the model weights, can recover the target data point. Subsequenlty (Wang et al., 2023) in-
vestigates how model gradients can leak sensitive information about training data, posing serious
privacy concerns. The authors claim that even without explicitly training the model or memorizing
the data, it is possible to fully reconstruct training samples by gradient query at a randomly chosen
parameter value. Under mild assumptions, they demonstrate the reconstruction of training data for
both shallow and deep neural networks across a variety of activation functions.

In this paper, we explore the intersection of network inversion and training data reconstruction.
Our approach to network inversion aims to strike a balance between computational efficiency and
the diversity of generated inputs by using a carefully conditioned generator trained to learn the
data distribution in the input space of a trained neural network. The conditioning information is
encoded into vectors in a concealed manner to enhance the diversity of the generated inputs by
avoiding easy shortcut solutions. This diversity is further enhanced through the application of heavy
dropout during the generation process, the minimization of cosine similarity and encouragement of
orthogonality between a batch of the features of the generated images.

While network inversion may occasionally produce training-like samples, we encourage this process
by exploiting key properties of the classifier with respect to its training data. The classifier tends to
be more confident in predicting in-distribution training samples than random, out-of-distribution
samples, and it exhibits greater robustness to perturbations around the training data. Furthermore,
the gradient of the loss with respect to the model’s weights is typically lower for training data, which
helps guide the generator toward reproducing these samples. Additionally, we incorporate prior
knowledge in the form of variational loss to create noise-free images and pixel constraint loss to keep
pixel values within the valid range, ensuring the generated images are both semantically and visually
aligned with the original training data. By leveraging these insights, we steer the inversion process to
reconstruct training-like data and extend prior work on training data reconstruction, which primarily
focused on models with fully connected layers, to under-parametrized models with convolutional
layers and standard activation functions, trained on larger datasets with regularisation techniques to
prevent memorisation.
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3 METHODOLOGY & IMPLEMENTATION

Our approach to Network Inversion and subsequent training data reconstruction uses a carefully con-
ditioned generator that learns a diverse data distributions in the input space of the trained classifier
by simple modification of the training objectives.

3.1 CLASSIFIER

In this paper inversion and reconstruction is performed on a classifier which includes convolution
and fully connected layers as appropriate to the classification task. We use standard non-linearity
layers like Leaky-ReLU (Xu et al., 2015) and Dropout layers (Srivastava et al., 2014) in the classifier
for regularisation purposes to discourage memorisation. The classification network is trained on a
particular dataset and then held in evaluation mode for the purpose of inversion and reconstruction.

3.2 GENERATOR

The images in the input space of the classifier will be generated by an appropriately conditioned
generator. The generator builds up from a latent vector by up-convolution operations to generate the
image of the given size. While generators are conventionally conditioned on an embedding learnt of
a label for generative modelling tasks, we given its simplicity, observe its ineffectiveness in network
inversion and instead propose more intense conditioning mechanism using vectors and matrices.

3.2.1 LABEL CONDITIONING

Label Conditioning of a generator is a simple approach to condition the generator on an embedding
learnt off of the labels each representative of the separate classes. The conditioning labels are then
used in the cross entropy loss function with the outputs of the classifier. While Label Conditioning
can be used for inversion, the inverted samples do not seem to have the diversity that is expected of
the inversion process due to the simplicity and varying confidence behind the same label.

3.2.2 VECTOR CONDITIONING

In order to achieve more diversity in the generated images, the conditioning mechanism of the
generator is altered by encoding the label information into an N -dimensional vector for an N -class
classification task. The vectors for this purpose are randomly generated from a normal distribution
and then soft-maxed to represent an input conditioning distribution for the generated images. The
argmax index of the soft-maxed vectors now serves as the de facto conditioning label, which can be
used in the cross-entropy loss function without being explicitly revealed to the generator.

3.2.3 INTERMEDIATE MATRIX CONDITIONING

Vector Conditioning allows for a encoding the label information into the vectors using the argmax
criteria. This can be further extended into Matrix Conditioning which apparently serves as a better
prior in case of generating images and allows for more ways to encode the label information for
a better capture of the diversity in the inversion process. In its simplest form we use a Hot Con-
ditioning Matrix in which an NXN dimensional matrix is defined such that all the elements in a
given row and column (same index) across the matrix are set to one while the rest all entries are ze-
roes. The index of the row or column set to 1 now serves as the label for the conditioning purposes.
The conditioning matrix is concatenated with the latent vector intermediately after up-sampling it to
NXN spatial dimensions, while the generation upto this point remains unconditioned.

3.2.4 VECTOR-MATRIX CONDITIONING

Since the generation is initially unconditioned in Intermediate Matrix Conditioning, we combine
both vector and matrix conditioning, in which vectors are used for early conditioning of the generator
upto NXN spatial dimensions followed by concatenation of the conditioning matrix for subsequent
generation. The argmax index of the vector, which is the same as the row or column index set to
high in the matrix, now serves as the conditioning label.

5
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Figure 1: Proposed Approach to Network Inversion

3.3 NETWORK INVERSION

The main objective of Network Inversion is to generate images that when passed through the classi-
fier will elicit the same label as the generator was conditioned to. Achieving this objective through a
straightforward cross-entropy loss between the conditioning label and the classifier’s output can lead
to mode collapse, where the generator finds shortcuts that undermine diversity. With the classifier
trained, the inversion is performed by training the generator to learn the data distribution for differ-
ent classes in the input space of the classifier as shown schematically in Figure 1 using a combined
loss function LInv defined as:

LInv = α · LKL + β · LCE + γ · LCosine + δ · LOrtho

where LKL is the KL Divergence loss, LCE is the Cross Entropy loss, LCosine is the Cosine Simi-
larity loss, and LOrtho is the Feature Orthogonality loss. The hyperparameters α, β, γ, δ control the
contribution of each individual loss term defined as:

LKL = DKL(P∥Q) =
∑
i

P (i) log
P (i)

Q(i)

LCE = −
∑
i

yi log(ŷi)

LCosine =
1

N(N − 1)

∑
i ̸=j

cos(θij)

LOrtho =
1

N2

∑
i,j

(Gij − δij)
2

where DKL represents the KL Divergence between the input distribution P and the output distribu-
tion Q, yi is the set encoded label, ŷi is the predicted label from the classifier, cos(θij) represents
the cosine similarity between features of generated images i and j, Gij is the element of the Gram
matrix, and δij is the Kronecker delta function. N is the number of feature vectors in the batch.

Thus, the combined loss function ensures that the generator matches the input and output distribu-
tions using KL Divergence and also generates images with desired labels using Cross Entropy, while
maintaining diversity in the generated images through Feature Orthogonality and Cosine Similarity.
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3.3.1 CROSS ENTROPY

The key goal of the inversion process is to generate images with the desired labels and the same
can be easily achieved using cross entropy loss. In cases where the label information is encoded
into the vectors without being explicitly revealed to the generator, the encoded labels can be used
in the cross entropy loss function with the classifier outputs for the generated images in order to
train the generator. In contrast to the label conditioning, vector conditioning complicate the training
objectives to the extent that the generator does not immediately converge, instead the convergence
occurs only when the generator figures out the encoded conditioning mechanism allowing for a
better exploration of the input space of the classifier.

3.3.2 KL DIVERGENCE

KL Divergence is used to train the generator to learn the data distribution in the input space of
the classifier for different conditioning vectors. During training, the KL Divergence loss function
measures and minimise the difference between the output distribution of the generated images, as
predicted by the classifier, and the conditioning distribution used to generate these images. This
divergence metric is crucial for aligning the generated image distributions with the intended condi-
tioning distribution.

3.3.3 COSINE SIMILARITY

To enhance the diversity of the generated images, we use cosine similarity to assesses and minimises
the angular distance between the features of a batch of generated images across the last fully con-
nected layers, promoting variability in the generated images. The combination of cosine similarity
with cross-entropy loss not only ensures that the generated images are classified correctly but also
enforces diversity among the images produced for each label.

3.3.4 FEATURE ORTHOGONALITY

In addition to the cosine similarity loss, we incorporate feature orthogonality as a regularization
term to further enhance the diversity of generated images by minimizing the deviation of the Gram
matrix of the features from the identity matrix. By ensuring that the features of generated images
are orthogonal, we promote the generation of distinct and non-redundant representations for each
conditioning label.

3.4 TRAINING-LIKE DATA RECONSTRUCTION

While Network Inversion enables access to a diverse set of images in the input space of the model for
different classes, the inverted samples, given the vastness of the input space, are completely random.
However, Network Inversion can be used for training data reconstruction as shown schematically in
Figure 2 by exploiting key properties of the training data in relation to the classifier that guide the
generator towards producing training-like data including model confidence, robustness to perturba-
tions, and gradient behavior along with some prior knowledge about the training data.

In order to take model confidence into account, we use hot conditioning vectors in reconstruction in-
stead of soft conditioning vectors used in inversion, hoping to generate samples that are confidently
labeled by the classifier. This encourages the generation of samples that elicit high-confidence pre-
dictions from the model, aligning them more closely with the training set. Since the classifier is
expected to handle perturbations around the training data effectively, the perturbed images should
retain the same labels and also be confidently classified. To achieve this, we introduce an L∞ per-
turbation to the generated images and pass both the original and perturbed images represented by
dashed lines, through the classifier and use them in the loss evaluation. We also introduce a gra-
dient minimization loss to penalise the large gradients of the classifier’s output with respect to its
weights when processing the generated images ensuring that the generator produces samples that
have small gradient norm, a property expected of the training samples. Furthermore, we incorporate
prior knowledge through pixel constraint and variational losses to ensure that the generated images
have valid pixel values and are noise-free ensuring visually realistic and smooth reconstructions.
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Figure 2: Schematic Approach to Training-Like Data Reconstruction using Network Inversion

Hence the previously defined inversion loss LInv is augmented to include the above aspects into a
combined reconstruction loss LRecon defined as:

LRecon = α·LKL+α′ ·Lpert
KL +β ·LCE+β′ ·Lpert

CE +γ ·LCosine+δ ·LOrtho+η1 ·LVar+η2 ·LPix+η3 ·LGrad

where Lpert
KL and Lpert

CE represent the KL divergence and cross-entropy losses applied on perturbed
images, weighted by α′ and β′respectively while LVar, LPix and LGrad represent the variational loss,
Pixel Loss and penalty on gradient norm each weighted by η1, η2, and η3 respectively and defined
for an Image I as:

LVar =
1

N

N∑
i=1

∑
h,w

(
(Ii,h+1,w − Ii,h,w)

2
+ (Ii,h,w+1 − Ii,h,w)

2
)

LPix =
∑

max(0,−I) +
∑

max(0, I − 1) LGrad = ∥∇θL(fθ(I), y)∥

3.4.1 PIXEL LOSS

The Pixel Loss is used to ensure that the generated images have valid pixel values between 0 and 1.
Any pixel value that falls outside this range is penalized hence encouraging the generator to produce
valid and realistic images.

3.4.2 GRADIENT LOSS

The Gradient Loss aims to minimize the gradient of the model’s output with respect to its weights
for the generated images ensuring that the generated images are closer to the training data, which is
expected to have lower gradient magnitudes.

3.4.3 VARIATIONAL LOSS

The Variational Loss is designed to promote the generation of noise-free images by minimizing large
pixel variations by encouraging smooth transitions between adjacent pixels, effectively reducing
high-frequency noise and ensuring that the generated images are visually consistent and realistic.
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4 EXPERIMENTS & RESULTS

In this section, we present the experimental results obtained by applying our network inversion and
reconstruction technique on the MNIST (Deng, 2012), FashionMNIST (Xiao et al., 2017), SVHN
and CIFAR-10 (Krizhevsky et al.) datasets by training a generator to produce images that, when
passed through a classifier, elicit the desired labels. The classifier is initially normally trained on
a dataset and then held in evaluation for the purpose of inversion and reconstruction. The images
generated by the conditioned generator corresponding to the latent and the conditioning vectors are
then passed through the classifier.

The classifier is a simple multi-layer convolutional neural network consisting of convolutional lay-
ers, dropout layers, batch normalization, and leaky-relu activation followed by fully connected layers
and softmax for classification. While the generator is based on Vector-Matrix Conditioning in which
the class labels are encoded into random softmaxed vectors concatenated with the latent vector fol-
lowed by multiple layers of transposed convolutions, batch normalization (Ioffe & Szegedy, 2015)
and dropout layers (Srivastava et al., 2014) to encourage diversity in the generated images. Once
the vectors are upsampled to NXN spatial dimensions they are concatenated with a conditioning
matrix for subsequent generation upto the required image size of 28X28 or 32X32.

Figure 3: Inverted Images for all 10 classes in MNIST, FashionMNIST, SVHN & CIFAR-10.

The inverted images are visualized to assess the quality and diversity of the generated samples in
Figure 3 for all 10 classes of MNIST, FashionMNIST, SVHN and CIFAR-10 respectively. While
each row corresponds to a different class each column corresponds to a different generator and as
can be observed the images within each row represent the diversity of samples generated for that
class. It is observed that high weightage to cosine similarity increases both the inter-class and the
intra-class diversity in the generated samples of a single generator. These inverted samples that are
confidently classified by the generator are unlike anything the model was trained on, and yet happen
to be in the input space of different labels highlighting their unsuitability in safety-critical tasks.

Figure 4: Reconstructed Images for all 10 classes in MNIST and FashionMNIST respectively .

9
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The reconstruction experiments were carried out on models trained on datasets of varying size and
as a general trend the quality of the reconstructed samples degrades with increasing number of the
training samples. In case of MNIST and FashionMNIST reconstructions performed using three
generators each for models trained on datasets of size 1000, 10000 and 60000 along with a column
of representative training data are shown in Figure 4.

While as for SVHN we held out a cleaner version of the dataset in which every image includes a
single digit. The reconstruction results on SVHN and CIFAR-10 using three different generators
on datasets of size 1000, 5000, and 10000 are presented in Figure 5. The reconstruction results on
models trained on the entire SVHN dataset resulted in faint images that also included more than one
digits. While as in case of CIFAR-10 given the low resolution of the images the reconstructions in
some cases are not perfect although they capture the semantic structure behind the images in the
class very well.

Figure 5: Reconstructed Images for all 10 classes in SVHN and CIFAR-10 respectively.

5 CONCLUSION & FUTURE WORK

In this paper, we propose Training-Like Data Reconstruction (TLDR), a novel approach for re-
constructing training-like data using Network Inversion from convolutional neural network (CNN)
based machine learning models. We begin by introducing a comprehensive network inversion tech-
nique using a conditioned generator trained to learn the input space associated with different classes
within the classifier. To ensure the diversity and accuracy of the generated samples, we employed a
combination of loss functions, including cross-entropy, KL divergence, cosine similarity, and feature
orthogonality. By exploiting key properties of the classifier in relation to its training data—such as
model confidence, robustness to perturbations, and gradient behavior we effectively encouraged the
reconstruction of training-like data. Extensive experiments on standard datasets demonstrated that
machine learning models remain vulnerable to data reconstruction attacks, emphasizing the need
to reassess privacy assumptions in model sharing practices, especially when dealing with sensitive
data.

As part of the future work, we plan to extend the TLDR approach to more complex architectures,
such as transformer models, attention-based layers, and hybrid architectures that combine CNNs
with attention mechanisms, to understand privacy vulnerabilities in more advanced neural networks.
Additionally, we intend to extend this work to models trained on larger, high-resolution image
datasets to evaluate privacy risks in more complex real world scenarios. Further improving the qual-
ity of reconstructed samples by leveraging the implicit bias of gradient-based optimization, which
tends to memorize a subset of training samples near decision boundaries, will also be explored.
Lastly, it would be of interest to evaluate the potential for learning generative models in coopera-
tion with classifiers through network inversion guided by successive weight updates in the classifier
during the training process.
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A APPENDIX

The code and implementation along with an extensive set of experiments on both inversion and
reconstruction are provided in the supplementary material.
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