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ABSTRACT

Recent graph denoising diffusion models achieved high fidelity in modeling small to
medium sized graphs, however they often struggle from a complexity-expressivity
tradeoff due the most high quality methods requiring architectures or features which
scale quadratic in the number of nodes. This work proposes hierarchical diffusion, a
novel approach that leverages the inherent hierarchical community structure found
in real-world datasets in order to alleviate this issue. Our method decomposes
the diffusion process into a sequence of conditional diffusion processes, where a
parent graph representing community structure and edge distribution guides the
generation of individual communities and their cross-connections. This process
recursively refines the graph from coarse to fine resolutions until the final graph
is generated. Importantly, our method preserves permutation equivariance by
construction, and we further design our method to allow the diffusion process to
take into account the global edge distribution when connecting partitions explicitly
during the diffusion process, while retaining the ability to distribute training and
inference across machines to scale horizontally.

1 INTRODUCTION

Despite remarkable achievements on small and medium-sized graphs (e.g., molecules, proteins),
recent denoising diffusion models (Vignac et al., 2023; Huang et al., 2022; Jo et al., 2022) encounter
scalability challenges when applied to larger, more complex structures like social networks, financial
networks (Li et al., 2023), road networks (Rong et al., 2023), and electronic circuits Oliveira et al.
(2021).

Real-world networks often exhibit locally heterogeneous patterns, where groups of nodes ("commu-
nities") tightly connect within themselves but there exist sparse inter-connections between groups.
This naturally forms a hierarchical multi-resolution structure in graphs, with smaller communities
nested within larger ones. In such structure, lower levels capture fine-grained local interactions
within communities, while higher levels represent broader relationships between communities and
the overall network structure. Therefore, to truly capture the complexity of such graphs, it is crucial
for an expressive graph generative network to not only learn the these community structures but also
to model how they interact across different levels. By incorporating this inductive bias into the model
architecture, we can train an expressive generative model that can effectively capture hierarchical
structure inherent in graphs (Karami, 2023).

This work introduces Multi-Resolution Graph Diffusion (MRGraD) which exploits the community
structure and multi-resolution hierarchy inherent in many real world graph datasets to tackle this
complexity while preserving expressiveness.

2 BACKGROUND

2.1 HIERARCHICAL MULTI-RESOLUTION GRAPH STRUCTURE

We denote a graph G as (V, E) with sizes n = |V| and m = |E|. Applying recursive graph
partitioning (clustering), from fine to coarse resolution, we build a hierarchical graph , containing
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(a) An example of hierarchical the hierarchical dif-
fusion process. Each G(l)

p is conditioned on a node
embedding Z[p](l) corresponding to it in the par-
ent graph G(l−1). pl=0
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parent node at layer l = 0 i representing ni child
nodes and m0 internal child edges in the next layer
l = 1.
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(b) Leaf level adjacency matrix belonging to the
graph in Figure 1a. Color shaded areas denote
the partition subgraphs which are diffused inde-
pendently and on which we compute structural
features, gray shaded areas are the bipartites dif-
fused together (mirrored on the lower triangular),
unshaded areas are skipped during diffusion of the
leaf level.

Figure 1: Summary of the core idea behind our method. While Karami (2023) and Davies et al. (2023) diffuse
each bipartite region bij individually, we diffuse them jointly to preserve global edge awareness.

graphs at different levels of resolutions: HG = {G0, ....,GL−1,GL}. Figure 1a depicts an HG.
Here, G0 = ({v0}, {(v0, v0)}) is a singleton graph at the root of a dendrogram tree and GL = G
is the original graph at the leaf level. A graph partitioning function F : V → {1, ..., c} partitions
the nodes into c communities (a.k.a. clusters), where each cluster of nodes forms a sub-graph:
Ci = (V(Ci), E(Ci)). The cross-edges between adjacent communities form a bipartite graph:
Bij = (V(Ci), V(Cj), E(Bij)). In each level l, aggregating each community Cl

i to a super-node
vl−1
i := Pa(Cl

i) at the higher level (where Pa(·) maps a a partition to its representation in the parent
graph) and mapping each bipartite to a super-edge (parent edge), el−1

i = Pa(Bl
ij) = (vl−1

i , vl−1
j )

induces a coarser graph, Gl−1, at the parent level. Levels are indexed by superscripts. Self-loop and
cross-edge weights in the parent level are the sum of weights within their corresponding community
and bipartite, respectively. Thus, parent-graph edges have integer weights: wl−1

ii =
∑

e∈E(Cl
i)
we

and wl−1
ij =

∑
e∈E(Bl

ij)
we. Furthermore, the sum of all edge weights w0 :=

∑
e∈E(GL) we = |E|

is the weight of the root-level self loop, indicating the final graph size.. In the generation process,
we sample the initial graph size, w0, from the empirical distribution of edge counts of the graphs in
the training set. Then we recursively generate (sample) the graph at each level given its parent level
graph.

2.2 DIFFUSION MODELS

Diffusion models, introduced by Sohl-Dickstein et al. (2015) represent a distinct paradigm in gen-
erative modeling featuring two main components: a forward and a reverse Markov process. In the
forward diffusion process, represented by q(x1:T |x0) =

∏T
t=1 q(xt|xt−1), data x0 ∼ q(x0) is

gradually corrupted into a sequence of increasingly noisy latent variables x1:T = x1,x2, ...,xT ,
while in the the reverse Markov process, a network pθ(x0:T ) = p(xT )

∏T
t=1 pθ(xt−1|xt) is trained

to reverse it by progressively denoise the latent variables, ultimately recovering the original data x0.
For effective forward diffusion, it’s crucial that the transition probability q(xt|x0) converges to a
fixed distribution π(x) as the number of diffusion steps T approaches infinity, regardless of the initial
data point x0. Therefore, we can choose π(x) as the prior distribution p(xT ) when the number of
steps T is sufficiently large. Furthermore, for efficient training, the transition probability q(xt|x0)
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should have a closed-form expression or be pre-computed, allowing efficient sampling of xt at each
step.

3 METHODOLOGY

3.1 HIERARCHICAL GENERATIVE PROCESS

Our goal is to develop a hierarchical multi-resolution denoising diffusion model for generating
graphs from coarse to fine resolutions. Given a hierarchical graph HG := {G0, ....,GL−1,GL}, the
generative distribution can be factorized using the chain rule as:

p(G) = p({GL, ...,G0}) = p(GL | {GL−1, ...,G0}) ... p(G1 | G0) p(G0) =

L∏
l=0

p(Gl | Gl−1)× p(G0)

(1)

Therefore, it is a Markov process. In simpler terms, we start from the root level (coarsest resolution),
G0, then conditioned that information we predict the next level of detail G1, and progressively add
details until we reach the final, full graph GL.

We leverage the hierarchical structure of HG, to efficiently generate graphs. By assuming that
community probabilities within a level given the parent graph, p(Cl

i | Gl−1), are independent, we can
decompose the conditional generative probability as follows:

p(Gl | Gl−1) =
∏

i ∈ V(Gl−1)

p
(
Cl
i | Gl−1

)
× p

(
{Bl

ij}(i,j)∈ E(Gl−1) | Gl−1, {Cl
k}Cl

k∈Gl

)
(2)

This decomposition indicates that generating a graph at level l hinges upon two fundamental aspects:

1. Independent Community Generation: Each community Cl
i is independently generated,

conditioned on the parent graph at a higher level. This enables parallel generation of small
sub-graphs rather than generating a large graph, enhancing computational efficiency.

2. Inter-Community Connection Modeling: Considering both the parent graph and the
generated communities, the collection of bipartite graphs {Bl

ij} connecting these communi-
ties is generated jointly. This approach captures the complex inter-dependencies between
communities.1

3.2 DENOISING DIFFUSION MODEL FOR COMMUNITY AND CROSS-COMMUNITY
GENERATION

For community sub-graphs, we follow DiGress Vignac et al. (2023) to define a diffusion process
in the discrete state-space for graphs. Each edge type e (including type: 0 for absent edges) and
node type v are represented by categorical distributions qt(Eij) ∈ Sde , qt(Xi) ∈ Sdn (where Sk is
the k dimensional simplex) and independently diffusing them at step t with a discrete state space
transition matrix Qt ∈ Rd×d, where the size of the matrix is determined by the number of edge types
for edge features, d = de, and the number of node types for nodes, d = dv . Here, Qt

ij represents the
probability of jumping from state i to state j at time step t: q(zt = j | zt−1 = i) = Qt

ij .

It was shown in Vignac et al. (2023), adopting the marginal distribution –mX and mE for the
node and edge features, respectively– as the prior distribution and defining transition probabilities to
asymptotically approach them (instead of simply using uniform distributions), the sparse structure of
the original graph is maintained during diffusion, leading to faster convergence with fewer steps. To
achieve this property, it is sufficient to use

Qt
X = αtI + βt 1am

′
X and Qt

E = αtI + βt 1bm
′
E (3)

, with αt, βt being noise schedule dependent weights. Using this approach, the transition probability
from state i to state j reflects the marginal probability of category j in the training set, guaranteeing
sparsity.

1Note that we choose to predict all bipartites together at once, but it could also be reduced to generating each
of them independently.
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Table 1: Structure exploiting graph generation models compared. Columns: PE=Permutation Equivariant,
HS=Horizontal Scalability, C=Complexity, EA=Edge Aware, i.e. not edge independent. The † marks models
with O

(
n2

)
complexity via spectral features in the worst case m ≈ n2. A + marks methods which adaptively

choose subsets of edges to diffuse at each timestep, ∗ a possible partial EA via parent graph embeddings.

MODEL PE HS C EA

HIGEN (KARAMI, 2023) NO, AR NA,AR O
(
L2

)†
✓

DIGREES (VIGNAC ET AL., 2023) ✓ NO O
(
Tn2

)
✓

EDGE (CHEN ET AL., 2023) ✓ NO O
(
T max(K2,m)

)†,+
✓

(BERGMEISTER ET AL., 2023) ✓ NO O (n+m)†,+ ✓

(DAVIES ET AL., 2023) ✓ ✓ O
(
maxp (np)

2)† NO∗

MRGRAD ✓ ✓ O (n+m) ✓∗

Community Denoising: The denoising network for communities at level l predicts the node and
edge features of a clean community graph, Cl,0 = (X0,E0), given a noisy graph Cl,t = (Xt,Et) as
input and conditioned on features of the parent graph, formally:

pθ
(
Cl,0 = (X0,E0) | Cl,t = (Xt,Et),Gl−1

)
.

We characterize the denoising network by the graph transformer network proposed by Dwivedi &
Bresson (2020) augmented with spectral features for efficiency. Although its complexity is quadratic
in the number of nodes (O(n2

C)), it operates on smaller community graphs, enabling parallelization
and resulting in a scalable model.

Bipartite Graph Denoising: After generating the community graphs at level l, we only diffuse the
bipartite graphs, and we predict the clean inter-community connections (bipartite graphs) using:

pθ
(
{Bl,0

ij }(i,j)∈ E(Gl−1) | {Bl,t
ij }(i,j)∈ E(Gl−1), {Cl

k}Cl
k∈Gl , Gl−1

)
where noisy bipartites and clean communities are given as the input to the model and it is conditioned
on the parent graph features. The denoising network is parameterized with a customised version of
GraphGPS neural network proposed by Rampášek et al. (2022a) which combines local message-
passing for the local sparsity structure in the graph together with global attention mechanism.
Positional and structural node features are used for higher expressiveness. Spectral features are
computed based on the local adjacency matrix of each community for efficiency. Since community
graphs are not diffused, these features are pre-computed once and reused during denoising process.
Therefore, this network has a linear complexity of O(n+m). We further discuss the scalability of
our approach in Appendix A.

4 RELATED WORK

Aside from Vignac et al. (2023); Karami (2023); Austin et al. (2021); Rampášek et al. (2022b) on
which we build directly, the closest related work to ours is Davies et al. (2023) which concurrently
extend DiGress in a way similar to us (coarse level parent graph modeling communities, independent
diffusion of each partition, then connecting the partitions in a horizontally scalable way). However,
unlike our method they do not take into account global structure directly during the inter-community
generation and are not able to leverage structural node features (see Appendix A).

The next closest works are EDGE (Chen et al., 2023) and the concurrent (Bergmeister et al., 2023).
Both choose a slightly different approach to scalability, namely that of a graph coarsening process,
which incrementally adds nodes during the diffusion process. For this they derive graph-theoretically
guided coarsening-diffusions (degree guided for Chen et al. (2023), based on the local spectral
variability of Loukas Coarsening algorithm for Bergmeister et al. (2023)).

While this improves scalability and has the benefit of allowing extrapolation across graph sizes, it
also makes it more complicated to split training and inference across multiple machines, as at least
during the selection forward pass, the whole graph needs to be processed. The partition and bipartite

4



Machine Learning for Genomics Explorations workshop at ICLR 2024

Table 2: Comparison between our proposed methods and the prior art on the Enzyme dataset using EMD
following Karami (2023),see paper for details on metrics (lower is better). For each metric, we select the best
checkpoint based on the validation value, then report the test metric. A - indicates missing values.

ENZYME
DEG. CLUS. ORB. SPCT.

DIGRESS 0.0040 0.0830 0.0020 -
HIGEN-M 0.0270 0.1570 0.0012 -
HIGEN 0.0120 0.0380 0.0007 -

S-MRGRAD-1K 0.0064 0.0653 0.0047 0.0590
S-MRGRAD-50 0.0134 0.0584 0.0091 0.0182
D-MRGRAD-50 0.0763 0.3457 0.0025 0.0183

diffusion models at each layer of our recursive hierarchical modeling can be trained completely
independently and the inference can be distributed and pipelined across multiple nodes.

Finally, it is worth mentioning Yan et al. (2023) independently invented the sampling process also
leveraged by Bergmeister et al. (2023) and argues that equivariance might actually be harmful in
learning graph distributions. While we think the work makes an important point,we disagree and
choose to retain permutation equivariance, and comment on why in-depth in Appendix D (briefly:
the possibility of non-unique samples from isomorphism classes established by Ivanov et al. (2019),
concerns about overfitting and a preference for explicit inductive biases for generalisation).

1. hierarchical, specialized structure seems to emerge naturally in the large scale data regime as
more and more symmetries are learned from the data in the pursuit of generalizable features,
even when given minimal inductive biases e.g. using massively scaled MLPs (Bachmann
et al., 2023) or transformers (Zhang et al., 2023; Shen et al., 2023)

2. modular architectures and specialization has been shown to provide generalization benefits
in Mittal et al. (2022).

Thus, we leave exploring module-free and hierarchy free generative graph models for future work.

5 EXPERIMENTS

For ease of comparison with previous work, here we will focus on the Enzyme, DD2, Ego2 and
SBM datasets.

1. DD2 which is the protein dataset of Dobson & Doig (2003) comprised of 918 graphs
with n ∈ [100, 500] nodes representing physical structures, linked when they are closer in
physical proximity than a threshold

2. Ego2 a dataset of 757 graphs representing the 3-hop ego networks extracted from the
CiteSeer dataset, with n ∈ [50− 300] Sen et al. (2008)

3. Enzyme 587 graphs with n ∈ [10, 125] representing proteins structures derived from
Schomburg et al. (2004)

4. SBM, a 200 graph Synthetic Block Model dataset with 2-5 communities with n ∈ [20, 40]
taken from Martinkus et al. (2022).

We compare both the edge aware ordinal and a simplified categorical version of our model which
ignores the weight of each edge (referred to as D-MRGraD for Discrete Multi-Resolution Graph
Diffusion and S-MRGraD for Simplfied MRGraD respectively) to the DiGress and HiGen baselines.

We follow Liao et al. (2019) with their metrics (Degree Distribution, Clustering Coefficients, Orbits
up to 4 and Spectral, i.e. eigenvalue distribution), in particular in reporting earth movers distance
(EMD) on Enzyme instead of MMD. EMD and MMD are estimated on sampling the same number
of graphs from the model as are in the validation/test set. Also for partitioning we use the Louvain
algorithm for hierarchical segmentation as in Karami (2023).
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Figure 2: Comparison of the scaling behavior of DiGress and our proposed method (labeled CHGD here) under
identical conditions. We sample k = 10 graphs at each nnew with nstep = 100 steps, using the sparsity pattern
of a random graph from the Enzyme dataset (i.e. mnew = αmold = n2

new/n2
oldmold) with checkpoints trained

Enzyme with Tdigress = 1e3 and TMRGraD = 50. We report up to the point where all methods crash OOM.
Measured on a 80GB NVIDIA A100, on the same setting described in Appendix C. MRGraD indicates scaling
the top level number of communities with ntop,new = min (

√
nnew min (1, α)), while MRGraD-3 and 10

respectively indicate additionally constraining the single partiton on level 1 to that many clusters in order to
simulate reaching a resolution limit during clustering and failing to reduce np on the second layer.

We use rejection sampling during the last diffusion step to ensure that the generated community graph
is connected, and also on the complete generation process on any remaining disconnected graphs.

We used Enzyme to tune each variant manually and then use these settings for all the others. We used
hierarchical partitioning technique of Karami (2023) with identical settings for dataset pre-processing
into L = 2 layers. Detailed architectures, hyper-parameters and experimental details can be found in
Appendix C.

As can be seen in the metrics in Table 3,Table 2, the latency plot in Figure 2 and the visualisations
in Figures 3 to 6, while clearly not yet state of the art in terms of fidelity, our method succeeds
in combining the strengths of both DiGress and Higen. On Enzyme, for which the model was
tuned,Table 2 shows that we are able to roughly match DiGress when using the same number of
diffusion steps, and are able to massively reduce number of diffusion steps with tolerable or no loss
of fidelity depending on the metric evaluated. We can also see that the inclusion of the edge weight
continues to benefit modeling in terms of the Spectral and Orbit EMD metrics. On the other datasets
shown in Table 3 results are similar albeit more mixed and we are hopeful that further tuning can
improve the performance of our model and bring it on par or beyond DiGress to compete with the
results reported in (Bergmeister et al., 2023) and (Chen et al., 2023).

In Figure 2, we show that not only can we reduce the number of diffusion steps, we also achieve
massive scaling improvements. Comparing to Figure 6 of Bergmeister et al. (2023), at n = 1500 they
achieve ≈ 2 seconds per diffusion step with T = 256, ttotal ≈ 200s on a dataset of planar graphs,
while our setup on enzyme-like sparsity structures achieves ≈ 0.5 seconds per diffusion step with
T = 50, ttotal ≈ 25s at that graph size. We can’t assume perfect transferability due to the dataset
and hardware being different, however our DiGress implementation appears to be about 1.5× slower
than their setup and implementation. Using this margin (4× faster with a reference 1.5× slower), we
are comfortable claiming competitiveness and are planning to replicate Bergmeister et al. (2023) and
perform exact measurements in future work. Please refer to appendix C for more experiments and
experimental details.

6 CONCLUSION

In this work, we introduced Multi-Resolution Graph Diffusion (MRGraD), a framework that leverages
the inherent hierarchical modularity observed in real-world graph data. Our evaluations in Section 5
demonstrate its promising potential, but further work remains in tuning, detailed evaluation on more
datasets and comparison with strong baselines like Bergmeister et al. (2023). Future work could also
be the exploration of combining and extending ideas from Bergmeister et al. (2023); Yan et al. (2023)
and Chen et al. (2023) with our framework. A shared limitation shared by structure exploiting models
is the suitability of the prior (i.e., the community structure for our work, spectrally guided local ex-
pansion for Bergmeister et al. (2023) etc.). We are excited to continue investigation in these directions.
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A DISCUSSION ON THE SCALABILITY OF THE DIFFUSION PROCESS

For very large graph processing, horizontal scaling, i.e. dividing processing a single instance load
between multiple nodes, has become the industry standard - sometimes excessively so McSherry et al.
(2015). Notwithstanding the important cautioning of this paper, when deep learning and massive
graph processing meet, horizontal scaling remains an important area of research as the COST in
the sense of McSherry et al. (2015) will usually be found relatively quickly. E.g. for the structural
features which form an important part of digress, we incur a O

(
n2

)
complexity every time they need

to be recomputed.

While it might be tempting to simply diffuse each partition and bipartite graph independently, it is
likely that this would hamper the models ability to enforce global structures, e.g. the specific ordering
of protein segments or molecules, since it would require the model to encode a lot of information into
each parent node embedding. Indeed, Chanpuriya et al. (2021) have proven that edge independent
models have inherent limits in their ability to model triangle rich graphs, which are common in real
world datasets. As noted in Chen et al. (2023) diffusion models like DiGress do not suffer from
this theoretical limitation since every sample step depends on all previously sampled edges, but this
property would be lost if we diffuse each section of the graph independently.

Since our core assumption is that the partitions do not strongly depend on the rest of the graph given
some information about the global structure, we choose the following tradeoff:

1. We denoise each partition independently of any other section of the graph, conditioning only
on the parent graph

2. We then denoise all bipartite edges jointly, meaning that they have full dependence on all
regions of the graph

3. However, we retain the locally computed spectral node features of each partition, side
stepping the full O

(
n2

)
complexity for the feature computation and reducing it propor-

tional to the size of largest community as O
(
maxi n

2
Ci

)
. We use the (linear complexity)

GraphGPS model (Rampášek et al., 2022b) with these locally computed features and use all
edges (bipartite and partition edges) for in the massage passing, in order to compute node
embeddings, then derive the edge features from these embeddings

With this, the total complexity of the bipartite edge computation on layer l is only quadratic in the
largest community on that level O

(
maxi n

2
Ci

)
and the feature computation can be done according to

the O (n) complexity of GraphGPS. Note that due to the resolution limit we can use the resolution
parameter γ in the Louvain algorithm to impose an upper bound community sizes Krings & Blondel
(2011), ensuring that no community with nCi will contain more than nCi

(nCi
−1)γm edges,i.e. nCi ≤

1 + m
γdmax

for dmax the largest node degree in the graph, which allows us to choose gamma s.t. e.g.
maxnCi

≤ √
n.

The combined approach can then in theory achieve an overall (parallelized) complexity that scales
linearly with the graph size, O(n), for the final graph generation (by diffusing

√
n communities in

parallel with O (n) total complexity each, then connecting them with the O (n+m) GraphGPS,
making it efficient for large-scale graph generation.

B DETAILED RELATED WORK

Aside from Vignac et al. (2023); Karami (2023); Austin et al. (2021); Rampášek et al. (2022b) on
which we build directly, the closest related work to ours is Davies et al. (2023) which concurrently
extend DiGress in a way similar to us (coarse level parent graph modeling communities, independent
diffusion of each partition, then connecting the partitions in a horizontally scalable way). However,
unlike our method they do not take into account global structure directly during the inter-community
generation and are not able to leverage structural node features (see Appendix A). The next closest
works are EDGE (Chen et al., 2023) and the concurrent (Bergmeister et al., 2023). For additional
discusison of related work see Appendix B .

1. hierarchical, specialized structure seems to emerge naturally in the large scale data regime as
more and more symmetries are learned from the data in the pursuit of generalizable features,
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even when given minimal inductive biases e.g. using massively scaled MLPs (Bachmann
et al., 2023) or transformers (Zhang et al., 2023; Shen et al., 2023)

2. modular architectures and specialization has been shown to provide generalization benefits
in Mittal et al. (2022).

For these reasons, we leave the exploration of module-free and hierarchy free generative graph models
for future work.

C EXPERIMENTAL DETAILS

C.1 MANUAL TUNING

In order to tune the hyper parameters, we started with Digress SBM parameters and then performed
an approximate grid (steps chosen based on experience) search across learning rate, batch size, weight
decay parameters, then reduced the diffusion steps incrementally until we observed a breakdown in
performance. The submitted version of the manuscript mentions rule of thumb adaptation but this
was actually a leftover from a previous draft and is removed in the camera ready.

C.2 ADDITIONAL RESULTS

Table 3: Further comparison S-MRGraD-50 and the prior art. Following Karami (2023) from which we also
take the baseline numbers, Enzyme is reported with EMD, the rest is reported with MMD. For each metric, we
select the best checkpoint based on the validation value, then report the test metric. A - indicates missing values.

ENZYME EGO2
DEG. CLUS. ORB. SPCT. DEG. CLUS. ORB. SPCT.

DIGRESS 0.0040 0.0830 0.0020 - 0.0708 0.0092 0.1205 -
HIGEN-M 0.0270 0.1570 0.0012 - 0.1140 0.0378 0.0535 -
HIGEN 0.0120 0.0380 0.0007 - 0.0472 0.0031 0.0387 -

S-MRGRAD-50 0.0134 0.0584 0.0091 0.0182 0.2150 0.0410 0.0609 0.0425

DD2 SBM
DEG. CLUS. ORB. SPCT. DEG. CLUS. ORB. SPCT.

DIGRESS - - - - 0.0013 0.0498 0.0433 -
HIGEN-M 0.0041 0.0109 0.0472 0.0061 0.0017 0.0503 0.0604 0.0068
HIGEN 0.0012 0.0435 0.0234 0.0025 0.0019 0.0498 0.0352 0.0046

S-MRGRAD-50 0.1250 1.0473 0.2771 0.1561 0.0381 0.0126 0.0446 0.0532

C.3 INPUT AND AUXILIARY FEATURES

Following Vignac et al. (2023), across all variations we represent a graph G as a tuple of feature
tensors (X,E,y) with X ∈ Rn×dV ,E ∈ Rn×n×dE ,y ∈ Rdy and the feature dimensions dV , dE , dy
as follows.

In each setting, on top of any features listed below, we compute auxiliary features X′,E′,y′ with
sizes d′V , d

′
E , d

′
y as follows (any redundancies are due to code reuse)

1. d′V = (1 + 3 + 1 + kvec) + (1 + 1 + 1) = 7 + kvec,corresponding to a constant dummy
feature set to 1.0, the number of 3, 4 and 5 cycles the node is involved in, an indicator on
whether the node is part of a component which isn’t the largest connected components
(LCC), the node specific elements of the eigenvectors corresponding to the kvec smallest
non-zero eigenvalues, the size of the partition that the node belongs to (estimated in the
parent level), the total number of nodes in the expected graph and finally, the normalized
timestep t/tmax

11



Machine Learning for Genomics Explorations workshop at ICLR 2024

Figure 3: Enzyme-D-MRGraD-50

2. d′E = 0 no auxiliary features on the edges
3. d′y = (1 + 4 + 1 + kval + 1) + (1 + 1 + 1) = 10 + kval, the number of nodes n in the

graph, the number of 3, 4, 5 and 6 cycles within the graph, the number components in the
graph, the kval lowest non-zero eigenvalues, the normalized timestep t/tmax, the size of the
partition that the node belongs to (estimated in the parent level), the total number of nodes
in the expected graph and finally, the normalized timestep t/tmax

As soon as we have a parent graph, we also concatenate the node embedding corresponding ZV,i

corresponding to the partition the i a given node belongs to with the node and global features, addimg
dimparent dimensions.

C.3.1 SIMPLIFIED DISCRETE MODEL

In the simplified discrete setting (without edge weights,types or node types), we use a simple one hot
encoding of a (weightless) edge and no other features for nodes and global features, i.e.

1. the final node feature size is dV = d′V + dimparent

2. the final edge feature size is dE = 2 + d′E = 2

3. the final global feature size is dy = d′y + dimparent

12



Machine Learning for Genomics Explorations workshop at ICLR 2024

Figure 4: Ego2-D-MRGraD-50

C.3.2 CATEGORICAL INTEGER MODEL

We one-hot encode the modeled edge weights as well as the community sizes tracked as node features,
leading to features increased by wmax and npart,max respectively

1. the final node feature size is dV = d′V + dimparent + npart,max

2. the final edge feature size is dE = d′E + wmax = wmax

3. the final global feature size is dy = d′y + dimparent

C.4 DIFFUSION MODEL PARAMETRIZATION

We use two types of GNNs for the diffusion process

1. the GraphTransformer used in Digress Rampášek et al. (2022b) (Digress GAT), used for
generating the partitions

2. the GraphGPS Rampášek et al. (2022b) used for the bipart stitching

We build on the publically available code bases of both Karami (2023) and Vignac et al. (2023) and
do not modify them except for hyperparameter tweaks and our modification for local propagation.
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Figure 5: DD2-D-MRGraD-50

We also use a simple MLP to predict the size of each community.

Hyperparameters across all settings are given in Appendix C.5

C.5 HYPERPARAMETERS

Table 4: Hyperparamters shared across all experiments

lr 0.0002
nbatch 8
WEIGHT DECAY 1e− 12
OPTIMIZER ADAMW
kvec 2
kval 5
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Figure 6: SBM-D-MRGraD-50

Table 5: Hyperparameters for S-MRGraD-1k (see also Table 3)

TBP 1000
EPOCHS 5000
TP 1000

D ON YAN ET AL. 2023 AND PERMUTATION EQUIVARIANT MODELS

While we think recent work like Kiani et al. (2024); Abbe & Boix-Adsera (2022) lends credence
to the core of their argument with which we fully agree ("invariant target distributions are hard to
learn"), we think that the reasoning in the paper is subtly flawed for three reasons

1. "recall" is not the right metric for distributional modeling since it is also a measure of
memorization and overfitting

2. their arguments assumes unique samples of G in the training dataset, which was demonstrated
to be wrong in common graph datasets in Ivanov et al. (2019).
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Table 6: Hyperparameters for S-MRGraD-50 (see also Table 3)

TBP 50
EPOCHS 1000
TP 50

3. their lemmas are all directly concerned with pθ(A
∗) the "effective" target distribution,

but this is not what equivariant generators or diffusion models need to earn it is pθ(G),
the probability of a given graph, which we argue they achieve by implicitly learning
pθ(A

πlatent |πlatent), i.e. a single canonical instance from the permutation set

We argue based on the results already presented in Krawczuk et al. (2021)(the earliest permutation
equivariant graph generative model we are ware of) that the difficulty of learning this function due to
the size of target distribution but an optimisation and identification problem, i.e. training algorithm
needs to identify and commit to the "canonical" πlatent). Already in Krawczuk et al. (2021) the
authors noted that symmetry breaking using latent positional embeddings during training was crucial
to help the network identify Aπlatent solve what the called the "collision problem" of mapping
specific sets in the latent states to specific embeddings or probability sets at the output. One can
easily imagine a sequence of training examples that will lead the lead to the "reinterpretation" of
these latent sets as belonging to a different graph at each gradient update, slowing down the progress
in training to essentially random noise, which we think maps cleanly onto the problem of (Kiani
et al., 2024, Sec. 4.3). It is also worth noting that they also argued that can regain the uniform
distribution over permutations by randomly permuting the latent positional encoding at inference -
exactly the strategy re-invented (and, to acknowledge their contribution, properly formalized) by Yan
et al. (2023). However, due to their PE inductive bias, they do not need to do this during training.

The results of Abbe & Boix-Adsera (2022) support the idea of "learning under symmetries" having
potential pathologies. However, we think that the impressive performance of Yan et al. (2023) is not
due to the avoidance of permutation equivariance mainly due to 1) architectural and diffusion process
improvements, 2) effectively working in the setting of Bachmann et al. (2023) and are reintroducing
a learned approximate permutation equivariance through their permutation augmentation2. There
has been an exciting convergence in the literature, with works like Frasca et al. (2022) carefully
tracking and experimenting with the specific symmetries we leverage as inductive biases and works
like Bachmann et al. (2023); Ong & Veličković (2022) and indeed Yan et al. (2023) instead leverage
compute combined with data or augmentations to have the models learn these symmetries. This
is ultimately an example of the pareto frontier identified by Edelman et al. (2023), with symmetry
inductive biases representing a form of knowledge in the absence of exhaustive data or enough
compute to leverage augmentations.

However, as the community navigates this pareto frontier, we think it is important to both correctly
disentangle what makes our methods work and also use the correct definition for "work".

Note that in the case of an imbalanced distribution of isomorphism classes as observed in many real
world datasets in Ivanov et al. (2019), a "magic" PE method which can navigate the optimisation
landscape will still find the correct distribution, while the non-PE methods might now suffer a bias
due to overfitting on the training dataset - maximising recall, but not actually learning the task at
(distributional modelling). Even in the benign unique isomorphism class setting implicitly assumed
by Yan et al. (2023) large graphs is also highly unlikely that an augmentation will be able to generate
a meaningful fraction of all permutations, although a possible concentration analysis in future work
might alleviate this concern.

Until then, it is for this reason (a focus on correct generalisation without reliance on benign datasets)
we chose to focus this work on PE architectures.

2based on inspecting their github codebase
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