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ABSTRACT

An intriguing property of the Transformer is its ability to perform in-context learn-
ing (ICL), where the Transformer can solve different inference tasks without pa-
rameter updating based on the contextual information provided by the correspond-
ing input-output demonstration pairs. It has been theoretically proved that ICL
is enabled by the capability of Transformers to perform gradient-descent algo-
rithms (Von Oswald et al., 2023a; Bai et al., 2024). This work takes a step further
and shows that Transformers can perform learning-to-optimize (L2O) algorithms.
Specifically, for the ICL sparse recovery (formulated as LASSO) tasks, we show
that a K-layer Transformer can perform an L2O algorithm with a provable conver-
gence rate linear in K. This provides a new perspective explaining the superior
ICL capability of Transformers, even with only a few layers, which cannot be
achieved by the standard gradient-descent algorithms. Moreover, unlike the con-
ventional L2O algorithms that require the measurement matrix involved in training
to match that in testing, the trained Transformer is able to solve sparse recovery
problems generated with different measurement matrices. Besides, Transformers
as an L2O algorithm can leverage structural information embedded in the train-
ing tasks to accelerate its convergence during ICL, and generalize across differ-
ent lengths of demonstration pairs, where conventional L2O algorithms typically
struggle or fail. Such theoretical findings are supported by our experimental re-
sults.

1 INTRODUCTION

Since its introduction in Vaswani et al. (2017), Transformers have become the backbone in various
fields such as natural language processing (Radford, 2018; Devlin, 2018), computer vision (Doso-
vitskiy, 2020) and reinforcement learning (Chen et al., 2021), significantly influencing subsequent
research and applications. A notable capability of Transformers is their good performance for in-
context learning (ICL) (Brown et al., 2020), i.e., without further parameter updating, Transformers
can perform new inference tasks based on the contextual information embedded in example input-
output pairs contained in the prompt. Such ICL capability facilitates state-of-the-art few-shot perfor-
mances across a multitude of tasks, such as reasoning and language understanding tasks in natural
language processing (Chowdhery et al., 2023), in-context dialog generation (Thoppilan et al., 2022)
and in-context linear regression (Garg et al., 2022; Fu et al., 2023).

Given the significance of transformers’ ICL capabilities, extensive research efforts have been di-
rected toward understanding the mechanisms behind their ICL performance. In this context, the ICL
capability of a pre-trained Transformer is understood as the Transformer’s implicit implementation
of learning algorithms during the forward pass. Von Oswald et al. (2023a), Dai et al. (2022), and Bai
et al. (2024) suggest that these learning algorithms closely approximate gradient-descent-based op-
timizers, thus making the Transformer a universal solver for various ICL tasks. Specifically, these
works demonstrate that Transformers can approximate gradient descent steps implicitly through
some specific constructions of their parameters, enabling them to adapt to new data points during
inference without explicit re-training.

However, it is well known that gradient-descent-based algorithms are not efficient in solving com-
plicated optimization problems and thus may not be sufficient to explain the superior performance
of Transformers on a plethora of ICL tasks. A recent work (Ahn et al., 2024) suggests that instead
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of gradient descent, Transformers actually perform pre-conditioned gradient descent during ICL. In
other words, it learns a pre-conditioner during pre-training and then utilizes it during ICL to expe-
dite the optimization process. Von Oswald et al. (2023b) recently demonstrates that the forward pass
of a trained transformer can implement meta-optimization algorithms, i.e., it can implicitly define
internal objective functions and then optimize these objectives to generate predictions. Similarly,
Zhang et al. (2023) show that a mesa-optimizer embedding the covariance matrix of input data can
efficiently solve linear regression tasks. Such interpretation of the ICL mechanism shares the same
essence as Learning-to-Optimize (L2O) algorithms, and motivates the following hypothesis:

Transformer does not simply implement a universal optimization algorithm during ICL. Rather, it
extracts useful information from the given dataset during pre-training and then utilizes such

information to generate an optimization algorithm that best suits the given ICL task.

In this paper, we examine this hypothesis through the lens of in-context sparse recovery. Sparse
recovery is a classical signal processing problem that is of significant practical interest across various
domains, such as compressive sensing in medical imaging (Shen et al., 2017) and spectrum sensing
(Elad, 2010). Recent works show that Transformers are able to implement gradient descent-based
algorithms with sublinear convergence rates for in-context sparse recovery (Bai et al., 2024; Chen
et al., 2024b). However, empirical findings indicate that Transformers can solve in-context sparse
recovery more efficiently than gradient descent-based approaches (Bai et al., 2024). Meanwhile,
there exists a plethora of L2O algorithms that solve the classical sparse recovery problem efficiently
with linear convergence guarantees (Gregor and LeCun, 2010; Chen et al., 2018; Liu and Chen,
2019). Therefore, examining the L2O capabilities of Transformers in solving the in-context sparse
recovery task becomes a promising direction and may serve as a perfect example to validate our
hypothesis. Our main contributions are as follows.

• First, we demonstrate that Transformers can implement an L2O algorithm for in-context sparse
recovery, and theoretically prove that a K-layer Transformer as an L2O algorithm can recover
the underlying sparse vector in-context at a convergence rate linear in K. The linear convergence
results in this work significantly improve the state-of-the-art convergence results for in-context
sparse recovery and validate our previous hypothesis.

• Second, we show that the Transformer as an L2O algorithm can actually outperform traditional
L2O algorithms for sparse recovery in several aspects: 1) It does not require the measurement
matrices involved in training to be the same as those in traditional L2O algorithms (Gregor and
LeCun, 2010; Chen et al., 2018; Liu and Chen, 2019) for sparse recovery, which allows more
flexibility to solve various in-context sparse recovery tasks. 2) It allows different numbers of
measurements (i.e., prompt length) used for in-context sparse recovery, with guaranteed recovery
performance as long as the number of measurements is sufficiently large. 3) It can extract struc-
tural properties of the underlying sparse vectors from the training data and utilize them to expedite
its ICL convergence.

• We compare the ICL performances of Transformers with traditional iterative algorithms and L2O
algorithms for sparse recovery empirically. Our experimental results indicate that Transform-
ers substantially outperform traditional gradient-descent-based iterative algorithms, and achieve
comparable performances compared with L2O algorithms that are trained and tested using data
generated with the same measurement matrix. This supports our claim that Transformers can
implement L2O algorithms during ICL. Besides, Transformers also demonstrate remarkable gen-
eralization capability when the measurement matrix varies, and achieve accelerated convergence
when additional structure is imposed on the underlying sparse vectors, supporting our theoretical
findings.

2 RELATED WORKS

ICL Mechanism for Transformers. Brown et al. (2020) first show that GPT-3, a Transformer-
based LLM, can perform new tasks from input-output pairs without parameter updates, suggesting
its ICL ability. This intriguing phenomenon of Transformers has attracted many attentions, leading
to various interpretations and hypotheses about its underlying mechanism. For example, Han et al.
(2023) empirically hypothesize that Transformers perform kernel regression with internal represen-
tations when facing in-context examples, and Fu et al. (2023) empirically show that Transformers
learn to implement an algorithm similar to iterative Newton’s method for ICL tasks.
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To better understand the ICL mechanism in large Transformers, existing works aim to demonstrate
the Transformer’s capability for ICL by construction, e.g., showing that Transformers can perform
gradient-based algorithms to solve ICL tasks by iteratively performing gradient descent layer by
layer. In this category, Akyürek et al. (2022) show that by construction, Transformers can imple-
ment gradient descent-based algorithms for linear regression problems. Von Oswald et al. (2023a)
construct explicit weights for a Transformer, claiming it can perform gradient descent on linear
and non-linear regression tasks. Bai et al. (2024) provide constructions such that Transformers can
make selections between different gradient-based algorithms. Ahn et al. (2024) reason the ICL ca-
pability of Transformers to their ability to implement a pre-conditioned gradient descent for linear
regression tasks, where the pre-condition matrix is learned from pre-training. Recently, Von Oswald
et al. (2023b) demonstrates that the forward pass of a trained transformer can implement meta-
optimization algorithms, i.e., it can implicitly define internal objective functions and then optimize
these objectives to generate predictions. Similarly, Zhang et al. (2023) show that a mesa-optimizer
embedding the covariance matrix of input data can efficiently solve linear regression tasks. Our
work belongs to this category, where we construct a Transformer structure that can implement an
L2O algorithm to effectively solve the in-context sparse recovery problem.

Training Dynamics of Transformers. There exist some works aiming to theoretically understand
the ICL mechanism in Transformer through their training dynamics. Ahn et al. (2024); Mahankali
et al. (2023); Zhang et al. (2023); Huang et al. (2023) investigate the dynamics of Transformers
with a single attention layer and a single head for in-context linear regression tasks. Cui et al.
(2024) prove that Transformers with multi-head attention layers outperform those with single-head
attention. Cheng et al. (2023) show that local optimal solutions in Transformers can perform gradient
descent in-context for non-linear functions. Kim and Suzuki (2024) study the non-convex mean-
field dynamics of Transformers, and Nichani et al. (2024) characterize the convergence rate for the
training loss in learning a causal graph. Additionally, Chen et al. (2024a) investigate the gradient
flow in training multi-head single-layer Transformers for multi-task linear regression. Chen and Li
(2024) propose a supervised training algorithm for multi-head Transformers.

The training dynamics of Transformers for binary classification (Tarzanagh et al., 2023b;a; Vasudeva
et al., 2024; Li et al., 2023; Deora et al., 2023; Li et al., 2024a) and next-token prediction (NTP)
(Tian et al., 2023a;b; Li et al., 2024b; Huang et al., 2024) have also been studied recently.

L2O Algorithms for Sparse Recovery. There is a rich literature on L2O. We discuss the L2O al-
gorithms relevant to sparse recovery here and leave more discussions on general L2O in Appendix A.
Sparse recovery, typically formulated as a least absolute shrinkage and selection operator (LASSO),
has many important applications like magnetic resonance imaging (Meng et al., 2023) and stock
market forecasting (Roy et al., 2015), thus motivates the design of efficient algorithms. E.g., the
iterative soft-thresholding algorithm (ISTA) (Daubechies et al., 2004) is proposed to solve LASSO
and improves over the standard gradient descent algorithm. Motivated by the ISTA structure, Gregor
and LeCun (2010) introduce the Learned ISTA (LISTA), a feedforward neural network that incor-
porates trainable matrices into ISTA updates. Chen et al. (2018) and Liu and Chen (2019) further
propose LISTA-Partial Weight Coupling (LISTA-CP) and Analytic LISTA (ALISTA) with fewer
trainable parameters, making them easier to train. They also provide theoretical analyses demon-
strating a linear convergence rate. However, these existing LISTA-type algorithms only apply to a
fixed measurement matrix and fail when the measurement matrices (the inputs of the input-output
pairs in ICL) change. In this work, we provide evidence that Transformer can perform a LISTA-type
algorithm that tackles this issue and succeeds in in-context sparse recovery tasks, both theoretically
in Section 5 and experimentally in Section 6.

3 PRELIMINARIES

Notations. For matrix X, we use [X]p:q,r:s to denote the submatrix that contains rows p to q and
columns r to s, and we use [X]:,i and [X]j,: to denote the i-th column and j-th row of X respectively.
In some places, we also use [X]i to denote its i-th column for convenience. We use ∥X∥F to denote
its Frobenius norm. For vector x, we use ∥x∥1, ∥x∥ and ∥x∥∞ to denote its ℓ1, ℓ2 and ℓ∞ norms,
respectively. We denote by 1d and 0d the d-dimensional all-1 and all-0 column vectors, respectively.
1a×b and 0a×b denote the all-1 and all-0 matrices of size a× b, respectively.
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3.1 TRANSFORMER ARCHITECTURE

In this work, we consider the decoder-based Transformer architecture (Vaswani et al., 2017), where
each attention layer is masked by a decoder-based attention mask and followed by a multi-layer
perception (MLP) layer.
Definition 3.1 (Masked attention layer). Denote an M -head masked attention layer parameterized
by {(Vm,Qm,Km)m∈[M ]} as Attn{(Vm,Qm,Km)}(·), where Vm,Qm,Km ∈ RD×D, ∀m ∈ [M ].
Then, given an input sequence H ∈ RD×(N+1), the output sequence of the attention layer is

Attn{(Vm,Qm,Km)}(H) = H+

M∑
m=1

(VmH)×mask
(
σ
(
(KmH)⊤(QmH)

))
,

where mask(M) satisfies [mask(M)]i,j = 1
jMi,j if i ≤ j and [mask(M)]i,j = 0 otherwise. σ(·)

denotes the activation function.

Definition 3.2 (MLP layer). Given W1 ∈ RD′×D, W2 ∈ RD×D′
and a bias vector b ∈ RD′

, an
MLP layer following the decoder attention layer, denoted as MLP{W1,W2,b}, maps each token in
the input sequence (i.e, each column hi in H ∈ RD×N ) to another token as

MLP{W1,W2,b}(hi) = hi +W2σ(W1hi + b),

where σ is the non-linear activation function.

In this work, we set the activation function in Definition 3.1 and Definition 3.2 as the element-wise
ReLU function. Next, we define the one-layer decoder-based Transformer structure.
Definition 3.3 (Transformer layer). A one-layer decoder-based Transformer is parameterized by
Θ := {W1,W2,b, (Vm,Qm,Km)m∈[M ]}, denoted as TFΘ. Therefore, give input sequence
H ∈ Rd×N , the output sequence is:

TFΘ(H) = MLP{W1,W2,b}

(
Attn{(Vm,Qm,Km)}(H)

)
.

3.2 IN-CONTEXT LEARNING BY TRANSFORMERS

For an in-context learning (ICL) task, a trained Transformer is given an ICL instance I =
(D,xN+1), where D = {(xi, yi)}i∈[N ] and xN+1 is a query. Here, xi ∈ Rd is an in-context
example, and yi is the corresponding label for xi. We assume yi = fβ(xi) + ϵi, where ϵi is an
added random noise, and fβ is a deterministic function parameterized by β. Unlike conventional
supervised learning, for each ICL instance, β ∼ Pβ , i.e., it is randomly sampled from a distribution
Pβ .

To perform ICL in a Transformer, we first embed the ICL instance into an input sequence H ∈
RD×N ′

. The Transformer then generates an output sequence TF(H) with the same size as H, based
on which a prediction ŷN+1 is generated through a read-out function F , i.e., ŷN+1 = F (TF(H)).
The objective of ICL is then to ensure that ŷN+1 closely approximates the target value yN+1 =
fβ(xN+1) + ϵN+1 for any ICL instance.

When a Transformer is pre-trained for ICL, it first samples a large set of ICL instances. For each
instance, the Transformer generates a prediction ŷN+1 and calculates the prediction loss by compar-
ing it with yN+1 using a proper loss function. The training loss is the aggregation of all prediction
losses for every ICL instance used in pre-training, and the Transformer is trained to minimize this
training loss.

Previous studies about the mechanism of how Transformers performs in-context learning have at-
tracted a lot of attention recently. To start with, it is believed that the ICL capability is due to the
Transformer’s implicit implementation of learning algorithms in the forward pass. Von Oswald et al.
(2023a), Dai et al. (2022), and Bai et al. (2024) suggest that these learning algorithms closely approx-
imate gradient-descent-based optimizers, thus making the Transformer a universal solver for various
ICL tasks. A recent work (Ahn et al., 2024) suggests that instead of gradient descent, Transformers
actually perform pre-conditioned gradient descent for in-context least square linear regression. In
general, these results corroborate the claim that the mechanism of the Transformer in-context learn-
ing is a L2O algorithm. We study this perspective and further provide the evidence supporting this
claim by considering a more complicated in-context problem: in-context sparse recovery.
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4 TRANSFORMER AS A LISTA-TYPE ALGORITHM FOR IN-CONTEXT SPARSE
RECOVERY

In this section, we demonstrate that a decoder-based Transformer can implement a novel LISTA-type
L2O algorithm, specifically LISTA-VM, as detailed in Theorem 4.1, for in-context sparse recovery.
We begin by formally defining the in-context sparse recovery problem.

4.1 IN-CONTEXT SPARSE RECOVERY

Sparse recovery is a fundamental problem in fields such as compressed sensing, signal denoising,
and statistical model selection. The core concept of sparse recovery is that a high-dimensional
sparse signal can be inferred from very few linear observations if certain conditions are satisfied.
Specifically, it aims to identify an S-sparse vector β∗ ∈ Rd from its noisy linear observations
y = Xβ∗ + ϵ, where X ∈ RN×d is a measurement matrix, ϵ ∈ RN is an isometric Gaussian noise
vector with mean vector 0N and covariance matrix IN×N . Typically, we assume d ≫ N , which
is the so-called under-determined case. One common assumption for the measurement matrix X
(Pitaval et al., 2015; Ge et al., 2017; Zhu et al., 2021) is that each row of the matrix is indepen-
dently sampled from an isometric sub-Gaussian distribution with zero mean and covariance matrix
diag(σ2

1 · · · , σ2
d), denoted as Px. which guarantees the critical restricted isometry property under

mild conditions on the sparsity level (Candes and Tao, 2007). In this work, we also assume β∗ is
randomly sampled from a distribution Pβ, which admits an S-sparse vector with random support.

A popular approach to tackling sparse recovery is the least absolute shrinkage and selection operator
(LASSO), which aims to find the optimal sparse vector β ∈ Rd that minimizes the following loss:

L(β) = 1

2
∥y −Xβ∥22 + α∥β∥1.

Here α is a coefficient controlling the sparsity penalty. We denote the transpose of the i-th row in X
by xi, i.e., xi = [X⊤]:,i.

In this work, we study how Transformers solve the sparse recovery problem in context. In the pre-
training process, a set of in-context sparse recovery instances {(X(j),y(j),x

(j)
N+1)}

Ntrain
j=1 is generated

according to the relationship y
(j)
n = (x

(j)
n )⊤β(j) + ϵ

(j)
n for j ∈ [Ntrain] and n ∈ [N ]. Here, the

sparse vectors β(j), sensing vectors {x(j)
n }Nn=1, and noise terms {ϵ(j)n }Nn=1 are sampled from distri-

butions β(j) ∼ Pβ , x(j)
n ∼ Px, and ϵ

(j)
n ∼ Pϵ, respectively. During pre-training, the Transformer

minimizes the label prediction loss ∥ŷ(j)N+1 − y
(j)
N+1∥ for each instance j ∈ [Ntrain], where ŷ

(j)
N+1 is

the Transformer’s prediction and y
(j)
N+1 = (x

(j)
N+1)

⊤β(j) + ϵ
(j)
N+1.

After pretraining, during the inference process for ICL, a given sparse recovery instance
(X,y,xN+1) is sampled, where β ∼ Pβ , {xi}Ni=1 ∼ Px, and {ϵi}Ni=1 ∼ Pϵ. The Transformer
then aims to predict yN+1 using the input (X,y,xN+1).

4.2 CLASSICAL ALGORITHMS

Gradient descent is known to struggle in solving the LASSO problem due to its inefficiency in
effectively handling the sparsity constraint (Chen et al., 2018). This inefficiency has led to the
development of more specialized algorithms that can better address the unique challenges posed
by the LASSO formulation. A popular approach to solving the LASSO problem is the Iterative
Shrinkage Thresholding Algorithm (ISTA). Starting with a fixed initial point β(1), the update rule
in the k-th iteration is given by

β(k+1) = Sα/L

(
β(k) − 1

L
X⊤(Xβ(k) − y)

)
.

Here, Sα/L is the soft-thresholding function defined as [Sα/L(x)]i = sign([x]i)max{0, |[x]i| −
α/L}, and L is typically chosen as the largest eigenvalue of X⊤X (Chen et al., 2018; Liu and Chen,
2019).

Generally, for any ground-truth sparse vector β∗ and any given X, ISTA converges at a sublinear
rate (Beck and Teboulle, 2009). The sublinear convergence rate of ISTA is considered inefficient,
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which has led to the development of various LISTA-type L2O algorithms, such as LISTA (Gre-
gor and LeCun, 2010), LISTA-CP (Chen et al., 2018), and ALISTA (Liu and Chen, 2019). These
algorithms learn the weights in the matrices in ISTA rather than fixing them.

Among them, LISTA-CP is one state-of-the-art (SOTA) method that has been well-studied. The
update rule in the k-th iteration of LISTA-CP can be expressed as

β(k+1) = Sθ(k)

(
β(k) − (D(k))⊤(Xβ(k) − y)

)
, (4.1)

where {θ(k),D(k)} are learnable parameters. Compared with ISTA with fixed parameters, LISTA-
CP obtains {θ(k),D(k)} through pre-training. Specifically, with a fixed measurement matrix X, it
randomly samples n S-sparse vectors {βj}nj=1 ∼ Pβ and generates {yj}nj=1, which is then utilized
to optimize {θ(k),D(k)} by minimizing the total predicting loss for {βj}j . Chen et al. (2018) show
that, for the same measurement matrix X, given any random instance (β∗,y), a pre-trained LISTA-
CP will converge to the ground-truth β∗ linearly in K under certain necessary conditions on X.

4.3 TRANSFORMER CAN PROVABLY PERFORM LISTA-TYPE ALGORITHMS

Noting that LISTA-type algorithms can efficiently solve sparse recovery problems, in this section,
we argue that a trained Transformer can implement a LISTA-type algorithm and efficiently solve a
sparse recovery problem in context. To distinguish the algorithm implemented by the Transformer
with the classical LISTA-type algorithms, we term it as LISTA with Varying Measurements (LISTA-
VM). Towards this end, we provide an explicit construction of a K-layer decoder-based Transformer
as follows. A K-layer Transformer is the concatenation of K blocks, where each block comprises a
self-attention layer followed by an MLP layer. The input to the first self-attention layer, denoted as
H(1), is an embedding of the given in-context sparse recovery instance I = (X,y,xN+1).

Embedding. Given an in-context sparse recovery instance I = (X,y,xN+1) we embed the in-
stance into an input sequence H(1) ∈ R(2d+2)×(2N+1) as follows:

H(1)(I) =


x1 x1 · · · xN xN xN+1

0 y1 · · · 0 yN 0

β
(1)
1 β

(1)
2 · · · β

(1)
2N−1 β

(1)
2N β

(1)
2N+1

1 0 · · · 1 0 1

 , (4.2)

where {β(1)
i }i∈[2N+1] ∈ Rd are implicit parameter vectors initialized as 0d, and xi is the i-th

column of the transposed measurement matrix, i.e, [X⊤]:,i. The embedding structure is similar to
the work of Bai et al. (2024), which also introduces placeholders in the embedding used for implicit
parameter updates and as indicators.

Self-attention layer. The self-attention layer takes as input a sequence of embeddings and outputs
a sequence of embeddings of the same length. Let the K-layer decoder-based Transformer feature
four attention heads uniquely indexed as +1, −1, +2, and −2. We construct these heads according
to the structure specified in Appendix C.1. This construction ensures that the self-attention layer
performs the β updating inside the soft-thresholding function in Equation (4.1). Furthermore, with
our construction, the learnable matrix D(k) in LISTA-CP becomes context-dependent instead of
fixed. In the update rule implemented by the self-attention layer, this matrix becomes D(k) =

1
2N+1X(M(k))⊤, where M(k) ∈ Rd×d is fixed.

MLP layer. For the MLP layer following the k-th self-attention layer, it functions as a feedforward
neural network that takes the output of the self-attention layer as its input, and outputs a transformed
sequence of the embeddings. Recall that hi is the i-th column in an embedding sequence H. We pa-
rameterize (W1,W2,b) in the k-th MLP layer to let it function as a partial soft-threshold function:

MLP(hi) =

[
[hi]1:d+1

Sθ(k)([hi]d+2:2d+1)
[hi]2d+2

]
, (4.3)

where Sθ(k) is the soft-threshold function. Essentially, the soft-threshold function is effectively
implemented by the MLP layer utilizing the ReLU activation. This can be realized by combining
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−ReLU(x), ReLU(−x), ReLU(x − θ), −ReLU(−x + θ), and x. The implementation details of
the MLP layer can be found in Appendix C.1.

Read-out function. Given the output sequence of the Transformer TFΘ(H(1)), to obtain the esti-
mation ŷN+1, it is necessary to read out from the output sequence. In this work, we consider two
types of read-out functions:
Definition 4.1 (Linear read-out). Flinear is defined as the class of linear readout functions such that

Flinear = {F (·) | F (h) = v⊤h,v ∈ RD}.

Definition 4.2 (Query read-out). Fquery is defined as the class of explicit quadratic readout functions
such that

Fquery = {F (· ; X̃) | F (h, i; X̃) = h⊤VX̃⌊ i+1
2 ⌋,:,V ∈ RD×d},

where i ∈ [N + 1] is an index number and X̃ = [X⊤ xN+1]
⊤.

Given a readout function Fv ∈ Flinear parameterized by v or FV ∈ Fquery parameterized by V, the
estimation ŷi obtained by the K-layer Transformer is ŷi = Fv(h

K+1
2i+1) or ŷi = FV(hK+1

2i+1 , 2i − 1)
respectively.

Before we formally present our main results, we introduce the following assumptions.
Assumption 1. For x ∼ Px and β∗ ∼ Pβ, we assume ∥x∥ ≤ bx and ∥β∗∥1 ≤ bβ almost surely.
Besides, we consider the noiseless scenario where ϵ = 0.

We note that the boundedness assumption over x and β∗ ensures the robustness of the Transformer
and prevents it from blowing up under ill conditions. A similar assumption is adopted in Bai et al.
(2024). The noiseless assumption is for ease of analysis and is common in the analysis of Trans-
formers (Ahn et al., 2024; Fu et al., 2023; Bai et al., 2024). We note that the following Theorem 4.1
can be straightforwardly extended to the noisy case when the noise is bounded.

We denote the input sequence to the k-th self-attention layer as H(k), and use β
(k+1)
2n+1 to represent

the vector [H(k+1)]d+1:2d+1,2n+1. Then, we state the following theorem.
Theorem 4.1 (Equivalence between ICL and LISTA-VM). With the Transformer structure de-
scribed above, under Assumption 1, there exists a set of parameters in the Transformer so that
for any k ∈ [1 : K], n ∈ [N ], we have

β
(k+1)
2n+1 = Sθ(k)

(
β
(k)
2n+1 −

1

2n+ 1
M(k)[X]⊤1:n,:([X]1:n,:β

(k)
2n+1 − y1:n)

)
, (4.4)

where M(k) ∈ Rd×d is embedded in the k-th Transformer layer.

The proof of Theorem 4.1 is detailed in Appendix C.2.

Remark 1. As mentioned above, matrix D(k) in the update rule of LISTA-CP in Equation (4.1) is
learned during pre-training and remains fixed across different in-context sparse recovery instances.
As a result, LISTA-CP requires the measurement matrix X to stay the same during pre-training and
inference. In contrast, if we denote D(k)

n = 1
2n+1 [X]1:n,:(M

(k))⊤, then within the update rule of the

LISTA-VM algorithm implemented by the Transformer, as detailed in Equation (4.4), the matrix D(k)
n

depends on a fixed matrix M(k) after pre-training as well as on the measurement matrix X during
inference. As a result, the Transformer can adaptively update D

(k)
n for instances with different X’s,

enabling more flexibility and improved performance for the ICL tasks.

5 PERFORMANCE OF TRANSFORMERS FOR IN-CONTEXT SPARSE RECOVERY

In this section, we demonstrate the effectiveness of the constructed Transformer in implementing
the LISTA-VM algorithm and solving in-context sparse recovery problems. We first show that the
LISTA-VM algorithm implemented by the Transformer recovers the underlying sparse vector in
context at a convergence rate linear in K. We then demonstrate that the Transformer can accurately
predict yN+1 at the same time.
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5.1 SPARSE VECTOR ESTIMATION

Theorem 5.1 (Convergence of ICL). Let δ ∈ (0, 1), N0 = 8(4S−2)2 log d+log S−log δ
c

, αn = − log
(
1−

2
3
γ+γ(2S−1)

√
log d−log δ

nc
+
√

log S−log δ
nc

)
, where c is a positive constant and γ is a positive constant

satisfies γ ≤ 3
2 . For a K-layer Transformer model with the structure described in Section 4.3, under

Assumption 1, there exists a set of parameters such that for any n ∈ [N0 : N ], with probability at
least 1− δ, we have ∥∥β(K+1)

2n+1 − β∗∥∥ ≤ bβe
−αnK .

Main challenge and key ideas of the proof. Similar to the proofs in Chen et al. (2018) and Liu and
Chen (2019), the core step in proving convergence is to ensure that D(k) exhibits small coherence
with X, i.e., (D(k))⊤X ≈ Id×d. In Chen et al. (2018) and Liu and Chen (2019), such a D(k) is
obtained by minimizing the generalized mutual coherence to a fixed X. However, this results in poor
generalization across different X’s. In our proof, we consider X as a random matrix and leverage
its sub-Gaussian properties to prove that if D(k) = X(M(k))⊤, where M(k) is associated with the
covariance of X, then D(k) will have small coherence with X with high probability. We defer the
detailed proof of Theorem 5.1 to Appendix D.1.

Remark 2 (Linear convergence rate). The linear convergence rate demonstrated in Theorem 5.1
arises from the incorporation of curvature information into the update rule. Specifically, the learned
matrices M(k) serve as approximations of the inverse Hessian. By leveraging the statistical prop-
erties of the problem, these matrices effectively accelerate convergence, enabling the Transformer
to mimic second-order optimization methods. This allows the Transformer to overcome the tra-
ditional limitations of first-order methods. As established in foundational works on optimization
theory (Nesterov, 2005; Nemirovskij and Yudin, 1983), first-order methods for sparse recovery are
typically restricted to a sublinear O(1/K) convergence rate unless additional assumptions are in-
troduced. By estimating curvature information, the Transformer could achieve linear convergence.

Remark 3 (Generalization across measurement matrix X). Theorem 5.1 shows that for any X sat-
isfying Assumption 1, the Transformer can estimate the ground-truth sparse vector β∗ in-context
at a convergence rate linear in K. This is in stark contrast to traditional LISTA-CP type of algo-
rithms, which only work for fixed X. Such generalization is enabled by the input-dependent matrices
{D(k)}k. Besides, we also note that β(K+1)

2n+1 only depends on x1, . . . ,xn. This implies that even if
the measurement matrix X is of dimension n × d instead of N × d, when n ∈ [N0, N ], the Trans-
former can still recover β∗ accurately. Such results demonstrate the robustness of Transformers to
variations in in-context sparse recovery tasks.
Remark 4 (Effective utilization of the hidden patterns in ICL tasks). We note that the Transformer
can be slightly modified to exploit certain hidden structures in the in-context sparse recovery tasks.
Specifically, if the support of β lies in a subset S ⊂ [1 : d] with S < |S| ≤ d, then by slightly modify-
ing the parameters of the Transformer to ensure [β(k)]i = 0 for all i /∈ S, the ICL performance can
be improved by replacing all d involved in Theorem 5.1 by |S|. We defer the corresponding result
and analysis to Appendix D.2.

5.2 LABEL PREDICTION

In Section 5.1, we have demonstrated that Transformers can successfully recover the ground-truth
sparse vector β∗ with linear convergence by implementing a LISTA-type algorithm. In this section,
we bridge the gap between this theoretical claim and the explicit objective of in-context sparse recov-
ery, which is to predict ŷN+1 given an in-context instance (X,y,xN+1). This gap might seem trivial
at first glance, as given xN+1 and an accurate estimate of β, the label ŷN+1 can be obtained through
a simple linear operation. However, we will show that, for a decoder-based Transformer, generating
ŷN+1 using the predicted sparse vector β, which is implicitly embedded within the forward-pass
sequences, critically depends on the structure of the read-out function.
Theorem 5.2. Under the same setting as in Section 4.3, with probability at least 1 − nδ − δ′, we
have

∥yn − ŷn∥ ≤ bx

(
1− 2

3
γ

)K

+
c4K√

n

(
1− 2

3
γ

)K−1
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for a linear read-out function, and with probability at least 1− δ, we have
∥yn − ŷn∥ ≤ c5e

−αnK

for a query read-out function, where c4, c5 are constants.

We defer the proof of Theorem 5.2 to Appendix E.
Remark 5. Theorem 5.2 indicates that adopting a linear read-out function results in a prediction
error of order O

(
e−K + K√

n
e−K

)
, which still exhibits linear convergence with respect to K. When

a query-based read-out function is employed, the convergence rate improves to O(e−K). However,
there exists a gap of order O

(
K√
n
e−K

)
, which diminishes as n becomes large. Empirically, we

observe the superiority of using a query-based read-out function in our experimental results, as
detailed in Section 6, and we also observe that the gap decreases as n grows.

6 EXPERIMENTAL RESULTS

Problem setup. In all experiments, we adhere to the following steps to generate in-context sparse
recovery instances. First, we sample a ground truth sparse vector β∗ from a d = 20 dimensional
standard normal distribution, and we fix the sparsity of β∗ to be 3 by randomly setting 17 entries in
β∗ to zero. Next, we independently sample N = 10 vectors form a d dimensional standard normal
distribution and then contract the measurement matrix X ∈ R10×20 (each sampled d dimensional
random vector is a row in X). We also sample an additional xN+1 from the d-dimensional standard
Gaussian distribution. We follow the noiseless setting in Bai et al. (2024) for sparse recovery, i.e.,
y = Xβ∗.

Baselines. The baselines for our experiments include traditional iterative algorithms such as ISTA
and FISTA (Beck and Teboulle, 2009). We also evaluate three classical LISTA-type L2O algo-
rithms: LISTA, LISTA-CP, ALISTA (Gregor and LeCun, 2010; Chen et al., 2018; Liu and Chen,
2019). For all of these algorithms, we set the number of iterations K = 12. We generate a sin-
gle fixed measurement matrix X. For each training epoch, we create I = 50, 000 instances from
50, 000 randomly generated sparse vectors. During inference, we evaluate the trained LISTA-type
models under two settings: (1) when the measurement matrix remains identical to that used during
pretraining, reported as ”Fixed X,” and (2) when the measurement matrix is varying through random
sampling, reported as ”Varying X.”

We also evaluate the LISTA-VM algorithm introduced in Theorem 4.1, where we set the number
of iterations K = 12 as well. For each training epoch, we randomly sample 100 measurement ma-
trices, each generating 500 instances from 500 randomly generated sparse vectors, which results in
a total of 50, 000 instances. For comparison, we also meta-train LISTA and LISTA-CP using the
same training method as LISTA-VM. We do not perform meta-training for ALISTA, as the training
process of ALISTA involves solving a non-convex optimization problem for each different measure-
ment matrix X, which makes meta-training for ALISTA unrealistic. For all baseline algorithms, we
minimize the sparse vector prediction loss

∑I
i=1 ∥β̂i −βi∥2 using gradient descent for each epoch.

We run all baseline experiments for 340 epochs.

Transformer structure. We consider two Transformer models, i.e., a small Transformer model
(denoted as Small TF) and GPT-2. Small TF has 12 layers, each containing a self-attention layer
followed by an MLP layer. Each self-attention layer has 4 attention heads. We set the embedding
dimension to D = 42, and the embedding structure according to Equation (4.2). For GPT-2, we
employ 12 layers, and set the embedding dimension to 256 and the number of attention heads per
layer to 8. The experimental use of GPT-2 with 8 heads evaluates the Transformer’s performance in
a configuration commonly used in practical applications. Meanwhile, the Small TF model ensures
alignment with the theoretical analysis by following the 4-head configuration and ReLU activation
function described in the theoretical setup. In order to train Small TF and GPT-2, we randomly
generate 64 instances per epoch and train the algorithms for 106 epochs. The training process
minimizes the label prediction loss

∑N+1
j=1 (yj − ŷj)

2. We run the experiments for Small TF and
GPT-2 on an NVIDIA RTX A5000 GPU with 24G memory. The training time for Small TF is
approximately 8 hours, while the training time for GPT-2 is around 12 hours.

Results. We test the prediction performance of the baseline algorithms and Transformers on a sparse
recovery instance (X,y,xN+1), and plot the label prediction loss in Figure 1.
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Figure 1: Experimental results for sparse recovery. (a) S = 3. (b) S = 3, and the support is restricted to be
within the first 10 entries. (c) Prediction with different read-outs functions.

We first do not impose any support constraint on β. We start with the general setting where the
testing instance is randomly generated (Varying X). As shown in Figure 1a, GPT-2 outperforms
Small TF, followed by LISTA-VM, which outperforms iterative algorithms FISTA and ISTA, while
the classical LISTA-type algorithms LISTA, LISTA-CP, and ALISTA perform the worst. Such re-
sults highlight the efficiency of LISTA-VM, Small TF and GPT-2 in solving ICL sparse recovery
problems, corroborating our theoretical result in Theorem 5.1. Meanwhile, classical LISTA-type
algorithms cannot handle mismatches between the measurement matrices in pre-training and test-
ing, leading to poor prediction performance. When X during testing is fixed to be the same as
that in pre-training, all LISTA-type algorithms achieve performances comparable with Small TF.
For meta-trained LISTA and LISTA-CP, the corresponding prediction loss (denoted by red marks in
Figure 1a) are still much higher than that under LISTA-VM. This indicates that meta-training can-
not help those classical LISTA-type algorithms achieve performances comparable with LISTA-VM,
further corroborating the strong generalization capability induced by the constructed Transformer
structure.

Next, we impose an additional constraint on the support of the sparse vectors. For in-context sparse
recovery instances used in both pre-training and testing, we set the support of the sparse vector β
to the first 10 entries, i.e., S = {1, 2, · · · , 10}. As observed in Figure 1b, Small TF and GPT-
2 significantly improve their performances in Figure 1a, while other baseline algorithms do not
exhibit significant performance improvements. In Figure 1b, we present the experimental results for
a support-selected version of LISTA-VM, referred to as LISTA-VM-SS. This algorithm is a simple
variation of LISTA-VM, where we incorporate prior knowledge of the support by setting all columns
in X whose indices are not in the prior support set to be zero vectors. As we claim in Remark 4
and Corollary D.1, a Transformer could perform this LISTA-VM-SS by utilizing prior knowledge
of the support. Our results show that the LISTA-VM-SS achieves an in-context prediction error of
approximately 0.07, which is almost 10 times better than the standard version of LISTA-VM and
is comparable to the prediction error of Small TF. This empirical finding corroborates our claim in
Remark 4.

Finally, we examine the label prediction loss under Small TF with three types of read-out functions,
i.e., linear read-out function (Linear Readout), query read-out function (Query Readout), and an-
other quadratic read-out function with parameters selected according to the proof of Theorem 5.2
(Query Readout†). In Figure 1c, we observe that the label prediction error is lower with the query
read-out functions than with the linear read-out function. When n becomes large, the gap between
the linear read-out function and the other two types of query read-out functions becomes insignif-
icant, which is consistent with our theoretical result in Theorem 5.2. Meanwhile, those two query
read-out functions behave very similarly.

7 CONCLUSION

In this work, we demonstrated that Transformers’ known ICL capabilities could be understood as
performing L2O algorithms. Specifically, we showed that for sparse recovery tasks, Transformers
can execute the LISTA-VM algorithm with a provable linear convergence rate. Our results highlight
that, unlike existing LISTA-type algorithms, which are limited to solving individual sparse recov-
ery problems with fixed measurement matrices, Transformers can address a general class of sparse
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recovery problems with varying measurement matrices without requiring parameter updates. Exper-
imentally, we demonstrated that Transformers can leverage prior knowledge from training tasks and
generalize effectively across different lengths of demonstration pairs, where traditional L2O meth-
ods typically fail. These insights not only deepen our understanding of Transformers’ capabilities
in ICL but also suggest new potential applications for utilizing Transformers in other optimization
tasks.
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A ADDITIONAL RELATED WORKS

General L2O Techniques. L2O leverages machine learning to develop optimization algorithms,
aiming to improve existing methods and innovate new ones. As highlighted by Sucker et al. (2024)
and Chen et al. (2022), L2O intersects with meta-learning (also known as “learning-to-learn”) and
automated machine learning (AutoML).

Unlike meta-learning, which focuses on enabling models to quickly adapt to new tasks with min-
imal data by leveraging prior knowledge from diverse tasks (Finn et al., 2017; Hospedales et al.,
2021), L2O aims to improve the optimization process itself by developing adaptive algorithms tai-
lored to specific tasks, leading to faster convergence and enhanced performance in model train-
ing (Andrychowicz et al., 2016; Li and Malik, 2016). Thus, while meta-learning enhances task
adaptability, L2O refines the efficiency of the optimization process. In contrast, AutoML focuses
on model selection, optimization algorithm selection, and hyperparameter tuning (Yao et al., 2018);
L2O distinguishes itself by its ability to generate new optimization techniques through learned mod-
els.

L2O has demonstrated significant potential across various optimization fields and applications. For
instance, Andrychowicz et al. (2016) introduced a method where optimization algorithms are learned
using recurrent neural networks trained to optimize specific classes of functions. Li and Malik
(2016) proposed learning optimization algorithms through reinforcement learning, utilizing guided
policy search to develop optimization strategies. Furthermore, Hruby et al. (2022) applied L2O
to address the “minimal problem”, a common challenge in computer vision characterized by the
presence of many spurious solutions. They trained a multilayer perceptronmodel to predict initial
problem solutions, significantly reducing computation time.

B TABLE OF NOTATIONS

Notation Definition
X Measurement Matrix
β∗ Ground-truth sparse vector
ϵ Noise Vector
Y Y = Xβ∗ + ϵ
d Number of columns of X
N Number of Measurement Vectors, i.e., number of rows of X
S Sparsity of β∗, i.e., ∥β∗∥0 = S
S Support set of β∗

D Dimension in the Self-attention Layer
M Number of Heads in the Self-attention Layer
D′ Hidden Dimension in the MLP Layer
K Number of Layers in Transformer

Q
(k)
i Query Matrix of the k-th Layer of Transformer’s i-th Head

K
(k)
i Key Matrix of the k-th Layer of Transformer’s i-th Head

V
(k)
i Value Matrix of the k-th Layer of Transformer’s i-th Head

H(k) Input Sequence of the k-th Layer of Transformer
h
(k)
i [H(k)]:,i

sign(x) Sign Function: sign(x) = |x|/x if x ̸= 0, sign(x) = 0 if x = 0
Sθ(x) Soft Thresholding Function: Sθ(x) = sign(x)max{0, |x| − θ}

σ : Rd → Rd ReLU Function:[σ(x)]i = xi if xi ≥ 0, [σ(x)]i = 0 if xi < 0
¬E Complement of an event E
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C DEFERRED PROOFS IN SECTION 4.3

C.1 TRANSFORMER STRUCTURE

Attention layer. Consider a model consisting of K Transformer layers, where each layer is
equipped with four attention heads. These heads are uniquely indexed as +1, −1, +2, and −2
to distinguish their specific roles within the layer.

Q
(k)
±1 =

0(d+1)×(d+1) 0(d+1)×d 0d+1

0d×(d+1) M
Q,(k)
±1 0d

01×(d+1) 01×d −B

 , Q
(k)
±2 =

 0d×(2d+1) 0d

01×(2d+1) m
Q,(k)
±2

0(d+1)×(2d+1) 0d+1


K

(k)
±1 =

0(d+1)×d 0(d+1)×(d+1) 0d+1

Id×d 0d×(d+1) 0d

01×d 01×(d+1) 1

 , K
(k)
±2 =

 0d×d 0d 0d×d+1

01×d 1 01×(d+1)

0(d+1)×d 0d+1 0(d+1)×(d+1)


V

(k)
±1 =

0(d+1)×d 0(d+1)×(d+2)

M
V,(k)
±1 0d×(d+2)

01×d 01×(d+2)

 , V
(k)
±2 =

0(d+1)×d 0(d+1)×d+2

M
V,(k)
±2 0d×(d+2)

01×d 01×(d+2)

 , (C.1)

where M
Q,(k)
+1 , MQ,(k)

−1 , MV,(k)
+1 , MV,(k)

−1 , MV,(k)
+2 , and M

V,(k)
−2 are all d × d matrices, and m

Q,(k)
+2 ,

m
Q,(k)
−2 are scalars.

MLP layer. For the MLP layer following the k-th self-attention layer, we set

W1 =

 W1,sub
−W1,sub
W1,sub
−W1,sub

 ,W⊤
2 =

−I(2d+2)×(2d+2)

I(2d+2)×(2d+2)

I(2d+2)×(2d+2)

−I(2d+2)×(2d+2)

 ,b(k) =


05d+5

−θ(k) · 1d

0d+2

θ(k) · 1d

0

 . (C.2)

where the submatrix W1,sub is defined as

W1,sub =

0(d+1)×(d+1) 0(d+1)×d 0d+1

0d×(d+1) Id×d 0d

01×(d+1) 01×d 0

 .

Therefore, we obtain that the output of the MLP layer is

MLP(hi) =

[
[hi]1:d+1

Sθ(k)([hi]d+2:2d+1)
[hi]2d+2

]
. (C.3)

where Sθ(k) is the soft-thresholding function parameterized by θ(k).

C.2 PROOF OF THEOREM 4.1

We start by stating an equivalent form of Theorem 4.1 below, where we specific M(k) in Theo-
rem 4.1 to be γ(k)MV .
Theorem C.1 (Equivalent form Theorem 4.1). Suppose Assumption 1 holds. For a Transformer
with K layers as described in Section 4.3, set the input sequence as:

H(1) =


[X⊤]:,1 [X⊤]:,1 · · · [X⊤]:,N [X⊤]:,N xN+1

0 y1 · · · 0 yN 0

β
(1)
1 β

(1)
2 · · · β

(1)
2N−1 β

(1)
2N β

(1)
2N+1

1 0 · · · 1 0 1

 . (C.4)

Denote H(k+1) as the output of the K-th layer of the Transformer and define β
(K+1)
2n+1 =

H
(k+1)
d+2:2d+1,2n+1. There exists a set of parameters within the Transformer such that for all k ∈

[1,K], we have:

β
(k+1)
2n+1 = Sθ(k)

(
β
(k)
2n+1 − γ(k)(Dn)

⊤([X]1:n,:β
(k)
2n+1 − y1:n)

)
,

where Dn = 1
2n+1 [X]1:n,:(M

V )⊤ and MV ∈ Rd×d is embedded in the k-th Transformer lsyer.
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Proving the theorem is equivalent to demonstrating the existence of a Transformer for which the
following proposition holds for any k ≥ 2:
Proposition 1. Suppose Assumption 1 holds. For a K layers Transformer with structure described
in Section 4.3, the input sequence of the k-th layer of the Transformer satisfies:

H(k) =


[X⊤]:,1 [X⊤]:,1 · · · [X⊤]:,N [X⊤]:,N xN+1

0 y1 · · · 0 yN 0

β
(k)
1 β

(k)
2 · · · β

(k)
2N−1 β

(k)
2N β

(k)
2N+1

1 0 · · · 1 0 1

 ,

where it holds that β(k)
2n+1 = Sθ(k−1)

(
β
(k−1)
2n+1 − γ(k−1)(Dn)

⊤([X]1:n,:β
(k)
2n+1 − y1:n)

)
, Dn =

1
2n+1 [X]1:n,:(M

V )⊤ and |β(k−1)
2n+1 | ≤ Ck

β for Constant Cβ.

Proof of Proposition 1. We prove Proposition 1 is true for all k ≥ 2 by induction. First, H(k) for
k = 2 satisfies the condition automatically; therefore, Proposition 1 is true when k = 2. Then, we
demonstrate that if Proposition 1 is true for k − 1, it remains valid for k. For odd values of i, the
token-wise outputs of the k-th attention layer corresponding to the first and second heads satisfy:

Q
(k)
±1h

(k)
i =

 0d+1

M
Q,(k)
±1 β

(k)
i

−B

 ; K
(k)
±1h

(k)
i =

 0d+1

[X⊤]:,⌊ i+1
2 ⌋

1

 ; V
(k)
±1h

(k)
i =

 0d+1

M
V,(k)
±1 [X⊤]:,⌊ i+1

2 ⌋
0

 .

The token-wise outputs of the third and fourth heads for odd i satisfy

Q
(k)
±2h

(k)
i =

 0d

m
Q,(k)
±2
0d+1

 ; K
(k)
±2h

(k)
i = 02d+2; V

(k)
±2h

(k)
i =

 0d+1

M
V,(k)
±2 [X⊤]:,⌊ i+1

2 ⌋
0

 .

Besides, for any i that is an even number, the token-wise outputs of the k-th attention layer corre-
sponding to the first and second heads satisfy:

Q
(k)
±1h

(k)
i =

 0d+1

M
Q,(k)
±1 β

(k)
i

0

 ; K
(k)
±1h

(k)
i =

 0d+1

[X⊤]:,⌊ i+1
2 ⌋

0

 ; V
(k)
±1h

(k)
i =

 0d+1

M
V,(k)
±1 [X⊤]:,⌊ i+1

2 ⌋
0

 .

The token-wise outputs of the third and fourth heads for even i satisfy

Q
(k)
±2h

(k)
i = 02d+2; K

(k)
±2h

(k)
i =

 0d

y i
2

0d+1

 ; V
(k)
±2h

(k)
i =

 0d+1

M
V,(k)
±2 [X⊤]:,⌊ i+1

2 ⌋
0

 .

Therefore, for hi with an odd index and head with index u ∈ {1,−1}, we have

σ
(〈

Q(k)
u hk

i ,K
(k)
u hk

j

〉)
·V(k)

u h
(k)
j

= σ
(
(β

(k)
i )⊤(MQ

u )
⊤[X⊤]:,⌊ j+1

2 ⌋ − 1{j%2=1}(j)B
)
·

 0d+1

M
V,(k)
u [X⊤]:,⌊ j+1

2 ⌋
0

 . (C.5)

Also, for hi with an odd index and head with index u ∈ {2,−2}, we have

σ
(〈

Q(k)
u hk

i ,K
(k)
u hk

j

〉)
·V(k)

u h
(k)
j = 1{j%2=0} · σ

(
mQ,(k)

u · y j
2

)
·

 0d+1

M
V,(k)
u [X⊤]:,⌊ j+1

2 ⌋
0

 .

(C.6)
We specify the parameters of the self-attention layer as

M
Q,(k)
1 = −Id×d, M

V,(k)
1 = γ(k)MV ,

M
Q,(k)
−1 = Id×d, M

V,(k)
−1 = −γ(k)MV ,

m
q,(k)
2 = 1, M

V,(k)
2 = γ(k)MV ,

m
q,(k)
−2 = −1, M

V,(k)
−2 = −γ(k)MV .
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Then, for head index u ∈ {1,−1} we have

(β
(k)
i )⊤(MQ

u )
⊤[X⊤]:,⌊ j+1

2 ⌋ −B ≤
∣∣(β(k)

i )⊤[X⊤]:,⌊ j+1
2 ⌋
∣∣−B

≤
∥∥β(k)

i

∥∥
1

∥∥[X⊤]:,⌊ j+1
2 ⌋
∥∥
∞ −B (C.7)

≤
∥∥β(k)

i − β∗∥∥
1

∥∥[X⊤]:,⌊ j+1
2 ⌋
∥∥
∞ + bβbx −B,

where Equation (C.7) is given by Hölder’s Inequality. Therefore, combining this with the assumption
∥x∥∞ ≤ bx and ∥β∗∥1 ≤ bβ, we obtain

(β
(k)
i )⊤(MQ

u )
⊤[X⊤]:,⌊ j+1

2 ⌋ −B ≤ bx
∥∥β(k)

i − β∗∥∥
1
+ bβbx −B. (C.8)

Recall that for odd i, we assume that Proposition 1 is true for k − 1, then β
(k)
i satisfies

β
(k)
i = Sθ(k−1)

(
β
(k−1)
i − γ(k−1)(Dn)

⊤([X]1:⌊ i+1
2 ⌋,:β

(k)
i − y1:⌊ i+1

2 ⌋)
)

and |β(k−1)
2n+1 | ≤ Ck

β. Therefore, we have

|β(k)
i | ≤ |β(k−1)

i |+ |γ(k−1)|∥MV ∥
∥∥∥∥1i [X]⊤

1:⌊ i+1
2 ⌋,:[X]1:⌊ i+1

2 ⌋,:

∥∥∥∥|β(k−1)
i |+ bβ|γ(k−1)|∥MV ∥

∥∥∥∥1i [X]1:⌊ i+1
2 ⌋,:

∥∥∥∥
≤ Ck

β + b2xd|γ(k−1)|∥MV ∥
⌊ i+1

2 ⌋
i

Ck
β + bβbx|γ(k−1)|∥MV ∥

⌊ i+1
2 ⌋
i

≤ Ck
β + b2xd|γ(k−1)|∥MV ∥Ck

β + bβbx|γ(k−1)|∥MV ∥. (C.9)

Equation (C.9) arises from the fact that ⌊ i+1
2 ⌋/i ≤ 1. Therefore, denoting γmax = maxk ∥γ(k)∥ and

letting Cβ = 1 + b2xdγmax∥MV ∥+ bβbxγmax∥MV ∥, we have

|β(k)
i | ≤ Ck

β + b2xd|γ(k−1)|∥MV ∥Ck
β + bβbx|γ(k−1)|∥MV ∥ ≤ Ck+1

β .

Therefore we have

bx
∥∥β(k)

i − β∗∥∥
1
≤ bx

√
d(bβ + Ck

β).

Then, by setting B ≥ bβbx + bx
√
d(bβ + CK

β ), we obtain that B >
∣∣(β(k)

i )⊤[X⊤]:,⌊ j+1
2 ⌋
∣∣ for all

k ≤ K and any odd i. Then, combining with Equation (C.8) we have

σ
(
(β

(k)
i )⊤(MQ

u )
⊤[X⊤]:,⌊ j+1

2 ⌋ −B
)
= 0.

Further, from Equation (C.5), for i is odd number and j ∈ [1, 3, · · · , i] we have

σ
(〈

Q(k)
u hk

i ,K
(k)
u hk

j

〉)
·V(k)

u h
(k)
j = 02d+2.

Besides, for i being an odd number and j ∈ [2, 4, · · · , i− 1], we have

σ
(〈

Q(k)
u hk

i ,K
(k)
u hk

j

〉)
·V(k)

u h
(k)
j = σ

(
(β

(k)
i )⊤(MQ

u )
⊤[X⊤]:,⌊ i+1

2 ⌋

)
·

 0d+1

M
V,(k)
u [X⊤]:,⌊ j+1

2 ⌋
2

 .

Thus, when hi is of odd index, summing over all j ≤ i and u ∈ {1,−1}, we obtain:∑
u∈{−1,+1}

i∑
j=1

σ
(〈

Q(k)
u hk

i ,K
(k)
u hk

j

〉)
·V(k)

u h
(k)
j =

∑
u∈{−1,+1}

i−1∑
j=2

σ
(〈

Q(k)
u hk

i ,K
(k)
u hk

j

〉)
·V(k)

u h
(k)
j

=

i−1∑
j=2

−(β
(k)
i )⊤[X⊤]:,⌊ j+1

2 ⌋ ·

 0d+1

γ(k)MV [X⊤]:,⌊ j+1
2 ⌋

0


=

 0d+1

−γ(k)MV [X⊤]:,1: i−1
2
[X]1: i−1

2 ,:β
(k)
i

0

 .

(C.10)

20



1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Under review as a conference paper at ICLR 2025

Next, we consider heads with indexes m ∈ {2,−2}. From Equation (C.6) we obtain

∑
u∈{−2,+2}

i∑
j=1

σ
(〈

Q(k)
u hk

i ,K
(k)
u hk

j

〉)
·V(k)

u h
(k)
j =

∑
u∈{−2,+2}

i−1∑
j=2

σ
(〈

Q(k)
u hk

i ,K
(k)
u hk

j

〉)
·V(k)

u h
(k)
j

=

i−1∑
j=2

y j
2
·

 0d+1

γ(k)MV [X⊤]:, j2
02


=

 0d+1

γ(k)MV [X⊤]:,1: i−1
2
y1: i−1

2

02

 . (C.11)

Combining Equation (C.10) and Equation (C.11), we obtain the following equation for hi with an
odd index:

h
(k+1)
i = MLP

h
(k)
i +

1

i

∑
u∈{±1,±2}

i∑
j=1

σ
(〈

Q(k)
u hk

i ,K
(k)
u hk

j

〉)
·V(k)

u h
(k)
j

 =


[X⊤]:,⌊ i+1

2 ⌋
0

βk+1
i
1

 ,

where

βk+1
i = Sθ(k)

(
β
(k)
i − γ(k)

i
MV [X⊤]:,1: i−1

2
[X]1: i−1

2 ,:β
(k)
i + γ(k)MV [X⊤]:,1: i−1

2
y1: i−1

2

)
= Sθ(k)

(
β
(k)
i − γ(k)

i
MV [X⊤]:,1: i−1

2

(
[X]1: i−1

2 ,:β
(k)
i − y1: i−1

2

))
. (C.12)

Similarly, we obtain the following equation for hi with an even index:

h
(k+1)
i = MLP

h
(k+1)
i +

1

i

∑
u∈{±1,±2}

i∑
j=1

σ
(〈

Q(k)
u hk

i ,K
(k)
u hk

j

〉)
·V(k)

u h
(k)
j

 =


[X⊤]:,⌊ i+1

2 ⌋
0

βk+1
i
0

 .

(C.13)

Note that an explicit formulation of β(k+1)
i is not required when i is even. Next, combining Equa-

tion (C.12) and Equation (C.13) gives

H(k+1) =


[X⊤]:,1 [X⊤]:,1 · · · [X⊤]:,N [X⊤]:,N xN+1

0 y1 · · · 0 yN 0

β
(k+1)
1 β

(k+1)
2 · · · β

(k+1)
2N−1 β

(k+1)
2N β

(k+1)
2N+1

1 0 · · · 1 0 1

 .

The proof for Proposition 1 is thus complete.

D DEFERRED PROOFS IN SECTION 5.1

D.1 PROOF OF THEOREM 5.1

In Section 4.1, we assume that each row of the measurement matrix X is independently sampled
from an isometric sub-Gaussian distribution with zero mean and covariance diag(σ2

1 , · · · , σ2
d).

Without loss of generality, let σ1 ≥ σ2 ≥ · · · ≥ σd. We start the proof of Theorem 5.1 by in-
troducing the auxiliary lemmas: Lemma 1, Lemma 2, and Lemma 3.

Lemma 1. Assume β(k) and β(k+1) satisfy:

β(k+1) = Sθ(k)

(
β(k) − γD⊤(Xβ(k) − y)

)
. (D.1)
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Define σmin = mini∈S
∣∣D⊤

:,iX:,i

∣∣, σmax = maxi̸=j

∣∣D⊤
:,iX:,j

∣∣ and let θ(k) = γσmaxc1e
−c2(k−2),

where c1 = ∥β∗∥1 and c2 = log
(

1
γ(2S−1)σmax+|1−γσmin|

)
. Then, if ∥β(k) − β∗∥1 ≤ c1e

−c2(k−2)

and D, γ, θ(k) satisfy the following conditions:

γ(2S − 1)σmax + |1− γσmin| ≤ 1,

0 ≤ γD⊤
:,iX:,i ≤ 1 ∀i ∈ [d],

(D.2)

then β(k+1) satisfies

∥β(k+1) − β∗∥1 ≤ c1e
−c2(k−1).

Proof of Lemma 1. Note that we are considering the noiseless model: y = Xβ∗. We begin by
rewriting Equation (D.1):

β(k+1) = Sθ(k)

(
β(k) − γ(k)D⊤(Xβ(k) − y)

)
= Sθ(k)

(
β(k) − γ(k)D⊤X(β(k) − β∗)

)
.

Consider entries of β(K+1) in the support of β∗:

β
(k+1)
S = Sθ(k)

(
β
(k)
S − γ(k)(D:,S)

⊤X:,S(β
(k)
S − β∗

S)
)

∈ β
(k)
S − γ(k)(D:,S)

⊤X:,S(β
(k)
S − β∗

S)− θ(k)∂ℓ1(β
(k+1)
S ),

where ∂ℓ1(β) is the sub-gradient of |β|:

[∂ℓ1(β)]i =

{
{sign([β]i)} if [β]i ̸= 0,

[−1, 1] if [β]i = 0.

Then, for any i ∈ S, we have

β
(k+1)
i ∈ β

(k)
i − γ(k)(D:,i)

⊤X:,S(β
(k)
S − β∗

S)− θ(k)∂ℓ1(β
(k+1)
S ).

Note that β(k)
i − γ(k)(D:,i)

⊤X:,S(β
(k)
S − β∗

S) can be rewritten as

β
(k)
i − γ(k)(D:,i)

⊤X:,S(β
(k)
S − β∗

S)

= β
(k)
i − γ(k)

∑
j∈S,j ̸=i

(D:,i)
⊤X:,j(β

(k)
j − β∗

j )− γ(k)(D:,i)
⊤X:,i(β

(k)
i − β∗

i )

= β∗
i − γ(k)

∑
j∈S,j ̸=i

(D:,i)
⊤X:,j(β

(k)
j − β∗

j ) +
(
1− γ(k)(D:,i)

⊤X:,i

)
(β

(k)
i − β∗

i ).

Therefore,

β
(k+1)
i − β∗

i ∈ −γ(k)
∑

j∈S,j ̸=i

(D:,i)
⊤X:,j(β

(k)
j − β∗

j ) +
(
1− γ(k)(D:,i)

⊤X:,i

)
(β

(k)
i − β∗

i )− θ(k)∂ℓ1(β
(k+1)
i ).

Based on the definition of ∂ℓ1, we derive the following inequality:

|β(k+1)
i − β∗

i | ≤ γ(k)
∑

j∈S,j ̸=i

∣∣(D:,i)
⊤X:,j

∣∣|β(k)
j − β∗

j |+
∣∣∣1− γ(k)(D:,i)

⊤X:,i

∣∣∣|β(k)
i − β∗

i |+ θ(k).

Recall that 0 < γ(k)(D:,i)
⊤X:,i < 1, we obtain that

|β(k+1)
i − β∗

i | ≤ γ(k)σmax

∑
j∈S,j ̸=i

|β(k)
j − β∗

j |+
∣∣∣1− γ(k)σmin

∣∣∣|β(k)
i − β∗

i |+ θ(k).
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From Lemma 2, we have support(β(k+1)) ∈ S, thus, ∥β(k+1) − β∗∥1 = ∥β(k+1)
S − β∗

S∥1. Then,

∥β(k+1) − β∗∥1 ≤
∑
i∈S

γ(k)σmax

∑
j∈S,j ̸=i

|β(k)
j − β∗

j |+
∣∣∣1− γ(k)σmin

∣∣∣|β(k)
i − β∗

i |+ θ(k)


≤ γ(k)(S − 1)σmax

∑
i∈S

|β(k)
i − β∗

i |+
∣∣∣1− γ(k)σmin

∣∣∣∥∥∥β(k)
i − β∗

i

∥∥∥
1
+ Sθ(k)

=
(
γ(k)(S − 1)σmax +

∣∣∣1− γ(k)σmin

∣∣∣)∥∥∥β(k)
i − β∗

i

∥∥∥
1
+ Sθ(k)

≤
(
γ(k)(2S − 1)σmax +

∣∣∣1− γ(k)σmin

∣∣∣)c1e−c2(k−1).

Recall that c2 = log

(
1

γ(k)σmax(2S−1)+|1−γ(k)σmin|

)
, we obtain

∥β(k+1) − β∗∥1 ≤ c1e
−c2k.

Therefore the proof is complete.

Lemma 2. Suppose all conditions mentioned in Theorem 5.1 hold. For k ∈ N, if

support(β(k)) ∈ S and ∥β(k)
S − β∗

S∥ ≤ c1e
−c2(k−1),

then it holds that

support(β(k+1)) ∈ S.

Proof of Lemma 2. For a fixed k, if support(β(k)) ∈ S and ∥β(k)
S − β∗

S∥ ≤ c1e
−c2(k−1), then we

have

β
(k+1)

SC = Sθ(k)

(
β
(k)

SC − γ(k)(D:,SC )
⊤X:,S(β

k
S − β∗

S)
)

= Sθ(k)

(
− γ(k)(D:,SC )

⊤X:,S(β
k
S − β∗

S)
)
,

where SC = [d′]\S. Then, for all i ∈ SC , we obtain

β
(k+1)
i = Sθ(k)

(
− γ(k)

∑
j∈S

(D:,i)
⊤X:,j(β

k
j − β∗

j )
)
.

Note that ∣∣∣∣∣∣−γ(k)
∑
j∈S

(D:,i)
⊤X:,j(β

k
j − β∗

j )

∣∣∣∣∣∣ ≤ γ(k)σmax∥β(k) − β∗∥1

≤ γ(k)σmaxc1e
−c2(k−1),

Given θ(k) as defined in Theorem 1, we obtain:∣∣∣∣∣∣−γ(k)
∑
j∈S

(D:,i)
⊤X:,j(β

(k)
j − β∗

j )

∣∣∣∣∣∣ ≤ θ(k).

Consequently, it follows that β(k)
i = 0 for all i ∈ SC .

Lemma 3. Suppose Assumption 1 holds and let D = 1
2N+1X(MV )⊤. Then, there exists an MV

such that the following inequalities hold with probability at least 1− 3δ:

min
i∈S

∣∣(D:,i)
⊤X:,i

∣∣ ≥ N

N + 2

(
1−

√
logS − log δ

Nc

)
,

max
i∈S

∣∣(D:,i)
⊤X:,i

∣∣ ≤ N

N + 2

(
1 +

√
logS − log δ

Nc

)
,

max
i ̸=j

∣∣(D:,i)
⊤X:,i

∣∣ ≤√ log d− log δ

Nc
.
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Proof of Lemma 3. Recall that σ1 ≥ σ2 ≥ · · · ≥ σd. Let MV = 2
σ2
d
Id×d. To prove the lemma, we

first introduce a lower bound for mini∈S
∣∣D⊤

:,iX:,i

∣∣. Note that

(D:,i)
⊤X:,i =

1

2N + 1
MV (X:,i)

⊤X:,i =
2

2N + 1
· 1

σ2
d

N∑
j=1

X2
j,i ≥

2

2N + 1

N∑
j=1

1

σ2
i

X2
j,i.

Note that X2
j,i is a sub-exponential random variable. Then, from the tail bound for sub-exponential

random variables, there exists a constant c such that

P
{ 1

N

N∑
j=1

(
1

σi
X2

j,i) ≥ 1− s
}
≥ 1− exp

(
−Ncmin

{
s2, s

})
.

Consider 0 < s ≤ 1, we have

P
{ 1

N

N∑
j=1

(
1

σi
X2

j,i) ≥ 1− s
}
≥ 1− exp

(
−Ncs2

)
,

it follows that

P
{ 1

N
min
i∈S

1

σ2
d

N∑
j=1

X2
j,i ≥ 1− s

}

≥ P
{ 1

N
min
i∈S

N∑
j=1

1

σ2
i

X2
j,i ≥ 1− s

}

= 1− P

{⋃
i∈S

{ 1

N

N∑
j∈[1]

1

σ2
i

X2
j,i < 1− s

}}

≥ 1−
∑
i∈S

P
{ 1

N

N∑
j=1

1

σ2
i

X2
j,i < 1− s

}
≥ 1− S exp

(
−Ncs2

)
.

Let s =
√

logS−log δ
Nc . Then, with probability at least 1− δ, we have

1

N
min
i∈S

1

σ2
d

N∑
j=1

X2
j,i ≥ 1−

√
logS − log δ

Nc
.

Therefore, with probability at least 1− δ, it holds that

min
i∈S

∣∣(D:,i)
⊤X:,i

∣∣ = 2

2N + 1
min
i∈S

1

σ2
d

N∑
j=1

X2
j,i ≥

N

N + 2

(
1−

√
logS − log δ

Nc

)
.

Similarly, we have the following inequality holding with probability at least 1− δ:

max
i∈S

∣∣(D:,i)
⊤X:,i

∣∣ ≤ N

N + 2

(
1 +

√
logS − log δ

Nc

)
.

Next, we will provide a high probability upper bound for maxi ̸=j

∣∣(D:,i)
⊤X:,j

∣∣. Observe that when
i ̸= j, we have

(D:,i)
⊤X:,j =

1

2N + 1
MQ(X:,i)

⊤X:,j =
2

2N + 1

N∑
k=1

1

σ2
d

Xk,iXk,j ,

where Xk,iXk,j is a centered sub-exponential random variable. Then, from the tail bound for sub-
exponential random variables, there exist constants c and 0 < s ≤ 1 such that

P

{∣∣∣ 1
N

N∑
k=1

(
1

σ2
d

Xk,iXk,j)
∣∣∣ ≤ s

}
≥ 1− exp

(
−Ncs2

)
.
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Then we have

P

{
max
i ̸=j

∣∣∣ 2

2 + 2N

N∑
k=1

(
1

σd
Xk,iXk,j)

∣∣∣ ≤ s

}

≥ P

{
max
i ̸=j

∣∣∣ 1
N

N∑
k=1

(
1

σd
Xk,iXk,j)

∣∣∣ ≤ s

}

= 1− P

{ ⋃
i,j:i̸=j

{∣∣∣ 1
N

N∑
k=1

(
1

σd
Xk,iXk,j)

∣∣∣ > s
}}

≥ 1−
∑

i,j:i ̸=j

P

{∣∣∣ 1
N

N∑
k=1

(
1

σd
Xk,iXk,j)

∣∣∣ > s

}

≥ 1−
∑
i,j

P

{∣∣∣ 1
N

N∑
k=1

(
1

σd
Xk,iXk,j)

∣∣∣ > s

}
≥ 1− d2 exp

(
−Ncs2

)
.

Let s =
√

log d−log δ
Nc , thus with probability at least 1− δ, we obtain

max
i ̸=j

∣∣(D:,i)
⊤X:,i

∣∣ ≤√ log d− log δ

Nc
.

Then, the proof is complete.

To prove Theorem 5.1, we first state an equivalent theorem here:
Theorem D.1 (Equivalent form of Theorem 5.1). Suppose Assumption 1 holds. Let δ ∈ (0, 1).
For a K-layer Transformer model with the structure described in Section 4.3, there exists a set of
parameters in the Transformer such that for any n ∈ [N0, N ], with probability at least 1 − 3δ, we
have

∥β(K+1)
2n+1 − β∗∥ ≤ c1e

−αnK ,

where β
(K+1)
2n+1 = [H(K+1)]d+1:2d+1,2n+1 and

αn = − log

(
1− 2

3
γ + γ(2S − 1)

√
log d− log δ

nc
+ γ

√
logS − log δ

nc

)
, (D.3)

c1 = ∥β∗∥1 and N0 = 8(4S − 2)2 log d+logS−log δ
c . Here, c is a positive constant and γ can be any

positive constant less than 1.6.

To prove Theorem D.1, first, for Dn = 1
2n+1 [X]1:n,:(M

V )⊤ defined in Equation (4.4), we define
an event:

A =

{
min
i∈S

∣∣([Dn]:,i)
⊤X1:n,i

∣∣ ≥ n

n+ 2

(
1−

√
logS − log δ

nc

)
,

max
i∈S

∣∣([Dn]:,i)
⊤X1:n,i

∣∣ ≤ n

n+ 2

(
1 +

√
logS − log δ

nc

)
,

max
i̸=j

∣∣([Dn]:,i)
⊤X1:n,i

∣∣ ≤√ log d− log δ

nc

}
. (D.4)

Next, we introduce Proposition 2.
Proposition 2. Suppose Assumption 1 and event A defined in Equation (D.4) hold. For a K-layer
Transformer model with the structure described in Section 4.3, and let the input sequence satisfy
Equation (C.4). Then, there exists a set of parameters such that if n ∈ [N0, N ], we have

∥β(K+1)
2n+1 − β∗∥ ≤ c1e

−αnK ,
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where β
(K+1)
2n+1 = [H(K+1)]d+1:2d+1,2n+1, c1 = ∥β∗∥1, and N0 = 8(4S − 2)2 log d+logS−log δ

c . αn

is given in Equation (D.3). Here, c is a positive constant and γ can be any positive constant less
than 1.6.

Proof of Proposition 2. We prove it by induction. First, for k = 1, we initialize β
(1)
2n+1 = 0d, thus

∥β(1)
2n+1 − β∗∥1 = ∥β∗∥1. Note that c1 = eα∥β∗∥1, so Proposition 2 holds for k = 1.

Next, we assume Proposition 2 holds for k. From the proof of Theorem 5.1, the input sequence of
the (k + 1)-th Transformer layer is of the following structure:

H(k+1) =


[X⊤]:,1 [X⊤]:,1 · · · [X⊤]:,N [X⊤]:,N xN+1

0 y1 · · · 0 yN 0

β
(k+1)
1 β

(k+1)
2 · · · β

(k+1)
2N−1 β

(k+1)
2N β

(k+1)
2N+1

1 0 · · · 1 0 1

 ,

where

β
(k+1)
2n+1 = Sθ(k)

(
β
(k)
2n+1 − γ(k)(Dn)

⊤([X]1:n,:β
(k)
2n+1 − y1:n)

)
,

From Lemma 1, let γ(k) = γ, then for c1 = ∥β∗∥1, c2 = log
(

1
γ(2S−1)σmax+|1−γσmin|

)
, we have

∥β(k)
2n+1 − β∗∥ ≤ c1e

−c2(k−1) if the following conditions hold:

γ(2S − 1)σmax + |1− γσmin| ≤ 1, (D.5)

0 ≤ γ([Dn]:,i)
⊤X1:n,i ≤ 1, ∀i ∈ [d]. (D.6)

First, let

n ≥ N0 where N0 = 8(4S − 2)2
log d+ logS − log δ

c
. (D.7)

By rearranging Inequality D.7, we have

√
n ≥ 2

√
2(4S − 2)

√
log d+ logS − log δ

c

≥
√
2(4S − 2)

√
log d+ logS − 2 log δ

c

≥ (4S − 2)

(√
log d− log δ

c
+

√
logS − log δ

c

)

≥ (4S − 2)

√
log d− log δ

c
+

√
logS − log δ

c
. (D.8)

Inequality D.8 is equivalent to

1√
n

(
(2S − 1)

√
log d− log δ

c
+

1

2

√
logS − log δ

c

)
≤ 1

2

=⇒ (2S − 1)

√
log d− log δ

nc
≤ 1

2

(
1−

√
logS − log δ

nc

)

=⇒ (2S − 1)

√
log d− log δ

nc
≤ n

n+ 2

(
1−

√
logS − log δ

nc

)
. (D.9)

Combining Inequality D.9 with Equation (D.4) we have

σmax(2S − 1) ≤ (2S − 1)

√
log d− log δ

nc

≤ n

n+ 2

(
1−

√
logS − log δ

nc

)
≤ σmin. (D.10)
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Next, recall that MV = 2
σ2
d
Id×d and ([Dn]:,i)

⊤X1:n,i =
1

2n+1 (X1:n,i)
⊤MV X1:n,i. Therefore, for

any i ∈ [d], we have γ([Dn]:,i)
⊤X1:n,i ≥ 0 if γ ≥ 0. Note that if γ satisfies the following condition:

γ ≤ min

{
1

σmin
,

1

max{([Dn]:,i)⊤X1:n,i}

}
, (D.11)

then Inequality D.6 will hold and 1− γσmin ≥ 0. Besides, we have

γ(2S − 1)σmax + |1− γσmin| ≤ γσmin + |1− γσmin| (D.12)
= γσmin + 1− γσmin (D.13)
= 1,

where Inequality D.12 is derived from Inequality D.10, and Equation (D.13) is obtained using Equa-
tion (D.11). Consequently, Inequalities D.5 and D.6 hold if event A occurs. Furthermore, under the
condition that event A occurs, by setting

γ ≤ 1

n
n+2

(
1 +

√
logS−log δ

nc

) , (D.14)

we have γ satisfies Equation (D.11). Note that we assume n ≥ N0. Therefore,

1

n
n+2

(
1 +

√
logS−log δ

nc

) ≥ 1

1 +
√

logS−log δ
N0c

≥ 2

1 +
√

1
8(4S−2)

≥ 1.6.

Therefore, any choice of γ such that γ ≤ 1.6 will ensure that Inequality (D.14) is satisfied. Next,
noting that event A holds and γ satisfies Equation (D.11), we obtain

∥β(k)
2n+1 − β∗∥ ≤ ∥β∗∥1

(
γ(2S − 1)σmax + |1− γσmin|

)k−1

≤ ∥β∗∥1

(
γ(2S − 1)

√
log d− log δ

nc
+ 1− γ

n

n+ 2

(
1−

√
logS − log δ

nc

))k−1

≤ ∥β∗∥1

(
γ(2S − 1)

√
log d− log δ

nc
+ 1− γ

n

n+ 2
+ γ

n

n+ 2

√
logS − log δ

nc

)k−1

≤ ∥β∗∥1

(
γ(2S − 1)

√
log d− log δ

nc
+ 1− 2

3
γ + γ

√
logS − log δ

nc

)k−1

= c1e
−αn(k−1).

The proof is complete.

Note that Lemma 3 demonstrates that event A occurs with a probability of at least 1−2δ. Therefore,
the proof of Theorem D.1 is completed by combining Lemma 3 with Proposition 2.

D.2 PROOF OF REMARK 4

Note that in Appendix D.2, we assume there is a constraint on the support of β∗: its support set lies
within a subset S ⊂ [1 : d], with S < |S| ≤ d, where S denotes the sparsity of β∗.We establish the
corollary by demonstrating the following corollary:

Corollary D.1 (Equivalent statement of Remark 4.). Suppose Assumption 1 holds and S ≤ |S| ≤ d.
For a K-layer Transformer model with the structure described in Section 4.3, and let the input
sequence satisfy Equation (C.4). Then, there exists a set of parameters such that if n ≥ NS

0 , with
probability at least 1− δ, we have

∥β(K)
2n+1 − β∗∥ ≤ c1e

−αS
nK ,
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where β
(K)
2n+1 = [H(K+1)]d+1:2d+1,2N+1 and

αS
n = − log

(
1− 2

3
γ + γ(2S − 1)

√
log |S| − log δ

nc
+ γ

√
logS − log δ

nc

)
, (D.15)

c1 = ∥β∗∥1, and Np
0 = 8(4S − 2)2 log |S|+logS−log δ

c . Here, c is a positive constant, and γ can be
any positive constant less than 1.6.

Proof of Corollary D.1. W.l.o.g., assume S = {1, 2, . . . , |S|}. First, we modify the MLP layers
based on Equation (C.2). We maintain the structure of W2 as described in Equation (C.2), and
reconstruct W1 and b(k). We define the following submatrices:

W1,sub(1) =

 0(d+1)×(d+1) 0(d+1)×|S| 0(d+1)×(d−|S|) 0d+1

0|S|×(d+1) I|S|×|S| 0|S|×(d−|S|) 0|S|
0(d−|S|)×(d+1) 0(d−|S|)×|S| I(d−|S|)×(d−|S|) 0(d−|S|)

01×(d+1) 01×|S| 01×(d−|S|) 0

 ,

W1,sub(2) =

 0(d+1)×(d+1) 0(d+1)×|S| 0(d+1)×(d−|S|) 0d+1

0|S|×(d+1) −I|S|×|S| 0|S|×(d−|S|) 0|S|
0(d−|S|)×(d+1) 0(d−|S|)×|S| I(d−|S|)×(d−|S|) 0(d−|S|)

01×(d+1) 01×|S| 01×(d−|S|) 0

 ,

W1,sub(3) =

 0(d+1)×(d+1) 0(d+1)×|S| 0(d+1)×(d−|S|) 0d+1

0|S|×(d+1) I|S|×|S| 0|S|×(d−|S|) 0|S|
0(d−|S|)×(d+1) 0(d−|S|)×|S| −I(d−|S|)×(d−|S|) 0(d−|S|)

01×(d+1) 01×|S| 01×(d−|S|) 0

 ,

W1,sub(4) =

 0(d+1)×(d+1) 0(d+1)×|S| 0(d+1)×(d−|S|) 0d+1

0|S|×(d+1) −I|S|×|S| 0|S|×(d−|S|) 0|S|
0(d−|S|)×(d+1) 0(d−|S|)×|S| I(d−|S|)×(d−|S|) 0(d−|S|)

01×(d+1) 01×|S| 01×(d−|S|) 0

 .

Let

W1 =

W1,sub(1)
W1,sub(2)
W1,sub(3)
W1,sub(4)

 ,b(k) =


05d+5

−θ(k) · 1|S|
02d+2−|S|
θ(k) · 1|S|
01+d−|S|

 .

Therefore, the output of the modified MLP layer is

MLP(hi) =

 [hi]1:d+1

Sθ(k)([hi]d+2:d+|S|+1)
0d−|S|
[hi]2d+2

 .

Next, we also modify the parameters in the self-attention layers. For convenience, we introduce a
projection matrix IS = diag(I|S|×|S|,0(d−|S|)×(d−|S|)). The reconstructed self-attention layers are
described below:

Q
(k)
±1 =

0(d+1)×(d+1) 0(d+1)×d 0d+1

0d×(d+1) ISM
Q,(k)
±1 0d

01×(d+1) 01×d −B

 , Q
(k)
±2 =

 0d×(2d+1) 0d

01×(2d+1) m
Q,(k)
±2

0(d+1)×(2d+1) 0d+1


K

(k)
±1 =

0(d+1)×d 0(d+1)×(d+1) 0d+1

IS 0d×(d+1) 0d

01×d 01×(d+1) 1

 , K
(k)
±2 =

 0d×d 0d 0d×d+1

01×d 1 01×(d+1)

0(d+1)×d 0d+1 0(d+1)×(d+1)


V

(k)
±1 =

0(d+1)×d 0(d+1)×(d+2)

ISM
V,(k)
±1 0d×(d+2)

02×d 02×(d+2)

 , V
(k)
±2 =

0(d+1)×d 0(d+1)×d+2

ISM
V,(k)
±2 0d×(d+2)

02×d 02×(d+2)

 .
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Therefore, when the input sequence is

H(k) =


[X⊤]:,1 [X⊤]:,1 · · · [X⊤]:,N [X⊤]:,N xN+1

0 y1 · · · 0 yN 0

β
(k)
1 β

(k)
2 · · · β

(k)
2N−1 β

(k)
2N β

(k)
2N+1

1 0 · · · 1 0 1

 ,

the corresponding output of the self-attention layer satisfies

H(k+1) = diag(IS , 1, IS , 1)H(k+1).

Then, it is equivalent to consider the input sequence as
[X⊤]1:|S|,1 [X⊤]1:|S|,2 · · · [X⊤]1:|S|,N [X⊤]1:|S|,N [xN+1]1:|S|

0 y1 · · · 0 yN 0

[β
(k)
1 ]1:|S| [β

(k)
2 ]1:|S| · · · [β

(k)
2N−1]1:|S| [β

(k)
2N ]1:|S| [β

(k)
2N+1]1:|S|

1 0 · · · 1 0 1

 .

Consequently, by applying Theorem 5.1 to this sub-problem, we derive the corresponding corollary.

E DEFERRED PROOFS IN SECTION 5.2

E.1 PROOF OF THEOREM 5.2

Note that in Theorem 5.2, we have two results: first, the label prediction loss for the linear read-out
function, and second, the label prediction loss for the quadratic read-out function.

We start by introducing the following lemma, which provides an upper bound on ∥β(k)
j ∥ for every j

and k ≥ 2.
Lemma 4. If β(k) satisfies Equation (C.12) and ∥β(k)∥ ≤ Cx, then we have ∥β(k+1)∥ ≤ Cx,
where Cx =

dbxbβ(N+1)
σmin(X⊤X)

.

Proof of Lemma 4. From Equation (C.12), we derive that

βk+1
i = Sθ(k)

(
β
(k)
i − γ(k)

i
MV [X⊤]:,1: i−1

2

(
[X]1: i−1

2 ,:β
(k)
i − Y1: i−1

2

))
= Sθ(k)

((
I− γ(k)

i
MV [X⊤]:,1: i−1

2
[X]1: i−1

2 ,:

)
β
(k)
i − γ(k)

i
MV [X⊤]:,1: i−1

2
Y1: i−1

2

)
.

Since ∥Sθ(k)(x)∥ ≤ ∥x∥, it follows that

∥βk+1
i ∥ ≤

∥∥∥∥(I− γ(k)

i
MV [X⊤]:,1: i−1

2
[X]1: i−1

2 ,:

)
β
(k)
i − γ(k)

i
MV [X⊤]:,1: i−1

2
Y1: i−1

2

∥∥∥∥
≤
(i)

(
1− γ(k)

i · σ2
d

σmin

(
[X⊤]:,1: i−1

2
[X]1: i−1

2 ,:

))
∥β(k)

i ∥+ γ(k)

i · σ2
d

∥[X⊤]:,1: i−1
2
Y1: i−1

2
∥

≤
(ii)

(
1− γ(k)

(N + 1) · σ2
d

σmin

(
X⊤X

))
∥β(k)

i ∥+ γ(k)

σ2
d

dbxbβ.

The satisfaction of Inequality (i) is achieved by setting MV = 2
σ2
d
Id×d, while Inequality (ii) is

verified through the application of the Cauchy interlacing theorem. Consequently, by integrating the
expression Cx =

dbxbβ(N+1)
σmin(X⊤X)

with the aforementioned inequality, we obtain

∥βk+1
i ∥ ≤

(
1− γ(k)

(N + 1) · σ2
d

σmin

(
X⊤X

)) dbxbβ(N + 1)

σmin (X⊤X)
+

γ(k)

σ2
d

dbxbβ ≤ Cx,

Therefore, the proof is complete.
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Next, we prove the following theorem to demonstrate the prediction loss for the linear read-out
function.

Theorem E.1. Suppose Assumption 1 holds. Consider a Transformer with K + 1 layers, where the
first K layers have the structure described in Section 4.3, and the input sequence is as defined in
Equation (C.4). Then, if n ≥ N0, there exists a set of parameters in the Transformer such that the
following inequality holds with probability at least 1− δ′ − nδ:

∥yn − ŷn∥ ≤ bx

(
1− 2

3
γ

)K

+
c4K√

n

(
1− 2

3
γ

)K−1

,

where

N0 = 8(4S − 2)2
log d+ logS − log δ

c
,

c4 =
2
√
2bxη√
p

√
log d+ logS − log δ

c
+

2B′
√
p
+

2Cxbx√
p

,

where c is a positive constant, η is defined in Equation (E.7), δ′ B′, p are constants defined in
Appendix E.1.

We are now prepared to demonstrate Theorem E.1.

Proof. For this layer, we assign one attention head to follow the structure described below. Consider
the case where i = 2n − 1 and n ≫ N0, and denote [X⊤]:,n as xn. For the first attention head, its
structure is as follows:

Qlast
1 h

(K+1)
i =

0d

1
xn

0

 , Klast
1 h

(K+1)
i =


0d

−B′

β
(K+1)
i
0

 , Vlast
1 h

(K+1)
i =

[
0d

1{i%2=1}
0d+1

]
.

Therefore, we obtain

(Qlast
1 h

(K+1)
i )⊤(Klast

1 h
(K+1)
j ) = x⊤

nβ
(K+1)
j −B′.

Let p = P{x⊤
nβ

(K+1)
j ≥ B′}, which is the probability that the inner product x⊤

nβ
(K+1)
j exceeds

the threshold B′. This probability is the same for any n due to the symmetry of the distribution. We
introduce a random variable oj ∈ {0, 1} to represent the following: we set oj = 0 if x⊤

nβ
(K+1)
j <

B′ and oj = 1 if x⊤
nβ

(K+1)
j ≥ B′. We define the following events:

E1 =
{ ∑

j≤N0

oj = 0
}
, E2(ϵ) =

{
pn− p

2
− ϵ ≤

∑
j≤n

oj ≤ pn− p

2
+ ϵ
}
.

Assume E1 ∩ E2(ϵ) holds. Then, we obtain

1

i

i∑
j=1

〈
Qlast

1 h
(K+1)
i ,Klast

1 h
(K+1)
j

〉
·Vlast

1 h
(K+1)
j =

1

i

i∑
j=1

σ
(
x⊤
nβ

(K+1)
j −B′

)
·

[
0d

1{i%2=1}
0d+1

]

=
1

2n− 1

∑
j:oj=1

(
x⊤
nβ

(K+1)
j −B′

)
·

[
0d

1{i%2=1}
0d+1.

]
.

Let the last MLP layer satisfies

MLP

[
0d

ŷ
0d+1.

]
=

 0d
2
p ŷ +B′

0d+1,

 ,
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it follows that

MLP

1

i

i∑
j=1

〈
Qlast

1 h
(K+1)
i ,Klast

1 h
(K+1)
j

〉
·Vlast

1 h
(K+1)
j

 =

 0d
2

2np−p

∑
j:oj=1 x

⊤
nβ

(K+1)
j − 2(

∑
oj)

2np−p B′ +B′

0d+1.

 .

Denote ŷn = 2
2np−p

∑
j:oj=1 x

⊤
nβ

(K+1)
j − 2(

∑
oj)

2np−p B′ +B′, therefore

|yn − ŷn| =

∣∣∣∣∣∣x⊤
nβ

∗ − 2

2np− p

∑
j:oj=1

x⊤
nβ

(K+1)
j +

2(
∑

oj)

2np− p
B′ −B′

∣∣∣∣∣∣
≤ ∥xn∥

∥∥∥∥∥∥β∗ − 2

2np− p

∑
j:oj=1

x⊤
nβ

(K+1)
j

∥∥∥∥∥∥+
∣∣∣∣2(∑ oj)

2np− p
B′ −B′

∣∣∣∣
≤ bx

∥∥∥∥∥∥β∗ − 2

2np− p

∑
j:oj=1

β
(K+1)
j

∥∥∥∥∥∥+ 2ϵ

2np− p
|B′|. (E.1)

We randomly select a set {o′j : j ≥ 2N0 − 1} such that |{o′j}| ≤ ϵ, satisfying the following
conditions:

• If |{oj : oj = 1}| ≥ pn− r

2
, then∣∣{oj : oj = 1} \ {o′j}

∣∣ = pn− r

2
;

• If |{oj : oj = 1}| < pn− r

2
, then∣∣{oj : oj = 1} ∪ {o′j}

∣∣ = pn− r

2
.

We define the set O as follows:

O =


{oj : oj = 1} \ {o′j}, if |{oj : oj = 1}| ≥ pn− r

2
,

{oj : oj = 1} ∪ {o′j}, if |{oj : oj = 1}| < pn− r

2
.

Therefore, we have∥∥∥∥∥∥β∗ − 2

2np− p

∑
j:oj=1

x⊤
nβ

(K+1)
j

∥∥∥∥∥∥ ≤

∥∥∥∥∥∥β∗ − 1

np− p
2

∑
j:oj∈O

β
(K+1)
j

∥∥∥∥∥∥+
∥∥∥∥∥∥ 1

np− p
2

∑
j:oj∈{o′j}

x⊤
nβ

(K+1)
j

∥∥∥∥∥∥
≤

∥∥∥∥∥∥β∗ − 1

np− p
2

∑
j:oj∈O

β
(K+1)
j

∥∥∥∥∥∥+ Cxbxϵ

np− p
2

, (E.2)

where Equation (E.2) follows from Lemma 4. Observe that∥∥∥∥∥∥β∗ − 1

np− p
2

∑
j:oj∈O

β
(K+1)
j

∥∥∥∥∥∥ ≤ 1

np− p
2

∑
j:oj∈O

∥∥∥β∗ − β
(K+1)
j

∥∥∥ .
Then, from Theorem 5.1, the following inequality holds with probability at least 1− 3nδ:∑

i:o2i+1∈O
∥β∗ − β

(K+1)
2i+1 ∥ ≤

∑
i:o2i+1∈O

∥β∗ − β
(K+1)
2i+1 ∥1 ≤

∑
i:o2i+1∈O

∥β∗∥1e−αiK , (E.3)

where

αi = − log

(
1− 2

3
γ + γ(2S − 1)

√
log d− log δ

ic
+ γ

√
logS − log δ

ic

)
.
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From Cauchy–Schwarz Inequality we have:

γ(2S − 1)

√
log d− log δ

ic
+ γ

√
logS − log δ

ic
≤ 2γ(2S − 1)

√
log d+ logS − log δ

ic
. (E.4)

Combining Inequalities E.3 and E.4 gives

∑
i:o2i+1∈O

∥β∗ − β
(K+1)
2i+1 ∥ ≤ ∥β∗∥1

∑
i:o2i+1∈O

(
1− 2

3
γ + 2γ(2S − 1)

√
log d+ logS − log δ

ic

)K

.

Note that, by induction, it is straightforward to prove that the following inequality holds if 1− 2
3γ ≤

1: (
1− 2

3
γ + 2γ(2S − 1)

√
log d+ logS − log δ

ic

)K

≤
(
1− 2

3
γ

)K

+ ηiK

(
1− 2

3
γ

)K−1
√

log d+ logS − log δ

ic
, (E.5)

when ηi satisfies

ηi ≥
(
1− 2

3γ
)

(
1− 2

3γ
)
− (K − 1)

√
log d+logS−log δ

ic

, (E.6)

which can be satisfied by simply setting

ηi = η =

(
1− 2

3γ
)(

1− 2
3γ
)
− (K − 1)

√
log d+logS−log δ

N0c

. (E.7)

Therefore, Inequality (E.6) holds for any i ≥ N0. Based on Inequality (E.5), we have

∑
i:o2i+1∈O

(
1− 2

3
γ + 2γ(2S − 1)

√
log d+ logS − log δ

ic

)K

≤
N0+np− p

2∑
i=N0+1

(
1− 2

3
γ + 2γ(2S − 1)

√
log d+ logS − log δ

ic

)K

≤
N0+np− p

2∑
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(
1− 2

3
γ

)K

+ ηK

(
1− 2

3
γ

)K−1 N0+np− p
2∑

i=N0+1

√
log d+ logS − log δ
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≤ (np− p

2
)

(
1− 2

3
γ

)K

+ ηK

(
1− 2

3
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)K−1
√

log d+ logS − log δ

c
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2∑
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1√
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)
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3
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1− 2

3
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√

log d+ logS − log δ

c
2

(√
N0 + np− p

2
−
√
N0

)
.

(E.8)

By combining Inequalities (E.3) and (E.7), we obtain∑
i:o2i+1∈O

∥β∗ − β
(K+1)
2i+1 ∥

≤ (np− p

2
)

(
1− 2

3
γ

)K

+ ηK

(
1− 2

3
γ

)K−1
√

log d+ logS − log δ

c

≤ (np− p

2
)

(
1− 2

3
γ

)K

+ 2ηK

√
np− p

2

(
1− 2

3
γ

)K−1
√

log d+ logS − log δ

c
.
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Therefore,

1

np− p
2

n∑
i=N0+1

∥β∗ − β
(K+1)
2i+1 ∥ ≤

(
1− 2

3
γ

)K

+
2
√
2ηK

√
np

(
1− 2

3
γ

)K−1
√

log d+ logS − log δ

c
.

(E.9)

Combining Equation (E.1), Equation (E.2) and Equation (E.9) we obtain

∥yn − ŷn∥

≤ bx

(
1− 2

3
γ

)K

+
2
√
2bxηK√
np

(
1− 2

3
γ

)K−1
√

log d+ logS − log δ

c
+

2ϵ

np
|B′|+ 2Cxbxϵ

np
.

Set ϵ = K
√
np(1− 2γ/3)K , we obtain

∥yn − ŷn∥ ≤ bx

(
1− 2

3
γ

)K

+
c4K√

n

(
1− 2

3
γ

)K−1

,

where

c4 =
2
√
2bxη√
p

√
log d+ logS − log δ

c
+

2|B′|
√
p

+
2Cxbx√

p
.

Denote δ′ as δ′ = P{¬E1}+ P{¬E2(K
√
np(1− 2γ/2)K), then the theorem follows.

Next, we establish the result concerning the label prediction loss presented in Theorem 5.2 through
the following corollary:
Corollary E.1. Suppose Assumption 1 holds. For a Transformer with K layers, where all layer
structures are described in Section 4.3, and the input sequence is set as in Equation (C.4), there
exists a set of parameters in the Transformer and an explicitly quadratic readout function F such
that, if n ≥ N0, the following inequality holds with probability at least 1− δ:

∥yn+1 − ŷn+1∥ ≤ c6e
−αnK ,

where c6 =
√
dbxc1, and c1 and αn are defined in Theorem 5.1.

Proof of Corollary E.1. We set the V matrix in the read out function FV as

V =

[
0(d+1)×d
Id×d
01×d

]
.

From Proposition 1, when i is an odd index, h(K+1)
i is of the following structure:

h
(K+1)
i =


[X⊤]:, i+1

2

0

β
(K+1)
i
1

 .

Therefore, the output after the read-out function is

ŷ i+1
2

= FV(h
(K+1)
i ) = [X] i+1

2 ,:β
(K+1)
i .

Note that
∥∥∥[X] i+1

2 ,:

∥∥∥ ≤
√
dbx, we have∥∥∥y i+1

2
− ŷ i+1

2

∥∥∥ ≤
∥∥∥[X] i+1

2 ,:

∥∥∥∥∥∥β∗ − β
(K+1)
i

∥∥∥ ≤
√
dbx

∥∥∥β∗ − β
(K+1)
i

∥∥∥.
Combining with Theorem 5.1, the proof is thus complete.

Therefore, by combining Corollary E.1 and Theorem E.1, we arrive at the conclusion of Theo-
rem 5.2.
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F ADDITIONAL EXPERIMENT RESULTS

In Section 6, we demonstrate that classical LISTA-type algorithms, such as LISTA, perform poorly
when applied to varying measurement matrices after being trained on a fixed measurement matrix
X. In this section, we further show that unlike LISTA-VM, these classical LISTA-type algorithms
fail to handle in-context sparse recovery problems, even when trained on varying measurements.

The training setup is identical to how we train LISTA-VM. Specifically, we set the number of iter-
ations to K = 12. During each epoch, we randomly sample 100 measurement matrices, each gen-
erating 500 instances from 500 randomly generated sparse vectors, resulting in a total of 50,000 in-
stances per epoch. For each epoch, we minimize the sparse vector prediction loss

∑N
j=1 ∥β̂j −βj∥2

using gradient descent. We train the model for a total of 340 epochs and conduct in-context testing
at the end of every epoch.

In the results shown in Figure 2, we observe that the prediction error on varying X for meta-trained
LISTA and LISTA-CP remains around 3. As illustrated in the figure, there is no observable trend
indicating improvement in the error throughout the training process.
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(a) LISTA
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(b) LISAT-CP

Figure 2: Experimental results for meta-trained classic LISTA-type algorithms.

For comparison, in Figure 3, we also provide the results of the prediction error on varying X for
meta-trained LISTA-VM. The final prediction error is around 0.68, which is significantly more
promising compared to classic LISTA-type algorithms.

0 50 100 150 200 250 300 350
Epoch

0.6

0.7

0.8

0.9

1.0

1.1

1.2

Pr
ed

ict
io

n 
Er

ro
r f

or
 V

ar
yi

ng
 x

Prediction Error for LISTA-VM
Original
Smoothed (Window Size 5)

Figure 3: Experimental results for meta-trained LISTA-VM
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