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Abstract

The Transformer architecture has recently gained
considerable attention in the field of graph rep-
resentation learning, as it naturally overcomes
several limitations of Graph Neural Networks
(GNNs) with customized attention mechanisms
or positional and structural encodings. Despite
making some progress, existing works tend to
overlook external information of graphs, specifi-
cally the correlation between graphs. Intuitively,
graphs with similar structures should have similar
representations. Therefore, we propose Graph Ex-
ternal Attention (GEA) — a novel attention mech-
anism that leverages multiple external node/edge
key-value units to capture inter-graph correla-
tions implicitly. On this basis, we design an
effective architecture called Graph External At-
tention Enhanced Transformer (GEAET), which
integrates local structure and global interaction
information for more comprehensive graph repre-
sentations. Extensive experiments on benchmark
datasets demonstrate that GEAET achieves state-
of-the-art empirical performance. The source
code is available for reproducibility at: https:
//github.com/icm1018/GEAET.

1. Introduction
Graph representation learning has attracted widespread at-
tention in the past few years. It plays a crucial role in
various applications, such as social network analysis (Pal
et al., 2020), drug discovery (Gaudelet et al., 2021), protein
design (Ingraham et al., 2019), medical diagnosis (Li et al.,
2020b) and so on.

Early research in graph representation learning primarily
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focuses on Graph Neural Networks (GNNs). A milestone
example is GCN (Defferrard et al., 2016; Kipf & Welling,
2017). It performs convolution operations on the graph.
Based on the framework of message-passing GNNs (Gilmer
et al., 2017), GraphSage (Hamilton et al., 2017), Gat-
edGCN (Bresson & Laurent, 2017) and GIN (Xu et al.,
2019) adapt to complex graph data by employing different
message-passing strategies. While message-passing GNNs
have recently emerged as prominent methods for graph rep-
resentation learning, there still exist some critical limita-
tions, including the limited expressiveness (Xu et al., 2019;
Morris et al., 2019), over-smoothing (Li et al., 2018; Chen
et al., 2020; Oono & Suzuki, 2020), over-squashing (Alon
& Yahav, 2021) and poor long-range dependencies.

Instead of aggregating local neighborhood, Graph Trans-
formers (GTs) capture interaction information between any
pair of nodes through a single self-attention layer. Some
of the existing works focus on customizing specific atten-
tion mechanisms or positional encodings (Dwivedi & Bres-
son, 2020; Ying et al., 2021; Kreuzer et al., 2021; Hus-
sain et al., 2022; Ma et al., 2023), while others combine
message-passing GNNs to design hybrid architectures (Wu
et al., 2021; Chen et al., 2022; Rampášek et al., 2022).
These methods enable nodes to interact with all other nodes
within a graph, facilitating the direct modeling of long-
range relations. This may address typical issues such as
over-smoothing in GNNs.

While the above-mentioned methods have achieved im-
pressive results, they are confined to internal information
within the graph, neglecting potential correlations with other
graphs. In fact, strong correlations between different graphs
generally exist in numerous practical scenarios, such as
molecular graph data. Figure 1 shows 3 molecular graphs
with a benzene ring structure. Intuitively, exploiting inter-
graph correlations can improve the effectiveness of graph
representation learning.

In this work, we address the critical question of how to
incorporate external information into graph representation
learning. Our principal contribution is to introduce a novel
Graph External Attention (GEA) mechanism, which implic-
itly learns inter-graph correlations with the external key-
value units. Moreover, we design Graph External Attention
Enhanced Transformer (GEAET), combining inter-graph
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Figure 1. Three molecular graphs from the ZINC dataset are corre-
lated to the benzene ring structure.

correlations with both local structure and global interaction
information. This enables the acquisition of more compre-
hensive graph representations, in contrast to most existing
methods. Our contributions are listed as follows.

• We introduce GEA to implicitly learn correlations be-
tween all graphs. The complexity scales linearly with
the number of nodes and edges.

• We propose GEAET, which uses GEA to learn external
information and integrates local structure and global in-
teraction information, resulting in more comprehensive
graph representations.

• We demonstrate that GEAET achieves state-of-the-art
performance. Furthermore, we highlight the signifi-
cance of GEA, emphasizing its superior interpretabil-
ity and reduced dependence on positional encoding
compared to self-attention.

2. Related Work
Message-Passing Graph Neural Networks. Early de-
velopments include GCN (Defferrard et al., 2016; Kipf
& Welling, 2017), GraphSage (Hamilton et al., 2017),
GIN (Xu et al., 2019), GAT (Veličković et al., 2018), Gat-
edGCN (Bresson & Laurent, 2017) and others. These meth-
ods are based on a message-passing architecture (Gilmer
et al., 2017) that generally faces the challenges of lim-
ited expressivity. Recent advancements include various
works attempting to enhance GNNs to improve expressivity.
Examples include some works that add features to distin-
guish nodes (Murphy et al., 2019; Sato et al., 2021; Qiu
et al., 2018; Bouritsas et al., 2023; Dwivedi et al., 2022a).
Others focus on altering the message-passing rule (Beaini
et al., 2021) or modifying the underlying graph structure for
message-passing (Morris et al., 2019; Bodnar et al., 2021)
to further exploit the graph structure.

Despite achieving state-of-the-art performance, GNNs face
over-smoothing and over-squashing due to their constrained

receptive field. Over-smoothing happens when all node
representations converge to a constant after deep layers,
whereas over-squashing occurs when messages from distant
nodes fail to propagate effectively. It is crucial to design new
architectures beyond neighborhood aggregation to address
these issues.

Graph Transformers. The Transformer with self-
attention, a dominant approach in natural language pro-
cessing (Vaswani et al., 2017; Devlin et al., 2018), has
shown competitiveness in computer vision (Dosovitskiy
et al., 2021). Given the remarkable achievements of Trans-
formers and their capability to address crucial challenges of
GNNs, GTs have been proposed, attracting increasing atten-
tion. Existing works primarily focus on designing tailored
attention mechanisms or positional and structural encodings,
or combining message-passing GNNs, enabling models to
capture complex structures.

A number of works embed topology information into graph
nodes by designing tailored attention mechanisms or po-
sitional and structural encodings without message-passing
GNNs. GT (Dwivedi & Bresson, 2020) is the pioneering
work of GTs by integrating Laplacian positional encod-
ing. In the following years, a series of works spring up.
SAN (Kreuzer et al., 2021) incorporates both sparse and
global attention mechanisms in each layer, utilizing Lapla-
cian positional encodings for the nodes. Graphormer (Ying
et al., 2021) attains state-of-the-art performance in graph-
level prediction tasks with centrality encoding, spatial en-
coding and edge encoding. EGT (Hussain et al., 2022)
introduces the edge channel into attention mechanisms and
adopts an SVD-based positional encoding instead of Lapla-
cian positional encoding. While self-attention is commonly
constrained by quadratic complexity, our proposed GEA
demonstrates a linear computational complexity with re-
spect to both the number of nodes and edges.

Furthermore, some works introduce hybrid architectures
incorporating message-passing GNNs. For instance, Graph-
Trans (Wu et al., 2021) utilizes a stack of GNN layers be-
fore establishing full connectivity attention within the graph.
Focusing on kernel methods, SAT (Chen et al., 2022) intro-
duces a structure-aware attention mechanism using GNNs to
extract a subgraph representation rooted at each node before
computing the attention. A recent breakthrough emerged
with the introduction of GraphGPS (Rampášek et al., 2022),
the first parallel framework that combines local message-
passing and a global attention mechanism with various posi-
tional and structural encodings. While these methods have
achieved competitive performance, they overlook external
information in the graph. Therefore, to alleviate this issue,
we design GEAET, which inherits the merits of the GEA
network, message-passing GNN and Transformer, leverages
inter-graph correlations, local structure and global interac-

2



Graph External Attention Enhanced Transformer

Softm
ax

X

Q

K

V

X
𝑜𝑢𝑡

×	𝐻

(a) Transformer with self-attention

Unk

N
orm

Unv

X X
𝑜𝑢𝑡

Uek

N
orm

Uev

E E
𝑜𝑢𝑡

U𝑠

×	𝐻

(b) Graph external attention network

Figure 2. Transformer versus graph external attention network. For simplicity, we omit skip connections and FFNs.

tion information.

3. Method
In the following, we denote a graph as G = (V, E), where V
represents the set of nodes and E represents the edges. The
graph has n = |V| nodes and m = |E| edges. We denote
the node features for a node i ∈ V as xi and the features
for an edge between nodes i and j as ei,j . All node features
and edge features are stored in matrices X ∈ Rn×d and
E ∈ Rm×d, respectively.

3.1. Graph External Attention

We first revisit the Transformer, as illustrated in Figure 2a.
Transformer consists of two blocks: a self-attention mod-
ule and a feed-forward network (FFN). Specifically, self-
attention regards the graph as a fully connected graph
and computes the attention of each node to every other
node. With the input node features X, self-attention linearly
projects the input into 3 matrices: a query matrix (Q), a
key matrix (K) and a value matrix (V), where Q = XWQ,
K = XWK and V = XWV . Then self-attention can be
formulated as:

ASelf = softmax(
QKT

√
dout

) ∈ Rn×n,

Self-Attn(X) = ASelfV ∈ Rn×dout ,

(1)

where WQ,WK ,WV are trainable parameters and dout
denotes the dimension of Q. The output of the self-attention
is followed by both a skip connection and a FFN.

Self-attention on a graph can be viewed as employing a
linear combination of node features within a single graph to
refine node features. However, it exclusively focuses on the
correlations among nodes within a single graph, overlook-
ing implicit connections between nodes in different graphs,
which may potentially limit its capacity and adaptability.

Thus, inspired by (Guo et al., 2022), we introduce a novel
method called GEA, as shown in Figure 2b. It calculates
attention between the node features of the input graph and
the external units, using:

AGE = norm(XUT ) ∈ Rn×S ,

GE-Attn(X) = AGEU ∈ Rn×d,
(2)

where U ∈ RS×d is a learnable parameter independent of
the input graph, it can be viewed as an external unit with
S nodes, serving as shared memory for all input graphs. In
self-attention, ASelf represents the similarities between the
nodes of the input graph, while in GEA, AGE denotes the
similarities between the nodes of the input graph and the
external unit. Considering the sensitivity of the attention
matrix to the scale of input features, we apply a double-
normalization technique (Guo et al., 2021) on AGE . The
double-normalization process normalizes both columns and
rows separately, it can be expressed as:

α̃i,j = (XUT )i,j ,

α̂i,j = exp(α̃i,j)/
∑n

k=0
exp(α̃k,j),

αi,j = α̂i,j/
∑S

k=0
α̂i,k.

(3)

In practical applications, for boosting the capability of the
network, we utilize two distinct external units for the key
and value. Furthermore, to leverage the edge information
within the input graph, we employ additional external units
for edge features and a shared unit to store the connections
between edges and nodes:

Xout = norm(XUsU
T
nk)Unv,

Eout = norm(EUsU
T
ek)Uev,

(4)

where Us ∈ Rd×d is a shared unit to store the connections
between edges and nodes; Unk,Unv ∈ RS×d are external
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Figure 3. Overall architecture of GEAET. It consists of a graph embedding layer and L feature extraction layers. The graph embedding
layer transforms graph data into node embeddings X and edge embeddings E. It computes positional encodings, which are added to the
node embeddings as inputs to the feature extraction layers. Each feature extraction layer consists of a graph external attention network, a
message-passing GNN and a Transformer to extract inter-graph correlations, local structures and global interaction information. Finally,
this information is integrated using a feed-forward network (FFN) and then employed on the output embeddings for various graph tasks.

key-value units for nodes, while Uek,Uev ∈ RS×d are
external key-value units for edges.

Within the Transformer architecture, self-attention is com-
puted across various input channels in multiple instances,
a technique referred to as multi-head attention. Multi-head
attention can capture diverse node relations, enhancing the
ability of the attention mechanism. Similarly, take nodes as
an example, the relations between nodes within the graph
and external units are various. Therefore, we adopt an anal-
ogous approach, it can be written as:

hi = GE-Attn(Xi,Unk,Unv),

Xout = MultiHeadGEA(X,Unk,Unv)

= Concat(h1, ..., hH)Wo,

(5)

where hi represents the i-th head, H is the total number of
heads, Wo is a linear transformation matrix, Unk,Unv ∈
RS×d serve as shared memory units for different heads. Fi-
nally, the output of the GEA is followed by a skip connection
forming a Graph External Attention Network (GEANet).

3.2. Graph External Attention Enhanced Transformer

Figure 3 illustrates an overview of the proposed GEAET
framework. GEAET consists of two components: graph
embedding and feature extraction layers.

Graph Embedding. For each input graph, we initially per-
form a linear projection of the input node features αi ∈ Rdα

and edge features βi,j ∈ Rdβ , resulting in d-dimensional
hidden features:

x̃0
i = W0

xαi + u0 ∈ Rd,

e0ij = W0
eβi,j + v0 ∈ Rd,

(6)

where W0
x ∈ Rd×dα , W0

e ∈ Rd×dβ and u0, v0 ∈ Rd are
learnable parameters. Then, we use positional encoding to
enhance the input node features:

x0
i = T0pi + x̃0

i , (7)

where T0 ∈ Rd×k is a learnable matrix and pi ∈ Rk is
positional encoding. It is noteworthy that the advantages of
different positional encodings are dependent on the dataset.

Feature Extraction Layer. At each layer, external feature
information is captured by the GEANet and then aggregated
with intra-graph information to update node features. The
intra-graph information is obtained through a combination
of message-passing GNN and Transformer. This process
can be formulated as:

Xl+1
M ,El+1

M = MPNNl(Xl,El,A),

Xl+1
T = TLayerl(Xl),

Xl+1
G ,El+1

G = GEANetl(Xl,El+1
M ),

(8)

where GEANet refers to the graph external attention net-
work introduced in Section 3.1, TLayer represents the
Transformer layer with self-attention, A ∈ Rn×n is the ad-
jacency matrix, MPNN is an instance of a message-passing
GNN to update node and edge representations as follows:

xl+1
i = fnode(x

l
i, {xl

j | j ∈ N (i)}, eli,j),
el+1
i,j = fedge(x

l
i, x

l
j , e

l
i,j),

(9)

where xl+1
i , xl

i, e
l+1
i,j , eli,j ∈ Rd, l is the layer index, i, j

denotes the node index, N (i) is the neighborhood of the
i-th node and the functions fnode and fedge with learnable
parameters define any arbitrary message-passing GNN ar-
chitecture (Kipf & Welling, 2017; Bresson & Laurent, 2017;
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Table 1. Comparison of GEAET with baselines on 6 datasets. Best results are colored: first, second, third.
Model CIFAR10 MNIST PATTERN Peptides-Struct PascalVOC-SP COCO-SP

Accuracy(%) ↑ Accuracy(%) ↑ Accuracy(%) ↑ MAE ↓ F1 score ↑ F1 score ↑
GCN (Kipf & Welling, 2017) 55.710 ± 0.381 90.705 ± 0.218 71.892 ± 0.334 0.3496 ± 0.0013 0.1268 ± 0.0060 0.0841 ± 0.0010
GINE (Xu et al., 2019) – – – 0.3547 ± 0.0045 0.1265 ± 0.0076 0.1339 ± 0.0044
GIN (Xu et al., 2019) 55.255 ± 1.527 96.485 ± 0.252 85.387 ± 0.136 – – –
GAT (Veličković et al., 2018) 64.223 ± 0.455 95.535 ± 0.205 78.271 ± 0.186 – – –
GatedGCN (Bresson & Laurent, 2017) 67.312 ± 0.311 97.340 ± 0.143 85.568 ± 0.088 0.3357 ± 0.0006 0.2873 ± 0.0219 0.2641 ± 0.0045
PNA (Corso et al., 2020) 70.350 ± 0.630 97.940 ± 0.120 – – – –
DGN (Beaini et al., 2021) 72.838 ± 0.417 – 86.680 ± 0.034 – – –
DRew (Gutteridge et al., 2023) – – – 0.2536 ± 0.0015 0.3314 ± 0.0024 –

CRaWl (Toenshoff et al., 2021) 69.013 ± 0.259 97.944 ± 0.050 – – – –
GIN-AK+ (Zhao et al., 2022) 72.190 ± 0.130 – 86.850 ± 0.057 – – –

SAN (Kreuzer et al., 2021) – – 86.581 ± 0.037 0.2545 ± 0.0012 0.3230 ± 0.0039 0.2592 ± 0.0158
K-Subgraph SAT (Chen et al., 2022) – – 86.848 ± 0.037 – – –
EGT (Hussain et al., 2022) 68.702 ± 0.409 98.173 ± 0.087 86.821 ± 0.020 – – –
GraphGPS (Rampášek et al., 2022) 72.298 ± 0.356 98.051 ± 0.126 86.685 ± 0.059 0.2500 ± 0.0005 0.3748 ± 0.0109 0.3412 ± 0.0044
LGI-GT (Yin & Zhong, 2023) – – 86.930 ± 0.040 – – –
GPTrans-Nano (Gutteridge et al., 2023) – – 86.731 ± 0.085 – – –
Graph-ViT/MLPMixer (He et al., 2023) 73.960 ± 0.330 98.460 ± 0.090 – 0.2449 ± 0.0016 – –
GRIT (Ma et al., 2023) 76.468 ± 0.881 98.108 ± 0.111 87.196 ± 0.076 0.2460 ± 0.0012 – –
Exphormer (Shirzad et al., 2023) 74.754 ± 0.194 98.414 ± 0.038 86.734 ± 0.008 0.2481 ± 0.0007 0.3966 ± 0.0027 0.3430 ± 0.0008
GEAET (ours) 76.634 ± 0.427 98.513 ± 0.086 86.993 ± 0.026 0.2445 ± 0.0013 0.4585 ± 0.0087 0.3895 ± 0.0050

Hamilton et al., 2017; Veličković et al., 2018; Xu et al.,
2019; Hu et al., 2020).

Finally, we employ an FFN block to aggregate node informa-
tion to obtain the node representations Xl+1. Additionally,
we employ El+1

G as the edge features for the l + 1-th layer:

Xl+1 = FFNl(Xl+1
G +Xl+1

T +Xl+1
M ),

El+1 = El+1
G ,

(10)

where Xl+1
T ,Xl+1

M ∈ Rn×d are the outputs of l-layer Trans-
former and message-passing GNN, Xl+1

G ,El+1
G ∈ Rn×d

are the outputs of l-layer GEANet.

See Appendix D for the complexity analysis of GEAET.

4. Experiments
In this section, we evaluate the empirical performance of
GEANet and GEAET on a variety of graph datasets with
graph prediction and node prediction tasks, including CI-
FAR10, MNIST, PATTERN, CLUSTER and ZINC from
Benchmarking GNNs (Dwivedi et al., 2020), as well as
PascalVOC-SP, COCO-SP, Petides-Struct, Petides-Func
and PCQM-Contact from Long Range Graph Benchmark
(LRGB; Dwivedi et al., 2022b), and the TreeNeighbour-
Match dataset (Alon & Yahav, 2021). Detailed information
is provided in the Appendix A.

We first compare our main architecture, GEAET, with the
latest state-of-the-art models. In addition, we integrate
GEANet with the message-passing GNNs and compare it
with the corresponding network to demonstrate the role of
GEANet. Furthermore, we conduct a series of compara-
tive experiments with Transformer, including visualization
experiments on attention in molecular graphs, experiments
varying the number of attention heads and positional encod-

ing experiments. Finally, we conduct ablation studies on
each component of GEANet, including the external node
unit, the external edge unit and the shared unit, to confirm
the effectiveness of each component. More details on the
experimental setup and hyperparameters are provided in the
Appendix B, additional results are given in the Appendix C.

In summary, our experiments reveal that (a) GEAET archi-
tecture outperforms existing state-of-the-art methods on var-
ious datasets, (b) GEANet can be seamlessly integrated with
some basic GNNs, significantly enhancing the performance,
(c) GEANet shows better interpretability than Transformer
and (d) GEANet is less dependent on positional encoding.

4.1. Comparison with SOTAs

We compare our methods with several recent SOTA
graph Transformers, including Exphormer, GRIT, Graph-
ViT/MLPMixer, and numerous popular graph representa-
tion learning models, such as well-known message-passing
GNNs (GCN, GIN, GINE, GAT, GatedGCN, PNA), and
graph Transformers (SAN, SAT, EGT, GraphGPS, LGI-GT,
GPTrans-Nano). Additionally, we consider other recent
methods with SOTA performance, such as DGN, DRew,
CRaW1 and GIN-AK+.

As shown in Table 1, for the 3 tasks from Benchmark-
ing GNNs (Dwivedi et al., 2020), we observe that our
GEAET achieves SOTA results on CIFAR10 and MNIST
and ranks second on the PATTERN dataset. For the 3 tasks
on LRGB (Dwivedi et al., 2022b), GEAET achieves the best
results. It is noteworthy that the GEAET achieves F1 scores
of 0.4585 on PascalVOC-SP and 0.3895 on COCO-SP, sur-
passing other models by a significant gap.
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Table 2. Comparison of the classic message-passing GNN baselines with their variants augmented by GEANet on 5 benchmarks.
Model PascalVOC-SP COCO-SP Peptides-Struct Peptides-Func PCQM-Contact

F1 score ↑ F1 score ↑ MAE ↓ AP ↑ MRR ↑
GCN 0.1268 ± 0.0060 0.0841 ± 0.0010 0.3496 ± 0.0013 0.5930 ± 0.0023 0.3234 ± 0.0006
+GEANet 0.2250 ± 0.0103 0.2096 ± 0.0041 0.2512 ± 0.0003 0.6722 ± 0.0065 0.3244 ± 0.0007
GINE 0.1265 ± 0.0076 0.1339 ± 0.0044 0.3547 ± 0.0045 0.5498 ± 0.0079 0.3180 ± 0.0027
+GEANet 0.2742 ± 0.0032 0.2410 ± 0.0028 0.2544 ± 0.0012 0.6509 ± 0.0021 0.3276 ± 0.0012
GatedGCN 0.2873 ± 0.0219 0.2641 ± 0.0045 0.3420 ± 0.0013 0.5864 ± 0.0077 0.3242 ± 0.0008
+GEANet 0.3933 ± 0.0027 0.3219 ± 0.0052 0.2547 ± 0.0009 0.6485 ± 0.0035 0.3321 ± 0.0008

Table 3. Comparison of the classic message-passing GNN baselines with their variants augmented by GEANet on 5 benchmarks.
Model PATTERN CLUSTER MNIST CIFAR10 ZINC

Accuracy(%) ↑ Accuracy(%) ↑ Accuracy(%) ↑ Accuracy(%) ↑ MAE ↓
GCN 71.892 ± 0.334 68.498 ± 0.976 90.705 ± 0.218 55.710 ± 0.381 0.367 ± 0.011
+GEANet 85.323 ± 0.128 74.015 ± 0.124 96.465 ± 0.054 61.925 ± 0.271 0.240 ± 0.008
GIN 85.387 ± 0.136 64.716 ± 1.553 96.485 ± 0.252 55.255 ± 1.527 0.526 ± 0.051
+GEANet 85.527 ± 0.015 66.370 ± 2.145 96.845 ± 0.097 62.320 ± 0.221 0.193 ± 0.001
GatedGCN 85.568 ± 0.088 73.840 ± 0.326 97.340 ± 0.143 67.312 ± 0.311 0.282 ± 0.015
+GEANet 85.607 ± 0.038 77.013 ± 0.224 98.315 ± 0.097 73.857 ± 0.306 0.218 ± 0.011

4.2. Comparison with GNNs

To clearly demonstrate the performance improvement of
GEANet on graph representation learning models, we inte-
grate GEANet with some commonly used message-passing
GNNs, providing the models with the ability to learn graph
external information. In our comparison, we evaluate our ap-
proach against the corresponding GNNs, with GNN results
sourced from Dwivedi et al. (2020) or Dwivedi et al. (2022b).
To maintain a fair comparison, our trained models strictly ad-
here to the parameter constraints without incorporating any
positional encoding, consistent with Dwivedi et al. (2020)
and Dwivedi et al. (2022b). As depicted in Table 2 and
Table 3, GEANet significantly improves the performance
of all base message-passing GNNs, including GCN (Kipf
& Welling, 2017), GatedGCN (Bresson & Laurent, 2017),
GIN (Xu et al., 2019) and GINE (Hu et al., 2020), on various
datasets simply by combining the output of GEANet with
the output of the GNN. This is achieved without any addi-
tional modifications, validating that GEANet can effectively
alleviate issues in message-passing GNNs.

4.3. Comparison with Self-Attention

Attention Interpretation. To better explain the attention
mechanism, we respectively train a GEANet and a Trans-
former on the ZINC dataset and visualize the attention
scores in Figure 4. The salient difference between the two
models is that GEANet can capture the correlation between
graphs, and thus we can attribute the following interpretabil-
ity gains to that. While both models manage to identify
some hydrophilic structures or functional groups, the atten-
tion scores learned by GEANet are sparser and more infor-
mative. GEANet focuses more on important atoms such
as N and O, as well as atoms that connect different motifs.
The attention distribution of GEANet is similar to the struc-

tural distribution of the original molecular graphs, which
promotes to predict the restricted solubility more accurately.
In contrast, Transformer does not utilize inter-graph corre-
lations, resulting in poorer predictive performance. More
results are provided in the Appendix E.
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Figure 4. Attention visualization of GEANet and Transformer on
ZINC molecular graphs. The left column shows two original
molecular graphs, while the middle and right columns show the
visualization results of attention scores with GEANet and Trans-
former, respectively.

Impact of Attention Heads. We investigate the impact
on the number of attention heads with two attention mech-
anisms. Figure 5 shows the MAE values with either GCN
+ Transformer or GCN + GEANet on the Peptides-Struct
dataset. For a fair comparison, both models use Lapla-
cian positional encoding, with the same number of layers
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and approximately total number of parameters (about 500k).
Heads = 0 corresponds to a pure GCN network without atten-
tion. The introduction of attention mechanism significantly
improves performance. GEANet achieves the best perfor-
mance with 8 heads. In contrast, Transformer performs best
with one head, suggesting that multiple self-attention heads
do not enhance performance. Notably, GEANet consistently
outperforms self-attention across various numbers of heads.

0 2 4 6 8

0.245

0.25

0.255

0.26

0.265

Number of attention heads

M
A

E

GCN+GEANet
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Figure 5. Test MAE with different number of attention heads.

Impact of Positional Encoding. We conduct an ablation
study on the Peptides-Struct dataset to assess the impact of
positional encoding on GEANet and Transformer. Sim-
ilar to the experiments with attention heads, we utilize
a parallel architecture consisting of an GCN block and
an attention block. Figure 6 shows the MAE values ob-
tained with and without positional encoding, including Ran-
dom Walk Positional Encoding (RWPE; Li et al., 2020a;
Dwivedi et al., 2022a) and Laplacian Positional Encoding
(LapPE; Dwivedi & Bresson, 2020; Kreuzer et al., 2021).
The Transformer with self-attention performs poorly with-
out positional encoding. The utilization of LapPE and
RWPE improves performance to some extent. In contrast,
GEANet achieves an good performance without positional
encoding. For GEANet, we observe that LapPE can enhance
performance, while RWPE decreases performance. On the
whole, GEANet is less dependent on positional encoding
compared to Transformer.

4.4. GEAET Mitigates Over-Squashing

The TreeNeighbourMatch dataset (Alon & Yahav, 2021)
is used to provide an intuition of over-squashing. On this
dataset, each example is represented with a binary tree of
depth r. Figure 7 shows the performance comparison of the
standard message-passing GNNs with our proposed GEAET
on the TreeNeighbourMatch dataset. The results indicate
that our GEAET generalizes well on the dataset up to r =
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Figure 6. Test MAE with different positional encodings.

7, effectively alleviating the issue of over-squashing. In
contrast, the 5 GNN methods fail to generalize effectively
from r = 4. This is consistent with the perspective of Alon
& Yahav (2021) that GNN suffers from over-squashing due
to a fixed-length embedding of the graph. Our method
addresses this problem by utilizing graph external attention
mechanisms to transmit long-range information.
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Figure 7. Test accuracy with different problem radius r on the
TreeNeighbourMatch dataset.

4.5. Ablation Experiments

To assess the practicality of our model design choices, we
conduct multiple ablation experiments on MNIST and PAT-
TERN. The results are shown in Table 4. We notice that the
removal of either external node units, external edge units, or
external shared units all leads to poorer performance, which
demonstrates the soundness of our architectural decisions.
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Table 4. Ablation study on MNIST and PATTERN datasets for
GEA components. The metric is the Accuracy(%).

Node Edge Share MNIST PATTERN
– – – 98.274 ± 0.011 86.882 ± 0.028

✓ – – 98.474 ± 0.013 86.956 ± 0.038
✓ ✓ – 98.488 ± 0.082 86.959 ± 0.024
✓ ✓ ✓ 98.513 ± 0.086 86.993 ± 0.026

5. Conclusion
Observing that existing graph representation learning meth-
ods are confined to internal information, we argue for the
importance of inter-graph correlations. Drawing inspira-
tion from the idea that graphs with similar structures ought
to have analogous representations, we propose GEA, a
novel lightweight yet effective attention mechanism to ex-
ploit inter-graph correlations. On this basis, we introduce
GEAET to exploit local structure and global interaction in-
formation. GEAET achieves state-of-the-art performance
on various graph datasets, highlighting the significance of
inter-graph correlations. Nevertheless, GEAET is not the
final chapter of our work; future efforts will focus on reduc-
ing the high memory cost and time complexity, as well as
addressing the lack of upper bounds on expressive power.
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A. Dataset Descriptions
We evaluate our method on diverse datasets, including 5 graph benchmark datasets from Benchmarking GNNs, 5 long-range
dependency graph datasets from LRGB and the TreeNeighbourMatch dataset. Below, we provide descriptions of the datasets
and present summary statistics in Table 5.

MNIST and CIFAR10. MNIST and CIFAR10 (Dwivedi et al., 2020) represent the graphical counterparts of their
respective image classification datasets of the same name. A graph is formed by creating an 8-nearest neighbor graph
of the SLIC superpixels of the images. These datasets pose 10-class graph classification challenges. For MNIST, the
resulting graphs have sizes ranging from 40 to 75 nodes, while for CIFAR10, the graphs vary between 85 and 150 nodes.
The classification tasks involve the standard dataset splits of 55K/5K/10K for MNIST and 45K/5K/10K for CIFAR10,
corresponding to train/validation/test graphs. These datasets serve as sanity checks, with an expectation that most GNNs
would achieve close to 100% accuracy for MNIST and satisfactory performance for CIFAR10.

PATTERN and CLUSTER. PATTERN and CLUSTER (Dwivedi et al., 2020) are synthetic datasets derived from the
Stochastic Block Model (SBM; Abbe, 2018) on node classification tasks. PATTERN is to determine whether a node belongs
to one of the 100 predefined subgraph patterns, while CLUSTER is to classify nodes into 6 distinct clusters with identical
distributions. The unique feature of PATTERN involves recognizing nodes belonging to randomly generated sub-graph
patterns, while CLUSTER entails inferring the cluster ID for each node in graphs composed of 6 SBM-generated clusters.
We use the splits as is used in (Dwivedi et al., 2020).

ZINC. ZINC (Dwivedi et al., 2020) is a graph regression dataset derived from a subset of molecular graphs (12K out of
250K) sourced from a freely available database of commercially accessible compounds (Irwin et al., 2012). The molecular
graphs in ZINC range from 9 to 37 nodes, where each node represents a heavy atom (with 28 possible atom types) and each
edge signifies a bond (with 3 possible types). The primary task is to regress a molecular property known as constrained
solubility. The dataset includes a predefined train/validation/test split of 10K/1K/1K instances.

PascalVOC-SP and COCO-SP. PascalVOC-SP and COCO-SP (Dwivedi et al., 2022b) are graph-based versions of image
datasets with larger images and involve the task of node classification, specifically the semantic segmentation of superpixels.
These datasets respectively derived from the Pascal VOC 2011 image dataset (Everingham et al., 2010) and the MS COCO
image dataset through SLIC superpixelization, present a more intricate node classification challenge compared to CIFAR10
and MNIST. Each superpixel node is associated with a specific object class, making them node classification datasets with a
focus on regions of images belonging to particular classes.

Peptides-Func and Peptides-Struct. Peptides-Func and Peptides-Struct (Dwivedi et al., 2022b) are derived from 15,535
peptides with a total of 2.3 million nodes sourced from SAT-Pdb (Singh et al., 2016). The graphs exhibit large sizes, averaging
150.94 nodes per graph and a mean graph diameter of 56.99. Specifically suited for benchmarking graph Transformers
or expressive GNNs capable of capturing long-range interactions. Peptides-func involves multi-label graph classification
into 10 nonexclusive peptide functional classes, while Peptides-struct focuses on graph-level regression predicting 11 3D
structural properties of the peptides.

PCQM-Contact. PCQM-Contact (Dwivedi et al., 2022b) is derived from PCQM4Mv2 and corresponding 3D molecular
structures, where the task is a binary link prediction task. This dataset contains 529,434 graphs with a total of 15 million
nodes, where each graph represents a molecular graph with explicit hydrogens. All graphs in PCQM-Contact are extracted
from the PCQM4M training set, specifically those with available 3D structure and filtered to retain only those with at least
one contact.

TreeNeighbourMatch. TreeNeighbourMatch is a synthetic dataset introduced by Alon & Yahav (2021) to illustrate the
challenge of over-squashing in GNNs. It features binary trees of controlled depth that simulate an exponentially-growing
receptive field with a problem radius r. The task is to predict a label for the target node, situated in one of the leaf nodes,
necessitating information propagation from all leaves to the target node. This setup exposes the issue of over-squashing at
the target node due to the need for comprehensive long-range signal incorporation before label prediction.
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Table 5. Summary statistics of datasets used in this study.
Dataset Graphs Avg. nodes Avg. edges Prediction Level Task Metric
MNIST 70,000 70.6 564.5 graph 10-class classif. Accuracy
CIFAR10 60,000 117.6 941.1 graph 10-class classif. Accuracy
PATTERN 14,000 118.9 3,039.3 inductive node binary classif. Accuracy
CLUSTER 12,000 117.2 2,150.9 inductive node 6-class classif. Accuracy
ZINC 12,000 23.2 24.9 graph regression MAE

PascalVOC-SP 11,355 479.4 2,710.5 inductive node 21-class classif. F1
COCO-SP 123,286 476.9 2,693.7 inductive node 81-class classif. F1
PCQM-Contact 529,434 30.1 61.0 inductive link link ranking MRR
Peptides-Func 15,535 150.9 307.3 graph 10-class classif. Avg. Precision
Peptides-Struct 15,535 150.9 307.3 graph regression MAE

TreeNeighbourMatch(r=2) 96 7 6 inductive node 4-class classif. Accuracy
TreeNeighbourMatch(r=3) 32,000 15 14 inductive node 8-class classif. Accuracy
TreeNeighbourMatch(r=4) 64,000 31 30 inductive node 16-class classif. Accuracy
TreeNeighbourMatch(r=5) 128,000 63 62 inductive node 32-class classif. Accuracy
TreeNeighbourMatch(r=6) 256,000 127 126 inductive node 64-class classif. Accuracy
TreeNeighbourMatch(r=7) 512,000 255 254 inductive node 128-class classif. Accuracy

B. Hyperparameter Choices and Reproducibility
Hyperparameter Choice. In our hyperparameter search, we attempt to adjust the number of heads in GEANet, as well
as hyperparameters related to positional encoding, message-passing GNN type and Transformer. Considering the large
number of hyperparameters and datasets, we do not conduct an exhaustive search or grid search. For a fair comparison, we
follow commonly used parameter budgets: for benchmarking datasets from Benchmarking GNNs (Dwivedi et al., 2020), a
maximum of 500k parameters for PATTERN and approximately 100k parameters for MNIST and CIFAR10; for datasets
from LRGB (Dwivedi et al., 2022b), we adhere to a parameter budget of 500k. See Table 6 for detailed information.

Optimization. We use the AdamW (Loshchilov & Hutter, 2019) optimizer in all our experiments, with the default settings
of β1 = 0.9, β2 = 0.999 and ϵ = 10−8, and use a cosine scheduler (Loshchilov & Hutter, 2017). The choice of loss
function, length of the warm-up period, base learning rate and total number of epochs are adjusted based on the dataset.

Table 6. Hyperparameters used for GEAET on 6 datasets.

Hyperparameter CIFAR10 MNIST PATTERN Peptides-Struct PascalVOC-SP COCO-SP
Layers 5 5 7 6 8 8
Hidden Dim d 40 40 64 224 68 68
MPNN GatedGCN GatedGCN GatedGCN GCN GatedGCN GatedGCN
Self Attention Transformer Transformer Transformer None Transformer Transformer
External Network GEANet GEANet GEANet GEANet GEANet GEANet
Self Heads 4 4 4 None 4 4
External Heads 4 4 4 8 4 4
Unit Size S 10 10 16 28 17 17

PE ESLapPE-8 ESLapPE-8 RWPE-16 LapPE-10 None None
PE Dim 8 8 7 16 None None

Batch Size 16 16 32 200 50 50
Learning Rate 0.001 0.001 0.0005 0.001 0.001 0.001
Num Epochs 150 150 100 250 200 200
Warmup Epochs 5 5 5 5 10 10
Weight Decay 1e-5 1e-5 1e-5 0 0 0

Num Parameters 113,235 113,155 429,052 463,211 506,213 505,661
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C. Additional Results
We provide additional results here, including detailed results from the attention heads and position encoding experiments,
the results of GEAET on the link prediction task of the PCQM-Contact dataset and a substantial number of additional
ablation studies.

Impact of Attention Heads. We conduct experiments with different numbers of attention heads on the Peptides-Struct
and Peptides-Func datasets. We adopt a framework where the base GNN and the attention block (Transformer or GEANet)
operate in parallel, with the output of the model at each layer being the sum of the outputs from the GNN and the attention
block. To ensure fairness, we use the same number of layers, apply Laplacian positional encoding (LapPE), use GCN as the
base GNN and keep the total number of parameters to about 500k. The detailed results are shown in Table 7, where all
results are averaged over 4 different random seeds. We observe that having multiple attention heads does not significantly
improve Transformer for both datasets. However, there is a notable improvement in GEANet, with the lowest MAE achieved
with 8 heads on Peptides-Struct and the best AP achieved with 8 heads on Peptides-Func.

Table 7. The results of Transformer and GEANet with different number of attention heads.
Model #Layers Positional #Heads #Parameters Peptides-Struct Peptides-Func

Encoding MAE ↓ AP ↑
GCN + Transformer 6 LapPE 2 490,571 0.2516 ± 0.0031 0.6644 ± 0.0052
GCN + Transformer 6 LapPE 3 490,571 0.2529 ± 0.0012 0.6688 ± 0.0072
GCN + Transformer 6 LapPE 4 490,571 0.2524 ± 0.0017 0.6634 ± 0.0033
GCN + Transformer 6 LapPE 6 490,571 0.2557 ± 0.0032 0.6630 ± 0.0085
GCN + Transformer 6 LapPE 8 490,571 0.2544 ± 0.0037 0.6593 ± 0.0060

GCN + GEANet 6 LapPE 2 626,219 0.2474 ± 0.0006 0.6828 ± 0.0059
GCN + GEANet 6 LapPE 3 539,123 0.2461 ± 0.0006 0.6890 ± 0.0060
GCN + GEANet 6 LapPE 4 508,571 0.2455 ± 0.0009 0.6892 ± 0.0042
GCN + GEANet 6 LapPE 6 486,683 0.2470 ± 0.0025 0.6880 ± 0.0025
GCN + GEANet 6 LapPE 8 463,211 0.2445 ± 0.0013 0.6912 ± 0.0012

Impact of Positional Encoding. Similar to the experiments on attention heads, we study the impact of different positional
encodings on attention. Table 8 shows the results averaged over 4 different random seeds. We find that GEANet has a lower
dependency on positional encoding compared to Transformer with self-attention.

Table 8. The results of Transformer and GEANet with different positional encodings.
Model #Layers Positional #Heads #Parameters Peptides-Struct Peptides-Func

Encoding MAE ↓ AP ↑
GCN + Transformer 6 None 4 492,731 0.3871 ± 0.0094 0.6404 ± 0.0095
GCN + Transformer 6 RWPE 4 490,143 0.2858 ± 0.0044 0.6564 ± 0.0122
GCN + Transformer 6 LapPE 4 490,571 0.2524 ± 0.0017 0.6589 ± 0.0069

GCN + GEANet 6 None 4 510,731 0.2512 ± 0.0003 0.6722 ± 0.0065
GCN + GEANet 6 RWPE 4 508,143 0.2546 ± 0.0018 0.6794 ± 0.0089
GCN + GEANet 6 LapPE 4 508,571 0.2445 ± 0.0013 0.6892 ± 0.0042

GEAET in Link Prediction Task. In the link prediction task, we evaluate common ranking metrics from the knowledge
graph link prediction literature (Bordes et al., 2013) as shown in Table 9: Hits@1, Hits@3, Hits@10 and Mean Reciprocal
Rank (MRR), where Hits@k indicates whether the actual answer is among the top-k predictions provided by the model.

Improving GNN with GEANet. To demonstrate the importance of GEANet, we conduct additional experiments on the
Peptides-Struct, Peptides-Func, and PascalVOC-SP datasets. As shown in Table 10, compare with positional encoding,
GEANet significantly improves the performance of all base message-passing GNNs.

D. Complexity Analysis
We first analyze the complexity of GEANet. As the model dimensions d and the size of external units S are hyper-parameters,
GEANet scales linearly with the number of nodes and edges, resulting in a complexity of O(|V|+ |E|). For GEAET, the
complexity is primarily determined by GEANet, Transformer and message-passing GNN. The GEANet, as described above,
has linear complexity. The message-passing GNN has a complexity of O(|E|). In typical cases, the Transformer uses the
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Table 9. Performance of GEAET on the link prediction task of the PCQM-Contact dataset. We select baseline models that also report the
Hits@1, Hits@3, Hits@10, and MRR metrics. Our results are averaged over 4 runs with 4 different seeds, while the results of the baseline
models are either from (Dwivedi et al., 2022b) or the original papers.

Model Test Hits@1 ↑ Test Hits@3 ↑ Test Hits@10 ↑ Test MRR ↑
SAN 0.1312 ± 0.0016 0.4030 ± 0.0008 0.8550 ± 0.0024 0.3341 ± 0.0006
GatedGCN 0.1288 ± 0.0013 0.3808 ± 0.0006 0.8517 ± 0.0005 0.3242 ± 0.0008
Transformer 0.1221 ± 0.0011 0.3679 ± 0.0033 0.8517 ± 0.0039 0.3174 ± 0.0020
GCN 0.1321 ± 0.0007 0.3791 ± 0.0004 0.8256 ± 0.0006 0.3234 ± 0.0006
GINE 0.1337 ± 0.0013 0.3642 ± 0.0043 0.8147 ± 0.0062 0.3180 ± 0.0027
Graph Diffuser 0.1369 ± 0.0012 0.4053 ± 0.0011 0.8592 ± 0.0007 0.3388 ± 0.0011

GEAET (ours) 0.1566 ± 0.0014 0.4227 ± 0.0022 0.8626 ± 0.0032 0.3518 ± 0.0011

Table 10. Improving GNN performance with GEANet. We run the experiments with 4 different seeds and average the results.
Model Positional PascalVOC-SP Peptides-Struct Peptides-Func

Encoding F1 score ↑ MAE ↓ AP ↑
GCN None 0.1268 ± 0.0060 0.3496 ± 0.0013 0.5930 ± 0.0023
GCN + GEANet None 0.2250 ± 0.0103 0.2512 ± 0.0003 0.6722 ± 0.0065
GCN + GEANet LapPE 0.2353 ± 0.0070 0.2445 ± 0.0013 0.6892 ± 0.0042
GCN + GEANet RWPE 0.2325 ± 0.0165 0.2546 ± 0.0018 0.6794 ± 0.0089

GINE None 0.1265 ± 0.0076 0.3547 ± 0.0045 0.5498 ± 0.0079
GINE + GEANet None 0.2742 ± 0.0032 0.2544 ± 0.0012 0.6509 ± 0.0021
GINE + GEANet LapPE 0.2746 ± 0.0071 0.2480 ± 0.0023 0.6654 ± 0.0055
GINE + GEANet RWPE 0.2762 ± 0.0022 0.2546 ± 0.0011 0.6618 ± 0.0059

GatedGCN None 0.2873 ± 0.0219 0.3420 ± 0.0013 0.5864 ± 0.0077
GatedGCN + GEANet None 0.3933 ± 0.0027 0.2547 ± 0.0009 0.6485 ± 0.0035
GatedGCN + GEANet LapPE 0.3944 ± 0.0044 0.2468 ± 0.0014 0.6715 ± 0.0034
GatedGCN + GEANet RWPE 0.3899 ± 0.0017 0.2577 ± 0.0006 0.6734 ± 0.0028

self-attention mechanism with a complexity of O(|V|2), resulting in complexity of O(|V|2) . In practice, we observe that on
certain datasets such as Peptides-Struct and Peptides-Func, not using Transformer yields better results, achieving linear
complexity in such cases. Additionally, we can use linear Transformers to reduce the complexity of GEAET to linearity.

E. Model Interpretation
In addition to the examples presented in the main paper, we provide additional visualization results in Figure 8. GEANet
and Transformer use the same positional encoding, and other hyperparameter settings are generally consistent. The first
column shows the original molecules from ZINC, the middle and right columns show the visualization results of GEANet
and Transformer, respectively. We observe that GEANet focuses more on the important nodes or connected nodes of
specific structures, which improves the ability to distinguish different graphs or motifs. This indicates that GEANet excels
in handling structural information and concentrates on discriminative nodes.
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Figure 8. Attention visualization of GEANet and Transformer on ZINC molecular graphs. The center column shows the attention weights
of GEANet and the right column shows the attention weights learned by the classic Transformer.
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