
Under review as a conference paper at ICLR 2024

UNLOCKING THE POTENTIAL OF FEDERATED LEARN-
ING FOR DEEPER MODELS

Anonymous authors
Paper under double-blind review

ABSTRACT

Federated learning (FL) is a new paradigm for distributed machine learning that
allows a global model to be trained across multiple clients without compromis-
ing their privacy. Although FL has demonstrated remarkable success in various
scenarios, recent studies mainly utilize shallow and small neural networks. In our
research, we discover a significant performance decline when applying the existing
FL framework to deeper neural networks, even when client data are independently
and identically distributed. Our further investigation shows that the decline is due
to the continuous accumulation of dissimilarities among client models during the
layer-by-layer back-propagation process, which we refer to as "divergence accu-
mulation." As deeper models involve a longer chain of divergence accumulation,
they tend to exhibit more significant divergence, subsequently leading to perfor-
mance decline. Both theoretical derivations and empirical evidence are proposed
to support the existence of divergence accumulation and its amplified effects in
deeper models. To tackle this challenge, we propose a set of technical guidelines
centered on minimizing divergence. These guidelines, consisting of strategies such
as employing wider models and reducing the receptive field, greatly improve the
performance of FL on deeper models. Their effectiveness is validated via extensive
evaluation with various metrics. For example, applying the guidelines can boost
the performance of ResNet101 on the Tiny-ImageNet dataset by as much as 43%.

1 INTRODUCTION

Federated learning (FL) is an emerging distributed learning framework that allows a global model
to be trained across multiple clients and without privacy leakage McMahan et al. (2017); Li et al.
(2020a); Zhang et al. (2021a). While recent FL studies achieve notable success in various contexts,
they primarily utilize shallow, small-scale neural networks with typically less than ten layers Li et al.
(2021b); Arivazhagan et al. (2019); Li et al. (2020b). In contrast, centralized learning (CL) often
enjoys larger and deeper models due to their increased capacity for fitting a diversity of data. For
example, ResNet101 He et al. (2016) has 101 layers, and Swin-L Liu et al. (2021) has 120 layers.

Naturally, the presence of this architectural disparity prompts us to question whether the performance
of these deeper architectures in the FL framework aligns with that in CL. We conduct experiments on
models with various depths, and unfortunately, we find that as the neural network becomes deeper,
the performance gap between FL and CL often broadens significantly, even in a simple context where
data across clients are independently and identically distributed (i.i.d.). According to our experiments,
Fig. 1a and 1b show that the performance gap between FL and CL is noticeably more significant
when using a deeper model. Additionally, Fig. 1c indicates that FL, when using a deeper model,
converges more slowly and with less stability. This phenomenon hinders the utilization of FL in many
applications where deeper models are necessary Anwar et al. (2018); Muhammad et al. (2018).

One straightforward approach to enhance FL performance involves making the FL process more
similar to CL by reducing the local iteration number or decreasing the learning rate. This is based
on the fact that when the number of local iterations in FL is set to one, it becomes equivalent to
CL. However, these methods contradict the core motivation of FL, which not only impacts the
communication efficiency of FL but also raises concerns about privacy protection Hu et al. (2020).

1

Under review as a conference paper at ICLR 2024

ResNet18 ResNet34 ResNet42 ResNet50 ResNet101
50

55

60

65

70

75

80

85

Ac
cu

ra
cy

CIFAR10
CL
FL

4

6

8

10

12

Pe
rfo

rm
an

ce
 G

ap

(a) Comparison between CL and
FL on CIFAR10.

ResNet18 ResNet34 ResNet42 ResNet50 ResNet101
20

30

40

50

60

Ac
cu

ra
cy

CIFAR100
CL
FL

4

6

8

10

12

Pe
rfo

rm
an

ce
 G

ap

(b) Comparison between CL and
FL on CIFAR100.

0 10 20 30 40 50 60 70 80
Rounds

0.2

0.4

0.6

0.8

Te
st

 A
cc

CIFAR10

ResNet9
ResNet18
ResNet50
ResNet101

(c) Training curves for FL on CI-
FAR10 with different models.

Figure 1: This experiment is conducted on various datasets using ResNets He et al. (2016) with
different depths. We choose 30 clients, 8 local epochs and learning rate to be 0.02. The dashed line in
Fig. 1a, 1b show the performance gap between FL and CL.

To tackle this issue and attain improved training performance with deeper models in FL, we must
address a critical question: Why does the utilization of deeper networks in FL result in a more
pronounced performance decline when compared to using shallower networks?

One conjecture suggests that deeper models with a larger number of parameters are more prone to
overfitting the local data on each client, resulting in a degradation of overall performance. However,
our experiments cast doubt on this conjecture. If it were true, increasing the number of model
parameters, either by widening or deepening the model, should consistently lead to a decline in
performance. Surprisingly, when we increase the number of model parameters by widening each layer,
we observe an improvement in FL performance instead of a decline. This indicates that attributing
the performance degradation solely to the number of parameters is insufficient. For more detailed
information on this experiment, refer to Section 4.

To provide a clearer understanding of the aforementioned question, we introduce the concept of
divergence for client models in FL. Divergence, in this context, refers to the dissimilarity between the
update directions of each client and serves as a significant indicator for evaluating FL performance.
We demonstrate that the divergence is zero if, and only if, the optimization objective of FL aligns
with that of CL. A detailed proof is provided in Section 3. Thus, a lower divergence implies a closer
approximation of FL model to CL model, which further indicates enhanced performance of this
FL model. Formally, we define divergence as follows. For training round t and model layer L, the
average divergence divLt of all clients is formally defined as:

divLt =
1

N

N∑
i=1

√
||Ex∈Xi [∇θL(θLt , x)]−∇θ̄Lt ||22

dL
, ∇θ̄Lt =

1

N

N∑
i=1

Ex∈Xi
[∇θL(θLt , x)] (1)

where θLt ∈ RdL is the global model parameter with dimension dL, N is the number of clients, Xi is
the dataset of client i, Ex∈Xi

[∇θL(θLt , x)] is the expected gradient calculated in client i and∇θ̄Lt is
the averaged expectation across all clients.

We demonstrate the divergences of ResNet101 trained on Tiny-ImageNet with client number to be
30, and the results are shown in Fig. 2a. Here are several noteworthy observations derived from this
figure. Firstly, it is evident that compared with deeper layers, the divergence for shallower layers is
usually larger. Secondly, divergences for various layers exhibit distinct properties. In the case of
shallow layers, divergences generally decrease and eventually converge. However, for deep layers,
the divergences tend to increase and intensify.

These findings emphasize a strong relationship between parameter divergence and model architecture.
To shed light on this phenomenon, we introduce a theorem centered around divergence accumulation.
The fundamental idea is illustrated in Fig. 2b. In short, the divergence of each layer is influenced
by the back-propagation algorithm and can be broken down into two components: the divergence
back-propagated from the subsequent layer and the divergence originating from distinct inputs. As
each layer integrates divergence from the subsequent layer, divergences accumulate at each step of
the back-propagation process. Through this layer-by-layer progression, the divergences of later layers
steadily accumulate upon the divergences of preceding layers. Consequently, deeper networks exhibit
longer chains of divergence accumulation, ultimately resulting in lower performance.

2

Under review as a conference paper at ICLR 2024

0 10 20 30 40
Rounds

−8

−7

−6

−5

−4

−3

−2

−1

Lo
gg

ed
 D

iv
er

ge
nc

e

Layer #2
Layer #23
Layer #42
Layer #96

(a) Divergences in ResNet101. For
better visualization we use log(·) to
rescale these divergences.

server

Input

Input

client N

Input
output

Input
output

client 1

output

output

client N

client 1

server

ŏ ŏ

Divergence accumulated

via back-propogation

Layer #shallow
layer

deep
layer

Divergence accumulated via
back-propogation

Divergence of
clients at a

certain layer

Layer #shallow
layer

deep
layer

Divergence of
clients at a

certain layer

(b) Divergence accumulation in a shallow network (left) and deeper
network (right). As deeper network has a longer accumulation
chain, it tends to present a larger divergence in shallower layers.

Figure 2: Illustrations about divergence accumulation.

Building upon the aforementioned theorem, we propose several guidelines to enhance the training
of deeper networks in the FL framework, focusing on two key aspects. The first aspect relates
to model architecture. We have discovered that using wider models and reducing receptive fields
can mitigate the adverse effects of divergence accumulation and therefore significantly improve FL
performance. The second aspect concerns the pre-processing of input data. As the fundamental
cause of model divergence is the diversity of data originating from different clients, implementing
appropriate pre-processing strategies, including using images with higher resolution and adopting
proper data augmentation methods, can mitigate the divergence at the root level, thus substantially
enhancing the performance of deeper models in FL.

It is crucial to emphasize that our focus is not on developing “new” methods for enhancing model
performance. Instead, we draw attention to existing techniques that are already utilized in CL.
Nevertheless, our experiments reveal that when applied in the context of FL, these methods have
a remarkable impact in reducing divergence, resulting in significantly greater enhancements in FL
performance compared to CL. More importantly, we observe that these methods can largely reduce
the performance gap between FL and CL. By highlighting these guidelines, our objective is to enhance
the understanding of the key considerations in FL as compared to CL. In summary, the contributions
of this paper are the following:

First, we observe a noteworthy phenomenon: deeper models in the context of FL often face challenges
in achieving convergence, resulting in a degradation of performance. We consider this issue to be
critical, especially in the implementation of large-scale FL systems. To the best of our knowledge,
our paper is the first to systematically investigate this phenomenon, exploring its underlying causes
and proposing potential solutions.

Second, we introduce the concept of "divergence" as a metric to quantify the dissimilarity in update
directions across clients in FL. Utilizing this measurement, we make an important observation:
divergences for shallow layers are usually larger then that in deeper layers. This finding sheds light
on the behavior and performance characteristics of different layers in FL models.

Third, to offer a rationale for the aforementioned observation, we present a theorem that centered on
divergence accumulation. To gain a thorough understanding of the process of divergence accumulation
in the context of FL, we provide both experimental evidence and theoretical analysis.

Finally, we propose several principles that serve as guidelines to reduce divergence and enhance the
performance of FL, particularly in the context of deeper models. We hope that by adhering to these
principles, practitioners can enhance the performance of FL when employing deeper models.

2 RELATED WORK

Federated Learning with deeper neural networks. There are a few works applying deeper models
to FL. Some works utilize pretrained large models He et al. (2021); Luo et al. (2022); Gong et al.
(2021) and their goal is using FL to finetune on various datasets. This setting is different from ours

3

Under review as a conference paper at ICLR 2024

that trains a global model collaboratively from scratch. Some other works Zhang et al. (2021b);
Panda et al. (2022) train deeper models with high-resolution images (e.g. CT images with resolution
of 1024× 1024). Our analysis shows that image with high resolution is beneficial for deeper models
in FL. In summary, although there are currently some works using deeper models and achieving
considerable results in different FL scenarios, they either require some specific conditions (such as
using pretrained models) or need to satisfy certain properties (such as high-resolution images). To
the best of our knowledge, there is no previous work that systematically analyzes the causes and
solutions for the difficulties in applying deeper models to FL.

Neural Architecture Search (NAS) for Federated Learning. The goal of NAS is to find the optimal
model architecture for a specific task. In the field of FL, NAS needs to consider not only model
performance, but also additional factors, such as the computational capabilities of edge devices and
communication overhead Yuan et al. (2020); Zhu et al. (2021); Zhu & Jin (2021); Wang et al. (2023).
However, due to the large search space of deep networks, most of the research focuses on shallow
network design, leading to a lack of studies on deeper network structures.

3 PHENOMENON OF DIVERGENCE ACCUMULATION

3.1 DIVERGENCE

To initiate our analysis, we will first elaborate on the concept of divergence. In essence, the intuition
of divergence is to measure the distinctions in optimization objectives between FL and CL. For CL,
the optimal model parameters θ∗ satisfies:

Ex∈X [∇θ∗L(θ∗, x)] = 0, (2)

where X is the dataset and L(·) is the loss function. In FL, on the other hand, the optimal global
model parameter θ∗ satisfies:

N∑
i=1

Ex∈Xi [∇θ∗L(θ∗, x)] = 0, (3)

where Xi is dataset of the i’th client. Assume datasets across clients are i.i.d, we can derive that the
optimal solution of FL equals to that of CL when and only when:

Ex∈Xi
[∇θ∗L(θ∗, x)] = 0,∀i ∈ 1, · · · , N (4)

Under this circumstance, recall the divergence defined in Eq. 1, we have:

div =
1

N

N∑
i=1

√
||Ex∈Xi [∇θ∗L(θ∗, x)]−∇θ̄t||22

d
= 0. (5)

In essence, the optimization objective for FL aligns with that of CL only when the divergence reaches
zero. This deduction provides us with a crucial insight: when there exists substantial divergence
among the client models, FL might result in significant performance degradation compared to CL.
This forms the basis for our introduction of the concept of divergence.

3.2 PHENOMENON OF DIVERGENCE ACCUMULATION

In this section, we introduce a theorem based on the previously defined divergence, which provides
insights into the causes of divergence accumulation in FL. Our objective is to establish a connection
between the diversity of data and the divergence of model. Formally, we aim to prove that the
expected divergence is accumulated during the back-propagation process, that is, the expectation of
divergence in a shallow layer is always greater than that in a deep layer.

To begin our analysis, we examine the data. Considering that data across different clients can be seen
as random variables, we assume their distributions are identical. For instance, in a classification task,
we can represent the data in client k belonging to class c as follows:

Xc
k = X̄c + X̃c

k ,where Ex∈X̄c [∇θL(θ, x)] = Ex∈Xc
k
[∇θL(θ, x)] and X̃c

k ∼ p(X̃|c). (6)

In the given equation, X̃c
k represents a random variable that is associated with class c and reflects the

diversity of data in the k-th client. On the other hand, X̄c is also associated with class c but represents

4

Under review as a conference paper at ICLR 2024

the generality or typicality of that class. The gradient calculated using X̄c is equivalent to using the
original dataset Xc

k. It can be understood as a prototype concept similar to what has been introduced
in previous literature Yang et al. (2018); Tan et al. (2022); Xu et al. (2020).

We next consider the model. To illustrate, we will consider an example involving two linear layers.
The forward calculation process for layers i-1 and i can be described as follows:

Hi−1 = Ai−1 · Zi−2 + bi−1, Zi−1 = σ(Hi−1), Hi = Ai · Zi−1 + bi, (7)

where A, b denotes model parameters and Z, H denotes intermediate calculation results. Assume
the loss function is L(·), according to the chain rule of derivation, we have:

∂L

∂Ai
=

∂L

∂Hi

∂Hi

∂Ai
=

∂L

∂Hi
Zi−1

T ,
∂L

∂Zi−1
=

∂L

∂Hi

∂Hi

∂Zi−1
= AT

i

∂L

∂Hi
(8)

∂L

∂Hi−1
=

∂L

∂Zi−1

∂Zi−1

∂Hi−1
= AT

i

∂L

∂Hi
� σ′(Hi−1), (9)

where � denotes the element-wise product. Based on these equations, we can derive the relationship
between the gradients in adjacent layers:

∂L

∂Ai−1
= AT

i (
∂L

∂Ai
(ZT

i−1)−1 � σ′(Hi−1))Zi−2
T . (10)

Define : εi = ∂L
∂Ai
− ∂̄L

∂Ai
, where ∂̄L

∂Ai
is the gradient calculated by the prototype X̄ . According to the

definition for εi, we have E[εi] = 0 and the divergence for model in layer i is E[||εi||2] according to
Eq. 1. Rewrite Eq. 10 using this definition, we have:

∂L

∂Ai−1
= AT

i (εi(Z
T
i−1)−1 � σ′(Hi−1))ZT

i−2 + AT
i (

∂̄L

∂Ai
(ZT

i−1)−1 � σ′(Hi−1))ZT
i−2. (11)

Now, we examine the phenomenon of divergence accumulation, which serves as the foundation of
this study. To facilitate our analysis, we introduce two mild assumptions.

Assumption 1: The expectation of divergence is retained during the back-propagation process, that is:
E[||AT

i (εi(Z
T
i−1)−1 � σ′(Hi−1))Zi−2

T ||2] = E[||εi||2].

Assumption 1 can be easily satisfied because there exist sophisticated techniques in the training of
neural networks to maintain the gradient norm and address issues like gradient explosion or vanishing.
These techniques include parameter initialization Glorot & Bengio (2010); He et al. (2015), residual
links He et al. (2016), and normalization Ioffe & Szegedy (2015); Ba et al. (2016). Consequently, the
back-propagated divergence can also be retained.

Assumption 2: The random variable vector εi is independent on Z and H.

Theorem 1: Given Assumption 1 and Assumption 2, it follows that the divergence of any given layer
is no smaller than that of the subsequent layer. Formally, this can be expressed as: E[||εi−1||2)] ≥
E[||εi||2].

The proof is outlined as follows: the expected divergence of layer i-1 is comprised of two components.
The first is the divergence back-propagated from layer i and the second is the divergence arising
from distinct inputs Z and H. As a result, the divergence will consistently increase during back-
propagation. Notably, we demonstrate that similar proofs can be employed to extend this theorem to
other model structures, such as Convolutional Neural Networks (CNNs).

The above theorem connects data diversity and model divergence in FL. Through the layer-by-layer
back-propagation process, the divergences of subsequent layers accumulate on top of the divergences
of previous layers. This accumulation is more pronounced in deeper networks due to their longer
chains of divergence. Consequently, deeper networks tend to exhibit higher divergences, resulting in
a decline in performance. This analysis provides an explanation for the observations presented in
Section 1. Let us recapitulate the observations along with their corresponding explanations.

Observation 1: Deeper models are challenging to converge. Explanation: In deeper models,
gradients need to be calculated through a long chain of back-propagation. The divergence accumulates
at each step of back-propagation and leads to a significant divergence in the final gradient, ultimately
causing a decline in the performance of the model.

5

Under review as a conference paper at ICLR 2024

1 2 3 4 5 6 7 8
Layer

−20.0

−17.5

−15.0

−12.5

−10.0

−7.5

−5.0

Lo
gg

ed
 D

iv
er

ge
nc

e Deep Model
Shallow Model

(a) Logged divergences for data with Gaussian noises.

1 2 3 4 5 6 7 8
Layer

−7

−6

−5

Lo
gg

ed
 D

iv
er

ge
nc

e Deep Model
Shallow Model

(b) Logged divergences for data in the same class.

Figure 3: In this experiment, we demonstrate the divergences of a 8-layer CNN (deep model) and
a 4-layer CNN (shallow model) trained on MNIST. We use the log function log(·) to transform
divergences. The dark-colored lines represent the mean of divergence within different classes, and
the light-colored areas represent the range of real divergences.

Observation 2: Shallow layers tend to converge, while deep layers tend to diverge. Explanation:
Referring to Eq. 10, the divergence for layer i is influenced by its input Zi−2. If the previous layers
do not converge, the inputs Zi−2 in different clients are computed using different previous layers and
different data, leading to significant divergences. However, when the previous layers do converge,
indicating high similarity among their preceding layers, the inputs Zi−2 have lower divergences. This
also explains our earlier observation that the latter layers do not converge before the former ones.

3.3 EMPIRICAL VALIDATION OF DIVERGENCE ACCUMULATION

We conduct a series of experiments to validate the phenomenon of divergence accumulation discussed
in the preceding subsection. Our goal is to confirm the existence of the following two phenomena: 1)
The accumulation of divergence during the back-propagation process, and 2) The greater divergence
in earlier layers of deeper models resulting from their longer accumulation chain. Two approaches
are employed to reflect the diversity of data across different clients.

Firstly, we utilize images with Gaussian noises to model data diversity. We begin by calculating the
gradient using an original image. Then, we add random Gaussian noises (drawn from N (0, 0.1)) to
the input image and calculate the corresponding gradients. We sample the noises 1000 times, and the
standard deviation among these gradients precisely represents the model divergence when updating
the same model with different image data.

Secondly, we use images from the same class to model data diversity. We individually calculate the
gradients for all images belonging to the same class. Similarly, we use the standard deviation among
these gradients to reflect the model divergence resulting from different image training data.

In our experiments, we employ two types of models, namely shallow and deep models, for calculations.
To ensure the robustness of the results, each experiment is repeated three times using different random
seeds, and we provide the confidence interval in each figure.

Divergences under the two types of data diversities are plotted layer-wisely in Fig. 3. The plots clearly
illustrate that, for both types of data diversity, the divergence within the same model accumulates
during the back-propagation process. When comparing the shallow model and the deep model, it
is evident that the shallow model exhibits lower divergence in preceding layers due to its shorter
accumulation chain. The findings suggest that the phenomenon of divergence accumulation holds
true in typical and realistic scenarios.

4 ENHANCING THE PERFORMANCE OF DEEPER NEURAL NETWORKS IN FL

In this section, we put forth a set of guidelines to enhance the performance of FL when utilizing deeper
neural networks. As the divergence of models plays a crucial role in determining the effectiveness of
FL, the central goal is therefore to minimize these divergences during the FL training process.

6

Under review as a conference paper at ICLR 2024

Table 1: Experiments conducted using a 13-layer ResNet with different widths. Acc. is the best
model accuracy at test time and Div. is the mean divergence of the model of all layers.

Dataset Method 1×width 2×width 3×width
Acc. Div. Gap Acc. Div. Gap Acc. Div. Gap

Tiny-Imagenet CL 0.509 - 0.051 0.526 - 0.042 0.546 - 0.041FL 0.458 0.046 0.484 0.024 0.504 0.011

CIFAR100 CL 0.587 - 0.060 0.623 - 0.027 0.634 - 0.021FL 0.527 0.052 0.596 0.032 0.613 0.014

As shown in Eq. 11, the two terms on the right hand side of the equation represent the dual factors
influencing the divergence for a specific layer: the divergence back-propagated from the subsequent
layer and the divergence originating from distinct inputs. These factors contribute independently to
the overall divergence. The first component, related to the model architecture, plays a significant
role in influencing the divergence. We will demonstrate that specific architectural designs, such as
utilizing wider models with smaller receptive fields, can effectively reduce model divergences. The
second component is associated with the input data. We will illustrate that by increasing the similarity
of data across different clients, we can correspondingly reduce the model divergences. Augmenting
the similarities of data among clients in FL leads to a decrease in divergences, thereby significantly
enhancing the performance of FL when utilizing deeper models.

To effectively evaluate the performance of various designs, we employ two three metrics: Test
Accuracy (denoted as Acc.), Mean Divergence (denoted as Div.) and Performance Gap between CL
and FL(denoted as Gap). As our primary objective in this experiment is to address the challenges
faced in FL training when compared to CL, we are especially interested in the performance gap
between these two methods rather than the absolute performances of FL.

In the following subsections, we will introduce guidelines and present corresponding empirical
evidence. First, we introduce the general experimental settings. We use the Tiny-ImageNet dataset tin
(2015) (10,000 training images, 1,000 test images), the CIFAR100 dataset Krizhevsky et al. (2009)
(50,000 training images, 10,000 test images), and the CIFAR10 dataset Krizhevsky et al. (2010)
(50,000 training images, 10,000 test images). For the default data preprocessing, we resize all images
to a size of 64×64 and applied Random Resized Crop (RRC) as data augmentation on the training
set. We set the number of clients to 30, the number of local training epochs to 8, and the learning rate
to 0.02. We utilize FedAvg as the baseline algorithm as the data on each client are i.i.d. In terms of
the construction of experimental platform, we simulate multiple clients with a single A100 GPU and
conducted simulation tests on it.

4.1 GUIDELINES FOR ENHANCING MODEL ARCHITECTURES

In this subsection, we propose several guidelines to decrease model divergence across various clients.
As the accumulation of divergence is associated with back-propagation and consequently linked to
the model’s architecture, we can reduce divergence by strategically designing the model architecture.

Using wider models. In CL, prior research has demonstrated the benefits of utilizing "wider" network
models. In the context of FL, our experimental findings, as presented in Table 1, confirm that wider
neural networks yield greater enhancements compared to CL. Notably, we observe a reduction in
divergence among clients when employing wider networks. This phenomenon can be attributed to the
"lazy" characteristic exhibited by wider neural networks, as suggested by previous studies Chizat et al.
(2019). The reduced parameter changes within each network contribute to a decrease in divergence
among models across different clients. Consequently, this reduction in divergence fosters improved
FL performance, aligning with our overarching objective.

Using models with smaller receptive fields. The receptive field refers to the region of the input
image that influences the activation of a particular neuron and is important in CNNs. Neurons with
smaller receptive fields predominantly extract low-level semantic information, while those with larger
receptive fields focus on high-level semantic information. The receptive field is calculated using the
recursive formula lk = lk−1 + [(Kk − 1)

∏k−1
i=1 si], where lk represents the receptive field of the k-th

layer, Kk and si denote the kernel size and stride of the k-th layer, respectively.

7

Under review as a conference paper at ICLR 2024

Table 2: Experiments conducted using ResNet101 with different receptive fields. We tried two settings:
replacing the first 7×7 convolution with a 3×3 one (3×3 Conv.), and removing the MaxPooling
layer (No M.P.). Both settings reduce the receptive field of subsequent convolutional layers.

Dataset Method Base 3×3 Conv. No M.P.
Acc. Div. Gap Acc. Div. Gap Acc. Div. Gap

Tiny-Imagenet CL 0.340 - 0.104 0.472 - 0.015 0.486 - 0.013FL 0.236 0.012 0.457 0.008 0.473 0.008

CIFAR100 CL 0.510 - 0.097 0.594 - 0.02 0.602 - 0.059FL 0.413 0.014 0.574 0.011 0.543 0.012

CIFAR10 CL 0.728 - 0.11 0.775 - 0.074 0.793 - 0.069FL 0.618 0.014 0.701 0.012 0.724 0.010

Table 3: Experiments conducted using ViT and Swin with 6 transformer blocks. For ViT, we choose
patch size to be 4 with dimension 512. For Swin the patch size is 4 with window size 4. The depth
and parameter number of these models are similar and compatible to ResNet18. Numbers in brackets
refer to the ratio of performance degradation.

Model Tiny-Imagenet CIFAR100 CIFAR10
CL FL CL FL CL FL

ViT 0.340 0.236 (↓30.5%) 0.572 0.454 (↓20.6%) 0.684 0.572 (↓15.8%)

Swin 0.389 0.326 (↓16.2%) 0.499 0.433 (↓13.2%) 0.663 0.607 (↓8.45%)

To explore the impact of receptive field size on FL performance, we conducted experiments with
two settings aimed at reducing the receptive fields. The results, presented in Table 2, reveal that
minimizing the receptive field effectively limits the divergence between models, thereby enhancing the
overall FL performance. This observation is attributed to the fact that a smaller receptive field ensures
that neurons primarily observe similar image regions, such as low-level semantic information like
edges and corners. By reducing the diversity of input data, we effectively reduce model divergence,
as indicated by our earlier analysis.

Additionally, we assessed the performance of two vision transformer models, ViT Dosovitskiy et al.
(2020) and Swin Liu et al. (2021), which offer contrasting approaches to receptive field design.
While ViT boasts infinitely large receptive fields for neurons in each layer, Swin maintains a specific
receptive field size. We conducted experiments using both models, each comprising six transformer
blocks and a parameter count similar to ResNet18. The experimental results, presented in Table
3, demonstrate that the Swin transformer exhibits a relatively smaller performance decline in FL
compared to the ViT model. This finding further validates our guideline of utilizing models with
small receptive fields.

4.2 GUIDELINES FOR OPTIMIZING DATA PRE-PROCESSING

In this subsection, we put forth guidelines focused on data-centric approaches. The primary driver of
model divergence stems from the diversity of data sourced from various clients. By implementing
suitable pre-processing strategies for data, this divergence can be greatly decreased.

Using image with higher resolution if possible. We note that adjusting the image resolution and
modifying the model’s receptive field are two distinct implementation methods that share a common
underlying principle. Reducing the receptive field enables individual neurons to concentrate on smaller
pixel regions, whereas increasing the image resolution leads to less image information within the
same-sized pixel area. Both methods fundamentally serve a similar purpose. The findings presented
in Table 4 align with our expectations, showcasing that FL models yield improved performance when
working with higher-resolution images.

Using proper data augmentation methods. By adopting appropriate data augmentation methods,
it is possible to enhance the similarity of data within each client, leading to a reduction in model
divergences. In our experiments, we employed two popular techniques: Random-Resized-Crop (RRC)

8

Under review as a conference paper at ICLR 2024

Table 4: Experiments conducted using ResNet101 with different image resolution. We select the
image sizes to be 64×64, 128×128, 196×196, respectively.

Dataset Method 64×64 128×128 192×192
Acc. Div. Gap Acc. Div. Gap Acc. Div. Gap

Tiny-Imagenet CL 0.340 - 0.104 0.495 - 0.035 0.540 - 0.05FL 0.236 0.012 0.460 0.008 0.490 0.006

CIFAR100 CL 0.510 - 0.097 0.604 - 0.103 0.645 - 0.042FL 0.413 0.014 0.501 0.012 0.603 0.010

CIFAR10 CL 0.728 - 0.11 0.785 - 0.088 0.799 - 0.045FL 0.618 0.014 0.697 0.012 0.754 0.010

and Color-Jitter (CJ). RRC involves randomly cropping a region from an image and subsequently
resizing it back to its original dimensions. On the other hand, CJ refers to randomly altering the
color attributes of the image. The experimental results presented in Table 5 underscore the benefits of
employing suitable data augmentation techniques. However, excessive or inappropriate augmentation
approaches may lead to a slowdown in local training speed and result in a degradation of model
accuracy.

Table 5: Experiments on ResNet101 with 3 augmentation methods: Random Resized Crop (RRC),
Color Jitter (CJ) and mixture of RRC and CJ (Both).

Dataset Method RRC CJ Both
Acc. Div. Gap Acc. Div. Gap Acc. Div. Gap

Tiny CL 0.340 - 0.104 0.218 - 0.071 0.321 - 0.069ImageNet FL 0.236 0.012 0.147 0.008 0.252 0.008

CIFAR100 CL 0.510 - 0.097 0.330 - 0.095 0.455 - 0.105FL 0.413 0.014 0.235 0.016 0.350 0.014

4.3 DISCUSSION

As revealed in our results, the proposed enhancement methods also have a positive impact on CL.
However, the improvement in FL is notably more significant, and the performance gap between FL
and CL has diminished. This suggests that the enhancements in FL are inherently linked to the unique
aspects of the distributed training process, which we believe are associated with divergence.

For a deeper understanding, let us denote the improvement in FL as Itotal = FL2 − FL1, where FL2

and FL1 represent FL performance before and after applying our proposed methods, respectively.
We can decompose Itotal into Itotal = Icent + Idiv. Here, Icent represents the improvement
similar to that in CL, while Idiv signifies the enhancement resulting from a reduction in divergence.
This former improvement, Icent, can be quantified as Icent = CL2 − CL1, where CL2 and CL1

denote the performance metrics of CL before and after our enhancements. Therefore, Idiv =
(CL1 − FL1) − (CL2 − FL2). The first term on the right-hand side captures the performance gap
between CL and FL before the introduction of our enhancements, while the latter term represents
the gap after implementation. Based on our experimental observations, it’s evident that CL1 − FL1

exceeds CL2 − FL2. This suggests that the enhancement in FL performance is not solely attributable
to factors that also affect CL; rather, it is closely related to the reduction in model divergence after
applying our proposed methods.

5 CONCLUSION

In this paper, we observe that deeper neural networks are difficult to converge in FL, which we believe
is a critical problem for large-scale FL. To gain a deeper understanding, we introduce and examine
the phenomenon of divergence accumulation. Finally, several guidelines are proposed to reduce the
divergence, which greatly improve”[;] the performance of FL on deeper models. We believe that this
work holds significant value and serves as a source of inspiration for future research in large-scale FL.

9

Under review as a conference paper at ICLR 2024

REFERENCES

Tiny imagenet visual recognition challenge, 2015. URL http://cs231n.stanford.edu/
tiny-imagenet-200.zip.

Syed Muhammad Anwar, Muhammad Majid, Adnan Qayyum, Muhammad Awais, Majdi Alnowami,
and Muhammad Khurram Khan. Medical image analysis using convolutional neural networks: a
review. Journal of medical systems, 42:1–13, 2018.

Manoj Ghuhan Arivazhagan, Vinay Aggarwal, Aaditya Kumar Singh, and Sunav Choudhary. Feder-
ated learning with personalization layers. arXiv preprint arXiv:1912.00818, 2019.

Jimmy Lei Ba, Jamie Ryan Kiros, and Geoffrey E Hinton. Layer normalization. arXiv preprint
arXiv:1607.06450, 2016.

Sebastian Caldas, Sai Meher Karthik Duddu, Peter Wu, Tian Li, Jakub Konečný, H. Brendan
McMahan, Virginia Smith, and Ameet Talwalkar. Leaf: A benchmark for federated settings, 2019.

Lenaic Chizat, Edouard Oyallon, and Francis Bach. On lazy training in differentiable programming.
Advances in neural information processing systems, 32, 2019.

Marco Cococcioni, Federico Rossi, Emanuele Ruffaldi, Sergio Saponara, and Benoit Dupont
de Dinechin. Novel arithmetics in deep neural networks signal processing for autonomous driving:
Challenges and opportunities. IEEE Signal Processing Magazine, 38(1):97–110, 2020.

Alexey Dosovitskiy, Lucas Beyer, Alexander Kolesnikov, Dirk Weissenborn, Xiaohua Zhai, Thomas
Unterthiner, Mostafa Dehghani, Matthias Minderer, Georg Heigold, Sylvain Gelly, et al. An
image is worth 16x16 words: Transformers for image recognition at scale. arXiv preprint
arXiv:2010.11929, 2020.

Xavier Glorot and Yoshua Bengio. Understanding the difficulty of training deep feedforward neural
networks. In Proceedings of the thirteenth international conference on artificial intelligence and
statistics, pp. 249–256. JMLR Workshop and Conference Proceedings, 2010.

Xuan Gong, Abhishek Sharma, Srikrishna Karanam, Ziyan Wu, Terrence Chen, David Doermann,
and Arun Innanje. Ensemble attention distillation for privacy-preserving federated learning. In
Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 15076–15086,
2021.

Chaoyang He, Alay Dilipbhai Shah, Zhenheng Tang, Di Fan1Adarshan Naiynar Sivashunmugam,
Keerti Bhogaraju, Mita Shimpi, Li Shen, Xiaowen Chu, Mahdi Soltanolkotabi, and Salman
Avestimehr. Fedcv: a federated learning framework for diverse computer vision tasks. arXiv
preprint arXiv:2111.11066, 2021.

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Delving deep into rectifiers: Surpassing
human-level performance on imagenet classification. In Proceedings of the IEEE international
conference on computer vision, pp. 1026–1034, 2015.

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for image
recognition. In Proceedings of the IEEE conference on computer vision and pattern recognition,
pp. 770–778, 2016.

Rui Hu, Yanmin Gong, and Yuanxiong Guo. Federated learning with sparsification-amplified privacy
and adaptive optimization. arXiv preprint arXiv:2008.01558, 2020.

Sergey Ioffe and Christian Szegedy. Batch normalization: Accelerating deep network training by
reducing internal covariate shift. In International conference on machine learning, pp. 448–456.
pmlr, 2015.

Alex Krizhevsky, Geoffrey Hinton, et al. Learning multiple layers of features from tiny images. 2009.

Alex Krizhevsky, Vinod Nair, and Geoffrey Hinton. Cifar-10 (canadian institute for advanced
research). URL http://www. cs. toronto. edu/kriz/cifar. html, 5(4):1, 2010.

10

http://cs231n.stanford.edu/tiny-imagenet-200.zip
http://cs231n.stanford.edu/tiny-imagenet-200.zip

Under review as a conference paper at ICLR 2024

Qinbin Li, Zeyi Wen, Zhaomin Wu, Sixu Hu, Naibo Wang, Yuan Li, Xu Liu, and Bingsheng He.
A survey on federated learning systems: vision, hype and reality for data privacy and protection.
IEEE Transactions on Knowledge and Data Engineering, 2021a.

Tian Li, Anit Kumar Sahu, Ameet Talwalkar, and Virginia Smith. Federated learning: Challenges,
methods, and future directions. IEEE signal processing magazine, 37(3):50–60, 2020a.

Tian Li, Anit Kumar Sahu, Manzil Zaheer, Maziar Sanjabi, Ameet Talwalkar, and Virginia Smith.
Federated optimization in heterogeneous networks. Proceedings of Machine learning and systems,
2:429–450, 2020b.

Xiaoxiao Li, Meirui Jiang, Xiaofei Zhang, Michael Kamp, and Qi Dou. Fedbn: Federated learning
on non-iid features via local batch normalization. arXiv preprint arXiv:2102.07623, 2021b.

Ze Liu, Yutong Lin, Yue Cao, Han Hu, Yixuan Wei, Zheng Zhang, Stephen Lin, and Baining Guo.
Swin transformer: Hierarchical vision transformer using shifted windows. In Proceedings of the
IEEE/CVF international conference on computer vision, pp. 10012–10022, 2021.

Zhengquan Luo, Yunlong Wang, Zilei Wang, Zhenan Sun, and Tieniu Tan. Disentangled federated
learning for tackling attributes skew via invariant aggregation and diversity transferring. arXiv
preprint arXiv:2206.06818, 2022.

Brendan McMahan, Eider Moore, Daniel Ramage, Seth Hampson, and Blaise Aguera y Arcas.
Communication-efficient learning of deep networks from decentralized data. In Artificial intelli-
gence and statistics, pp. 1273–1282. PMLR, 2017.

Khan Muhammad, Jamil Ahmad, Irfan Mehmood, Seungmin Rho, and Sung Wook Baik. Convolu-
tional neural networks based fire detection in surveillance videos. Ieee Access, 6:18174–18183,
2018.

Ashwinee Panda, Saeed Mahloujifar, Arjun Nitin Bhagoji, Supriyo Chakraborty, and Prateek Mittal.
Sparsefed: Mitigating model poisoning attacks in federated learning with sparsification. In
International Conference on Artificial Intelligence and Statistics, pp. 7587–7624. PMLR, 2022.

Daniel Rothchild, Ashwinee Panda, Enayat Ullah, Nikita Ivkin, Ion Stoica, Vladimir Braverman,
Joseph Gonzalez, and Raman Arora. Fetchsgd: Communication-efficient federated learning with
sketching. In International Conference on Machine Learning, pp. 8253–8265. PMLR, 2020.

Yue Tan, Guodong Long, Lu Liu, Tianyi Zhou, Qinghua Lu, Jing Jiang, and Chengqi Zhang. Fedproto:
Federated prototype learning across heterogeneous clients. In Proceedings of the AAAI Conference
on Artificial Intelligence, volume 36, pp. 8432–8440, 2022.

Chunnan Wang, Bozhou Chen, Geng Li, and Hongzhi Wang. Automated graph neural network search
under federated learning framework. IEEE Transactions on Knowledge and Data Engineering,
2023.

Hongyu Wang, Shuming Ma, Li Dong, Shaohan Huang, Dongdong Zhang, and Furu Wei. Deepnet:
Scaling transformers to 1,000 layers. arXiv preprint arXiv:2203.00555, 2022.

Wenjia Xu, Yongqin Xian, Jiuniu Wang, Bernt Schiele, and Zeynep Akata. Attribute prototype
network for zero-shot learning. Advances in Neural Information Processing Systems, 33:21969–
21980, 2020.

Hong-Ming Yang, Xu-Yao Zhang, Fei Yin, and Cheng-Lin Liu. Robust classification with convolu-
tional prototype learning. In Proceedings of the IEEE conference on computer vision and pattern
recognition, pp. 3474–3482, 2018.

Jinliang Yuan, Mengwei Xu, Yuxin Zhao, Kaigui Bian, Gang Huang, Xuanzhe Liu, and Shangguang
Wang. Federated neural architecture search. arXiv preprint arXiv:2002.06352, 2020.

Chen Zhang, Yu Xie, Hang Bai, Bin Yu, Weihong Li, and Yuan Gao. A survey on federated learning.
Knowledge-Based Systems, 216:106775, 2021a.

11

Under review as a conference paper at ICLR 2024

Weishan Zhang, Tao Zhou, Qinghua Lu, Xiao Wang, Chunsheng Zhu, Haoyun Sun, Zhipeng Wang,
Sin Kit Lo, and Fei-Yue Wang. Dynamic-fusion-based federated learning for covid-19 detection.
IEEE Internet of Things Journal, 8(21):15884–15891, 2021b.

Hangyu Zhu and Yaochu Jin. Real-time federated evolutionary neural architecture search. IEEE
Transactions on Evolutionary Computation, 26(2):364–378, 2021.

Hangyu Zhu, Haoyu Zhang, and Yaochu Jin. From federated learning to federated neural architecture
search: a survey. Complex & Intelligent Systems, 7:639–657, 2021.

6 APPENDIX

6.1 PROOF FOR DIVERGENCE ACCUMULATION

In this section, we provide a detailed proof of Theorem 1 proposed in Section 3. Let us review the
content and relevant assumptions of the theorem first:

Assumption 1: The expectation of divergence is retained during the back-propagation process, that is:

E[||AT
i (εi(Z

T
i−1)−1 � σ′(Hi−1))Zi−2

T ||2] = E[||εi||2] (12)

Assumption 2: The random variable matrix εi is independent with Z and H.

Theorem 1: Given Assumption 1 and Assumption 2, it follows that the divergence of previous layer is
no smaller than that of the later layer. Formally, this can be expressed as:

E[||εi−1||2)] ≥ E[|εi||2] (13)

Proof: According to the definition of εi−1, we have:

||εi−1||2 = || ∂L

∂Ai−1
− ∂̄L

∂Ai−1
||2 (14)

Using Eq. 10 to rewrite this equation:

||εi−1||2 = ||AT
i (εiZ

−1
i−1 � σ

′(Hi−1))Zi−2 + AT
i (

∂̄L

∂Ai
Z−1

i−1 � σ
′(Hi−1))Zi−2 −

∂̄L

∂Ai−1
||2 (15)

For simplicity, we use T1 and T2 to represent the two terms on the right hand side of the equation
above, and flatten them into column vectors, that is:

T1 = Flatten(AT
i (εiZ

−1
i−1 � σ

′(Hi−1))Zi−2) (16)

T2 = Flatten(AT
i (

∂̄L

∂Ai
Z−1

i−1 � σ
′(Hi−1))Zi−2 −

∂̄L

∂Ai−1
) (17)

So, we have:
||εi−1||2 = ||T1 + T2||2 = ||T1||2 + ||T2||2 + T T1 T2 + T T2 T1 (18)

By taking the expectation of both sides of the equation, we can derive:

E[||εi−1||2] = E[||T1||2] + E[||T2||2] + E[T T1 T2] + E[T T2 T1] (19)

Next, we will prove that E[T T1 T2] = 0. Assume that εi = (εi,j) ∈ Rd1×d2 , where E[εi,j] = 0,∀i ∈
[1, d1], j ∈ [1, d2]. We first put forth some lemmas.

Lemma 1: If A = (ai,j) ∈ Rd1×d2 , and each ai,j is a linear combination of εp,q, that is: ai,j =∑
p,q α

i,j
p,qεp,q; B = (bi,j) ∈ Rd2×d3 , and each bi,j is independent of εp,q; C = (ci,j) ∈ Rd4×d1 , and

each ci,j is independent of εp,q . Then, each element in C ·A and A ·B is also a linear combination
of εp,q .

12

Under review as a conference paper at ICLR 2024

Proof: For each element di,j in C ·A ∈ Rd4×d2 , we have

di,j =
∑
k

ci,kak,j =
∑
k

ci,k
∑
p,q

αk,jp,qεp,q (20)

=
∑
k

∑
p,q

ci,kα
i,k
p,qεp,q =

∑
p,q

∑
k

ci,kα
k,j
p,qεp,q (21)

=
∑
p,q

(
∑
k

ci,kα
k,j
p,q)εp,q (22)

Hence, each element in C ·A can be represented as a linear combination of εp,q . Similarly, for each
element ei,j in A ·B ∈ Rd1×d3 , we have:

ei,j =
∑
k

ai,kbk,j =
∑
k

bk,j
∑
p,q

αi,kp,qεp,q (23)

=
∑
k

∑
p,q

bk,jα
i,k
p,qεp,q =

∑
p,q

∑
k

bk,jα
i,k
p,qεp,q (24)

=
∑
p,q

(
∑
k

bk,jα
i,k
p,q)εp,q (25)

This finishes the proof for Lemma 1.

Lemma 2: If A = (ai,j) ∈ Rd1×d2 , and ai,j =
∑
p,q α

i,j
p,qεp,q; B = (bi,j) ∈ Rd1×d2 , and each bi,j

is independent of εp,q . Then, each element in A�B is also a linear combination of εp,q .

Proof: For each element fi,j in A�B ∈ Rd1×d2 , we have:

fi,j = ai,jbi,j = bi,j
∑
p,q

αi,jp,qεp,q =
∑
p,q

(bi,jα
i,j
p,q)εp,q (26)

Based on Lemma 1 and Lemma 2 above, we can conclude that T T1 T2 can be expressed as a linear
combination of εp,q , that is:

T T1 T2 =
∑
p,q

Cp,qεp,q (27)

where each Cp,q does not contain any term associated with εp,q. According to Assumption 2, the
random variable Cp,q is independent of εp,q , so we can simplify its expectation form as:

E[T T1 T2] = E[
∑
p,q

Cp,qεp,q] =
∑
p,q

E[Cp,qεp,q] =
∑
p,q

E[Cp,q]E[εp,q] =
∑
p,q

E[Cp,q] · 0 = 0 (28)

By the same reasoning, we can conclude that E[T T2 T1] = 0. Finally, we have:

E[||εi−1||2] = E[||T1||2] + E[||T2||2] + E[T T1 T2] + E[T T2 T1] (29)

= E[||T1||2] + E[||T2||2] (30)

According to Assumption 1, E[||T1||2] = E[||εi||2], so:

E[||εi−1||2]− E[||εi||2] = E[||T1||2]− E[||εi||2] + E[||T2||2] (31)

= E[||T2||2] ≥ 0 (32)

This finishes the proof of Theorem 1.

6.2 PROVING DIVERGENCE ACCUMULATION WITH OTHER ARCHITECTURES

6.2.1 EXTENSION FOR CNN

First and foremost, it is crucial to clarify that the convolution operation is fundamentally a linear
operation. As a result, the convolution layer can be seen as a special type of linear layer to some extent.

13

Under review as a conference paper at ICLR 2024

However, it possesses unique properties: 1) Local connectivity. Unlike the connections in linear
layers which are dense, only pixels in the same neighborhood can participate in the computation; 2)
Parameter sharing. This means that we use the same convolution kernel for all parts of the image.
This implies that a convolution layer can be transformed into a matrix multiplication form similar to
the linear layer.

Next, back to our proof. The key that makes the proof for CNNs different lies in parameter shar-
ing. Parameter sharing results in the gradient of each parameter being accumulated from multiple
computed gradients during backpropagation. However, if we assume that the gradients of each
parameter within the same layer are independent, we can still guarantee the correctness of the proof.
Without loss of generality, let’s assume there are two layers, each with two parameters, namely
[w1,1, w1,2], [w2,1, w2,2], and their gradient errors are [ε1,1, ε1,2], [ε2,1, ε2,2] respectively. We have
not yet introduced parameter sharing here, so according to theorem 1 in our paper, we have:

E[||(ε1,1, ε1,2)||22] ≥ E[||(ε2,1, ε2,2)||22] (1)

When introducing parameter sharing, and assuming the parameters within each layer are shared, the
expected gradient norm for the first layer is:

E[||(ε1,1 + ε1,2)||22] = E[||ε1,1||22] + E[||ε1,2||22] = E[||(ε1,1, ε1,2)||22]

Similarly,

E[||(ε2,1 + ε2,2)||22] = E[||(ε2,1, ε2,2)||22]

Substituting into equation (1), we can see that divergence accumulation still holds. In this way, we
have extended the proof to the realm of CNNs.

6.2.2 EXTENSION FOR SKIP CONNECTION:

First, let’s agree on some basic notations. Assume X is the intermediate result from the output of the
starting point of a skip connection. Due to residual link, we denote the X1 as X that directly sent to
the next layer, and denote X2 as X sent to the later layers via skip connections.

Next, let the gradients of X, X1 and X2 to be:

∂L

∂X1
=

∂̄L

∂X1
+ ε1,

∂L

∂X2
=

∂̄L

∂X2
+ ε2,

∂L

∂X
=
∂̄L

∂X
+ ε

Given that X1 and X2 are two computation paths, so the gradient of X is actually their sum. Hence,
we have:

ε = ε1 + ε2

If we further assume that ε1 and ε2 are independent, we have:

||ε||22 = ||ε1||22 + 2ε1
T ε2 + ||ε2||22 = ||ε1||22 + ||ε2||22 ≥ max{||ε1||22, ||ε2||22}

The reason for the second equation is the same as Eq. (28) in our supplementary materials. So far, we
have proven that after adding skip connections, the output value of the previous layer has a larger ε,
thus our divergence accumulation still holds.

6.3 ADDITIONAL EXPERIMENTS

6.3.1 DETAILED LAYER-WISE DIVERGENCES

In Section 4, we demonstrate the Mean Divergence (Div.) under different experimental settings, but
without showing the differences among different layers. Here, we provide more detailed experimental
results for divergences across different layers.

14

Under review as a conference paper at ICLR 2024

The experiment settings in the following figures are the same as those in Section 4. Each figure
caption indicates the dataset used and the number of layer divergence plotted.

Fig. 4 illustrates divergences using different data-augmentation techniques. It is evident that by
applying appropriate data-augmentation methods, we can obtain lower and more stable model
divergences, ultimately enhancing performance.

Fig. 5 shows model divergences using different input image resolutions. We observe that when a
smaller resolution is used, the model divergences for deep layers are significantly larger. This is
because deeper layers tend to have larger receptive fields, and if the resolution is not sufficient, the
receptive field of deep layers may cover the entire image, leading to greater data dissimilarity and
larger divergences.

Fig. 6 presents model divergences using different model widths. It is clear that a wider model
architecture results in a significant decline in divergence. This aligns with our expectation that wider
models possess the "lazy" property, updating parameters more mildly.

0 10 20 30 40
Round

0.0

0.5

1.0

1.5

2.0

2.5

Di
ve

rg
en

ce

CIFAR100 #8
None
RRC
CJ
Both

0 10 20 30 40
Round

0.0000

0.0025

0.0050

0.0075

0.0100

0.0125

0.0150

Di
ve

rg
en

ce

CIFAR100 #42
None
RRC
CJ
Both

0 10 20 30 40
Round

0.000

0.002

0.004

0.006

Di
ve

rg
en

ce

CIFAR100 #93
None
RRC
CJ
Both

0 10 20 30 40
Round

0.00

0.05

0.10

0.15

Di
ve

rg
en

ce

TinyImageNet #8
None
RRC
CJ
Both

0 10 20 30 40
Round

0.000

0.005

0.010

0.015

Di
ve

rg
en

ce

TinyImageNet #42
None
RRC
CJ
Both

0 10 20 30 40
Round

0.000

0.002

0.004

0.006

0.008

Di
ve

rg
en

ce

TinyImageNet #93
None
RRC
CJ
Both

Figure 4: Divergences for different data-augmentation methods.

6.3.2 EFFECT OF RESIDUAL LINK

Residual link is a classic method in CL, which can effectively improve the performance of deeper
neural networks. In FL, as analyzed in Section 3, divergence accumulates and amplifies during
the model’s back-propagation process. Residual connections can provide a "shortcut" for back-
propagation, allowing gradients in deep layers to propagate quickly to shallower layers. As a result,
since the length of the back-propagation path is reduced, the accumulation of model divergence is
also reduced, and the convergence speed is faster. As can be seen from the experimental results in
Table 6.3.2 although there is no significant difference in the final convergence accuracy of federated
learning before and after adding residual connections, the convergence speed has increased.

6.3.3 AVOID USING DECREASED CHANNEL DIMENSIONS

In this part, we include an additional experiment. As mentioned in the introduction, we observe that
the divergence of shallow layers tends to decrease and eventually converge, whereas the divergence
of deep layers tends to intensify.

15

Under review as a conference paper at ICLR 2024

0 10 20 30 40
Round

0.00

0.05

0.10

0.15

0.20

0.25
Di

ve
rg

en
ce

CIFAR100 #8
64x64
128x128
192x192

0 10 20 30 40
Round

0.002

0.004

0.006

0.008

Di
ve

rg
en

ce

CIFAR100 #42
64x64
128x128
192x192

0 10 20 30 40
Round

0.000

0.002

0.004

0.006

0.008

Di
ve

rg
en

ce

CIFAR100 #93
64x64
128x128
192x192

0 10 20 30 40
Round

0.00
0.02
0.04
0.06
0.08
0.10
0.12

Di
ve

rg
en

ce

TinyImageNet #8
64x64
128x128
192x192

0 10 20 30 40
Round

0.001

0.002

0.003

0.004

0.005

0.006

Di
ve

rg
en

ce

TinyImageNet #42

64x64
128x128
192x192

0 10 20 30 40
Round

0.001

0.002

0.003

0.004

0.005

Di
ve

rg
en

ce

TinyImageNet #93
64x64
128x128
192x192

Figure 5: Divergences for different image resolutions.

0 10 20 30 40
Round

0.005

0.010

0.015

0.020

0.025

0.030

0.035

Di
ve

rg
en

ce

CIFAR100 #1
1×width
2×width
3×width

0 10 20 30 40
Round

0.002

0.004

0.006

0.008

Di
ve

rg
en

ce

CIFAR100 #7
1×width
2×width
3×width

0 10 20 30 40
Round

0.000

0.001

0.002

0.003

0.004

Di
ve

rg
en

ce

CIFAR100 #12

1×width
2×width
3×width

0 10 20 30 40
Round

0.0050

0.0075

0.0100

0.0125

0.0150

0.0175

Di
ve

rg
en

ce

TinyImageNet #1
1×width
2×width
3×width

0 10 20 30 40
Round

0.002

0.004

0.006

0.008

Di
ve

rg
en

ce

TinyImageNet #7
1×width
2×width
3×width

0 10 20 30 40
Round

0.000

0.002

0.004

0.006

0.008

Di
ve

rg
en

ce

TinyImageNet #12
1×width
2×width
3×width

Figure 6: Divergences for different model width.

Intuitively, in order to leverage this property, we can assign a more significant role to the shallow
layers compared to the deep layers. Conventionally, the number of channels in a CNN increases
gradually as the layers go deeper. However, our proposed approach follows an opposite design
principle where the number of channels gradually decreases.

16

Under review as a conference paper at ICLR 2024

Table 6: We show different results with residual link and without residual link. Acc. is the best
model accuracy at test time and #Rnd. is the number of communication round when test accuracy
first exceeds 0.4, 0.50.

Dataset Method With Res. Link No Res. Link
Acc. #Rnd. Acc. #Rnd.

Tiny CL 0.509 - 0.522 -
ImageNet FL 0.458 21 0.454 24

CIFAR100 CL 0.587 - 0.569 -
FL 0.527 30 0.526 33

For the experiment setup, we selected three models for comparison: a model with channel dimensions
of (32, 64, 128, 256) following the typical design, a model with channel dimensions of (120, 120,
120, 120) referred to as the Mean design, and a model with channel dimensions of (256, 128, 64,
32) denoted as the Reversed design. In the subsequent results analysis, we refer to these designs as
Normal, Mean, and Reversed, respectively.

Surprisingly, we discovered that the Normal design, which adheres to the typical channel dimension
pattern, exhibited the best performance with the lowest divergence. The final accuracies achieved by
the three designs were 45.8%, 44.0%, and 35.4%, respectively. To visualize the divergences across
different layers, we plotted them layer-wise in Fig. 7.

As depicted in the figure, the Reversed network displayed consistently larger divergences in the
deep layers compared to the Normal network. Additionally, the divergences in the shallow layers
of the Reversed network continuously intensified without showing any signs of convergence. This
behavior can be attributed to the smaller width of the deeper layers, causing their divergences to be
initially large due to the "lazy" property discussed in Section 4. Consequently, these large divergences
accumulate onto the divergences of the shallow layers, resulting in a convergence issue.

0 10 20 30 40
Round

0.0050
0.0075
0.0100
0.0125
0.0150
0.0175

Di
ve

rg
en

ce

TinyImageNet #1
Normal
Mean
Reversed

0 10 20 30 40
Round

0.002

0.003

0.004

0.005

0.006

0.007

0.008

Di
ve

rg
en

ce

TinyImageNet #3

Normal
Mean
Reversed

0 10 20 30 40
Round

0.002

0.004

0.006

0.008

Di
ve

rg
en

ce

TinyImageNet #5

Normal
Mean
Reversed

0 10 20 30 40
Round

0.0025

0.0050

0.0075

0.0100

0.0125

0.0150

Di
ve

rg
en

ce

TinyImageNet #7
Normal
Mean
Reversed

0 10 20 30 40
Round

0.002

0.004

0.006

0.008

0.010

0.012

Di
ve

rg
en

ce

TinyImageNet #11

Normal
Mean
Reversed

0 10 20 30 40
Round

0.002

0.004

0.006

0.008

0.010

0.012

Di
ve

rg
en

ce

TinyImageNet #13

Normal
Mean
Reversed

Figure 7: Divergences for different model architectures.

17

	Introduction
	Related Work
	Phenomenon of Divergence Accumulation
	Divergence
	Phenomenon of Divergence Accumulation
	Empirical Validation of Divergence Accumulation

	Enhancing the Performance of Deeper Neural Networks in FL
	Guidelines for Enhancing Model Architectures
	Guidelines for Optimizing Data Pre-processing
	Discussion

	Conclusion
	Appendix
	Proof for Divergence Accumulation
	Proving Divergence Accumulation with Other Architectures
	Extension for CNN
	Extension for Skip Connection:

	Additional Experiments
	Detailed Layer-wise Divergences
	Effect of Residual Link
	Avoid Using Decreased Channel Dimensions

