
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2025

ON THE LEARN-TO-OPTIMIZE CAPABILITIES OF
TRANSFORMERS IN IN-CONTEXT SPARSE RECOVERY

Anonymous authors
Paper under double-blind review

ABSTRACT

An intriguing property of the Transformer is its ability to perform in-context learn-
ing (ICL), where the Transformer can solve different inference tasks without pa-
rameter updating based on the contextual information provided by the correspond-
ing input-output demonstration pairs. It has been theoretically proved that ICL
is enabled by the capability of Transformers to perform gradient-descent algo-
rithms (Von Oswald et al., 2023a; Bai et al., 2024). This work takes a step further
and shows that Transformers can perform learning-to-optimize (L2O) algorithms.
Specifically, for the ICL sparse recovery (formulated as LASSO) tasks, we show
that a K-layer Transformer can perform an L2O algorithm with a provable conver-
gence rate linear in K. This provides a new perspective explaining the superior
ICL capability of Transformers, even with only a few layers, which cannot be
achieved by the standard gradient-descent algorithms. Moreover, unlike the con-
ventional L2O algorithms that require the measurement matrix involved in training
to match that in testing, the trained Transformer is able to solve sparse recovery
problems generated with different measurement matrices. Besides, Transformers
as an L2O algorithm can leverage structural information embedded in the train-
ing tasks to accelerate its convergence during ICL, and generalize across differ-
ent lengths of demonstration pairs, where conventional L2O algorithms typically
struggle or fail. Such theoretical findings are supported by our experimental re-
sults.

1 INTRODUCTION

Since its introduction in Vaswani et al. (2017), Transformers have become the backbone in various
fields such as natural language processing (Radford, 2018; Devlin, 2018), computer vision (Doso-
vitskiy, 2020) and reinforcement learning (Chen et al., 2021), significantly influencing subsequent
research and applications. A notable capability of Transformers is their good performance for in-
context learning (ICL) (Brown et al., 2020), i.e., without further parameter updating, Transformers
can perform new inference tasks based on the contextual information embedded in example input-
output pairs contained in the prompt. Such ICL capability facilitates state-of-the-art few-shot perfor-
mances across a multitude of tasks, such as reasoning and language understanding tasks in natural
language processing (Chowdhery et al., 2023), in-context dialog generation (Thoppilan et al., 2022)
and in-context linear regression (Garg et al., 2022; Fu et al., 2023).

Given the significance of transformers’ ICL capabilities, extensive research efforts have been di-
rected toward understanding the mechanisms behind their ICL performance. In this context, the ICL
capability of a pre-trained Transformer is understood as the Transformer’s implicit implementation
of learning algorithms during the forward pass. Von Oswald et al. (2023a), Dai et al. (2022), and Bai
et al. (2024) suggest that these learning algorithms closely approximate gradient-descent-based op-
timizers, thus making the Transformer a universal solver for various ICL tasks. Specifically, these
works demonstrate that Transformers can approximate gradient descent steps implicitly through
some specific constructions of their parameters, enabling them to adapt to new data points during
inference without explicit re-training.

However, it is well known that gradient-descent-based algorithms are not efficient in solving com-
plicated optimization problems and thus may not be sufficient to explain the superior performance
of Transformers on a plethora of ICL tasks. A recent work (Ahn et al., 2024) suggests that instead

1



054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2025

of gradient descent, Transformers actually perform pre-conditioned gradient descent during ICL. In
other words, it learns a pre-conditioner during pre-training and then utilizes it during ICL to expe-
dite the optimization process. Von Oswald et al. (2023b) recently demonstrates that the forward pass
of a trained transformer can implement meta-optimization algorithms, i.e., it can implicitly define
internal objective functions and then optimize these objectives to generate predictions. Similarly,
Zhang et al. (2023) show that a mesa-optimizer embedding the covariance matrix of input data can
efficiently solve linear regression tasks. Such interpretation of the ICL mechanism shares the same
essence as Learning-to-Optimize (L2O) algorithms, and motivates the following hypothesis:

Transformer does not simply implement a universal optimization algorithm during ICL. Rather, it
extracts useful information from the given dataset during pre-training and then utilizes such

information to generate an optimization algorithm that best suits the given ICL task.

In this paper, we examine this hypothesis through the lens of in-context sparse recovery. Sparse
recovery is a classical signal processing problem that is of significant practical interest across various
domains, such as compressive sensing in medical imaging (Shen et al., 2017) and spectrum sensing
(Elad, 2010). Recent works show that Transformers are able to implement gradient descent-based
algorithms with sublinear convergence rates for in-context sparse recovery (Bai et al., 2024; Chen
et al., 2024b). However, empirical findings indicate that Transformers can solve in-context sparse
recovery more efficiently than gradient descent-based approaches (Bai et al., 2024). Meanwhile,
there exists a plethora of L2O algorithms that solve the classical sparse recovery problem efficiently
with linear convergence guarantees (Gregor and LeCun, 2010; Chen et al., 2018; Liu and Chen,
2019). Therefore, examining the L2O capabilities of Transformers in solving the in-context sparse
recovery task becomes a promising direction and may serve as a perfect example to validate our
hypothesis. Our main contributions are as follows.

• First, we demonstrate that Transformers can implement an L2O algorithm for in-context sparse
recovery, and theoretically prove that a K-layer Transformer as an L2O algorithm can recover
the underlying sparse vector in-context at a convergence rate linear in K. The linear convergence
results in this work significantly improve the state-of-the-art convergence results for in-context
sparse recovery and validate our previous hypothesis.

• Second, we show that the Transformer as an L2O algorithm can actually outperform traditional
L2O algorithms for sparse recovery in several aspects: 1) It does not require the measurement
matrices involved in training to be the same as those in traditional L2O algorithms (Gregor and
LeCun, 2010; Chen et al., 2018; Liu and Chen, 2019) for sparse recovery, which allows more
flexibility to solve various in-context sparse recovery tasks. 2) It allows different numbers of
measurements (i.e., prompt length) used for in-context sparse recovery, with guaranteed recovery
performance as long as the number of measurements is sufficiently large. 3) It can extract struc-
tural properties of the underlying sparse vectors from the training data and utilize them to expedite
its ICL convergence.

• We compare the ICL performances of Transformers with traditional iterative algorithms and L2O
algorithms for sparse recovery empirically. Our experimental results indicate that Transform-
ers substantially outperform traditional gradient-descent-based iterative algorithms, and achieve
comparable performances compared with L2O algorithms that are trained and tested using data
generated with the same measurement matrix. This supports our claim that Transformers can
implement L2O algorithms during ICL. Besides, Transformers also demonstrate remarkable gen-
eralization capability when the measurement matrix varies, and achieve accelerated convergence
when additional structure is imposed on the underlying sparse vectors, supporting our theoretical
findings.

2 RELATED WORKS

ICL Mechanism for Transformers. Brown et al. (2020) first show that GPT-3, a Transformer-
based LLM, can perform new tasks from input-output pairs without parameter updates, suggesting
its ICL ability. This intriguing phenomenon of Transformers has attracted many attentions, leading
to various interpretations and hypotheses about its underlying mechanism. For example, Han et al.
(2023) empirically hypothesize that Transformers perform kernel regression with internal represen-
tations when facing in-context examples, and Fu et al. (2023) empirically show that Transformers
learn to implement an algorithm similar to iterative Newton’s method for ICL tasks.

2



108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2025

To better understand the ICL mechanism in large Transformers, existing works aim to demonstrate
the Transformer’s capability for ICL by construction, e.g., showing that Transformers can perform
gradient-based algorithms to solve ICL tasks by iteratively performing gradient descent layer by
layer. In this category, Akyürek et al. (2022) show that by construction, Transformers can imple-
ment gradient descent-based algorithms for linear regression problems. Von Oswald et al. (2023a)
construct explicit weights for a Transformer, claiming it can perform gradient descent on linear
and non-linear regression tasks. Bai et al. (2024) provide constructions such that Transformers can
make selections between different gradient-based algorithms. Ahn et al. (2024) reason the ICL ca-
pability of Transformers to their ability to implement a pre-conditioned gradient descent for linear
regression tasks, where the pre-condition matrix is learned from pre-training. Recently, Von Oswald
et al. (2023b) demonstrates that the forward pass of a trained transformer can implement meta-
optimization algorithms, i.e., it can implicitly define internal objective functions and then optimize
these objectives to generate predictions. Similarly, Zhang et al. (2023) show that a mesa-optimizer
embedding the covariance matrix of input data can efficiently solve linear regression tasks. Our
work belongs to this category, where we construct a Transformer structure that can implement an
L2O algorithm to effectively solve the in-context sparse recovery problem.

Training Dynamics of Transformers. There exist some works aiming to theoretically understand
the ICL mechanism in Transformer through their training dynamics. Ahn et al. (2024); Mahankali
et al. (2023); Zhang et al. (2023); Huang et al. (2023) investigate the dynamics of Transformers
with a single attention layer and a single head for in-context linear regression tasks. Cui et al.
(2024) prove that Transformers with multi-head attention layers outperform those with single-head
attention. Cheng et al. (2023) show that local optimal solutions in Transformers can perform gradient
descent in-context for non-linear functions. Kim and Suzuki (2024) study the non-convex mean-
field dynamics of Transformers, and Nichani et al. (2024) characterize the convergence rate for the
training loss in learning a causal graph. Additionally, Chen et al. (2024a) investigate the gradient
flow in training multi-head single-layer Transformers for multi-task linear regression. Chen and Li
(2024) propose a supervised training algorithm for multi-head Transformers.

The training dynamics of Transformers for binary classification (Tarzanagh et al., 2023b;a; Vasudeva
et al., 2024; Li et al., 2023; Deora et al., 2023; Li et al., 2024a) and next-token prediction (NTP)
(Tian et al., 2023a;b; Li et al., 2024b; Huang et al., 2024) have also been studied recently.

L2O Algorithms for Sparse Recovery. There is a rich literature on L2O. We discuss the L2O al-
gorithms relevant to sparse recovery here and leave more discussions on general L2O in Appendix A.
Sparse recovery, typically formulated as a least absolute shrinkage and selection operator (LASSO),
has many important applications like magnetic resonance imaging (Meng et al., 2023) and stock
market forecasting (Roy et al., 2015), thus motivates the design of efficient algorithms. E.g., the
iterative soft-thresholding algorithm (ISTA) (Daubechies et al., 2004) is proposed to solve LASSO
and improves over the standard gradient descent algorithm. Motivated by the ISTA structure, Gregor
and LeCun (2010) introduce the Learned ISTA (LISTA), a feedforward neural network that incor-
porates trainable matrices into ISTA updates. Chen et al. (2018) and Liu and Chen (2019) further
propose LISTA-Partial Weight Coupling (LISTA-CP) and Analytic LISTA (ALISTA) with fewer
trainable parameters, making them easier to train. They also provide theoretical analyses demon-
strating a linear convergence rate. However, these existing LISTA-type algorithms only apply to a
fixed measurement matrix and fail when the measurement matrices (the inputs of the input-output
pairs in ICL) change. In this work, we provide evidence that Transformer can perform a LISTA-type
algorithm that tackles this issue and succeeds in in-context sparse recovery tasks, both theoretically
in Section 5 and experimentally in Section 6.

3 PRELIMINARIES

Notations. For matrix X, we use [X]p:q,r:s to denote the submatrix that contains rows p to q and
columns r to s, and we use [X]:,i and [X]j,: to denote the i-th column and j-th row of X respectively.
In some places, we also use [X]i to denote its i-th column for convenience. We use ∥X∥F to denote
its Frobenius norm. For vector x, we use ∥x∥1, ∥x∥ and ∥x∥∞ to denote its ℓ1, ℓ2 and ℓ∞ norms,
respectively. We denote by 1d and 0d the d-dimensional all-1 and all-0 column vectors, respectively.
1a×b and 0a×b denote the all-1 and all-0 matrices of size a× b, respectively.

3



162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2025

3.1 TRANSFORMER ARCHITECTURE

In this work, we consider the decoder-based Transformer architecture (Vaswani et al., 2017), where
each attention layer is masked by a decoder-based attention mask and followed by a multi-layer
perception (MLP) layer.
Definition 3.1 (Masked attention layer). Denote an M -head masked attention layer parameterized
by {(Vm,Qm,Km)m∈[M ]} as Attn{(Vm,Qm,Km)}(·), where Vm,Qm,Km ∈ RD×D, ∀m ∈ [M ].
Then, given an input sequence H ∈ RD×(N+1), the output sequence of the attention layer is

Attn{(Vm,Qm,Km)}(H) = H+

M∑
m=1

(VmH)×mask
(
σ
(
(KmH)⊤(QmH)

))
,

where mask(M) satisfies [mask(M)]i,j = 1
jMi,j if i ≤ j and [mask(M)]i,j = 0 otherwise. σ(·)

denotes the activation function.

Definition 3.2 (MLP layer). Given W1 ∈ RD′×D, W2 ∈ RD×D′
and a bias vector b ∈ RD′

, an
MLP layer following the decoder attention layer, denoted as MLP{W1,W2,b}, maps each token in
the input sequence (i.e, each column hi in H ∈ RD×N ) to another token as

MLP{W1,W2,b}(hi) = hi +W2σ(W1hi + b),

where σ is the non-linear activation function.

In this work, we set the activation function in Definition 3.1 and Definition 3.2 as the element-wise
ReLU function. Next, we define the one-layer decoder-based Transformer structure.
Definition 3.3 (Transformer layer). A one-layer decoder-based Transformer is parameterized by
Θ := {W1,W2,b, (Vm,Qm,Km)m∈[M ]}, denoted as TFΘ. Therefore, give input sequence
H ∈ Rd×N , the output sequence is:

TFΘ(H) = MLP{W1,W2,b}

(
Attn{(Vm,Qm,Km)}(H)

)
.

3.2 IN-CONTEXT LEARNING BY TRANSFORMERS

For an in-context learning (ICL) task, a trained Transformer is given an ICL instance I =
(D,xN+1), where D = {(xi, yi)}i∈[N ] and xN+1 is a query. Here, xi ∈ Rd is an in-context
example, and yi is the corresponding label for xi. We assume yi = fβ(xi) + ϵi, where ϵi is an
added random noise, and fβ is a deterministic function parameterized by β. Unlike conventional
supervised learning, for each ICL instance, β ∼ Pβ , i.e., it is randomly sampled from a distribution
Pβ .

To perform ICL in a Transformer, we first embed the ICL instance into an input sequence H ∈
RD×N ′

. The Transformer then generates an output sequence TF(H) with the same size as H, based
on which a prediction ŷN+1 is generated through a read-out function F , i.e., ŷN+1 = F (TF(H)).
The objective of ICL is then to ensure that ŷN+1 closely approximates the target value yN+1 =
fβ(xN+1) + ϵN+1 for any ICL instance.

When a Transformer is pre-trained for ICL, it first samples a large set of ICL instances. For each
instance, the Transformer generates a prediction ŷN+1 and calculates the prediction loss by compar-
ing it with yN+1 using a proper loss function. The training loss is the aggregation of all prediction
losses for every ICL instance used in pre-training, and the Transformer is trained to minimize this
training loss.

Previous studies about the mechanism of how Transformers performs in-context learning have at-
tracted a lot of attention recently. To start with, it is believed that the ICL capability is due to the
Transformer’s implicit implementation of learning algorithms in the forward pass. Von Oswald et al.
(2023a), Dai et al. (2022), and Bai et al. (2024) suggest that these learning algorithms closely approx-
imate gradient-descent-based optimizers, thus making the Transformer a universal solver for various
ICL tasks. A recent work (Ahn et al., 2024) suggests that instead of gradient descent, Transformers
actually perform pre-conditioned gradient descent for in-context least square linear regression. In
general, these results corroborate the claim that the mechanism of the Transformer in-context learn-
ing is a L2O algorithm. We study this perspective and further provide the evidence supporting this
claim by considering a more complicated in-context problem: in-context sparse recovery.

4



216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2025

4 TRANSFORMER AS A LISTA-TYPE ALGORITHM FOR IN-CONTEXT SPARSE
RECOVERY

In this section, we demonstrate that a decoder-based Transformer can implement a novel LISTA-type
L2O algorithm, specifically LISTA-VM, as detailed in Theorem 4.1, for in-context sparse recovery.
We begin by formally defining the in-context sparse recovery problem.

4.1 IN-CONTEXT SPARSE RECOVERY

Sparse recovery is a fundamental problem in fields such as compressed sensing, signal denoising,
and statistical model selection. The core concept of sparse recovery is that a high-dimensional
sparse signal can be inferred from very few linear observations if certain conditions are satisfied.
Specifically, it aims to identify an S-sparse vector β∗ ∈ Rd from its noisy linear observations
y = Xβ∗ + ϵ, where X ∈ RN×d is a measurement matrix, ϵ ∈ RN is an isometric Gaussian noise
vector with mean vector 0N and covariance matrix IN×N . Typically, we assume d ≫ N , which
is the so-called under-determined case. One common assumption for the measurement matrix X
(Pitaval et al., 2015; Ge et al., 2017; Zhu et al., 2021) is that each row of the matrix is indepen-
dently sampled from an isometric sub-Gaussian distribution with zero mean and covariance matrix
diag(σ2

1 · · · , σ2
d), denoted as Px. which guarantees the critical restricted isometry property under

mild conditions on the sparsity level (Candes and Tao, 2007). In this work, we also assume β∗ is
randomly sampled from a distribution Pβ, which admits an S-sparse vector with random support.

A popular approach to tackling sparse recovery is the least absolute shrinkage and selection operator
(LASSO), which aims to find the optimal sparse vector β ∈ Rd that minimizes the following loss:

L(β) = 1

2
∥y −Xβ∥22 + α∥β∥1.

Here α is a coefficient controlling the sparsity penalty. We denote the transpose of the i-th row in X
by xi, i.e., xi = [X⊤]:,i.

In this work, we study how Transformers solve the sparse recovery problem in context. In the pre-
training process, a set of in-context sparse recovery instances {(X(j),y(j),x

(j)
N+1)}

Ntrain
j=1 is generated

according to the relationship y
(j)
n = (x

(j)
n )⊤β(j) + ϵ

(j)
n for j ∈ [Ntrain] and n ∈ [N ]. Here, the

sparse vectors β(j), sensing vectors {x(j)
n }Nn=1, and noise terms {ϵ(j)n }Nn=1 are sampled from distri-

butions β(j) ∼ Pβ , x(j)
n ∼ Px, and ϵ

(j)
n ∼ Pϵ, respectively. During pre-training, the Transformer

minimizes the label prediction loss ∥ŷ(j)N+1 − y
(j)
N+1∥ for each instance j ∈ [Ntrain], where ŷ

(j)
N+1 is

the Transformer’s prediction and y
(j)
N+1 = (x

(j)
N+1)

⊤β(j) + ϵ
(j)
N+1.

After pretraining, during the inference process for ICL, a given sparse recovery instance
(X,y,xN+1) is sampled, where β ∼ Pβ , {xi}Ni=1 ∼ Px, and {ϵi}Ni=1 ∼ Pϵ. The Transformer
then aims to predict yN+1 using the input (X,y,xN+1).

4.2 CLASSICAL ALGORITHMS

Gradient descent is known to struggle in solving the LASSO problem due to its inefficiency in
effectively handling the sparsity constraint (Chen et al., 2018). This inefficiency has led to the
development of more specialized algorithms that can better address the unique challenges posed
by the LASSO formulation. A popular approach to solving the LASSO problem is the Iterative
Shrinkage Thresholding Algorithm (ISTA). Starting with a fixed initial point β(1), the update rule
in the k-th iteration is given by

β(k+1) = Sα/L

(
β(k) − 1

L
X⊤(Xβ(k) − y)

)
.

Here, Sα/L is the soft-thresholding function defined as [Sα/L(x)]i = sign([x]i)max{0, |[x]i| −
α/L}, and L is typically chosen as the largest eigenvalue of X⊤X (Chen et al., 2018; Liu and Chen,
2019).

Generally, for any ground-truth sparse vector β∗ and any given X, ISTA converges at a sublinear
rate (Beck and Teboulle, 2009). The sublinear convergence rate of ISTA is considered inefficient,

5



270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2025

which has led to the development of various LISTA-type L2O algorithms, such as LISTA (Gre-
gor and LeCun, 2010), LISTA-CP (Chen et al., 2018), and ALISTA (Liu and Chen, 2019). These
algorithms learn the weights in the matrices in ISTA rather than fixing them.

Among them, LISTA-CP is one state-of-the-art (SOTA) method that has been well-studied. The
update rule in the k-th iteration of LISTA-CP can be expressed as

β(k+1) = Sθ(k)

(
β(k) − (D(k))⊤(Xβ(k) − y)

)
, (4.1)

where {θ(k),D(k)} are learnable parameters. Compared with ISTA with fixed parameters, LISTA-
CP obtains {θ(k),D(k)} through pre-training. Specifically, with a fixed measurement matrix X, it
randomly samples n S-sparse vectors {βj}nj=1 ∼ Pβ and generates {yj}nj=1, which is then utilized
to optimize {θ(k),D(k)} by minimizing the total predicting loss for {βj}j . Chen et al. (2018) show
that, for the same measurement matrix X, given any random instance (β∗,y), a pre-trained LISTA-
CP will converge to the ground-truth β∗ linearly in K under certain necessary conditions on X.

4.3 TRANSFORMER CAN PROVABLY PERFORM LISTA-TYPE ALGORITHMS

Noting that LISTA-type algorithms can efficiently solve sparse recovery problems, in this section,
we argue that a trained Transformer can implement a LISTA-type algorithm and efficiently solve a
sparse recovery problem in context. To distinguish the algorithm implemented by the Transformer
with the classical LISTA-type algorithms, we term it as LISTA with Varying Measurements (LISTA-
VM). Towards this end, we provide an explicit construction of a K-layer decoder-based Transformer
as follows. A K-layer Transformer is the concatenation of K blocks, where each block comprises a
self-attention layer followed by an MLP layer. The input to the first self-attention layer, denoted as
H(1), is an embedding of the given in-context sparse recovery instance I = (X,y,xN+1).

Embedding. Given an in-context sparse recovery instance I = (X,y,xN+1) we embed the in-
stance into an input sequence H(1) ∈ R(2d+2)×(2N+1) as follows:

H(1)(I) =


x1 x1 · · · xN xN xN+1

0 y1 · · · 0 yN 0

β
(1)
1 β

(1)
2 · · · β

(1)
2N−1 β

(1)
2N β

(1)
2N+1

1 0 · · · 1 0 1

 , (4.2)

where {β(1)
i }i∈[2N+1] ∈ Rd are implicit parameter vectors initialized as 0d, and xi is the i-th

column of the transposed measurement matrix, i.e, [X⊤]:,i. The embedding structure is similar to
the work of Bai et al. (2024), which also introduces placeholders in the embedding used for implicit
parameter updates and as indicators.

Self-attention layer. The self-attention layer takes as input a sequence of embeddings and outputs
a sequence of embeddings of the same length. Let the K-layer decoder-based Transformer feature
four attention heads uniquely indexed as +1, −1, +2, and −2. We construct these heads according
to the structure specified in Appendix C.1. This construction ensures that the self-attention layer
performs the β updating inside the soft-thresholding function in Equation (4.1). Furthermore, with
our construction, the learnable matrix D(k) in LISTA-CP becomes context-dependent instead of
fixed. In the update rule implemented by the self-attention layer, this matrix becomes D(k) =

1
2N+1X(M(k))⊤, where M(k) ∈ Rd×d is fixed.

MLP layer. For the MLP layer following the k-th self-attention layer, it functions as a feedforward
neural network that takes the output of the self-attention layer as its input, and outputs a transformed
sequence of the embeddings. Recall that hi is the i-th column in an embedding sequence H. We pa-
rameterize (W1,W2,b) in the k-th MLP layer to let it function as a partial soft-threshold function:

MLP(hi) =

[
[hi]1:d+1

Sθ(k)([hi]d+2:2d+1)
[hi]2d+2

]
, (4.3)

where Sθ(k) is the soft-threshold function. Essentially, the soft-threshold function is effectively
implemented by the MLP layer utilizing the ReLU activation. This can be realized by combining

6



324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2025

−ReLU(x), ReLU(−x), ReLU(x − θ), −ReLU(−x + θ), and x. The implementation details of
the MLP layer can be found in Appendix C.1.

Read-out function. Given the output sequence of the Transformer TFΘ(H(1)), to obtain the esti-
mation ŷN+1, it is necessary to read out from the output sequence. In this work, we consider two
types of read-out functions:
Definition 4.1 (Linear read-out). Flinear is defined as the class of linear readout functions such that

Flinear = {F (·) | F (h) = v⊤h,v ∈ RD}.

Definition 4.2 (Query read-out). Fquery is defined as the class of explicit quadratic readout functions
such that

Fquery = {F (· ; X̃) | F (h, i; X̃) = h⊤VX̃⌊ i+1
2 ⌋,:,V ∈ RD×d},

where i ∈ [N + 1] is an index number and X̃ = [X⊤ xN+1]
⊤.

Given a readout function Fv ∈ Flinear parameterized by v or FV ∈ Fquery parameterized by V, the
estimation ŷi obtained by the K-layer Transformer is ŷi = Fv(h

K+1
2i+1) or ŷi = FV(hK+1

2i+1 , 2i − 1)
respectively.

Before we formally present our main results, we introduce the following assumptions.
Assumption 1. For x ∼ Px and β∗ ∼ Pβ, we assume ∥x∥ ≤ bx and ∥β∗∥1 ≤ bβ almost surely.
Besides, we consider the noiseless scenario where ϵ = 0.

We note that the boundedness assumption over x and β∗ ensures the robustness of the Transformer
and prevents it from blowing up under ill conditions. A similar assumption is adopted in Bai et al.
(2024). The noiseless assumption is for ease of analysis and is common in the analysis of Trans-
formers (Ahn et al., 2024; Fu et al., 2023; Bai et al., 2024). We note that the following Theorem 4.1
can be straightforwardly extended to the noisy case when the noise is bounded.

We denote the input sequence to the k-th self-attention layer as H(k), and use β
(k+1)
2n+1 to represent

the vector [H(k+1)]d+1:2d+1,2n+1. Then, we state the following theorem.
Theorem 4.1 (Equivalence between ICL and LISTA-VM). With the Transformer structure de-
scribed above, under Assumption 1, there exists a set of parameters in the Transformer so that
for any k ∈ [1 : K], n ∈ [N ], we have

β
(k+1)
2n+1 = Sθ(k)

(
β
(k)
2n+1 −

1

2n+ 1
M(k)[X]⊤1:n,:([X]1:n,:β

(k)
2n+1 − y1:n)

)
, (4.4)

where M(k) ∈ Rd×d is embedded in the k-th Transformer layer.

The proof of Theorem 4.1 is detailed in Appendix C.2.

Remark 1. As mentioned above, matrix D(k) in the update rule of LISTA-CP in Equation (4.1) is
learned during pre-training and remains fixed across different in-context sparse recovery instances.
As a result, LISTA-CP requires the measurement matrix X to stay the same during pre-training and
inference. In contrast, if we denote D(k)

n = 1
2n+1 [X]1:n,:(M

(k))⊤, then within the update rule of the

LISTA-VM algorithm implemented by the Transformer, as detailed in Equation (4.4), the matrix D(k)
n

depends on a fixed matrix M(k) after pre-training as well as on the measurement matrix X during
inference. As a result, the Transformer can adaptively update D

(k)
n for instances with different X’s,

enabling more flexibility and improved performance for the ICL tasks.

5 PERFORMANCE OF TRANSFORMERS FOR IN-CONTEXT SPARSE RECOVERY

In this section, we demonstrate the effectiveness of the constructed Transformer in implementing
the LISTA-VM algorithm and solving in-context sparse recovery problems. We first show that the
LISTA-VM algorithm implemented by the Transformer recovers the underlying sparse vector in
context at a convergence rate linear in K. We then demonstrate that the Transformer can accurately
predict yN+1 at the same time.

7



378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2025

5.1 SPARSE VECTOR ESTIMATION

Theorem 5.1 (Convergence of ICL). Let δ ∈ (0, 1), N0 = 8(4S−2)2 log d+log S−log δ
c

, αn = − log
(
1−

2
3
γ+γ(2S−1)

√
log d−log δ

nc
+
√

log S−log δ
nc

)
, where c is a positive constant and γ is a positive constant

satisfies γ ≤ 3
2 . For a K-layer Transformer model with the structure described in Section 4.3, under

Assumption 1, there exists a set of parameters such that for any n ∈ [N0 : N ], with probability at
least 1− δ, we have ∥∥β(K+1)

2n+1 − β∗∥∥ ≤ bβe
−αnK .

Main challenge and key ideas of the proof. Similar to the proofs in Chen et al. (2018) and Liu and
Chen (2019), the core step in proving convergence is to ensure that D(k) exhibits small coherence
with X, i.e., (D(k))⊤X ≈ Id×d. In Chen et al. (2018) and Liu and Chen (2019), such a D(k) is
obtained by minimizing the generalized mutual coherence to a fixed X. However, this results in poor
generalization across different X’s. In our proof, we consider X as a random matrix and leverage
its sub-Gaussian properties to prove that if D(k) = X(M(k))⊤, where M(k) is associated with the
covariance of X, then D(k) will have small coherence with X with high probability. We defer the
detailed proof of Theorem 5.1 to Appendix D.1.

Remark 2 (Linear convergence rate). The linear convergence rate demonstrated in Theorem 5.1
arises from the incorporation of curvature information into the update rule. Specifically, the learned
matrices M(k) serve as approximations of the inverse Hessian. By leveraging the statistical prop-
erties of the problem, these matrices effectively accelerate convergence, enabling the Transformer
to mimic second-order optimization methods. This allows the Transformer to overcome the tra-
ditional limitations of first-order methods. As established in foundational works on optimization
theory (Nesterov, 2005; Nemirovskij and Yudin, 1983), first-order methods for sparse recovery are
typically restricted to a sublinear O(1/K) convergence rate unless additional assumptions are in-
troduced. By estimating curvature information, the Transformer could achieve linear convergence.

Remark 3 (Generalization across measurement matrix X). Theorem 5.1 shows that for any X sat-
isfying Assumption 1, the Transformer can estimate the ground-truth sparse vector β∗ in-context
at a convergence rate linear in K. This is in stark contrast to traditional LISTA-CP type of algo-
rithms, which only work for fixed X. Such generalization is enabled by the input-dependent matrices
{D(k)}k. Besides, we also note that β(K+1)

2n+1 only depends on x1, . . . ,xn. This implies that even if
the measurement matrix X is of dimension n × d instead of N × d, when n ∈ [N0, N ], the Trans-
former can still recover β∗ accurately. Such results demonstrate the robustness of Transformers to
variations in in-context sparse recovery tasks.
Remark 4 (Effective utilization of the hidden patterns in ICL tasks). We note that the Transformer
can be slightly modified to exploit certain hidden structures in the in-context sparse recovery tasks.
Specifically, if the support of β lies in a subset S ⊂ [1 : d] with S < |S| ≤ d, then by slightly modify-
ing the parameters of the Transformer to ensure [β(k)]i = 0 for all i /∈ S, the ICL performance can
be improved by replacing all d involved in Theorem 5.1 by |S|. We defer the corresponding result
and analysis to Appendix D.2.

5.2 LABEL PREDICTION

In Section 5.1, we have demonstrated that Transformers can successfully recover the ground-truth
sparse vector β∗ with linear convergence by implementing a LISTA-type algorithm. In this section,
we bridge the gap between this theoretical claim and the explicit objective of in-context sparse recov-
ery, which is to predict ŷN+1 given an in-context instance (X,y,xN+1). This gap might seem trivial
at first glance, as given xN+1 and an accurate estimate of β, the label ŷN+1 can be obtained through
a simple linear operation. However, we will show that, for a decoder-based Transformer, generating
ŷN+1 using the predicted sparse vector β, which is implicitly embedded within the forward-pass
sequences, critically depends on the structure of the read-out function.
Theorem 5.2. Under the same setting as in Section 4.3, with probability at least 1 − nδ − δ′, we
have

∥yn − ŷn∥ ≤ bx

(
1− 2

3
γ

)K

+
c4K√

n

(
1− 2

3
γ

)K−1

8



432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2025

for a linear read-out function, and with probability at least 1− δ, we have
∥yn − ŷn∥ ≤ c5e

−αnK

for a query read-out function, where c4, c5 are constants.

We defer the proof of Theorem 5.2 to Appendix E.
Remark 5. Theorem 5.2 indicates that adopting a linear read-out function results in a prediction
error of order O

(
e−K + K√

n
e−K

)
, which still exhibits linear convergence with respect to K. When

a query-based read-out function is employed, the convergence rate improves to O(e−K). However,
there exists a gap of order O

(
K√
n
e−K

)
, which diminishes as n becomes large. Empirically, we

observe the superiority of using a query-based read-out function in our experimental results, as
detailed in Section 6, and we also observe that the gap decreases as n grows.

6 EXPERIMENTAL RESULTS

Problem setup. In all experiments, we adhere to the following steps to generate in-context sparse
recovery instances. First, we sample a ground truth sparse vector β∗ from a d = 20 dimensional
standard normal distribution, and we fix the sparsity of β∗ to be 3 by randomly setting 17 entries in
β∗ to zero. Next, we independently sample N = 10 vectors form a d dimensional standard normal
distribution and then contract the measurement matrix X ∈ R10×20 (each sampled d dimensional
random vector is a row in X). We also sample an additional xN+1 from the d-dimensional standard
Gaussian distribution. We follow the noiseless setting in Bai et al. (2024) for sparse recovery, i.e.,
y = Xβ∗.

Baselines. The baselines for our experiments include traditional iterative algorithms such as ISTA
and FISTA (Beck and Teboulle, 2009). We also evaluate three classical LISTA-type L2O algo-
rithms: LISTA, LISTA-CP, ALISTA (Gregor and LeCun, 2010; Chen et al., 2018; Liu and Chen,
2019). For all of these algorithms, we set the number of iterations K = 12. We generate a sin-
gle fixed measurement matrix X. For each training epoch, we create I = 50, 000 instances from
50, 000 randomly generated sparse vectors. During inference, we evaluate the trained LISTA-type
models under two settings: (1) when the measurement matrix remains identical to that used during
pretraining, reported as ”Fixed X,” and (2) when the measurement matrix is varying through random
sampling, reported as ”Varying X.”

We also evaluate the LISTA-VM algorithm introduced in Theorem 4.1, where we set the number
of iterations K = 12 as well. For each training epoch, we randomly sample 100 measurement ma-
trices, each generating 500 instances from 500 randomly generated sparse vectors, which results in
a total of 50, 000 instances. For comparison, we also meta-train LISTA and LISTA-CP using the
same training method as LISTA-VM. We do not perform meta-training for ALISTA, as the training
process of ALISTA involves solving a non-convex optimization problem for each different measure-
ment matrix X, which makes meta-training for ALISTA unrealistic. For all baseline algorithms, we
minimize the sparse vector prediction loss

∑I
i=1 ∥β̂i −βi∥2 using gradient descent for each epoch.

We run all baseline experiments for 340 epochs.

Transformer structure. We consider two Transformer models, i.e., a small Transformer model
(denoted as Small TF) and GPT-2. Small TF has 12 layers, each containing a self-attention layer
followed by an MLP layer. Each self-attention layer has 4 attention heads. We set the embedding
dimension to D = 42, and the embedding structure according to Equation (4.2). For GPT-2, we
employ 12 layers, and set the embedding dimension to 256 and the number of attention heads per
layer to 8. The experimental use of GPT-2 with 8 heads evaluates the Transformer’s performance in
a configuration commonly used in practical applications. Meanwhile, the Small TF model ensures
alignment with the theoretical analysis by following the 4-head configuration and ReLU activation
function described in the theoretical setup. In order to train Small TF and GPT-2, we randomly
generate 64 instances per epoch and train the algorithms for 106 epochs. The training process
minimizes the label prediction loss

∑N+1
j=1 (yj − ŷj)

2. We run the experiments for Small TF and
GPT-2 on an NVIDIA RTX A5000 GPU with 24G memory. The training time for Small TF is
approximately 8 hours, while the training time for GPT-2 is around 12 hours.

Results. We test the prediction performance of the baseline algorithms and Transformers on a sparse
recovery instance (X,y,xN+1), and plot the label prediction loss in Figure 1.

9



486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2025

0.2 0.3 0.5 1 2 10
Label prediction loss

GPT-2

Small TF

LISTA-VM

ALISTA

LISTA-CP

LISTA

FISTA

ISTA

Varying X
Fixed X
Meta trained

(a) Without support constraints

0.05 0.2 0.5 1 2 10
Label prediction loss

GPT-2

Small TF
LISTA-VM-SS

LISTA-VM

ALISTA

LISTA-CP

LISTA

FISTA

ISTA

Varying X
Fixed X
Meta trained

(b) With support constraints

1 2 3 4 5 6 7 8 9 101112131415161718192021
n

0.0

0.5

1.0

1.5

2.0

2.5

3.0

y n
y n

Linear Readout
Quad Readout
Quad Readout

(c) Without support constraints

Figure 1: Experimental results for sparse recovery. (a) S = 3. (b) S = 3, and the support is restricted to be
within the first 10 entries. (c) Prediction with different read-outs functions.

We first do not impose any support constraint on β. We start with the general setting where the
testing instance is randomly generated (Varying X). As shown in Figure 1a, GPT-2 outperforms
Small TF, followed by LISTA-VM, which outperforms iterative algorithms FISTA and ISTA, while
the classical LISTA-type algorithms LISTA, LISTA-CP, and ALISTA perform the worst. Such re-
sults highlight the efficiency of LISTA-VM, Small TF and GPT-2 in solving ICL sparse recovery
problems, corroborating our theoretical result in Theorem 5.1. Meanwhile, classical LISTA-type
algorithms cannot handle mismatches between the measurement matrices in pre-training and test-
ing, leading to poor prediction performance. When X during testing is fixed to be the same as
that in pre-training, all LISTA-type algorithms achieve performances comparable with Small TF.
For meta-trained LISTA and LISTA-CP, the corresponding prediction loss (denoted by red marks in
Figure 1a) are still much higher than that under LISTA-VM. This indicates that meta-training can-
not help those classical LISTA-type algorithms achieve performances comparable with LISTA-VM,
further corroborating the strong generalization capability induced by the constructed Transformer
structure.

Next, we impose an additional constraint on the support of the sparse vectors. For in-context sparse
recovery instances used in both pre-training and testing, we set the support of the sparse vector β
to the first 10 entries, i.e., S = {1, 2, · · · , 10}. As observed in Figure 1b, Small TF and GPT-
2 significantly improve their performances in Figure 1a, while other baseline algorithms do not
exhibit significant performance improvements. In Figure 1b, we present the experimental results for
a support-selected version of LISTA-VM, referred to as LISTA-VM-SS. This algorithm is a simple
variation of LISTA-VM, where we incorporate prior knowledge of the support by setting all columns
in X whose indices are not in the prior support set to be zero vectors. As we claim in Remark 4
and Corollary D.1, a Transformer could perform this LISTA-VM-SS by utilizing prior knowledge
of the support. Our results show that the LISTA-VM-SS achieves an in-context prediction error of
approximately 0.07, which is almost 10 times better than the standard version of LISTA-VM and
is comparable to the prediction error of Small TF. This empirical finding corroborates our claim in
Remark 4.

Finally, we examine the label prediction loss under Small TF with three types of read-out functions,
i.e., linear read-out function (Linear Readout), query read-out function (Query Readout), and an-
other quadratic read-out function with parameters selected according to the proof of Theorem 5.2
(Query Readout†). In Figure 1c, we observe that the label prediction error is lower with the query
read-out functions than with the linear read-out function. When n becomes large, the gap between
the linear read-out function and the other two types of query read-out functions becomes insignif-
icant, which is consistent with our theoretical result in Theorem 5.2. Meanwhile, those two query
read-out functions behave very similarly.

7 CONCLUSION

In this work, we demonstrated that Transformers’ known ICL capabilities could be understood as
performing L2O algorithms. Specifically, we showed that for sparse recovery tasks, Transformers
can execute the LISTA-VM algorithm with a provable linear convergence rate. Our results highlight
that, unlike existing LISTA-type algorithms, which are limited to solving individual sparse recov-
ery problems with fixed measurement matrices, Transformers can address a general class of sparse

10



540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2025

recovery problems with varying measurement matrices without requiring parameter updates. Exper-
imentally, we demonstrated that Transformers can leverage prior knowledge from training tasks and
generalize effectively across different lengths of demonstration pairs, where traditional L2O meth-
ods typically fail. These insights not only deepen our understanding of Transformers’ capabilities
in ICL but also suggest new potential applications for utilizing Transformers in other optimization
tasks.

11



594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2025

REFERENCES

Ahn, K., Cheng, X., Daneshmand, H., and Sra, S. (2024). Transformers learn to implement pre-
conditioned gradient descent for in-context learning. Advances in Neural Information Processing
Systems, 36.

Akyürek, E., Schuurmans, D., Andreas, J., Ma, T., and Zhou, D. (2022). What learning algorithm is
in-context learning? investigations with linear models. arXiv preprint arXiv:2211.15661.

Andrychowicz, M., Denil, M., Gomez, S., Hoffman, M. W., Pfau, D., Schaul, T., Shillingford, B.,
and de Freitas, N. (2016). Learning to learn by gradient descent by gradient descent.

Bai, Y., Chen, F., Wang, H., Xiong, C., and Mei, S. (2024). Transformers as statisticians: Provable
in-context learning with in-context algorithm selection. Advances in neural information process-
ing systems, 36.

Beck, A. and Teboulle, M. (2009). A fast iterative shrinkage-thresholding algorithm for linear
inverse problems. SIAM journal on imaging sciences, 2(1):183–202.

Brown, T., Mann, B., Ryder, N., Subbiah, M., Kaplan, J. D., Dhariwal, P., Neelakantan, A., Shyam,
P., Sastry, G., Askell, A., et al. (2020). Language models are few-shot learners. Advances in
neural information processing systems, 33:1877–1901.

Candes, E. and Tao, T. (2007). The Dantzig selector: Statistical estimation when p is much larger
than n. The Annals of Statistics, 35(6):2313 – 2351.

Chen, L., Lu, K., Rajeswaran, A., Lee, K., Grover, A., Laskin, M., Abbeel, P., Srinivas, A., and Mor-
datch, I. (2021). Decision transformer: Reinforcement learning via sequence modeling. Advances
in neural information processing systems, 34:15084–15097.

Chen, S. and Li, Y. (2024). Provably learning a multi-head attention layer. arXiv preprint
arXiv:2402.04084.

Chen, S., Sheen, H., Wang, T., and Yang, Z. (2024a). Training dynamics of multi-head soft-
max attention for in-context learning: Emergence, convergence, and optimality. arXiv preprint
arXiv:2402.19442.

Chen, T., Chen, X., Chen, W., Heaton, H., Liu, J., Wang, Z., and Yin, W. (2022). Learning to
optimize: A primer and a benchmark. Journal of Machine Learning Research, 23(189):1–59.

Chen, X., Liu, J., Wang, Z., and Yin, W. (2018). Theoretical linear convergence of unfolded ista and
its practical weights and thresholds. Advances in Neural Information Processing Systems, 31.

Chen, X., Zhao, L., and Zou, D. (2024b). How transformers utilize multi-head attention in in-context
learning? a case study on sparse linear regression. arXiv preprint arXiv:2408.04532.

Cheng, X., Chen, Y., and Sra, S. (2023). Transformers implement functional gradient descent to
learn non-linear functions in context. arXiv preprint arXiv:2312.06528.

Chowdhery, A., Narang, S., Devlin, J., Bosma, M., Mishra, G., Roberts, A., Barham, P., Chung,
H. W., Sutton, C., Gehrmann, S., et al. (2023). Palm: Scaling language modeling with pathways.
Journal of Machine Learning Research, 24(240):1–113.

Cui, Y., Ren, J., He, P., Tang, J., and Xing, Y. (2024). Superiority of multi-head attention in in-
context linear regression. arXiv preprint arXiv:2401.17426.

Dai, D., Sun, Y., Dong, L., Hao, Y., Ma, S., Sui, Z., and Wei, F. (2022). Why can gpt learn in-
context? language models implicitly perform gradient descent as meta-optimizers. arXiv preprint
arXiv:2212.10559.

Daubechies, I., Defrise, M., and De Mol, C. (2004). An iterative thresholding algorithm for linear
inverse problems with a sparsity constraint. Communications on Pure and Applied Mathematics:
A Journal Issued by the Courant Institute of Mathematical Sciences, 57(11):1413–1457.

12



648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2025

Deora, P., Ghaderi, R., Taheri, H., and Thrampoulidis, C. (2023). On the optimization and general-
ization of multi-head attention. arXiv preprint arXiv:2310.12680.

Devlin, J. (2018). Bert: Pre-training of deep bidirectional transformers for language understanding.
arXiv preprint arXiv:1810.04805.

Dosovitskiy, A. (2020). An image is worth 16x16 words: Transformers for image recognition at
scale. arXiv preprint arXiv:2010.11929.

Elad, M. (2010). Sparse and redundant representations: from theory to applications in signal and
image processing. Springer Science & Business Media.

Finn, C., Abbeel, P., and Levine, S. (2017). Model-agnostic meta-learning for fast adaptation of
deep networks. In International conference on machine learning, pages 1126–1135. PMLR.

Fu, D., Chen, T.-Q., Jia, R., and Sharan, V. (2023). Transformers learn higher-order optimization
methods for in-context learning: A study with linear models. arXiv preprint arXiv:2310.17086.

Garg, S., Tsipras, D., Liang, P. S., and Valiant, G. (2022). What can transformers learn in-context?
a case study of simple function classes. Advances in Neural Information Processing Systems,
35:30583–30598.

Ge, R., Jin, C., and Zheng, Y. (2017). No spurious local minima in nonconvex low rank problems: A
unified geometric analysis. In International Conference on Machine Learning, pages 1233–1242.
PMLR.

Gregor, K. and LeCun, Y. (2010). Learning fast approximations of sparse coding. In Proceedings of
the 27th international conference on international conference on machine learning, pages 399–
406.

Han, C., Wang, Z., Zhao, H., and Ji, H. (2023). Explaining emergent in-context learning as kernel
regression. arXiv preprint arXiv:2305.12766.

Hospedales, T., Antoniou, A., Micaelli, P., and Storkey, A. (2021). Meta-learning in neural networks:
A survey. IEEE transactions on pattern analysis and machine intelligence, 44(9):5149–5169.

Hruby, P., Duff, T., Leykin, A., and Pajdla, T. (2022). Learning to solve hard minimal problems.
In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pages
5532–5542.

Huang, R., Liang, Y., and Yang, J. (2024). Non-asymptotic convergence of training transformers for
next-token prediction. arXiv preprint arXiv:2409.17335.

Huang, Y., Cheng, Y., and Liang, Y. (2023). In-context convergence of transformers. arXiv preprint
arXiv:2310.05249.

Kim, J. and Suzuki, T. (2024). Transformers learn nonlinear features in context: Nonconvex mean-
field dynamics on the attention landscape. arXiv preprint arXiv:2402.01258.

Li, H., Wang, M., Liu, S., and Chen, P.-Y. (2023). A theoretical understanding of shallow vision
transformers: Learning, generalization, and sample complexity. arXiv preprint arXiv:2302.06015.

Li, H., Wang, M., Lu, S., Cui, X., and Chen, P.-Y. (2024a). Training nonlinear transformers for
efficient in-context learning: A theoretical learning and generalization analysis. arXiv preprint
arXiv:2402.15607.

Li, K. and Malik, J. (2016). Learning to optimize. arXiv preprint arXiv:1606.01885.

Li, Y., Huang, Y., Ildiz, M. E., Rawat, A. S., and Oymak, S. (2024b). Mechanics of next token
prediction with self-attention. In International Conference on Artificial Intelligence and Statistics,
pages 685–693. PMLR.

Liu, J. and Chen, X. (2019). Alista: Analytic weights are as good as learned weights in lista. In
International Conference on Learning Representations (ICLR).

13



702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2025

Mahankali, A., Hashimoto, T. B., and Ma, T. (2023). One step of gradient descent is provably the op-
timal in-context learner with one layer of linear self-attention. arXiv preprint arXiv:2307.03576.

Meng, Y., Yang, Y., Hu, M., Zhang, Z., and Zhou, X. (2023). Artificial intelligence-based radiomics
in bone tumors: Technical advances and clinical application. In Seminars in Cancer Biology.
Elsevier.

Nemirovskij, A. S. and Yudin, D. B. (1983). Problem complexity and method efficiency in opti-
mization.

Nesterov, Y. (2005). Smooth minimization of non-smooth functions. Mathematical programming,
103:127–152.

Nichani, E., Damian, A., and Lee, J. D. (2024). How transformers learn causal structure with
gradient descent. arXiv preprint arXiv:2402.14735.

Pitaval, R.-A., Dai, W., and Tirkkonen, O. (2015). Convergence of gradient descent for low-rank
matrix approximation. IEEE Transactions on Information Theory, 61(8):4451–4457.

Radford, A. (2018). Improving language understanding by generative pre-training.

Roy, S. S., Mittal, D., Basu, A., and Abraham, A. (2015). Stock market forecasting using lasso
linear regression model. In Afro-European Conference for Industrial Advancement: Proceedings
of the First International Afro-European Conference for Industrial Advancement AECIA 2014,
pages 371–381. Springer.

Shen, D., Wu, G., and Suk, H.-I. (2017). Deep learning in medical image analysis. Annual review
of biomedical engineering, 19(1):221–248.

Sucker, M., Fadili, J., and Ochs, P. (2024). Learning-to-optimize with pac-bayesian guarantees:
Theoretical considerations and practical implementation. arXiv preprint arXiv:2404.03290.

Tarzanagh, D. A., Li, Y., Thrampoulidis, C., and Oymak, S. (2023a). Transformers as support vector
machines. arXiv preprint arXiv:2308.16898.

Tarzanagh, D. A., Li, Y., Zhang, X., and Oymak, S. (2023b). Max-margin token selection in attention
mechanism. In Thirty-seventh Conference on Neural Information Processing Systems.

Thoppilan, R., De Freitas, D., Hall, J., Shazeer, N., Kulshreshtha, A., Cheng, H.-T., Jin, A., Bos, T.,
Baker, L., Du, Y., et al. (2022). Lamda: Language models for dialog applications. arXiv preprint
arXiv:2201.08239.

Tian, Y., Wang, Y., Chen, B., and Du, S. S. (2023a). Scan and snap: Understanding training dynam-
ics and token composition in 1-layer transformer. Advances in Neural Information Processing
Systems, 36:71911–71947.

Tian, Y., Wang, Y., Zhang, Z., Chen, B., and Du, S. (2023b). Joma: Demystifying multilayer
transformers via joint dynamics of mlp and attention. arXiv preprint arXiv:2310.00535.

Vasudeva, B., Deora, P., and Thrampoulidis, C. (2024). Implicit bias and fast convergence rates for
self-attention. arXiv preprint arXiv:2402.05738.

Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A. N., Kaiser, Ł., and Polo-
sukhin, I. (2017). Attention is all you need. Advances in neural information processing systems,
30.

Von Oswald, J., Niklasson, E., Randazzo, E., Sacramento, J., Mordvintsev, A., Zhmoginov, A., and
Vladymyrov, M. (2023a). Transformers learn in-context by gradient descent. In International
Conference on Machine Learning, pages 35151–35174. PMLR.

Von Oswald, J., Niklasson, E., Schlegel, M., Kobayashi, S., Zucchet, N., Scherrer, N., Miller, N.,
Sandler, M., Vladymyrov, M., Pascanu, R., et al. (2023b). Uncovering mesa-optimization algo-
rithms in transformers. arXiv preprint arXiv:2309.05858.

14



756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2025

Yao, Q., Wang, M., Chen, Y., Dai, W., Li, Y.-F., Tu, W.-W., Yang, Q., and Yu, Y. (2018). Taking
human out of learning applications: A survey on automated machine learning. arXiv preprint
arXiv:1810.13306.

Zhang, R., Frei, S., and Bartlett, P. L. (2023). Trained transformers learn linear models in-context.
arXiv preprint arXiv:2306.09927.

Zhu, Z., Li, Q., Tang, G., and Wakin, M. B. (2021). The global optimization geometry of low-rank
matrix optimization. IEEE Transactions on Information Theory, 67(2):1308–1331.

15



810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2025

Supplementary Materials
CONTENTS

1 Introduction 1

2 Related Works 2

3 Preliminaries 3

3.1 Transformer Architecture . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

3.2 In-context Learning by Transformers . . . . . . . . . . . . . . . . . . . . . . . . . 4

4 Transformer as a LISTA-type Algorithm for In-context Sparse Recovery 5

4.1 In-context Sparse Recovery . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

4.2 Classical Algorithms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

4.3 Transformer Can Provably Perform LISTA-type Algorithms . . . . . . . . . . . . 6

5 Performance of Transformers for In-context Sparse Recovery 7

5.1 Sparse Vector Estimation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

5.2 Label Prediction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

6 Experimental Results 9

7 Conclusion 10

A Additional Related Works 17

B Table of Notations 17

C Deferred Proofs in Section 4.3 18

C.1 Transformer Structure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

C.2 Proof of Theorem 4.1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

D Deferred Proofs in Section 5.1 21

D.1 Proof of Theorem 5.1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

D.2 Proof of Remark 4 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

E Deferred Proofs in Section 5.2 29

E.1 Proof of Theorem 5.2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

F Additional Experiment Results 34

16



864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2025

A ADDITIONAL RELATED WORKS

General L2O Techniques. L2O leverages machine learning to develop optimization algorithms,
aiming to improve existing methods and innovate new ones. As highlighted by Sucker et al. (2024)
and Chen et al. (2022), L2O intersects with meta-learning (also known as “learning-to-learn”) and
automated machine learning (AutoML).

Unlike meta-learning, which focuses on enabling models to quickly adapt to new tasks with min-
imal data by leveraging prior knowledge from diverse tasks (Finn et al., 2017; Hospedales et al.,
2021), L2O aims to improve the optimization process itself by developing adaptive algorithms tai-
lored to specific tasks, leading to faster convergence and enhanced performance in model train-
ing (Andrychowicz et al., 2016; Li and Malik, 2016). Thus, while meta-learning enhances task
adaptability, L2O refines the efficiency of the optimization process. In contrast, AutoML focuses
on model selection, optimization algorithm selection, and hyperparameter tuning (Yao et al., 2018);
L2O distinguishes itself by its ability to generate new optimization techniques through learned mod-
els.

L2O has demonstrated significant potential across various optimization fields and applications. For
instance, Andrychowicz et al. (2016) introduced a method where optimization algorithms are learned
using recurrent neural networks trained to optimize specific classes of functions. Li and Malik
(2016) proposed learning optimization algorithms through reinforcement learning, utilizing guided
policy search to develop optimization strategies. Furthermore, Hruby et al. (2022) applied L2O
to address the “minimal problem”, a common challenge in computer vision characterized by the
presence of many spurious solutions. They trained a multilayer perceptronmodel to predict initial
problem solutions, significantly reducing computation time.

B TABLE OF NOTATIONS

Notation Definition
X Measurement Matrix
β∗ Ground-truth sparse vector
ϵ Noise Vector
Y Y = Xβ∗ + ϵ
d Number of columns of X
N Number of Measurement Vectors, i.e., number of rows of X
S Sparsity of β∗, i.e., ∥β∗∥0 = S
S Support set of β∗

D Dimension in the Self-attention Layer
M Number of Heads in the Self-attention Layer
D′ Hidden Dimension in the MLP Layer
K Number of Layers in Transformer

Q
(k)
i Query Matrix of the k-th Layer of Transformer’s i-th Head

K
(k)
i Key Matrix of the k-th Layer of Transformer’s i-th Head

V
(k)
i Value Matrix of the k-th Layer of Transformer’s i-th Head

H(k) Input Sequence of the k-th Layer of Transformer
h
(k)
i [H(k)]:,i

sign(x) Sign Function: sign(x) = |x|/x if x ̸= 0, sign(x) = 0 if x = 0
Sθ(x) Soft Thresholding Function: Sθ(x) = sign(x)max{0, |x| − θ}

σ : Rd → Rd ReLU Function:[σ(x)]i = xi if xi ≥ 0, [σ(x)]i = 0 if xi < 0
¬E Complement of an event E

17



918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2025

C DEFERRED PROOFS IN SECTION 4.3

C.1 TRANSFORMER STRUCTURE

Attention layer. Consider a model consisting of K Transformer layers, where each layer is
equipped with four attention heads. These heads are uniquely indexed as +1, −1, +2, and −2
to distinguish their specific roles within the layer.

Q
(k)
±1 =

0(d+1)×(d+1) 0(d+1)×d 0d+1

0d×(d+1) M
Q,(k)
±1 0d

01×(d+1) 01×d −B

 , Q
(k)
±2 =

 0d×(2d+1) 0d

01×(2d+1) m
Q,(k)
±2

0(d+1)×(2d+1) 0d+1


K

(k)
±1 =

0(d+1)×d 0(d+1)×(d+1) 0d+1

Id×d 0d×(d+1) 0d

01×d 01×(d+1) 1

 , K
(k)
±2 =

 0d×d 0d 0d×d+1

01×d 1 01×(d+1)

0(d+1)×d 0d+1 0(d+1)×(d+1)


V

(k)
±1 =

0(d+1)×d 0(d+1)×(d+2)

M
V,(k)
±1 0d×(d+2)

01×d 01×(d+2)

 , V
(k)
±2 =

0(d+1)×d 0(d+1)×d+2

M
V,(k)
±2 0d×(d+2)

01×d 01×(d+2)

 , (C.1)

where M
Q,(k)
+1 , MQ,(k)

−1 , MV,(k)
+1 , MV,(k)

−1 , MV,(k)
+2 , and M

V,(k)
−2 are all d × d matrices, and m

Q,(k)
+2 ,

m
Q,(k)
−2 are scalars.

MLP layer. For the MLP layer following the k-th self-attention layer, we set

W1 =

 W1,sub
−W1,sub
W1,sub
−W1,sub

 ,W⊤
2 =

−I(2d+2)×(2d+2)

I(2d+2)×(2d+2)

I(2d+2)×(2d+2)

−I(2d+2)×(2d+2)

 ,b(k) =


05d+5

−θ(k) · 1d

0d+2

θ(k) · 1d

0

 . (C.2)

where the submatrix W1,sub is defined as

W1,sub =

0(d+1)×(d+1) 0(d+1)×d 0d+1

0d×(d+1) Id×d 0d

01×(d+1) 01×d 0

 .

Therefore, we obtain that the output of the MLP layer is

MLP(hi) =

[
[hi]1:d+1

Sθ(k)([hi]d+2:2d+1)
[hi]2d+2

]
. (C.3)

where Sθ(k) is the soft-thresholding function parameterized by θ(k).

C.2 PROOF OF THEOREM 4.1

We start by stating an equivalent form of Theorem 4.1 below, where we specific M(k) in Theo-
rem 4.1 to be γ(k)MV .
Theorem C.1 (Equivalent form Theorem 4.1). Suppose Assumption 1 holds. For a Transformer
with K layers as described in Section 4.3, set the input sequence as:

H(1) =


[X⊤]:,1 [X⊤]:,1 · · · [X⊤]:,N [X⊤]:,N xN+1

0 y1 · · · 0 yN 0

β
(1)
1 β

(1)
2 · · · β

(1)
2N−1 β

(1)
2N β

(1)
2N+1

1 0 · · · 1 0 1

 . (C.4)

Denote H(k+1) as the output of the K-th layer of the Transformer and define β
(K+1)
2n+1 =

H
(k+1)
d+2:2d+1,2n+1. There exists a set of parameters within the Transformer such that for all k ∈

[1,K], we have:

β
(k+1)
2n+1 = Sθ(k)

(
β
(k)
2n+1 − γ(k)(Dn)

⊤([X]1:n,:β
(k)
2n+1 − y1:n)

)
,

where Dn = 1
2n+1 [X]1:n,:(M

V )⊤ and MV ∈ Rd×d is embedded in the k-th Transformer lsyer.

18



972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2025

Proving the theorem is equivalent to demonstrating the existence of a Transformer for which the
following proposition holds for any k ≥ 2:
Proposition 1. Suppose Assumption 1 holds. For a K layers Transformer with structure described
in Section 4.3, the input sequence of the k-th layer of the Transformer satisfies:

H(k) =


[X⊤]:,1 [X⊤]:,1 · · · [X⊤]:,N [X⊤]:,N xN+1

0 y1 · · · 0 yN 0

β
(k)
1 β

(k)
2 · · · β

(k)
2N−1 β

(k)
2N β

(k)
2N+1

1 0 · · · 1 0 1

 ,

where it holds that β(k)
2n+1 = Sθ(k−1)

(
β
(k−1)
2n+1 − γ(k−1)(Dn)

⊤([X]1:n,:β
(k)
2n+1 − y1:n)

)
, Dn =

1
2n+1 [X]1:n,:(M

V )⊤ and |β(k−1)
2n+1 | ≤ Ck

β for Constant Cβ.

Proof of Proposition 1. We prove Proposition 1 is true for all k ≥ 2 by induction. First, H(k) for
k = 2 satisfies the condition automatically; therefore, Proposition 1 is true when k = 2. Then, we
demonstrate that if Proposition 1 is true for k − 1, it remains valid for k. For odd values of i, the
token-wise outputs of the k-th attention layer corresponding to the first and second heads satisfy:

Q
(k)
±1h

(k)
i =

 0d+1

M
Q,(k)
±1 β

(k)
i

−B

 ; K
(k)
±1h

(k)
i =

 0d+1

[X⊤]:,⌊ i+1
2 ⌋

1

 ; V
(k)
±1h

(k)
i =

 0d+1

M
V,(k)
±1 [X⊤]:,⌊ i+1

2 ⌋
0

 .

The token-wise outputs of the third and fourth heads for odd i satisfy

Q
(k)
±2h

(k)
i =

 0d

m
Q,(k)
±2
0d+1

 ; K
(k)
±2h

(k)
i = 02d+2; V

(k)
±2h

(k)
i =

 0d+1

M
V,(k)
±2 [X⊤]:,⌊ i+1

2 ⌋
0

 .

Besides, for any i that is an even number, the token-wise outputs of the k-th attention layer corre-
sponding to the first and second heads satisfy:

Q
(k)
±1h

(k)
i =

 0d+1

M
Q,(k)
±1 β

(k)
i

0

 ; K
(k)
±1h

(k)
i =

 0d+1

[X⊤]:,⌊ i+1
2 ⌋

0

 ; V
(k)
±1h

(k)
i =

 0d+1

M
V,(k)
±1 [X⊤]:,⌊ i+1

2 ⌋
0

 .

The token-wise outputs of the third and fourth heads for even i satisfy

Q
(k)
±2h

(k)
i = 02d+2; K

(k)
±2h

(k)
i =

 0d

y i
2

0d+1

 ; V
(k)
±2h

(k)
i =

 0d+1

M
V,(k)
±2 [X⊤]:,⌊ i+1

2 ⌋
0

 .

Therefore, for hi with an odd index and head with index u ∈ {1,−1}, we have

σ
(〈

Q(k)
u hk

i ,K
(k)
u hk

j

〉)
·V(k)

u h
(k)
j

= σ
(
(β

(k)
i )⊤(MQ

u )
⊤[X⊤]:,⌊ j+1

2 ⌋ − 1{j%2=1}(j)B
)
·

 0d+1

M
V,(k)
u [X⊤]:,⌊ j+1

2 ⌋
0

 . (C.5)

Also, for hi with an odd index and head with index u ∈ {2,−2}, we have

σ
(〈

Q(k)
u hk

i ,K
(k)
u hk

j

〉)
·V(k)

u h
(k)
j = 1{j%2=0} · σ

(
mQ,(k)

u · y j
2

)
·

 0d+1

M
V,(k)
u [X⊤]:,⌊ j+1

2 ⌋
0

 .

(C.6)
We specify the parameters of the self-attention layer as

M
Q,(k)
1 = −Id×d, M

V,(k)
1 = γ(k)MV ,

M
Q,(k)
−1 = Id×d, M

V,(k)
−1 = −γ(k)MV ,

m
q,(k)
2 = 1, M

V,(k)
2 = γ(k)MV ,

m
q,(k)
−2 = −1, M

V,(k)
−2 = −γ(k)MV .

19



1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2025

Then, for head index u ∈ {1,−1} we have

(β
(k)
i )⊤(MQ

u )
⊤[X⊤]:,⌊ j+1

2 ⌋ −B ≤
∣∣(β(k)

i )⊤[X⊤]:,⌊ j+1
2 ⌋
∣∣−B

≤
∥∥β(k)

i

∥∥
1

∥∥[X⊤]:,⌊ j+1
2 ⌋
∥∥
∞ −B (C.7)

≤
∥∥β(k)

i − β∗∥∥
1

∥∥[X⊤]:,⌊ j+1
2 ⌋
∥∥
∞ + bβbx −B,

where Equation (C.7) is given by Hölder’s Inequality. Therefore, combining this with the assumption
∥x∥∞ ≤ bx and ∥β∗∥1 ≤ bβ, we obtain

(β
(k)
i )⊤(MQ

u )
⊤[X⊤]:,⌊ j+1

2 ⌋ −B ≤ bx
∥∥β(k)

i − β∗∥∥
1
+ bβbx −B. (C.8)

Recall that for odd i, we assume that Proposition 1 is true for k − 1, then β
(k)
i satisfies

β
(k)
i = Sθ(k−1)

(
β
(k−1)
i − γ(k−1)(Dn)

⊤([X]1:⌊ i+1
2 ⌋,:β

(k)
i − y1:⌊ i+1

2 ⌋)
)

and |β(k−1)
2n+1 | ≤ Ck

β. Therefore, we have

|β(k)
i | ≤ |β(k−1)

i |+ |γ(k−1)|∥MV ∥
∥∥∥∥1i [X]⊤

1:⌊ i+1
2 ⌋,:[X]1:⌊ i+1

2 ⌋,:

∥∥∥∥|β(k−1)
i |+ bβ|γ(k−1)|∥MV ∥

∥∥∥∥1i [X]1:⌊ i+1
2 ⌋,:

∥∥∥∥
≤ Ck

β + b2xd|γ(k−1)|∥MV ∥
⌊ i+1

2 ⌋
i

Ck
β + bβbx|γ(k−1)|∥MV ∥

⌊ i+1
2 ⌋
i

≤ Ck
β + b2xd|γ(k−1)|∥MV ∥Ck

β + bβbx|γ(k−1)|∥MV ∥. (C.9)

Equation (C.9) arises from the fact that ⌊ i+1
2 ⌋/i ≤ 1. Therefore, denoting γmax = maxk ∥γ(k)∥ and

letting Cβ = 1 + b2xdγmax∥MV ∥+ bβbxγmax∥MV ∥, we have

|β(k)
i | ≤ Ck

β + b2xd|γ(k−1)|∥MV ∥Ck
β + bβbx|γ(k−1)|∥MV ∥ ≤ Ck+1

β .

Therefore we have

bx
∥∥β(k)

i − β∗∥∥
1
≤ bx

√
d(bβ + Ck

β).

Then, by setting B ≥ bβbx + bx
√
d(bβ + CK

β ), we obtain that B >
∣∣(β(k)

i )⊤[X⊤]:,⌊ j+1
2 ⌋
∣∣ for all

k ≤ K and any odd i. Then, combining with Equation (C.8) we have

σ
(
(β

(k)
i )⊤(MQ

u )
⊤[X⊤]:,⌊ j+1

2 ⌋ −B
)
= 0.

Further, from Equation (C.5), for i is odd number and j ∈ [1, 3, · · · , i] we have

σ
(〈

Q(k)
u hk

i ,K
(k)
u hk

j

〉)
·V(k)

u h
(k)
j = 02d+2.

Besides, for i being an odd number and j ∈ [2, 4, · · · , i− 1], we have

σ
(〈

Q(k)
u hk

i ,K
(k)
u hk

j

〉)
·V(k)

u h
(k)
j = σ

(
(β

(k)
i )⊤(MQ

u )
⊤[X⊤]:,⌊ i+1

2 ⌋

)
·

 0d+1

M
V,(k)
u [X⊤]:,⌊ j+1

2 ⌋
2

 .

Thus, when hi is of odd index, summing over all j ≤ i and u ∈ {1,−1}, we obtain:∑
u∈{−1,+1}

i∑
j=1

σ
(〈

Q(k)
u hk

i ,K
(k)
u hk

j

〉)
·V(k)

u h
(k)
j =

∑
u∈{−1,+1}

i−1∑
j=2

σ
(〈

Q(k)
u hk

i ,K
(k)
u hk

j

〉)
·V(k)

u h
(k)
j

=

i−1∑
j=2

−(β
(k)
i )⊤[X⊤]:,⌊ j+1

2 ⌋ ·

 0d+1

γ(k)MV [X⊤]:,⌊ j+1
2 ⌋

0


=

 0d+1

−γ(k)MV [X⊤]:,1: i−1
2
[X]1: i−1

2 ,:β
(k)
i

0

 .

(C.10)

20



1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Under review as a conference paper at ICLR 2025

Next, we consider heads with indexes m ∈ {2,−2}. From Equation (C.6) we obtain

∑
u∈{−2,+2}

i∑
j=1

σ
(〈

Q(k)
u hk

i ,K
(k)
u hk

j

〉)
·V(k)

u h
(k)
j =

∑
u∈{−2,+2}

i−1∑
j=2

σ
(〈

Q(k)
u hk

i ,K
(k)
u hk

j

〉)
·V(k)

u h
(k)
j

=

i−1∑
j=2

y j
2
·

 0d+1

γ(k)MV [X⊤]:, j2
02


=

 0d+1

γ(k)MV [X⊤]:,1: i−1
2
y1: i−1

2

02

 . (C.11)

Combining Equation (C.10) and Equation (C.11), we obtain the following equation for hi with an
odd index:

h
(k+1)
i = MLP

h
(k)
i +

1

i

∑
u∈{±1,±2}

i∑
j=1

σ
(〈

Q(k)
u hk

i ,K
(k)
u hk

j

〉)
·V(k)

u h
(k)
j

 =


[X⊤]:,⌊ i+1

2 ⌋
0

βk+1
i
1

 ,

where

βk+1
i = Sθ(k)

(
β
(k)
i − γ(k)

i
MV [X⊤]:,1: i−1

2
[X]1: i−1

2 ,:β
(k)
i + γ(k)MV [X⊤]:,1: i−1

2
y1: i−1

2

)
= Sθ(k)

(
β
(k)
i − γ(k)

i
MV [X⊤]:,1: i−1

2

(
[X]1: i−1

2 ,:β
(k)
i − y1: i−1

2

))
. (C.12)

Similarly, we obtain the following equation for hi with an even index:

h
(k+1)
i = MLP

h
(k+1)
i +

1

i

∑
u∈{±1,±2}

i∑
j=1

σ
(〈

Q(k)
u hk

i ,K
(k)
u hk

j

〉)
·V(k)

u h
(k)
j

 =


[X⊤]:,⌊ i+1

2 ⌋
0

βk+1
i
0

 .

(C.13)

Note that an explicit formulation of β(k+1)
i is not required when i is even. Next, combining Equa-

tion (C.12) and Equation (C.13) gives

H(k+1) =


[X⊤]:,1 [X⊤]:,1 · · · [X⊤]:,N [X⊤]:,N xN+1

0 y1 · · · 0 yN 0

β
(k+1)
1 β

(k+1)
2 · · · β

(k+1)
2N−1 β

(k+1)
2N β

(k+1)
2N+1

1 0 · · · 1 0 1

 .

The proof for Proposition 1 is thus complete.

D DEFERRED PROOFS IN SECTION 5.1

D.1 PROOF OF THEOREM 5.1

In Section 4.1, we assume that each row of the measurement matrix X is independently sampled
from an isometric sub-Gaussian distribution with zero mean and covariance diag(σ2

1 , · · · , σ2
d).

Without loss of generality, let σ1 ≥ σ2 ≥ · · · ≥ σd. We start the proof of Theorem 5.1 by in-
troducing the auxiliary lemmas: Lemma 1, Lemma 2, and Lemma 3.

Lemma 1. Assume β(k) and β(k+1) satisfy:

β(k+1) = Sθ(k)

(
β(k) − γD⊤(Xβ(k) − y)

)
. (D.1)

21



1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187

Under review as a conference paper at ICLR 2025

Define σmin = mini∈S
∣∣D⊤

:,iX:,i

∣∣, σmax = maxi̸=j

∣∣D⊤
:,iX:,j

∣∣ and let θ(k) = γσmaxc1e
−c2(k−2),

where c1 = ∥β∗∥1 and c2 = log
(

1
γ(2S−1)σmax+|1−γσmin|

)
. Then, if ∥β(k) − β∗∥1 ≤ c1e

−c2(k−2)

and D, γ, θ(k) satisfy the following conditions:

γ(2S − 1)σmax + |1− γσmin| ≤ 1,

0 ≤ γD⊤
:,iX:,i ≤ 1 ∀i ∈ [d],

(D.2)

then β(k+1) satisfies

∥β(k+1) − β∗∥1 ≤ c1e
−c2(k−1).

Proof of Lemma 1. Note that we are considering the noiseless model: y = Xβ∗. We begin by
rewriting Equation (D.1):

β(k+1) = Sθ(k)

(
β(k) − γ(k)D⊤(Xβ(k) − y)

)
= Sθ(k)

(
β(k) − γ(k)D⊤X(β(k) − β∗)

)
.

Consider entries of β(K+1) in the support of β∗:

β
(k+1)
S = Sθ(k)

(
β
(k)
S − γ(k)(D:,S)

⊤X:,S(β
(k)
S − β∗

S)
)

∈ β
(k)
S − γ(k)(D:,S)

⊤X:,S(β
(k)
S − β∗

S)− θ(k)∂ℓ1(β
(k+1)
S ),

where ∂ℓ1(β) is the sub-gradient of |β|:

[∂ℓ1(β)]i =

{
{sign([β]i)} if [β]i ̸= 0,

[−1, 1] if [β]i = 0.

Then, for any i ∈ S, we have

β
(k+1)
i ∈ β

(k)
i − γ(k)(D:,i)

⊤X:,S(β
(k)
S − β∗

S)− θ(k)∂ℓ1(β
(k+1)
S ).

Note that β(k)
i − γ(k)(D:,i)

⊤X:,S(β
(k)
S − β∗

S) can be rewritten as

β
(k)
i − γ(k)(D:,i)

⊤X:,S(β
(k)
S − β∗

S)

= β
(k)
i − γ(k)

∑
j∈S,j ̸=i

(D:,i)
⊤X:,j(β

(k)
j − β∗

j )− γ(k)(D:,i)
⊤X:,i(β

(k)
i − β∗

i )

= β∗
i − γ(k)

∑
j∈S,j ̸=i

(D:,i)
⊤X:,j(β

(k)
j − β∗

j ) +
(
1− γ(k)(D:,i)

⊤X:,i

)
(β

(k)
i − β∗

i ).

Therefore,

β
(k+1)
i − β∗

i ∈ −γ(k)
∑

j∈S,j ̸=i

(D:,i)
⊤X:,j(β

(k)
j − β∗

j ) +
(
1− γ(k)(D:,i)

⊤X:,i

)
(β

(k)
i − β∗

i )− θ(k)∂ℓ1(β
(k+1)
i ).

Based on the definition of ∂ℓ1, we derive the following inequality:

|β(k+1)
i − β∗

i | ≤ γ(k)
∑

j∈S,j ̸=i

∣∣(D:,i)
⊤X:,j

∣∣|β(k)
j − β∗

j |+
∣∣∣1− γ(k)(D:,i)

⊤X:,i

∣∣∣|β(k)
i − β∗

i |+ θ(k).

Recall that 0 < γ(k)(D:,i)
⊤X:,i < 1, we obtain that

|β(k+1)
i − β∗

i | ≤ γ(k)σmax

∑
j∈S,j ̸=i

|β(k)
j − β∗

j |+
∣∣∣1− γ(k)σmin

∣∣∣|β(k)
i − β∗

i |+ θ(k).

22



1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241

Under review as a conference paper at ICLR 2025

From Lemma 2, we have support(β(k+1)) ∈ S, thus, ∥β(k+1) − β∗∥1 = ∥β(k+1)
S − β∗

S∥1. Then,

∥β(k+1) − β∗∥1 ≤
∑
i∈S

γ(k)σmax

∑
j∈S,j ̸=i

|β(k)
j − β∗

j |+
∣∣∣1− γ(k)σmin

∣∣∣|β(k)
i − β∗

i |+ θ(k)


≤ γ(k)(S − 1)σmax

∑
i∈S

|β(k)
i − β∗

i |+
∣∣∣1− γ(k)σmin

∣∣∣∥∥∥β(k)
i − β∗

i

∥∥∥
1
+ Sθ(k)

=
(
γ(k)(S − 1)σmax +

∣∣∣1− γ(k)σmin

∣∣∣)∥∥∥β(k)
i − β∗

i

∥∥∥
1
+ Sθ(k)

≤
(
γ(k)(2S − 1)σmax +

∣∣∣1− γ(k)σmin

∣∣∣)c1e−c2(k−1).

Recall that c2 = log

(
1

γ(k)σmax(2S−1)+|1−γ(k)σmin|

)
, we obtain

∥β(k+1) − β∗∥1 ≤ c1e
−c2k.

Therefore the proof is complete.

Lemma 2. Suppose all conditions mentioned in Theorem 5.1 hold. For k ∈ N, if

support(β(k)) ∈ S and ∥β(k)
S − β∗

S∥ ≤ c1e
−c2(k−1),

then it holds that

support(β(k+1)) ∈ S.

Proof of Lemma 2. For a fixed k, if support(β(k)) ∈ S and ∥β(k)
S − β∗

S∥ ≤ c1e
−c2(k−1), then we

have

β
(k+1)

SC = Sθ(k)

(
β
(k)

SC − γ(k)(D:,SC )
⊤X:,S(β

k
S − β∗

S)
)

= Sθ(k)

(
− γ(k)(D:,SC )

⊤X:,S(β
k
S − β∗

S)
)
,

where SC = [d′]\S. Then, for all i ∈ SC , we obtain

β
(k+1)
i = Sθ(k)

(
− γ(k)

∑
j∈S

(D:,i)
⊤X:,j(β

k
j − β∗

j )
)
.

Note that ∣∣∣∣∣∣−γ(k)
∑
j∈S

(D:,i)
⊤X:,j(β

k
j − β∗

j )

∣∣∣∣∣∣ ≤ γ(k)σmax∥β(k) − β∗∥1

≤ γ(k)σmaxc1e
−c2(k−1),

Given θ(k) as defined in Theorem 1, we obtain:∣∣∣∣∣∣−γ(k)
∑
j∈S

(D:,i)
⊤X:,j(β

(k)
j − β∗

j )

∣∣∣∣∣∣ ≤ θ(k).

Consequently, it follows that β(k)
i = 0 for all i ∈ SC .

Lemma 3. Suppose Assumption 1 holds and let D = 1
2N+1X(MV )⊤. Then, there exists an MV

such that the following inequalities hold with probability at least 1− 3δ:

min
i∈S

∣∣(D:,i)
⊤X:,i

∣∣ ≥ N

N + 2

(
1−

√
logS − log δ

Nc

)
,

max
i∈S

∣∣(D:,i)
⊤X:,i

∣∣ ≤ N

N + 2

(
1 +

√
logS − log δ

Nc

)
,

max
i ̸=j

∣∣(D:,i)
⊤X:,i

∣∣ ≤√ log d− log δ

Nc
.

23



1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295

Under review as a conference paper at ICLR 2025

Proof of Lemma 3. Recall that σ1 ≥ σ2 ≥ · · · ≥ σd. Let MV = 2
σ2
d
Id×d. To prove the lemma, we

first introduce a lower bound for mini∈S
∣∣D⊤

:,iX:,i

∣∣. Note that

(D:,i)
⊤X:,i =

1

2N + 1
MV (X:,i)

⊤X:,i =
2

2N + 1
· 1

σ2
d

N∑
j=1

X2
j,i ≥

2

2N + 1

N∑
j=1

1

σ2
i

X2
j,i.

Note that X2
j,i is a sub-exponential random variable. Then, from the tail bound for sub-exponential

random variables, there exists a constant c such that

P
{ 1

N

N∑
j=1

(
1

σi
X2

j,i) ≥ 1− s
}
≥ 1− exp

(
−Ncmin

{
s2, s

})
.

Consider 0 < s ≤ 1, we have

P
{ 1

N

N∑
j=1

(
1

σi
X2

j,i) ≥ 1− s
}
≥ 1− exp

(
−Ncs2

)
,

it follows that

P
{ 1

N
min
i∈S

1

σ2
d

N∑
j=1

X2
j,i ≥ 1− s

}

≥ P
{ 1

N
min
i∈S

N∑
j=1

1

σ2
i

X2
j,i ≥ 1− s

}

= 1− P

{⋃
i∈S

{ 1

N

N∑
j∈[1]

1

σ2
i

X2
j,i < 1− s

}}

≥ 1−
∑
i∈S

P
{ 1

N

N∑
j=1

1

σ2
i

X2
j,i < 1− s

}
≥ 1− S exp

(
−Ncs2

)
.

Let s =
√

logS−log δ
Nc . Then, with probability at least 1− δ, we have

1

N
min
i∈S

1

σ2
d

N∑
j=1

X2
j,i ≥ 1−

√
logS − log δ

Nc
.

Therefore, with probability at least 1− δ, it holds that

min
i∈S

∣∣(D:,i)
⊤X:,i

∣∣ = 2

2N + 1
min
i∈S

1

σ2
d

N∑
j=1

X2
j,i ≥

N

N + 2

(
1−

√
logS − log δ

Nc

)
.

Similarly, we have the following inequality holding with probability at least 1− δ:

max
i∈S

∣∣(D:,i)
⊤X:,i

∣∣ ≤ N

N + 2

(
1 +

√
logS − log δ

Nc

)
.

Next, we will provide a high probability upper bound for maxi ̸=j

∣∣(D:,i)
⊤X:,j

∣∣. Observe that when
i ̸= j, we have

(D:,i)
⊤X:,j =

1

2N + 1
MQ(X:,i)

⊤X:,j =
2

2N + 1

N∑
k=1

1

σ2
d

Xk,iXk,j ,

where Xk,iXk,j is a centered sub-exponential random variable. Then, from the tail bound for sub-
exponential random variables, there exist constants c and 0 < s ≤ 1 such that

P

{∣∣∣ 1
N

N∑
k=1

(
1

σ2
d

Xk,iXk,j)
∣∣∣ ≤ s

}
≥ 1− exp

(
−Ncs2

)
.

24



1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349

Under review as a conference paper at ICLR 2025

Then we have

P

{
max
i ̸=j

∣∣∣ 2

2 + 2N

N∑
k=1

(
1

σd
Xk,iXk,j)

∣∣∣ ≤ s

}

≥ P

{
max
i ̸=j

∣∣∣ 1
N

N∑
k=1

(
1

σd
Xk,iXk,j)

∣∣∣ ≤ s

}

= 1− P

{ ⋃
i,j:i̸=j

{∣∣∣ 1
N

N∑
k=1

(
1

σd
Xk,iXk,j)

∣∣∣ > s
}}

≥ 1−
∑

i,j:i ̸=j

P

{∣∣∣ 1
N

N∑
k=1

(
1

σd
Xk,iXk,j)

∣∣∣ > s

}

≥ 1−
∑
i,j

P

{∣∣∣ 1
N

N∑
k=1

(
1

σd
Xk,iXk,j)

∣∣∣ > s

}
≥ 1− d2 exp

(
−Ncs2

)
.

Let s =
√

log d−log δ
Nc , thus with probability at least 1− δ, we obtain

max
i ̸=j

∣∣(D:,i)
⊤X:,i

∣∣ ≤√ log d− log δ

Nc
.

Then, the proof is complete.

To prove Theorem 5.1, we first state an equivalent theorem here:
Theorem D.1 (Equivalent form of Theorem 5.1). Suppose Assumption 1 holds. Let δ ∈ (0, 1).
For a K-layer Transformer model with the structure described in Section 4.3, there exists a set of
parameters in the Transformer such that for any n ∈ [N0, N ], with probability at least 1 − 3δ, we
have

∥β(K+1)
2n+1 − β∗∥ ≤ c1e

−αnK ,

where β
(K+1)
2n+1 = [H(K+1)]d+1:2d+1,2n+1 and

αn = − log

(
1− 2

3
γ + γ(2S − 1)

√
log d− log δ

nc
+ γ

√
logS − log δ

nc

)
, (D.3)

c1 = ∥β∗∥1 and N0 = 8(4S − 2)2 log d+logS−log δ
c . Here, c is a positive constant and γ can be any

positive constant less than 1.6.

To prove Theorem D.1, first, for Dn = 1
2n+1 [X]1:n,:(M

V )⊤ defined in Equation (4.4), we define
an event:

A =

{
min
i∈S

∣∣([Dn]:,i)
⊤X1:n,i

∣∣ ≥ n

n+ 2

(
1−

√
logS − log δ

nc

)
,

max
i∈S

∣∣([Dn]:,i)
⊤X1:n,i

∣∣ ≤ n

n+ 2

(
1 +

√
logS − log δ

nc

)
,

max
i̸=j

∣∣([Dn]:,i)
⊤X1:n,i

∣∣ ≤√ log d− log δ

nc

}
. (D.4)

Next, we introduce Proposition 2.
Proposition 2. Suppose Assumption 1 and event A defined in Equation (D.4) hold. For a K-layer
Transformer model with the structure described in Section 4.3, and let the input sequence satisfy
Equation (C.4). Then, there exists a set of parameters such that if n ∈ [N0, N ], we have

∥β(K+1)
2n+1 − β∗∥ ≤ c1e

−αnK ,

25



1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403

Under review as a conference paper at ICLR 2025

where β
(K+1)
2n+1 = [H(K+1)]d+1:2d+1,2n+1, c1 = ∥β∗∥1, and N0 = 8(4S − 2)2 log d+logS−log δ

c . αn

is given in Equation (D.3). Here, c is a positive constant and γ can be any positive constant less
than 1.6.

Proof of Proposition 2. We prove it by induction. First, for k = 1, we initialize β
(1)
2n+1 = 0d, thus

∥β(1)
2n+1 − β∗∥1 = ∥β∗∥1. Note that c1 = eα∥β∗∥1, so Proposition 2 holds for k = 1.

Next, we assume Proposition 2 holds for k. From the proof of Theorem 5.1, the input sequence of
the (k + 1)-th Transformer layer is of the following structure:

H(k+1) =


[X⊤]:,1 [X⊤]:,1 · · · [X⊤]:,N [X⊤]:,N xN+1

0 y1 · · · 0 yN 0

β
(k+1)
1 β

(k+1)
2 · · · β

(k+1)
2N−1 β

(k+1)
2N β

(k+1)
2N+1

1 0 · · · 1 0 1

 ,

where

β
(k+1)
2n+1 = Sθ(k)

(
β
(k)
2n+1 − γ(k)(Dn)

⊤([X]1:n,:β
(k)
2n+1 − y1:n)

)
,

From Lemma 1, let γ(k) = γ, then for c1 = ∥β∗∥1, c2 = log
(

1
γ(2S−1)σmax+|1−γσmin|

)
, we have

∥β(k)
2n+1 − β∗∥ ≤ c1e

−c2(k−1) if the following conditions hold:

γ(2S − 1)σmax + |1− γσmin| ≤ 1, (D.5)

0 ≤ γ([Dn]:,i)
⊤X1:n,i ≤ 1, ∀i ∈ [d]. (D.6)

First, let

n ≥ N0 where N0 = 8(4S − 2)2
log d+ logS − log δ

c
. (D.7)

By rearranging Inequality D.7, we have

√
n ≥ 2

√
2(4S − 2)

√
log d+ logS − log δ

c

≥
√
2(4S − 2)

√
log d+ logS − 2 log δ

c

≥ (4S − 2)

(√
log d− log δ

c
+

√
logS − log δ

c

)

≥ (4S − 2)

√
log d− log δ

c
+

√
logS − log δ

c
. (D.8)

Inequality D.8 is equivalent to

1√
n

(
(2S − 1)

√
log d− log δ

c
+

1

2

√
logS − log δ

c

)
≤ 1

2

=⇒ (2S − 1)

√
log d− log δ

nc
≤ 1

2

(
1−

√
logS − log δ

nc

)

=⇒ (2S − 1)

√
log d− log δ

nc
≤ n

n+ 2

(
1−

√
logS − log δ

nc

)
. (D.9)

Combining Inequality D.9 with Equation (D.4) we have

σmax(2S − 1) ≤ (2S − 1)

√
log d− log δ

nc

≤ n

n+ 2

(
1−

√
logS − log δ

nc

)
≤ σmin. (D.10)

26



1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457

Under review as a conference paper at ICLR 2025

Next, recall that MV = 2
σ2
d
Id×d and ([Dn]:,i)

⊤X1:n,i =
1

2n+1 (X1:n,i)
⊤MV X1:n,i. Therefore, for

any i ∈ [d], we have γ([Dn]:,i)
⊤X1:n,i ≥ 0 if γ ≥ 0. Note that if γ satisfies the following condition:

γ ≤ min

{
1

σmin
,

1

max{([Dn]:,i)⊤X1:n,i}

}
, (D.11)

then Inequality D.6 will hold and 1− γσmin ≥ 0. Besides, we have

γ(2S − 1)σmax + |1− γσmin| ≤ γσmin + |1− γσmin| (D.12)
= γσmin + 1− γσmin (D.13)
= 1,

where Inequality D.12 is derived from Inequality D.10, and Equation (D.13) is obtained using Equa-
tion (D.11). Consequently, Inequalities D.5 and D.6 hold if event A occurs. Furthermore, under the
condition that event A occurs, by setting

γ ≤ 1

n
n+2

(
1 +

√
logS−log δ

nc

) , (D.14)

we have γ satisfies Equation (D.11). Note that we assume n ≥ N0. Therefore,

1

n
n+2

(
1 +

√
logS−log δ

nc

) ≥ 1

1 +
√

logS−log δ
N0c

≥ 2

1 +
√

1
8(4S−2)

≥ 1.6.

Therefore, any choice of γ such that γ ≤ 1.6 will ensure that Inequality (D.14) is satisfied. Next,
noting that event A holds and γ satisfies Equation (D.11), we obtain

∥β(k)
2n+1 − β∗∥ ≤ ∥β∗∥1

(
γ(2S − 1)σmax + |1− γσmin|

)k−1

≤ ∥β∗∥1

(
γ(2S − 1)

√
log d− log δ

nc
+ 1− γ

n

n+ 2

(
1−

√
logS − log δ

nc

))k−1

≤ ∥β∗∥1

(
γ(2S − 1)

√
log d− log δ

nc
+ 1− γ

n

n+ 2
+ γ

n

n+ 2

√
logS − log δ

nc

)k−1

≤ ∥β∗∥1

(
γ(2S − 1)

√
log d− log δ

nc
+ 1− 2

3
γ + γ

√
logS − log δ

nc

)k−1

= c1e
−αn(k−1).

The proof is complete.

Note that Lemma 3 demonstrates that event A occurs with a probability of at least 1−2δ. Therefore,
the proof of Theorem D.1 is completed by combining Lemma 3 with Proposition 2.

D.2 PROOF OF REMARK 4

Note that in Appendix D.2, we assume there is a constraint on the support of β∗: its support set lies
within a subset S ⊂ [1 : d], with S < |S| ≤ d, where S denotes the sparsity of β∗.We establish the
corollary by demonstrating the following corollary:

Corollary D.1 (Equivalent statement of Remark 4.). Suppose Assumption 1 holds and S ≤ |S| ≤ d.
For a K-layer Transformer model with the structure described in Section 4.3, and let the input
sequence satisfy Equation (C.4). Then, there exists a set of parameters such that if n ≥ NS

0 , with
probability at least 1− δ, we have

∥β(K)
2n+1 − β∗∥ ≤ c1e

−αS
nK ,

27



1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511

Under review as a conference paper at ICLR 2025

where β
(K)
2n+1 = [H(K+1)]d+1:2d+1,2N+1 and

αS
n = − log

(
1− 2

3
γ + γ(2S − 1)

√
log |S| − log δ

nc
+ γ

√
logS − log δ

nc

)
, (D.15)

c1 = ∥β∗∥1, and Np
0 = 8(4S − 2)2 log |S|+logS−log δ

c . Here, c is a positive constant, and γ can be
any positive constant less than 1.6.

Proof of Corollary D.1. W.l.o.g., assume S = {1, 2, . . . , |S|}. First, we modify the MLP layers
based on Equation (C.2). We maintain the structure of W2 as described in Equation (C.2), and
reconstruct W1 and b(k). We define the following submatrices:

W1,sub(1) =

 0(d+1)×(d+1) 0(d+1)×|S| 0(d+1)×(d−|S|) 0d+1

0|S|×(d+1) I|S|×|S| 0|S|×(d−|S|) 0|S|
0(d−|S|)×(d+1) 0(d−|S|)×|S| I(d−|S|)×(d−|S|) 0(d−|S|)

01×(d+1) 01×|S| 01×(d−|S|) 0

 ,

W1,sub(2) =

 0(d+1)×(d+1) 0(d+1)×|S| 0(d+1)×(d−|S|) 0d+1

0|S|×(d+1) −I|S|×|S| 0|S|×(d−|S|) 0|S|
0(d−|S|)×(d+1) 0(d−|S|)×|S| I(d−|S|)×(d−|S|) 0(d−|S|)

01×(d+1) 01×|S| 01×(d−|S|) 0

 ,

W1,sub(3) =

 0(d+1)×(d+1) 0(d+1)×|S| 0(d+1)×(d−|S|) 0d+1

0|S|×(d+1) I|S|×|S| 0|S|×(d−|S|) 0|S|
0(d−|S|)×(d+1) 0(d−|S|)×|S| −I(d−|S|)×(d−|S|) 0(d−|S|)

01×(d+1) 01×|S| 01×(d−|S|) 0

 ,

W1,sub(4) =

 0(d+1)×(d+1) 0(d+1)×|S| 0(d+1)×(d−|S|) 0d+1

0|S|×(d+1) −I|S|×|S| 0|S|×(d−|S|) 0|S|
0(d−|S|)×(d+1) 0(d−|S|)×|S| I(d−|S|)×(d−|S|) 0(d−|S|)

01×(d+1) 01×|S| 01×(d−|S|) 0

 .

Let

W1 =

W1,sub(1)
W1,sub(2)
W1,sub(3)
W1,sub(4)

 ,b(k) =


05d+5

−θ(k) · 1|S|
02d+2−|S|
θ(k) · 1|S|
01+d−|S|

 .

Therefore, the output of the modified MLP layer is

MLP(hi) =

 [hi]1:d+1

Sθ(k)([hi]d+2:d+|S|+1)
0d−|S|
[hi]2d+2

 .

Next, we also modify the parameters in the self-attention layers. For convenience, we introduce a
projection matrix IS = diag(I|S|×|S|,0(d−|S|)×(d−|S|)). The reconstructed self-attention layers are
described below:

Q
(k)
±1 =

0(d+1)×(d+1) 0(d+1)×d 0d+1

0d×(d+1) ISM
Q,(k)
±1 0d

01×(d+1) 01×d −B

 , Q
(k)
±2 =

 0d×(2d+1) 0d

01×(2d+1) m
Q,(k)
±2

0(d+1)×(2d+1) 0d+1


K

(k)
±1 =

0(d+1)×d 0(d+1)×(d+1) 0d+1

IS 0d×(d+1) 0d

01×d 01×(d+1) 1

 , K
(k)
±2 =

 0d×d 0d 0d×d+1

01×d 1 01×(d+1)

0(d+1)×d 0d+1 0(d+1)×(d+1)


V

(k)
±1 =

0(d+1)×d 0(d+1)×(d+2)

ISM
V,(k)
±1 0d×(d+2)

02×d 02×(d+2)

 , V
(k)
±2 =

0(d+1)×d 0(d+1)×d+2

ISM
V,(k)
±2 0d×(d+2)

02×d 02×(d+2)

 .

28



1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565

Under review as a conference paper at ICLR 2025

Therefore, when the input sequence is

H(k) =


[X⊤]:,1 [X⊤]:,1 · · · [X⊤]:,N [X⊤]:,N xN+1

0 y1 · · · 0 yN 0

β
(k)
1 β

(k)
2 · · · β

(k)
2N−1 β

(k)
2N β

(k)
2N+1

1 0 · · · 1 0 1

 ,

the corresponding output of the self-attention layer satisfies

H(k+1) = diag(IS , 1, IS , 1)H(k+1).

Then, it is equivalent to consider the input sequence as
[X⊤]1:|S|,1 [X⊤]1:|S|,2 · · · [X⊤]1:|S|,N [X⊤]1:|S|,N [xN+1]1:|S|

0 y1 · · · 0 yN 0

[β
(k)
1 ]1:|S| [β

(k)
2 ]1:|S| · · · [β

(k)
2N−1]1:|S| [β

(k)
2N ]1:|S| [β

(k)
2N+1]1:|S|

1 0 · · · 1 0 1

 .

Consequently, by applying Theorem 5.1 to this sub-problem, we derive the corresponding corollary.

E DEFERRED PROOFS IN SECTION 5.2

E.1 PROOF OF THEOREM 5.2

Note that in Theorem 5.2, we have two results: first, the label prediction loss for the linear read-out
function, and second, the label prediction loss for the quadratic read-out function.

We start by introducing the following lemma, which provides an upper bound on ∥β(k)
j ∥ for every j

and k ≥ 2.
Lemma 4. If β(k) satisfies Equation (C.12) and ∥β(k)∥ ≤ Cx, then we have ∥β(k+1)∥ ≤ Cx,
where Cx =

dbxbβ(N+1)
σmin(X⊤X)

.

Proof of Lemma 4. From Equation (C.12), we derive that

βk+1
i = Sθ(k)

(
β
(k)
i − γ(k)

i
MV [X⊤]:,1: i−1

2

(
[X]1: i−1

2 ,:β
(k)
i − Y1: i−1

2

))
= Sθ(k)

((
I− γ(k)

i
MV [X⊤]:,1: i−1

2
[X]1: i−1

2 ,:

)
β
(k)
i − γ(k)

i
MV [X⊤]:,1: i−1

2
Y1: i−1

2

)
.

Since ∥Sθ(k)(x)∥ ≤ ∥x∥, it follows that

∥βk+1
i ∥ ≤

∥∥∥∥(I− γ(k)

i
MV [X⊤]:,1: i−1

2
[X]1: i−1

2 ,:

)
β
(k)
i − γ(k)

i
MV [X⊤]:,1: i−1

2
Y1: i−1

2

∥∥∥∥
≤
(i)

(
1− γ(k)

i · σ2
d

σmin

(
[X⊤]:,1: i−1

2
[X]1: i−1

2 ,:

))
∥β(k)

i ∥+ γ(k)

i · σ2
d

∥[X⊤]:,1: i−1
2
Y1: i−1

2
∥

≤
(ii)

(
1− γ(k)

(N + 1) · σ2
d

σmin

(
X⊤X

))
∥β(k)

i ∥+ γ(k)

σ2
d

dbxbβ.

The satisfaction of Inequality (i) is achieved by setting MV = 2
σ2
d
Id×d, while Inequality (ii) is

verified through the application of the Cauchy interlacing theorem. Consequently, by integrating the
expression Cx =

dbxbβ(N+1)
σmin(X⊤X)

with the aforementioned inequality, we obtain

∥βk+1
i ∥ ≤

(
1− γ(k)

(N + 1) · σ2
d

σmin

(
X⊤X

)) dbxbβ(N + 1)

σmin (X⊤X)
+

γ(k)

σ2
d

dbxbβ ≤ Cx,

Therefore, the proof is complete.

29



1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619

Under review as a conference paper at ICLR 2025

Next, we prove the following theorem to demonstrate the prediction loss for the linear read-out
function.

Theorem E.1. Suppose Assumption 1 holds. Consider a Transformer with K + 1 layers, where the
first K layers have the structure described in Section 4.3, and the input sequence is as defined in
Equation (C.4). Then, if n ≥ N0, there exists a set of parameters in the Transformer such that the
following inequality holds with probability at least 1− δ′ − nδ:

∥yn − ŷn∥ ≤ bx

(
1− 2

3
γ

)K

+
c4K√

n

(
1− 2

3
γ

)K−1

,

where

N0 = 8(4S − 2)2
log d+ logS − log δ

c
,

c4 =
2
√
2bxη√
p

√
log d+ logS − log δ

c
+

2B′
√
p
+

2Cxbx√
p

,

where c is a positive constant, η is defined in Equation (E.7), δ′ B′, p are constants defined in
Appendix E.1.

We are now prepared to demonstrate Theorem E.1.

Proof. For this layer, we assign one attention head to follow the structure described below. Consider
the case where i = 2n − 1 and n ≫ N0, and denote [X⊤]:,n as xn. For the first attention head, its
structure is as follows:

Qlast
1 h

(K+1)
i =

0d

1
xn

0

 , Klast
1 h

(K+1)
i =


0d

−B′

β
(K+1)
i
0

 , Vlast
1 h

(K+1)
i =

[
0d

1{i%2=1}
0d+1

]
.

Therefore, we obtain

(Qlast
1 h

(K+1)
i )⊤(Klast

1 h
(K+1)
j ) = x⊤

nβ
(K+1)
j −B′.

Let p = P{x⊤
nβ

(K+1)
j ≥ B′}, which is the probability that the inner product x⊤

nβ
(K+1)
j exceeds

the threshold B′. This probability is the same for any n due to the symmetry of the distribution. We
introduce a random variable oj ∈ {0, 1} to represent the following: we set oj = 0 if x⊤

nβ
(K+1)
j <

B′ and oj = 1 if x⊤
nβ

(K+1)
j ≥ B′. We define the following events:

E1 =
{ ∑

j≤N0

oj = 0
}
, E2(ϵ) =

{
pn− p

2
− ϵ ≤

∑
j≤n

oj ≤ pn− p

2
+ ϵ
}
.

Assume E1 ∩ E2(ϵ) holds. Then, we obtain

1

i

i∑
j=1

〈
Qlast

1 h
(K+1)
i ,Klast

1 h
(K+1)
j

〉
·Vlast

1 h
(K+1)
j =

1

i

i∑
j=1

σ
(
x⊤
nβ

(K+1)
j −B′

)
·

[
0d

1{i%2=1}
0d+1

]

=
1

2n− 1

∑
j:oj=1

(
x⊤
nβ

(K+1)
j −B′

)
·

[
0d

1{i%2=1}
0d+1.

]
.

Let the last MLP layer satisfies

MLP

[
0d

ŷ
0d+1.

]
=

 0d
2
p ŷ +B′

0d+1,

 ,

30



1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673

Under review as a conference paper at ICLR 2025

it follows that

MLP

1

i

i∑
j=1

〈
Qlast

1 h
(K+1)
i ,Klast

1 h
(K+1)
j

〉
·Vlast

1 h
(K+1)
j

 =

 0d
2

2np−p

∑
j:oj=1 x

⊤
nβ

(K+1)
j − 2(

∑
oj)

2np−p B′ +B′

0d+1.

 .

Denote ŷn = 2
2np−p

∑
j:oj=1 x

⊤
nβ

(K+1)
j − 2(

∑
oj)

2np−p B′ +B′, therefore

|yn − ŷn| =

∣∣∣∣∣∣x⊤
nβ

∗ − 2

2np− p

∑
j:oj=1

x⊤
nβ

(K+1)
j +

2(
∑

oj)

2np− p
B′ −B′

∣∣∣∣∣∣
≤ ∥xn∥

∥∥∥∥∥∥β∗ − 2

2np− p

∑
j:oj=1

x⊤
nβ

(K+1)
j

∥∥∥∥∥∥+
∣∣∣∣2(∑ oj)

2np− p
B′ −B′

∣∣∣∣
≤ bx

∥∥∥∥∥∥β∗ − 2

2np− p

∑
j:oj=1

β
(K+1)
j

∥∥∥∥∥∥+ 2ϵ

2np− p
|B′|. (E.1)

We randomly select a set {o′j : j ≥ 2N0 − 1} such that |{o′j}| ≤ ϵ, satisfying the following
conditions:

• If |{oj : oj = 1}| ≥ pn− r

2
, then∣∣{oj : oj = 1} \ {o′j}

∣∣ = pn− r

2
;

• If |{oj : oj = 1}| < pn− r

2
, then∣∣{oj : oj = 1} ∪ {o′j}

∣∣ = pn− r

2
.

We define the set O as follows:

O =


{oj : oj = 1} \ {o′j}, if |{oj : oj = 1}| ≥ pn− r

2
,

{oj : oj = 1} ∪ {o′j}, if |{oj : oj = 1}| < pn− r

2
.

Therefore, we have∥∥∥∥∥∥β∗ − 2

2np− p

∑
j:oj=1

x⊤
nβ

(K+1)
j

∥∥∥∥∥∥ ≤

∥∥∥∥∥∥β∗ − 1

np− p
2

∑
j:oj∈O

β
(K+1)
j

∥∥∥∥∥∥+
∥∥∥∥∥∥ 1

np− p
2

∑
j:oj∈{o′j}

x⊤
nβ

(K+1)
j

∥∥∥∥∥∥
≤

∥∥∥∥∥∥β∗ − 1

np− p
2

∑
j:oj∈O

β
(K+1)
j

∥∥∥∥∥∥+ Cxbxϵ

np− p
2

, (E.2)

where Equation (E.2) follows from Lemma 4. Observe that∥∥∥∥∥∥β∗ − 1

np− p
2

∑
j:oj∈O

β
(K+1)
j

∥∥∥∥∥∥ ≤ 1

np− p
2

∑
j:oj∈O

∥∥∥β∗ − β
(K+1)
j

∥∥∥ .
Then, from Theorem 5.1, the following inequality holds with probability at least 1− 3nδ:∑

i:o2i+1∈O
∥β∗ − β

(K+1)
2i+1 ∥ ≤

∑
i:o2i+1∈O

∥β∗ − β
(K+1)
2i+1 ∥1 ≤

∑
i:o2i+1∈O

∥β∗∥1e−αiK , (E.3)

where

αi = − log

(
1− 2

3
γ + γ(2S − 1)

√
log d− log δ

ic
+ γ

√
logS − log δ

ic

)
.

31



1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727

Under review as a conference paper at ICLR 2025

From Cauchy–Schwarz Inequality we have:

γ(2S − 1)

√
log d− log δ

ic
+ γ

√
logS − log δ

ic
≤ 2γ(2S − 1)

√
log d+ logS − log δ

ic
. (E.4)

Combining Inequalities E.3 and E.4 gives

∑
i:o2i+1∈O

∥β∗ − β
(K+1)
2i+1 ∥ ≤ ∥β∗∥1

∑
i:o2i+1∈O

(
1− 2

3
γ + 2γ(2S − 1)

√
log d+ logS − log δ

ic

)K

.

Note that, by induction, it is straightforward to prove that the following inequality holds if 1− 2
3γ ≤

1: (
1− 2

3
γ + 2γ(2S − 1)

√
log d+ logS − log δ

ic

)K

≤
(
1− 2

3
γ

)K

+ ηiK

(
1− 2

3
γ

)K−1
√

log d+ logS − log δ

ic
, (E.5)

when ηi satisfies

ηi ≥
(
1− 2

3γ
)

(
1− 2

3γ
)
− (K − 1)

√
log d+logS−log δ

ic

, (E.6)

which can be satisfied by simply setting

ηi = η =

(
1− 2

3γ
)(

1− 2
3γ
)
− (K − 1)

√
log d+logS−log δ

N0c

. (E.7)

Therefore, Inequality (E.6) holds for any i ≥ N0. Based on Inequality (E.5), we have

∑
i:o2i+1∈O

(
1− 2

3
γ + 2γ(2S − 1)

√
log d+ logS − log δ

ic

)K

≤
N0+np− p

2∑
i=N0+1

(
1− 2

3
γ + 2γ(2S − 1)

√
log d+ logS − log δ

ic

)K

≤
N0+np− p

2∑
i=N0+1

(
1− 2

3
γ

)K

+ ηK

(
1− 2

3
γ

)K−1 N0+np− p
2∑

i=N0+1

√
log d+ logS − log δ

ic

≤ (np− p

2
)

(
1− 2

3
γ

)K

+ ηK

(
1− 2

3
γ

)K−1
√

log d+ logS − log δ

c

N0+np− p
2∑

i=N0+1

1√
i

≤ (np− p

2
)

(
1− 2

3
γ

)K

+ ηK

(
1− 2

3
γ

)K−1
√

log d+ logS − log δ

c
2

(√
N0 + np− p

2
−
√
N0

)
.

(E.8)

By combining Inequalities (E.3) and (E.7), we obtain∑
i:o2i+1∈O

∥β∗ − β
(K+1)
2i+1 ∥

≤ (np− p

2
)

(
1− 2

3
γ

)K

+ ηK

(
1− 2

3
γ

)K−1
√

log d+ logS − log δ

c

≤ (np− p

2
)

(
1− 2

3
γ

)K

+ 2ηK

√
np− p

2

(
1− 2

3
γ

)K−1
√

log d+ logS − log δ

c
.

32



1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781

Under review as a conference paper at ICLR 2025

Therefore,

1

np− p
2

n∑
i=N0+1

∥β∗ − β
(K+1)
2i+1 ∥ ≤

(
1− 2

3
γ

)K

+
2
√
2ηK

√
np

(
1− 2

3
γ

)K−1
√

log d+ logS − log δ

c
.

(E.9)

Combining Equation (E.1), Equation (E.2) and Equation (E.9) we obtain

∥yn − ŷn∥

≤ bx

(
1− 2

3
γ

)K

+
2
√
2bxηK√
np

(
1− 2

3
γ

)K−1
√

log d+ logS − log δ

c
+

2ϵ

np
|B′|+ 2Cxbxϵ

np
.

Set ϵ = K
√
np(1− 2γ/3)K , we obtain

∥yn − ŷn∥ ≤ bx

(
1− 2

3
γ

)K

+
c4K√

n

(
1− 2

3
γ

)K−1

,

where

c4 =
2
√
2bxη√
p

√
log d+ logS − log δ

c
+

2|B′|
√
p

+
2Cxbx√

p
.

Denote δ′ as δ′ = P{¬E1}+ P{¬E2(K
√
np(1− 2γ/2)K), then the theorem follows.

Next, we establish the result concerning the label prediction loss presented in Theorem 5.2 through
the following corollary:
Corollary E.1. Suppose Assumption 1 holds. For a Transformer with K layers, where all layer
structures are described in Section 4.3, and the input sequence is set as in Equation (C.4), there
exists a set of parameters in the Transformer and an explicitly quadratic readout function F such
that, if n ≥ N0, the following inequality holds with probability at least 1− δ:

∥yn+1 − ŷn+1∥ ≤ c6e
−αnK ,

where c6 =
√
dbxc1, and c1 and αn are defined in Theorem 5.1.

Proof of Corollary E.1. We set the V matrix in the read out function FV as

V =

[
0(d+1)×d
Id×d
01×d

]
.

From Proposition 1, when i is an odd index, h(K+1)
i is of the following structure:

h
(K+1)
i =


[X⊤]:, i+1

2

0

β
(K+1)
i
1

 .

Therefore, the output after the read-out function is

ŷ i+1
2

= FV(h
(K+1)
i ) = [X] i+1

2 ,:β
(K+1)
i .

Note that
∥∥∥[X] i+1

2 ,:

∥∥∥ ≤
√
dbx, we have∥∥∥y i+1

2
− ŷ i+1

2

∥∥∥ ≤
∥∥∥[X] i+1

2 ,:

∥∥∥∥∥∥β∗ − β
(K+1)
i

∥∥∥ ≤
√
dbx

∥∥∥β∗ − β
(K+1)
i

∥∥∥.
Combining with Theorem 5.1, the proof is thus complete.

Therefore, by combining Corollary E.1 and Theorem E.1, we arrive at the conclusion of Theo-
rem 5.2.

33



1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835

Under review as a conference paper at ICLR 2025

F ADDITIONAL EXPERIMENT RESULTS

In Section 6, we demonstrate that classical LISTA-type algorithms, such as LISTA, perform poorly
when applied to varying measurement matrices after being trained on a fixed measurement matrix
X. In this section, we further show that unlike LISTA-VM, these classical LISTA-type algorithms
fail to handle in-context sparse recovery problems, even when trained on varying measurements.

The training setup is identical to how we train LISTA-VM. Specifically, we set the number of iter-
ations to K = 12. During each epoch, we randomly sample 100 measurement matrices, each gen-
erating 500 instances from 500 randomly generated sparse vectors, resulting in a total of 50,000 in-
stances per epoch. For each epoch, we minimize the sparse vector prediction loss

∑N
j=1 ∥β̂j −βj∥2

using gradient descent. We train the model for a total of 340 epochs and conduct in-context testing
at the end of every epoch.

In the results shown in Figure 2, we observe that the prediction error on varying X for meta-trained
LISTA and LISTA-CP remains around 3. As illustrated in the figure, there is no observable trend
indicating improvement in the error throughout the training process.

0 50 100 150 200 250 300 350
Epoch

2.9

3.0

3.1

3.2

3.3

3.4

Pr
ed

ict
io

n 
Er

ro
r f

or
 V

ar
yi

ng
 x

Prediction Error for Meta-Trained LISTA
Original
Smoothed (Window Size 5)

(a) LISTA

0 50 100 150 200 250 300 350
Epoch

2.9

3.0

3.1

3.2

3.3

3.4

3.5

Pr
ed

ict
io

n 
Er

ro
r f

or
 V

ar
yi

ng
 x

Prediction Error for Meta-Trained LISTA-CP
Original
Smoothed (Window Size 5)

(b) LISAT-CP

Figure 2: Experimental results for meta-trained classic LISTA-type algorithms.

For comparison, in Figure 3, we also provide the results of the prediction error on varying X for
meta-trained LISTA-VM. The final prediction error is around 0.68, which is significantly more
promising compared to classic LISTA-type algorithms.

0 50 100 150 200 250 300 350
Epoch

0.6

0.7

0.8

0.9

1.0

1.1

1.2

Pr
ed

ict
io

n 
Er

ro
r f

or
 V

ar
yi

ng
 x

Prediction Error for LISTA-VM
Original
Smoothed (Window Size 5)

Figure 3: Experimental results for meta-trained LISTA-VM

34


	Introduction
	Related Works
	Preliminaries
	Transformer Architecture
	In-context Learning by Transformers

	Transformer as a LISTA-type Algorithm for In-context Sparse Recovery
	In-context Sparse Recovery
	Classical Algorithms
	Transformer Can Provably Perform LISTA-type Algorithms

	Performance of Transformers for In-context Sparse Recovery
	Sparse Vector Estimation 
	Label Prediction 

	Experimental Results
	Conclusion
	Additional Related Works
	Table of Notations
	Deferred Proofs in Section 4.3 
	Transformer Structure
	Proof of Theorem 4.1

	Deferred Proofs in Section 5.1
	Proof of Theorem 5.1
	Proof of cor:cor-restrict-sup

	Deferred Proofs in Section 5.2
	Proof of Theorem 5.2

	Additional Experiment Results

