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Abstract

Symbolic regression (SR) is a challenging task in machine learning that involves
finding a mathematical expression for a function based on its values. Recent
advancements in SR have demonstrated the effectiveness of pre-trained transformer
models in generating equations as sequences, leveraging large-scale pre-training on
synthetic datasets and offering notable advantages in terms of inference time over
classical Genetic Programming (GP) methods. However, these models primarily
rely on supervised pre-training objectives borrowed from text generation and
overlook equation discovery goals like accuracy and complexity. To address this,
we propose TPSR, a Transformer-based Planning strategy for Symbolic Regression
that incorporates Monte Carlo Tree Search planning algorithm into the transformer
decoding process. Unlike conventional decoding strategies, TPSR enables the
integration of non-differentiable equation verification feedback, such as fitting
accuracy and complexity, as external sources of knowledge into the transformer
equation generation process. Extensive experiments on various datasets show
that our approach outperforms state-of-the-art methods, enhancing the model’s
fitting-complexity trade-off, extrapolation abilities, and robustness to noise[ﬂ.

1 Introduction

Symbolic regression (SR) is a powerful method to discover mathematical expressions for governing
equations of complex systems and to describe data patterns in an interpretable symbolic form. It finds
extensive applications in science and engineering, enabling the modeling of physical phenomena
in various domains such as molecular dynamics, fluid dynamics, and cosmology [1H6]. Symbolic
representations provide valuable insights into complex systems, facilitating a better understanding,
prediction, and control of these systems through the design of accurate, generalizable, and efficient
models [7H9]. SR models establish the functional relationship between independent and target vari-
ables by mapping them to mathematical equations. The input data can be obtained from simulations,
experimental measurements, or real-world observations. Symbolic regression, however, poses several
challenges, including the combinatorial nature of the large optimization search space, vulnerability to
the quality of input data, and the difficulty of striking a balance between model fitting, complexity,
and generalization performance [ 10} [11]].

Symbolic regression encompasses a wide range of methods, spanning different categories. Traditional
approaches, such as Genetic Programming (GP), use a heuristic population-based search strategy
where each individual represents a potential solution to the problem [12| [13]]. Though GP algorithms
are capable of finding solutions for nonlinear and complex problems, they are typically slow to
converge due to the vast functional search space. Also, as they need to start the search from scratch
for each dataset, they tend to be computationally expensive, prone to overfitting, and sensitive to the
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Figure 1: Pareto plot comparing the rankings of all methods in terms of the R? performance and
identified equation complexity for (a) SRBench Black-box datasets and (b) Feynman datasets.
Our results with Transformer-based Planning (TPSR) applied on top of E2E transformer SR model
improves its average accuracy on both data groups while maintaining a similar range of equation
complexity. TPSR can successfully reach the first Pareto-front which is better than E2E baseline on
both data groups. Connecting lines denote Pareto dominance rankings, colors denote the families of
models, and "x" indicates SR versus ML methods in Black-box datasets.

choice of parameters [14]. Recent works in SR have shown promising results by using pre-trained
transformers [15]] for generating equations as sequences of tokens. These models leverage the prior
knowledge learned through large-scale pre-training and can generate equations with a single forward
pass, leading to considerably faster inference time compared to the GP-based methods [[L6H19].
However, one of the limitations of these models is that they focus on the supervised language model
pre-training objective borrowed from text generation, i.e., they are trained solely with the token-level
cross-entropy loss, which can result in equations that may exhibit high token-level similarities but
are suboptimal with respect to equation discovery objectives such as fitting accuracy and complexity
which are critical in this task. To mitigate this issue, beam search [20,21] or sampling [22] approaches
have been employed as decoding strategies to propose multiple candidate equations for a given dataset,
and then select the optimal candidate equation based on the fitting accuracy after optimizing for
constants. Nonetheless, both beam search and sampling decoding strategies primarily rely on the pre-
trained transformer’s logits and next token probabilities, and therefore do not receive any performance
feedback during the generation of equation candidates.

To consider the equation discovery objectives in the transformer generation process and still benefit
from the pre-trained model logits, we propose TPSR, a Transformer-based Planning strategy for
Symbolic Regression. TPSR leverages a lookahead planning algorithm, using Monte Carlo Tree
Search (MCTS) as a decoding strategy on top of pre-trained transformer SR models to guide equation
sequence generation. TPSR significantly improves performance of the discovered equations by
considering verification feedback during the generation process and still remains considerably faster
than GP-based models which do not leverage the pre-training priors and learn expressions for each
dataset from scratch. Notably, our approach is model-agnostic and can be applied to any pre-trained
SR model, enabling optimization of generated equation sequences for non-differentiable objectives
that may encompass combinations of fitting accuracy, complexity, and equation forms. Additionally,
we incorporate different caching mechanisms to reduce the overall inference time. Our experimental
results demonstrate that applying TPSR on top of the pre-trained E2E SR model [18]] significantly
enhances its performance across various benchmark datasets. As depicted in Fig. [T, TPSR achieves a
strong balance between fitting accuracy and model complexity compared to other leading baselines.
It also effectively drives the E2E model towards the optimal trade-off, represented by the first Pareto
front. The major contributions of this work are summarized below:

* Proposing TPSR, a new method that combines pre-trained transformer SR models with Monte
Carlo Tree Search (MCTS) lookahead planning to optimize the generation of equation sequences
while considering non-differentiable performance feedback.

» Developing a new reward function that balances equation fitting accuracy and complexity to
optimize the generated equations for an effective trade-off.



* Demonstrating that TPSR consistently outperforms state-of-the-art baselines across various SR
benchmark datasets, generating equations with higher fitting accuracy while maintaining lower
complexity to avoid non-parsimonious solutions. TPSR still achieves considerably faster inference
time than GP-based models which do not use pre-trained priors.

* Showcasing the extrapolation and noise robustness of TPSR compared to the baseline and conduct-
ing an ablation study to investigate the impact of various model components.

2 Related Work

Symbolic Regression without Learned Priors. Genetic Programming (GP) algorithms are typ-
ically employed for single-instance SR, aiming to find the best-fit equation for a "single" dataset
at hand [[12]]. Recently, alternative neural network-based search algorithms have been explored,
including deep reinforcement learning (RL) [[14} 23| [24], combinations of GP and RL [25]], and
Monte Carlo Tree Search (MCTS) as a standalone framework [26]. Despite their successes, all these
methods lack the benefits of prior knowledge learned from large-scale pre-training. Consequently,
they are slow during inference as they need to restart the search from scratch for new datasets.

Pre-trained Transformers for Symbolic Regression. In recent years, pre-trained transformers
have shown remarkable performance in natural language and programming language tasks [27-
29]. This success has inspired researchers to develop pre-trained transformer models for SR [16-
19,130]. For example, Biggio et al. [16] introduced a Neural Symbolic Regression model that scales
(NeSymReS) with the amount of synthetic training data and generates equation skeletons where
all the numerical constants are represented by a single token “C”. Kamienny et al. [[18] proposed
an end-to-end transformer SR framework that predicts the complete equation form along with its
constants. More recent works [30, [31]] introduced unified frameworks that include a transformer-
based pre-training stage as the prior for subsequent RL or GP optimization steps. While GP and
RL methods have to start anew for each problem, the transformer approaches rely on synthetic
data and the power of large-scale pre-trained priors to generate equations in a single forward pass.
However, these models are pre-trained on token-level language modeling loss function and thus can
perform suboptimal for other equation discovery objectives critical in SR such as fitting accuracy to
the observed data as well as equation’s complexity. Our model, TPSR, utilizes lookahead planning
to guide the generation of equations towards better performance by employing these objectives as
feedback during the transformer generation process.

Planning in Sequence Generation. Recently, planning algorithms have been utilized in NLP tasks
to optimize text output for specific objectives, such as controlling generated text to meet certain
constraints like non-toxicity or conveying certain emotions [32H34]]. Recent advances in programming
language models developed in code generation have also yielded promising techniques that could
be adapted for SR, as they share several vital similarities with each other. Both involve generating
sequences of symbols for a given input and typically require optimizing the generated sequences
for specific criteria which is different from the pre-trianing objective. For code generation, this
may involve optimizing objectives like code compilability, readability, or passing test cases [35H37].
Similarly, in SR, the focus may be on equation-specific sequence-level objectives such as fitting
accuracy or minimizing complexity. Motivated by these successes, we develop an approach that
combines MCTS planning with pre-trained transformer SR models for improved equation discovery.

3 Methodology

3.1 Preliminaries

In SR, the main goal is to find a symbolic expression for the unknown function f(-) mapping the
d-dimensional input & € R to the target variable y = f(x) € R. Given a dataset of n observations
D = (x;,v:)" 1, SR methods try to generate an equation f(-) such that y; ~ f(z;) for all i € N,,.
Also, the proposed equation is desired to generalize well and to effectively balance the fitting accuracy
and complexity. The transformer SR models are trained on a large-scale dataset comprising equation
instances paired with their corresponding observations, {(D1, f1(-)) ... (D, far(+))}, where M
is the dataset size (number of paired samples). During inference, the trained model directly generates
the equation f(-) as a sequence of tokens in an autoregressive manner. An effective way to represent
the expression tree of equations in a sequence is to use prefix notation as in [38]. For embedding the
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Figure 2: An overview of our proposed method with MCTS-guided decoding at inference compared
to the concurrent works with beam search/sampling decoding strategy.

observations, we adopt the pre-trained SR model backbone from [18]. Notably, given the potential for
large input sequences with tokenized numeric data and the quadratic complexity of transformers, the
method introduced in [18] deploys a linear embedder module to map tokenized inputs to a singular
embedding space before introducing them to the transformer encoder and decoder. Subsequent to
embedding, these models encode the input observations and then pass the encoded representation
along with the masked tokens to decode the equation sequence. To train the model, token-level
cross-entropy loss with teacher forcing is employed to learn the distribution of next token prediction
conditioned on the encoded dataset and the current state of sequence (Fig. |2Ka)).

Achieving a good fitting performance from the model’s predicted sequence demands generating
accurate constants in the equation. To address this, the generated skeleton or equation can un-
dergo a round of optimization to estimate their constants using nonlinear methods, such as Broy-
den—Fletcher—Goldfarb—Shanno algorithm (BFGS) [39]]. Previous works [18| [16] employ beam
search and sampling strategies for transformer decoding in combination with constant optimization
to propose several candidate equations. Subsequently, they use fitting metrics such as R? to order
these candidates and output the final equation with the best performance (Fig. 2(b)). Transformer
models utilizing beam search or sampling decoding strategies can generate multiple high-likelihood
equation sequences, but their generation process is based on logits obtained from model parameters
pre-trained with token-matching loss relative to the reference equation. As a result, such models lack
the capability to receive verification feedback during generation and optimize sequence for equation
discovery objectives such as fitting or complexity of equations.

3.2 MCTS-Guided Equation Generation

To generate equations that are both better-fitting and less-complex, it is crucial to incorporate feedback
into the equation generation process. To achieve this, we utilize Monte Carlo Tree Search (MCTS)
lookahead planning during inference, guiding the decoder towards optimal solutions for fitting and
complexity objectives (as shown in Fig. [J{c)). The MCTS-guided transformer decoding explores
different possibilities, identifying the most promising paths based on the objectives.

We frame the SR equation generation task as a Markov Decision Process (MDP) where state s
represents the current sequence at generation step (token) ¢. If s has not reached the terminal state
(i.e., the <EOS> token), we select the next token from the vocabulary as action a, updating state s’ by
concatenating s and a. Upon reaching the terminal state, the reward r is computed and used to update
the decoding model. MCTS represents states as nodes and actions as edges within a tree structure,
navigating state-space from the root node (i.e., initial state) to reach terminal states with maximum
rewards. MCTS balances exploration and exploitation, considering nodes that lead to higher quality
equations (i.e., higher Q-values) and under-explored nodes (i.e., those with fewer visits). During
the generation process of the transformer, we utilize the MCTS algorithm iteratively to conduct
lookahead planning and determine the next token. However, the large search-space requires more
than the sole application of MCTS to discover high-quality equations. We need to effectively share
information between the pre-trained transformer model and MCTS for better generations. To achieve
this, we incorporate the probabilities of the next-token that are acquired through the pre-trained
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Figure 3: Overview of TPSR’s key steps: Selection, Expansion, Evaluation, and Backpropagation.
MCTS-guided lookahead planning in decoding interacts with the pre-trained transformer SR model
in the expansion and evaluation steps employing the transformer top-k sampling and beam search,
respectively. The designed reward is used to guide the backpropagation.

transformer SR models into the MCTS planning process. This incorporation helps to enhance the
search process, leading to more efficient and effective results. The key steps of MCTS for transformer
decoding in SR models, as depicted in Fig. [3] are as follows:

Selection. The Upper Confidence Bound for Trees [40] criterion is employed to select actions (i.e.,
next tokens) for fully extended nodes in the search tree, balancing exploration and exploitation. We
use the P-UCB heuristic [41] as

In (N(s))

P-UCB(s,a) = Q(s,a) + 3 - Py(als) - m’ )

where (s, a) is the maximum return for action « in state s across all simulations, promoting the
exploitation of the optimal child node. The second term encourages exploration of less-visited
children, with N (s) as state s’s visit count and s’ as the subsequent state. Py(a|s) is the probability of
the next token a given the partial sequence state s from pre-trained transformer model parameterized
by 6. The exploration-exploitation trade-off is adjusted by hyperparameter /3. Lastly, the next token
action maximizes the P-UCB: Select(s) = arg max, P-UCB(s, a).

Expansion. In the expansion stage, after selecting a node that is not fully expanded, a new child
(next token) for the current state is explored. Random expansion of the node from the vocabulary,
however, might result in an invalid equation (that does not comply with the prefix notation) and
makes the search process very time-consuming. Therefore, given partial equations, only top-k most
likely choices of the next token are considered as the possible children of the node for expansion. In
other words, we are restricting the actions to be only from the top-k high-likelihood options which
are retrieved from the pre-trained transformer SR model’s logits. These options are then ordered to
determine the sequence in which the children will be expanded.

Evaluation. To evaluate the newly expanded nodes, we perform simulations to complete the equation
sequence. This is necessary because the new state may still be a partial equation and performance
feedback can only be obtained at the end of the sequence when the equation generation is completed.
In MCTS, it is common to employ random actions during the simulation stage. Nevertheless, random
action selection for equation generation, much like during expansion, suffers from certain drawbacks
in terms of time and the possibility of generating invalid equations. Consequently, the pre-trained
transformer SR model is invoked again, this time utilizing beam search with a beam size of b, to
generate complete equation candidates based on the current state. The beam size b determines the
number of complete equations to be generated from the current partial equation. Following these
simulations, the highest reward among all the complete equation candidates is assigned to the new
node value.

Backpropagation. After generating a complete equation f(-), the corresponding reward 7(f(-)) can
be computed. The highest reward among all simulations is then assigned to the new node, which
recursively backpropagates its estimated value to its parents until it reaches the root of the tree. This



update process involves updating the @) values of all state-action pairs, denoted as s’ and o, along the
trajectory in the tree to reach the root. Specifically, for each state-action pair, the () value is updated
by taking the maximum of the current () value and the new value r: Q(s’,a’) + max (Q(s’,a’), ).

More details on TPSR, including its steps and implementation can be found in Appendix

3.3 Reward Definition

We define a numerical reward 7 € R to evaluate complete equation candidate f (+), promoting
fitting accuracy and regulating complexity. After optimizing constants in the complete sequence,
we compute the reward. We first calculate the normalized mean squared error (NMSE) between

ground-truth target variable y and predicted target variable § = f(«), and formulate the reward as:

_ 1 exn(— )
1+ NMSE(y, f(=)) - Acxp( ) @

r(fO)lz,y)

where [ represents equation complexity as the sequence length in prefix notation [18 42} [16]; L
denotes the model’s maximum sequence length; and A is a hyperparameter balancing fitting and
complexity reward terms. Higher A values favor less complex equations, encouraging best-fitting

and penalizing non-parsimonious solutions. NMSE is calculated as (L ||y — fl(x) H;) /(£ Hy”; +€),
where ¢ is a small constant to prevent numerical instability.

3.4 Efficient Implementation with Caching

During MCTS evaluation, the transformer model Iteration ¢ Iteration ¢ + 1
generates complete equation sequences from a Evaluation Expansion Evaluation
given state, constructing implicit tree structures o)
for beam search and computing top-k next tokens

for visited states. These computations are required ORCD

in future MCTS iterations, so we employ two
caching mechanisms, top-k caching and sequence
caching, to reduce redundancy and improve effi-
ciency. T'op-k caching stores computed top-k val-
ues for given states. For example, in Fig.[d] when
evaluating state s = [+, sin| in MCTS iteration ¢,
top-k tokens are computed for s and subsequent Figure 4: An illustration of caching mechanisms
visited states, such as [+, sin, 2:5]. State and top-k  in TPSR.

value pairs are cached for future use, avoiding re-

dundant token retrieval. Sequence caching caches complete equations generated with the provided
beam size. If a state matches a stored equation partially, the cached equation can be used directly in
future iterations, bypassing iterative sequence generation. Both caching strategies are designed to
enhance efficiency without compromising performance. More details are provided in Appendix [C|

Sequence
Cache

fil4,sin, x5, 00, xp]

frl+,sin,xp, ., xp]

4 Experiments

In this section, we present our experimental results that evaluate the effectiveness and efficiency of
TPSR. While the proposed decoding strategy is generally model-agnostic, here we showcase the
results of using TPSR for the end-to-end (E2E) pre-trained SR transformer backbone [18]], as E2E
is the state-of-the-art open-source pre-trained SR model with publicly accessible model weights.
Additional results of using TPSR with the NeSymReS pre-trained SR backbone [[16] can be found in
Appendix We evaluate our framework by answering the following research questions (RQs):

RQ1. Does TPSR perform better than other decoding strategies (beam search/sampling) and
competing baseline methods over standard SR benchmark datasets?

RQ2. Does TPSR provide better extrapolation and robustness to noise?

RQ3. Are TPSR’s caching mechanisms effective in reducing computation time?

RQ4. What is the role of individual components in TPSR’s overall performance gain?



Table 1: Performance of TPSR compared with beam search and sampling decoding strategies on the
SRBench [42] and In-domain Synthetic [18]] datasets.

Data Group  Model Feynman Strogatz Black-box
1T R?>099 | Complexity 1 R?>>0.99 | Complexity 1 R? 1 Complexity
E2E+Beam 0.815 54.19 0.357 53.21 0.847 83.61
E2E+Sampling 0.848 50.73 0.357 50.14 0.864 82.78
SRBench TPSR (A=0) 0.952 84.42 0.928 82.78 0.938 129.85
TPSR (A=0.1) 0.949 57.22 0.785 56.14 0.945 95.71
TPSR (A\=0.5) 0.924 50.01 0.714 47.02 0.931 82.58
TPSR (A\=1) 0.916 47.24 0.571 43.42 0.924 79.43
Data Group ~ Model 1T R?>0.99 1 R? 1T Acco.q 1T Acco.o1 1T Acco.001 | Complexity
E2E+Beam 0.657 0.782 0.461 0.298 0.2 38.37
E2E+Sampling 0.640 0.794 0.472 0.332 0.208 39.82
In-domain TPSR (A\=0) 0.702 0.828 0.550 0.416 0.333 67.11
TPSR (A\=0.1) 0.708 0.833 0.514 0.326 0.213 40.31
TPSR (A\=0.5) 0.697 0.830 0.459 0.274 0.184 36.55
TPSR (\=1) 0.691 0.827 0.439 0.271 0.176 35.67

4.1 Datasets

We evaluate TPSR and various baseline methods on standard SR benchmark datasets from Penn
Machine Learning Benchmark (PMLB) [43]] studied in SRBench [42], as well as In-domain Synthetic
Data generated based on [38} [18]. The benchmark datasets include 119 equations from Feynman
Lectures on Physics database serieq’|[44]], 14 symbolic regression problems from the ODE-Strogatz
databaseﬂ [45]], and 57 Black-box’|regression problems without known underlying equations. We
limit the datasets to those with continuous features and input dimension d < 10, as the transformer SR
model [18] is pre-trained with d,, 4, = 10. The In-domain Synthetic Data consists of 400 validation
functions with different levels of difficulty and number of input points. This data is referred to as
"in-domain" because the validation functions and their corresponding input points are generated using
the same approach as the data on which the backbone transformer model [18] is pre-trained. More
details on each of these datasets are provided in Appendix [A]

4.2 Evaluation Metrics

We evaluate our model using the following three metrics: R? score [42], accuracy to tolerance w
[16} 46], and equation complexity [18,42].

Niest(, ~\2
—Zi (v: — i) , Acc, =1( max

vatest (yi _ g)2 1<i<Ntest

Yi — Yi
Yi

RP—1_ <w), Complexity = |T(f()|,

where R? measures fitting performance with % as the mean of y in test set, Acc,, evaluates equation
precision based on tolerance threshold w, and equation complexity is determined by the number of
nodes in the expression tree 7~ of the generated equation f(-). Following [18] 42], we set R? = 0 for
rare pathological examples and discard the worst 5% predictions for Acc,, to reduce outlier sensitivity.

4.3 (RQ1) Effectiveness of TPSR

Table [T] presents the performance comparison results of TPSR with the baseline decoding strategies
on the SRBench benchmark and the In-domain synthetic dataset. For the E2E baseline, we use the
settings reported in [18]], including beam/sample size of C' = 10 candidates, and the refinement of
all the candidates K = 10. For our model, we use the width of tree search as k,,,, = 3, number
of rollouts r = 3, and simulation beam size b = 1 as the default setting. For PMLB datasets that
contain more than 200 points, we follow [18]] and use B bags of data, each containing N = 200
points, due to the limitation that the baseline method is pre-trained with N < 200 data points. In the
baseline method [18]], a total of BC candidates are generated (C' candidates for B bags), which are
then sorted and refined to generate the best equation. However, for TPSR, since we need to train an
MCTS for each bag, we use an iterative decoding approach, starting with the first bag and continuing

"https://space.mit.edu/home/tegmark/aifeynman.html
*https://github.com/lacava/ode-strogatz
*https://github.com/EpistasisLab/pmlb/tree/master/datasets
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Figure 5: Performance comparison of TPSR and SRBench algorithms in terms of Accuracy-
Complexity-Time on Feynman (top) and Black-box (bottom) datasets. For Feynman dataset, al-
gorithms are sorted based on mean accuracy defined as the ratio of solutions with R? > 0.99 on
test set under various noise levels, and for Black-box dataset, the algorithms are sorted based on the
median R? score on test set. TPSR demonstrates a strong balance of performance with relatively
low model complexity and lower inference time compared to GP-based algorithms. The error bars
represent the 95% confidence interval and "x" refers to SR methods for Black-box dataset.

with subsequent bags until a criterion (R? > 0.99) is met or we use a maximum of B = 10 bags.
To ensure a fair comparison, we use B = 10 for the E2E baseline method as well. In this table, we
demonstrate the results of our proposed framework, TPSR, with varying values of the A\ parameter
that controls the trade-off between fitting performance and complexity in the hybrid reward function
defined in Eq. (2). For a detailed comparison of the experimental settings across different approaches,
refer to Table2]in Appendix [B]

As shown in Table [T} when A = 0, the framework generates complex equations that overoptimize for
fitting performance. However, as we increase A, the framework generates less complex equations
with a slight reduction in fitting performance. Notably, even for large values of A, such as A = 1,
the fitting performance of TPSR significantly outperforms that of the baseline methods. Based on
the results, we recommend a default setting of A = 0.1 as it offers a balanced trade-off between
complexity and accuracy, while also mitigating potential overfitting (as detailed in Appendix [D.T).
These findings demonstrate the superiority of TPSR over the baseline methods in terms of fitting
performance across all datasets, while generating equations with comparable or reduced complexity
than those generated by the baseline methods. Table[T|shows that TPSR exhibits a more significant
gap in fitting performance when compared to E2E baselines on SRBench datasets, while this gap is
smaller for In-domain datasets (even performing slightly worse on Acc,, for larger A = 0.5, 1). This
is due to the In-domain dataset being generated using the same approach as the E2E pre-training data,
resulting in the E2E model’s superior performance on this synthetic dataset. Furthermore, qualitative
comparisons of TPSR with baseline symbolic and black-box regression models demonstrate the
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Figure 6: TPSR with A € {0,0.1,0.5,1} compared to E2E for (a) Extrapolation performance
where in-domain accuracy is shown for different input sampling variance (o), and (b) Robustness to
noise, where mean accuracy (R? > 0.99) is shown for various target noise levels (7).

superior performance of TPSR in learning the underlying equation and out-of-domain extrapolation
(see Appendix [D.3).

Fig. [] presents a detailed comparison of our proposed TPSR with the baseline E2E transformer
model and all the SRBench baselines on the PMLB Feynman and Black-box datasets. This figure
illustrates the relative position of each algorithm with respect to (1) fitting performance, (2) model
complexity, and (3) inference time. The results indicate that transformer-based planning in the TPSR
significantly enhances the performance of E2E and outperforms even the state-of-the-art GP baselines,
achieving the highest fitting performance on the black-box datasets. This is achieved while the
complexity of the generated equations in TPSR is not greater than that of E2E, and shows a great
fitting-complexity-time balance compared to other SR algorithms. The pareto plots provided in Fig.[I]
and Appendix [D.2)also demonstrate the effectiveness of TPSR in balancing fitting-complexity as well
as fitting-time compared to all other SRBench baselines. Our TPSR effectively pushes this balanced
performance to the first pareto front for both the Feynman and Black-box datasets. Moreover, it is
important to note that, while the inference time of TPSR is longer than the baseline E2E transformer
model, it still has significantly lower inference time than RL or GP-based SRBench baselines. Further
results on the SRBench and In-domain datasets are provided in Appendix

4.4 (RQ2) Extrapolation and Robustness

The ability to extrapolate well is inherently linked to the quality of the equations discovered through
symbolic regression. To investigate the extrapolation performance of TPSR to out-of-training regions,
we normalize the input test data points to different scales (o) instead of unit variance (used for
training points) as per [18]]. Fig.[6a) depicts the average performance of TPSR compared to E2E with
sampling decoding on the training data as well as testing data in scales of o € {1,2,4,8, 16} for the
In-domain Synthetic dataset. Also, we investigate the effect of different complexity controlling levels
(A € {0,0.1,0.5,1.0}) on the extrapolation performance. It can be observed that, while A = 0 (i.e.,
no complexity regularization) achieves the best fitting accuracy on the training data, it has a sub-par
performance for ¢ > 8. This can be due to the overfitting issue when the symbolic model is much
more complex than the true function, similar to the common overfitting issue in ML models. Results
highlight the importance of controlling complexity in the extrapolation of identified equations. For
values of A > 0, the overfitting issue is mitigated as the generated equations become less complex.
However, very high values of A (e.g., A = 1) mostly result in poor accuracy performance. The
flexibility of TPSR for allowing different values of A to balance fitting and complexity for a given
task is crucial for optimal performance. Fig.[6[b) also presents the robustness of TPSR with different
A levels compared to the E2E transformer baseline on the Feynman dataset. The results indicate that
MCTS-guided lookahead planning can offer robust performance with a smaller drop in accuracy
compared to the baseline in the presence of noise.

4.5 Ablation Study

In this section, we investigate the effect of different MCTS parameters and caching mechanisms on
the performance of TPSR by conducting ablation experiments on the Feynman datasets.
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Figure 7: Ablation study on the modules and parameters of TPSR. (a) Effect of caching mechanisms:
Sequence caching and top-k caching improve the inference time of TPSR (A = 0.1). (b) Efficiency
and parameters of TPSR: Average accuracy of TPSR (varying model parameters), and baseline
E2E (varying sampling size) across number of generated candidates.

(RQ3) Caching Mechanisms. In Fig. |Zka), we illustrate the effectiveness of the sequence and top-k
caching mechanisms in reducing the total inference time of TPSR (A = 0.1). Our experiments show
that sequence caching has more effect in dropping the inference time as it replaces the time-consuming
sequence generation process. Overall, these two mechanisms can reduce the total inference time by
around 28%.

(RQ4) Search Parameters. Fig.[7(b) shows the accuracy performance against the number of
generated equations during the decoding process for both TPSR (A = 0.1) and the baseline E2E with
sampling decoding. In this figure, the ‘number of generated equation candidates’ represents the total
number of complete equation sequences generated by each method. Specifically, this refers to the
sample size in the E2E with sampling decoding, and the function calls of the beam search sub-routine
multiplied by beam size b in TPSR. The results show that under the same number of generated
equation candidates, TPSR significantly outperforms the E2E baseline. This is primarily attributed to
the fact that the E2E baseline is deprived of any performance feedback during the equation generation
process. We report the results for variants of TPSR with different MCTS parameters. We assess
the performance with varying number of rollouts, » = {1, 3,6, 9}, number of beams in simulations,
b = {1,3}, and the maximum number of possible expansions at each state, ke = {2,3,4}.
The default setting of TPSR parameters are b = 1, k4, = 3, and » = 3. Results indicate that
increasing 7, k4., and b all contribute to the better performance of TPSR, with the most significant
improvement observed when increasing r. This is because more rollouts provide model with more
opportunities to learn from trials and learn better values.

5 Conclusion

In this work, we propose TPSR, a model-agnostic decoding strategy for symbolic regression that
leverages the power of pre-trained SR transformer models combined with MCTS lookahead planning,
and outperforms the existing methods in generating equations with superior fitting-complexity-time
trade-off. We demonstrate the flexibility of TPSR in controlling discovered equation complexity
without fine-tuning the pre-trained model. We also show that TPSR performs 100x faster than
state-of-the-art genetic algorithms by leveraging the pre-trained priors. Additional results show that
better expressions obtained with lookahead planning can further improve model performance in terms
of noise robustness and extrapolation to unseen data. Future research could focus on enhancing the
adaptability of feedback-based expression generation mechanisms, potentially by modulating the
flexibility of MCTS or transformer model weights, and the integration of MCTS with the training
or fine-tuning of transformer SR models. Furthermore, employing parallelization and distributed
computing could potentially improve planning efficiency.
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