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Abstract

Mirror descent value iteration (MDVI), an ab-
straction of Kullback–Leibler (KL) and entropy-
regularized reinforcement learning (RL), has
served as the basis for recent high-performing
practical RL algorithms. However, despite the use
of function approximation in practice, the theo-
retical understanding of MDVI has been limited
to tabular Markov decision processes (MDPs).
We study MDVI with linear function approxi-
mation through its sample complexity required
to identify an ε-optimal policy with probability
1 − δ under the settings of an infinite-horizon
linear MDP, generative model, and G-optimal de-
sign. We demonstrate that least-squares regres-
sion weighted by the variance of an estimated
optimal value function of the next state is crucial
to achieving minimax optimality. Based on this
observation, we present Variance-Weighted Least-
Squares MDVI (VWLS-MDVI), the first theo-
retical algorithm that achieves nearly minimax
optimal sample complexity for infinite-horizon
linear MDPs. Furthermore, we propose a prac-
tical VWLS algorithm for value-based deep RL,
Deep Variance Weighting (DVW). Our experi-
ments demonstrate that DVW improves the per-
formance of popular value-based deep RL algo-
rithms on a set of MinAtar benchmarks.
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1. Introduction
Kullback–Leibler (KL) divergence and entropy regular-
ization play an important role in recent reinforcement
learning (RL) algorithms. These regularizations are often
introduced to promote exploration (Haarnoja et al., 2017;
2018), make algorithms more robust to errors (Husain et al.,
2021; Bellemare et al., 2016), and ensure that performance
improves over time (Schulman et al., 2015). The behavior
of RL algorithms under these regularizations can be studied
using mirror descent value iteration (MDVI; Geist et al.
(2019)), a value iteration algorithm that incorporates KL
and entropy regularization in its value and policy updates.
Notably, when both regularizations are combined, MDVI
is proven to achieve nearly minimax optimal sample
complexity1 with the generative model (simulator) in
infinite-horizon MDPs, which indicates that it can exhibit
good performance with relatively few samples (Kozuno
et al., 2022). This analysis supports the state-of-the-art
performance of the recent Munchausen DQN (M-DQN,
Vieillard et al. (2020b)), which is a natural extension of
MDVI to a value-based deep RL algorithm.

However, the minimax optimality of MDVI has only been
proven for tabular Markov decision processes (MDPs), and
does not consider the challenge of generalization in RL. As
practical RL algorithms often use function approximators
to obtain generalizability, this leads to a natural question: Is
MDVI minimax optimal with function approximation? The
answer to this question should reveal room for improvement
in existing practical MDVI-based algorithms such as
M-DQN. This study addresses the question by investigating
the sample complexity of a model-free infinite-horizon
(ε, δ)-PAC RL algorithm, i.e., the expected number of calls
to the generative model to identify an ε-optimal policy with
a failure probability less than δ, under the assumptions of
linear MDP (Jin et al., 2020), access to all the state-action
pairs with a generative model, and a G-optimal design
(Lattimore et al., 2020). Intuitively, these assumptions allow

1We only study the sample complexity (number of calls to a
generative model) and ignore the computational complexity (total
number of logical and arithmetic operations that the agent uses).
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us to focus on the value update rule, which is the core of
RL algorithms, based on the following mechanisms; the
access to all the state-action pairs with the generative model
removes difficulties of exploration, the linear MDP provides
a good representation, and the G-optimal design provides
access to an effective dataset. We explain in Section 2 why
the study of infinite-horizon RL is of value.

In Section 4, we provide positive and negative answers
to the aforementioned question. We demonstrate that
a popular method for extending tabular algorithms to
function approximation, i.e., regressing the target value
with least-squares (Bellman et al., 1963; Munos, 2005),
can result in sub-optimal sample complexity in MDVI.
This suggests that in the case of function approximation,
algorithms such as M-DQN, which rely mainly on the power
of regularization, may exhibit a sub-optimal performance
in terms of sample complexity. However, we confirm that
MDVI achieves nearly minimax optimal sample complexity
when the least-squares regression is weighted by the
variance of the optimal value function of the next state.
We prove these scenarios using our novel proof tool, the
weighted Kiefer–Wolfowitz (KW) theorem, which allows
us to use the total variance (TV) technique (Azar et al.,
2013) to provide a

√
(1− γ)−1 tighter performance bound

than the vanilla KW theorem (Kiefer & Wolfowitz, 1960;
Lattimore et al., 2020), where γ denotes the discount factor.

Based on the theoretical observations, we propose both
theoretical and practical algorithms; a minimax optimal
extension of MDVI to infinite-horizon linear MDPs, called
Variance-Weighted Least-Squares MDVI (VWLS-MDVI,
Section 5), and a practical weighted regression algorithm
for value-based deep RL, called Deep Variance Weighting
(DVW, Section 6). VWLS-MDVI is the first-ever algorithm
with nearly minimax sample complexity under the setting
of both model-based and model-free infinite-horizon linear
MDPs. DVW is also the first algorithm that extends the min-
imax optimal theory of function approximation to deep RL.
Our experiments demonstrate the effectiveness of DVW to
value-based deep RL through an environment where we can
compute oracle values (Section 7.2.1) and a set of MinAtar
benchmarks (Young & Tian (2019), Section 7.2.2).

2. Related Work
Minimax Infinite-Horizon RL with Linear Function Ap-
proximation. The development of minimax optimal RL
with linear function approximation has significantly ad-
vanced in recent years owing to the study of Zhou et al.
(2021). Zhou et al. (2021) proposed the Bernstein-type
self-normalized concentration inequality (Abbasi-Yadkori
et al., 2011) and combined it with variance-weighted re-
gression (VWR) to achieve minimax optimal regret bound
for linear mixture MDPs. Then, Hu et al. (2022) and He

Table 1. Sample complexity comparison to find an ε-optimal policy
under infinite-horizon Linear MDP. In the table, d denotes the
dimension of a linear MDP and γ denotes the discount factor .

Algorithm (Publication) Complexity

G-Sampling-and-Stop (Taupin et al., 2022) Õ
(

d2

ε2(1−γ)4

)
VWLS-MDVI (proposed in this study) Õ

(
d2

ε2(1−γ)3

)
Lower Bound (Weisz et al., 2022) Ω

(
d2

ε2(1−γ)3

)

et al. (2022) built upon the VWR technique for linear MDPs
to achieve minimax optimality. VWR has also been used
for tight analyses in offline RL (Yin et al., 2022b; Xiong
et al., 2022), off-policy policy evaluation (Min et al., 2021),
and RL with nonlinear function approximation (Yin et al.,
2022c; Agarwal et al., 2022).

Despite the development of minimax optimal RL with linear
function approximation, their results are limited to the set-
ting of finite-horizon episodic MDPs. However, in practical
RL applications, it is not uncommon to encounter infinite
horizons, as can be observed in robotics (Miki et al., 2022),
recommendation (Maystre et al., 2023), and industrial
automation (Zhan et al., 2022). Additionally, many practical
deep RL algorithms, such as DQN (Mnih et al., 2015) and
SAC (Haarnoja et al., 2018), are designed as model-free al-
gorithms for the infinite-horizon discounted MDPs. Despite
the practical importance of this topic, the minimax optimal
algorithm for infinite-horizon discounted linear MDPs was
unknown until this study. Our study not only developed the
first minimax optimal algorithm but also became the first
study to naturally extend it to a practical deep RL algorithm.

Generative Model Assumption. In the infinite-horizon
setting, the assumption of a generative model is not uncom-
mon because, in contrast to the finite-horizon episodic set-
ting, the environment cannot be reset, rendering exploration
difficult (Azar et al., 2013; Sidford et al., 2018; Agarwal
et al., 2020). In fact, efficient learning in the infinite-horizon
setting without the generative model is believed to be achiev-
able only when an MDP has a finite diameter (Jaksch et al.,
2010).

The problem setting of our theory, where the generative
model can be queried for any state-action pair, is known
as random access generative model setting. For this set-
ting, Lattimore et al. (2020) and Taupin et al. (2022) pro-
vided infinite-horizon sample-efficient algorithms with a
G-optimal design; however, their sample complexity is not
minimax optimal. Yang & Wang (2019) proposed an algo-
rithm with minimax optimal sample complexity for infinite-
horizon MDPs; however, their algorithm relies on the special
MDP structure, called anchor state-action pairs, as input to
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the algorithm. In contrast, the proposed VWLS-MDVI al-
gorithm can be executed as long as we have access to all
state-action pairs. Comparison of sample complexity with
that of previous algorithms for infinite-horizon Linear MDPs
is summarized in Table 1.

Computational Complexity. Unfortunately, the computa-
tional complexity of algorithms using a G-optimal design,
including our theoretical algorithm, can be inefficient (Lat-
timore et al., 2020). This issue is addressed by extending
the problem setting to more practical scenarios, e.g., local
access, where the agent can query to the generative model
only previously visited state-action pairs (Yin et al., 2022a;
Weisz et al., 2022), or online RL. We empirically address the
issue by proposing the practical VWR algorithm, i.e., DVW,
and demonstrate its effectiveness in an online RL setting.
Unlike previous practical algorithms that utilize weighted
regression (Schaul et al., 2015; Kumar et al., 2020; Lee et al.,
2021), the proposed DVW possesses a theoretical background
of statistical efficiency. We leave theoretical extensions to
wider problem settings as future works.

3. Preliminaries
For a set S, we denote its complement and its size by Sc
and |S|, respectively. For N ∈ N, let [N ] := {1 . . . N}.
For a measurable space, say (S,F), the set of probability
measures over (S,F) is denoted by ∆(S,F) or ∆(S) when
the σ-algebra is clear from the context. E[X] and V[X]
denotes the expectation and variance of a random variable
X , respectively. The empty sum is defined to be 0, e.g.,∑k

i=j ci = 0 if j > k.

We consider an infinite-horizon discounted MDP defined
by (X ,A, γ, r, P ), where X denotes the state space, A
denotes finite action space with size A, γ ∈ [0, 1) denotes
the discount factor, r : X × A → [−1, 1] denotes the
reward function, and P : X × A → ∆(X ) denotes the
state-transition probability kernel. We denote the sets of
all bounded Borel-measurable functions over X and X ×A
by Fv and Fq, respectively. Let H be the (effective) time
horizon (1− γ)−1. For both Fv and Fq , let 0 and 1 denote
functions that output zero and one everywhere, respectively.
Whether 0 and 1 are defined in Fv or Fq shall be clear
from the context. All the scalar operators and inequalities
applied to Fv and Fq should be understood point-wise.

With an abuse of notation, let P be an operator from Fq

to Fv such that (Pv)(x, a) =
∫
v(y)P (dy|x, a) for any

v ∈ Fv . A policy is a probability kernel overA conditioned
on X . For any policy π and q ∈ Fq, let π be an operator
from Fv to Fq such that (πq)(x) =

∑
a∈A π(a|x)q(x, a).

We adopt a shorthand notation, i.e., Pπ := Pπ. We define
the Bellman operator Tπ for a policy π as Tπq := r+γPπq,
which has the unique fixed point, i.e., qπ. The state-value

function vπ is defined as πqπ. An optimal policy π∗ is a
policy such that v∗ := vπ∗ ≥ vπ for any policy π, where
the inequality is point-wise.

3.1. Tabular MDVI

To better understand the motivation of our theorems for func-
tion approximation, we provide a background on Tabular
MDVI of Kozuno et al. (2022).

3.1.1. TABULAR MDVI ALGORITHM

For any policies π and µ, let H(π) := −π log π ∈ Fv be
the entropy of π and KL (π∥µ) := π log π

µ ∈ Fv be the KL
divergence of π and µ. For all (x, a) ∈ X ×A, the update
rule of Tabular MDVI is written as follows:

qk+1 = r + γP̂k(M)vk ,

where vk = πkqk − τKL(πk∥πk−1) + κH(πk) ,
πk(a|x) ∝ πk−1(a|x)α exp(βqk(x, a)) .

(1)

Here, we define α := τ/(τ + κ) and β := 1/(τ + κ). Fur-
thermore, let P̂k(M)vk : (x, a) 7→ 1

M

∑M
m=1 vk(yk,m,x,a)

where (yk,m,x,a)
M
m=1 are M ∈ N samples obtained from

the generative model P (·|x, a) at the k th iteration.

Similar to Kozuno et al. (2022), we use the idea of the
non-stationary policy (Scherrer & Lesner, 2012) to pro-
vide a tight analysis. For a sequence of policies (πk)k∈Z,
let P i

j := Pπi
Pπi−1

· · ·Pπj+1
Pπj

for i ≥ j, otherwise
let P i

j := I . As a special case with πk = π∗ for all k,
let P i

∗ := (Pπ∗)
i. Moreover, for a sequence of policies

(πk)
K
k=0, let π′

k be the non-stationary policy that follows
πk−t at the t-th time step until t = k, after which π0 is fol-
lowed.2 The value function of such a non-stationary policy
is given by vπ′

k
= πkTπk−1

· · ·Tπ1qπ0 . While not covered
in this work, we anticipate that our main results remain valid
for the last policy case, at the expense of the range of valid
ε, by extending the analysis of Kozuno et al. (2022).

3.1.2. TECHNIQUES TO MINIMAX OPTIMALITY

The key to achieving the minimax optimality of Tabular
MDVI is combining the averaging property (Vieillard et al.,
2020a) and TV technique (Azar et al., 2013).

Averaging Property. Let sk :=
∑k−1

j=0 α
jqk−j be the

moving average of past q-functions and wk be the function
x 7→ β−1 log

∑
a∈A exp (βsk(x, a)) over X . Then, the

update (1) can be rewritten as (derivation in Appendix B):

qk+1 = r + γP̂k(M)vk , (2)

where vk = wk − αwk−1, and πk(a|x) ∝ exp (βsk(x, a)).
To simplify the analysis, we consider the limit of τ, κ→ 0

2The time step index t starts from 0.
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while keeping τ/(τ + κ) constant. This limit corresponds
to letting β →∞, letting wk : x 7→ maxa∈A sk(x, a) over
X , and having πk be greedy with respect to sk3.

Intuitively, sk, i.e., the moving average of past q-values,
averages past errors caused during the update. Kozuno
et al. (2022) confirmed that this allows Azuma–Hoeffding
inequality (Lemma D.1) to provide a tighter upper bound of
∥v∗ − vπ′

k
∥∞ than that in the absence of averaging, where

errors appear as a sum of the norms (Vieillard et al., 2020a).
We provide the pseudocode of Tabular MDVI with (2) in
Appendix K.

Total Variance Technique. The TV technique is a
common theoretical technique used to sharpen the upper
bound of ∥v∗ − vπ′

k
∥∞ (referred to as the performance

bound in this study). For any v ∈ Fv, let Var(v) be the
“variance” function.

Var(v) : (x, a) 7→ (Pv2)(x, a)− (Pv)2(x, a) .

We often write
√
Var(v) as σ(v). For a discounted sum of

variances of policy values, the TV technique provides the
following bound (the corollary follows from Lemma E.2):

Corollary 3.1. Let ♡TV
k :=

∑k−1
j=0 γ

jπkP
k−1
k−j σ(vπk−j

) and

♣TV
k :=

∑k−1
j=0 γ

jπ∗P
j
∗σ(v∗). For any k ∈ [K] in Tabular

MDVI, ♡TV
k ≤

√
2H31 and ♣TV

k ≤
√
2H31 .

Kozuno et al. (2022) used this TV technique to improve the
performance bound of Tabular MDVI. As σ(vπk−j

) ≤ H
and σ(v∗) ≤ H due to Lemma D.5, the TV technique
provides approximately

√
H tighter bound than the naive

bounds of♡TV
k ≤ H21 and♣TV

k ≤ H21. This leads to
√
H

better performance bound.

3.2. Linear MDP and G-Optimal Design

We assume access to a good feature representation with
which an MDP is linear (Jin et al., 2020).
Assumption 3.2 (Linear MDP). Suppose an MDP M
with the state-action space X × A. We have access to
a known feature map ϕ : X × A → Rd that satisfies
the following condition: there exist a vector ψ ∈ Rd

and d (signed) measures µ := (µ1, . . . , µd) on X such
that P (·|x, a) = ϕ(x, a)⊤µ for any (x, a) ∈ X × A, and
r = ϕ⊤ψ. Let Φ := {ϕ(x, a) : (x, a) ∈ X × A} ⊂ Rd be
the set of all feature vectors. We assume that Φ is compact
and spans Rd.

A crucial property of the linear MDP is that, for any policy
π, qπ is always linear in the feature map ϕ (Jin et al., 2020).
The compactness and span assumptions of Φ are made for
the purpose of constructing a G-optimal design later on.

3Even if β is finite, the minimax optimality holds as long as
β is sufficiently large (Remark 1 in Kozuno et al. (2022)).

Furthermore, we assume access to a good finite subset of
X ×A called a core set C. The key properties of the core set
are that it has a few elements while {ϕ(y, b) : (y, b) ∈ C}
provides a “good coverage” of the feature space in the sense
that we describe now. For a distribution ρ over X ×A, let
G ∈ Rd×d and g(ρ) ∈ R be defined by

G :=
∑

(y,b)∈C

ρ(y, b)ϕ(y, b)ϕ(y, b)⊤

and g(ρ) := max
(x,a)∈X×A

ϕ(x, a)⊤G−1ϕ(x, a) ,
(3)

respectively. We denote ρ as the design, G as the design
matrix underlying ρ, and C := Supp(ρ) as the support of ρ,
which we denote as the core set of ρ. The problem of finding
a design that minimizes g is known as the G-optimal design
problem. The Kiefer–Wolfowitz (KW) theorem (Kiefer &
Wolfowitz, 1960) states the optimal design ρ∗ must satisfy
g(ρ∗) = d. Furthermore, the following theorem shows that
there exists a near-optimal design with a small core set for
Φ. The proof is provided in Appendix F.
Theorem 3.3. Let uC := 4d log log(d + 4) + 28. For Φ
satisfying Assumption 3.2, there exists a design ρ such that
g(ρ) ≤ 2d and the core set of ρ has size at most uC .

4. MDVI with Linear Function Approximation
In this section, we provide essential components to extend
MDVI from tabular to linear with minimax optimality. To
illustrate how linear MDVI fails or succeeds in attaining min-
imax optimality, we begin by introducing the general algo-
rithm, called Weighted Least-Squares MDVI (WLS-MDVI).

4.1. Weighted Least-Squares MDVI Algorithm

Let qk(x, a) := ϕ⊤(x, a)θk be the linearly parameterized
value function using the basis function θk ∈ Rd. For this qk,
the moving average of past q-values can be implemented as

sk := ϕ⊤θk where θk = θk + αθk−1 .

Using these qk and sk, let wk, vk, and the policy πk be the
same as those of Section 3.1.2. Given a bounded positive
weighting function f : X × A 7→ (0,∞), we learn θk
based on weighted least-squares regression.

θk = argmin
θ∈Rd

∑
(y,b)∈Cf

ρf (y, b)

f2(y, b)

(
ϕ⊤(y, b)θ − q̂k(y, b)

)2
,

where q̂k(y, b) = r(y, b) + γP̂k−1(M)vk−1(y, b) .
(4)

Here, ρf is a design over X × A and Cf := Supp(ρf )
is a core set of ρf . When f = 1, we recover the vanilla
least-squares regression (Bellman et al., 1963; Munos,
2005), which is a common strategy in practice. We call this
algorithm WLS-MDVI. The next section presents our novel
theoretical tool to provide minimax sample complexity.
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4.2. Weighted Kiefer–Wolfowitz Theorem

Let θ∗k ∈ Rd be the oracle parameter satisfying ϕ⊤θ∗k =
r + γPvk−1. θ∗k is ensured to exist by the property of
linear MDPs. To derive the sample complexity, we need a
bound of the regression errors outside the core set Cf , i.e.,
∥ϕ⊤(θk − θ∗k)∥∞. Lattimore et al. (2020) derived such a
bound using Theorem 3.3.

Instead of the vanilla G-optimal design, we consider the
following weighted design with a bounded positive function
f : X × A 7→ (0,∞). For a design ρ over X × A, let
Gf ∈ Rd×d and gf (ρ) ∈ R be defined by

Gf :=
∑

(y,b)∈Cf

ρ(y, b)
ϕ(y, b)ϕ(y, b)⊤

f(y, b)2
,

and gf (ρ) := max
(y,b)∈X×A

ϕ(y, b)⊤G−1
f ϕ(y, b)

f(y, b)2
,

(5)

respectively. Equation (5) is the weighted generalization of
Equation (3) with ϕ scaled by 1/f . For this weighted opti-
mal design, we derived the weighted KW theorem, which
almost immediately follows from Theorem 3.3 by consider-
ing a weighted feature map ϕf : (x, a) 7→ ϕ(x, a)/f(x, a).

Theorem 4.1 (Weighted KW Theorem). For Φ satisfying
Assumption 3.2, there exists a design ρf such that gf (ρf ) ≤
2d and the core set of ρf has size at most uC .

Such the design under Assumption 3.2 with finite X can be
obtained using the Frank-Wolfe algorithm of Lemma 3.9
mentioned in Todd (2016). We provide the pseudocode of
Frank-Wolfe algorithm in Appendix K. We assume that we
have access to the weighted optimal design in constructing
our theory:

Assumption 4.2 (Weighted Optimal design). There is an
oracle called ComputeOptimalDesign that accepts a
bounded positive function f : X ×A 7→ (0,∞) and returns
ρf , Cf , and Gf as in Theorem 4.1.

Combined with this ComputeOptimalDesign, we pro-
vide the pseudocode of WLS-MDVI in Algorithm 1. The
weighted KW theorem yields the following bound on the
optimal design. The proof can be found in Appendix G.

Lemma 4.3 (Weighted KW Bound). Let f : X × A 7→
(0,∞) be a positive function and z be a function defined
over Cf . Then, there exists ρf ∈ ∆(X ×A) with a finite
support Cf := Supp(ρf ) of size less than or equal to uC
such that

|ϕ⊤W (f, z)| ≤
√
2df max

(y′,b′)∈Cf

∣∣∣∣ z(y′, b′)f(y′, b′)

∣∣∣∣ ,
where W (f, z) := G−1

f

∑
(y,b)∈Cf

ρf (y, b)ϕ(y, b)z(y, b)

f2(y, b)
.

4.3. Sample Complexity of WLS-MDVI

Lemma 4.3 helps derive the sample complexity of
WLS-MDVI. Let εk be the sampling error for vk−1 and Ek

be its moving average:

εk : (x, a) 7→ γ
(
P̂k−1(M)vk−1 − Pvk−1

)
(x, a)

and Ek : (x, a) 7→
k∑

j=1

αk−jεj(x, a) .

Furthermore, for any non-negative integer k, let Aγ,k :=∑k−1
j=0 γ

k−jαj , Ak :=
∑k−1

j=0 α
j , and A∞ := 1/(1 − α).

Then, the performance bound of WLS-MDVI is derived as

|v∗ − vπ′
k
| ≤
√
2d

A∞

(
♡wls

k +♣wls
k

)
+♢k , (6)

where ♡wls
k :=

k−1∑
j=0

γjπkP
k−1
k−j

∣∣∣∣ max
(y,b)∈Cf

Ek−j(y, b)

f(y, b)

∣∣∣∣ f
and ♣wls

k :=

k−1∑
j=0

γjπ∗P
j
∗

∣∣∣∣ max
(y,b)∈Cf

Ek−j(y, b)

f(y, b)

∣∣∣∣ f .
Here, ♢k := 2H

(
αk +Aγ,k/A∞

)
1. The formal lemma

can be found in Lemma H.3. This performance bound pro-
vides the negative and positive answers to our main question:
Is MDVI minimax optimal with function approximation?

4.3.1. NEGATIVE RESULT OF f = 1

When f = 1, the performance bound becomes incom-
patible with the TV technique (Corollary 3.1), which
is necessary for minimax optimality. In this case,
♡wls

k = ♣wls
k =

∑k−1
j=0 γ

j |max(y,b)∈C Ek−j(y, b)|1.
Therefore, even when we relate Ek−j to σ(vπk−j

) ≤ H1
or σ(v∗) ≤ H1 using a Bernstein-type inequality, we only
obtain a H2 bound inside the first term of the inequality (6).
This implies that the sample complexity can be sub-optimal,
as we need more samples by

√
H than using the TV

technique to obtain a near-optimal policy.

4.3.2. POSITIVE RESULT OF f ≈ σ(v∗)

When we carefully select the weighting function f , the
performance bound becomes compatible with the TV tech-
nique. For example, when f = σ(v∗) and Ek−j is re-
lated to σ(v∗) using a Bernstein-type inequality, we obtain∑k−1

j=0 γ
jπ∗P

j
∗σ(v∗) ≤ H

√
H1 inside ♣wls

k owing to the
TV technique. This helps achieve a performance bound that
is approximately

√
H tighter than the bound of f = 1.

Indeed, when f ≈ σ(v∗), we obtain the following minimax
optimal sample complexity of WLS-MDVI:

Theorem 4.4 (Sample complexity of WLS-MDVI with
f ≈ σ(v∗), informally). When ε ∈ (0, 1/H], α = γ,
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Algorithm 1 WLS-MDVI (α, f,K,M)

Input: α ∈ [0, 1), f : X × A → (0,∞), K ∈ N,
M ∈ N.
Initialize θ0 = θ0 = 0 ∈ Rd, s0 = 0 ∈ RX×A, and
w0 = w−1 = 0 ∈ RX .
ρf , Cf , Gf := ComputeOptimalDesign(f).
for k = 0 to K − 1 do
vk = wk − αwk−1.
for each state-action pair (y, b) ∈ Cf do

Compute q̂k+1(y, b) by Equation (4).
end for
Compute θk+1 by Equation (4).
θk+1 = θk+1 + αθk and sk+1 = ϕ⊤θk+1.
wk+1(x) = maxa∈A sk+1(x, a) for each x ∈ X .

end for
Return: vK and (πk)

K
k=0 , where πk is greedy policy

with respect to sk

and σ(v∗) ≤ f ≤ σ(v∗) + 2
√
H1, WLS-MDVI outputs

a sequence of policies (πk)Kk=0 such that ∥v∗− vπ′
K
∥∞ ≤ ε

with probability at least 1−δ, using Õ
(
d2H3ε−2 log(1/δ)

)
samples from the generative model.

The formal theorem and proof are provided in Appendix H.
The sample complexity matches the lower bound by
Weisz et al. (2022) up to logarithmic factors. This means
that WLS-MDVI is nearly minimax optimal as long as
f ≈ σ(v∗) and ε is sufficiently small. The remaining
challenge is to learn such weighting function.

5. Variance Weighted Least-Squares MDVI
In this section, we present a simple algorithm for learning
the weighting function and introduce our VWLS-MDVI,
which combines the weight learning algorithm with
WLS-MDVI to achieve minimax optimal sample complexity.

5.1. Learning the Weighting Function

As stated in Theorem 4.4, the weighting function should
be close to σ(v∗) by a factor of

√
H . We accomplish this

by learning the weighting function in two steps: learning a√
H-optimal value function (Section 5.1.1) and learning the

variance of the value function (Section 5.1.2).

5.1.1. LEARNING THE
√
H -OPTIMAL VALUE FUNCTION

Theorem 5.1 shows that WLS-MDVI with f = 1 yields a√
H-optimal value function with sample complexity that is

1/ε smaller than that of Theorem 4.4.

Theorem 5.1 (Sample complexity of WLS-MDVI with
f = 1, informally). When ε ∈ (0, 1/H], α = γ, and f = 1,
WLS-MDVI outputs vK satisfying ∥v∗ − vK∥∞ ≤

1
2

√
H

Algorithm 2 VarianceEstimation (vσ,Mσ)

Input: vσ ∈ RX , Mσ ∈ N.
ρ, C, G := ComputeOptimalDesign(1).
for each state-action pair (x, a) ∈ C do

Compute V̂ar(x, a) by Equation (7).
end for
ω = G−1

∑
(x,a)∈C ρ(x, a)ϕ(x, a)V̂ar(x, a).

Return: ω.

with probability at least 1−δ, using Õ
(
d2H3ε−1 log(1/δ)

)
samples from the generative model.

The formal theorem and proof are provided in Appendix H.

5.1.2. LEARNING THE VARIANCE FUNCTION

Given a
√
H-optimal value function vσ by Theorem 5.1, we

linearly approximate the variance function as Varω(x, a) :=
ϕT (x, a)ω with ω ∈ Rd. Using ρ, C, and G of the vanilla
optimal design, ω is learned using least-squares estimation.

ω = G−1
∑

(x,a)∈C

ρ(x, a)ϕ(x, a)V̂ar(x, a) , where

V̂ar(x, a) =
1

2Mσ

Mσ∑
m=1

(
vσ(ym,x,a)− vσ(zm,x,a)

)2
.

(7)
Here, (ym,x,a)

Mσ
m=1 and (zm,x,a)

Mσ
m=1 denote Mσ indepen-

dent samples from P (·|x, a).

The pseudocode of the algorithm is shown in Algorithm 2.
Theorem 5.2 shows that with a small number of samples,
the learned ω estimates σ(v∗) with

√
H accuracy.

Theorem 5.2 (Accuracy of VarianceEstimation, in-
formally). When vσ satisfies ∥v∗ − vσ∥∞ ≤ 1

2

√
H ,

VarianceEstimation outputs ω such that σ(v∗) ≤√
max(ϕ⊤ω,0) +

√
H1 ≤ σ(v∗) + 2

√
H1 with probabil-

ity at least 1 − δ, using Õ
(
d2H2 log(1/δ)

)
samples from

the generative model.

The formal theorem and proof are provided in Appendix I.

5.2. Put Everything Together

The proposed VWLS-MDVI algorithm consists of three
steps: (1) executing WLS-MDVIwith f = 1, (2) performing
VarianceEstimation, and (3) executing WLS-MDVI
again with the output from (2). The technical novelty of our
theory lies in the ingenuity to run WLS-MDVI twice to use
the TV technique, which was not seen in previous studies
such as Lattimore et al. (2020) and Kozuno et al. (2022). By
combining these three steps, the VWLS-MDVI obtains an ϵ-
optimal policy within minimax optimal sample complexity.
Theorem 5.3 (Sample complexity of VWLS-MDVI, infor-
mally). When ε ∈ (0, 1/H] and α = γ, VWLS-MDVI out-
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Algorithm 3 VWLS-MDVI (α,K,M, K̃, M̃ ,Mσ)

Input: α ∈ [0, 1), f : X × A 7→ (0,∞), K, K̃ ∈ N,
M,M̃ ∈ N, Mσ ∈ N.
vK , = WLS-MDVI(α,1,K,M).
ω = VarianceEstimation(vK ,Mσ).
σ̃ = min

(√
max(ϕTω,0) +

√
H1, H1

)
.

, π′ = WLS-MDVI(α, σ̃, K̃, M̃).
Return: π′

puts a sequence of policies π′ such that ∥v∗ − vπ′∥∞ ≤ ε

with probability at least 1−δ, using Õ
(
d2H3ε−2 log(1/δ)

)
samples from the generative model.

The formal theorem and proof are provided in Appendix J,
and the pseudocode of the algorithm is provided in
Algorithm 3. The sample complexity of VWLS-MDVI
matches the lower bound described by Weisz et al. (2022)
up to logarithmic factors as long as ε is sufficiently small.
This is the first algorithm that achieves nearly minimax
sample complexity under inifinite-horizon linear MDPs.

6. Deep Variance Weighting
Motivated on the theoretical observations, we propose a
practical algorithm to re-weight the least-squares loss of
value-based deep RL algorithms, called Deep Variance
Weighting (DVW).

6.1. Weighted Loss Function for the Q-Network

As Munchausen DQN (M-DQN, Vieillard et al. (2020b))
is the effective deep extension of MDVI, we use it as our
base algorithm to apply DVW. However, the proposed DVW
can be potentially applied to any DQN-like algorithms4. We
provide the pseudocode for the general case in Algorithm 4
and for online RL in Appendix K.

Similar to M-DQN, let qθ be the q-network and qθ be its
target q-network with parameters θ and θ, respectively.
In this section, x′ denotes the next state sampled from
P (·|x, a). ÊB denotes the expectation over using samples
(x, a, r, x′) ∈ X ×A× R×X from some dataset B. With
a weighting function f : X ×A → (0,∞), we consider the
following weighted version of M-DQN’s loss function:

L(θ) = ÊB

[(rθ(x, a) + γvθ(x
′)− qθ(x, a)

f(x, a)

)2]
, (8)

4Van Hasselt et al. (2019) stated that DQN may not be a com-
pletely model-free algorithm, which could potentially conflict with
the model-free structure of VWLS-MDVI. Nevertheless, we do not
consider such discrepancies from our theory to be problematic,
as the primary aim of DVW is to improve the popular algorithms
rather than to validate the theoretical analysis.

Algorithm 4 DVW for (Munchausen-)DQN
Input: θ, ω, K ∈ N, F ∈ N, B
Set θ = θ̂ = θ and ω = ω. η = 1.
for k = 0 to K − 1 do

Sample a random batch of transition Bk ∈ B.
On Bk, update ω by L(ω) of (9).
On Bk, update η by L(η) of (11).
On Bk and fDVW of (10), update θ by L(θ) of (8).
if k mod F = 0 then
θ̂ ← θ, θ ← θ, ω ← ω.

end if
end for
Return: A greedy policy with respect to qθ

where rθ = r + τ log πθ, πθ(a|x) ∝ exp
(
βqθ(x, a)

)
, and

vθ(x
′) =

∑
a′∈A πθ(a

′|x′)
(
qθ(x

′, a′)− 1
β log πθ(a

′|x′)
)

.
Equation (8) is equivalent to M-DQN when f = 1.
Furthermore, when τ = κ = 0, we assume that
τ log πθ = 1

β log πθ = 0 and
∑

a′∈A πθ(a
′|x′)qθ(x′, a′) =

maxa′∈A qθ(x
′, a′). This allows us to generalize Equa-

tion (8) to DQN’s loss when f = 1 and τ = κ = 0.

We update θ by stochastic gradient descent (SGD) with
respect to L(θ). We replace θ with θ for every F iteration.

6.2. Loss Function for the Variance Network

Let Varω be the variance network with parameter ω. We
also define qθ̂ as the preceding target q-network to qθ. The
parameter θ̂ of qθ̂ is replaced with θ for every F iteration.

For sufficiently large F , we expect that qθ well approximates
qθ ≈ rθ̂ + γPvθ̂. Using this approximation and based on
VarianceEstimation, we construct the loss function
for the variance network as

L(ω) = ÊB

[
h
(
y2 −Varω(x, a)

)]
, (9)

where y = rθ̂(x, a) + γvθ̂(x
′)− qθ(x, a). Here, we use the

Huber loss function h: for x ∈ R, h(x) = x2 if x < 1;
otherwise, h(x) = |x|. This is to alleviate the issue with
large y2 in contrast to the L2 loss. We update ω by iterating
SGD with respect to L(ω).

6.3. Weighting Function Design

According to VWLS-MDVI, the weighting function f
should be inversely proportional to the learned variance
function with lower and upper thresholds. Moreover,
uniformly scaling f with some constant variables does not
affect the solution of weighted regression. Therefore, we
design the weighting function fDVW such that

1

f DVW (x, a)2
= max

(
η

Varω(x, a) + cf
, cf

)
, (10)
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where η ∈ (0,∞) denotes a scaling constant, cf and
cf ∈ (0,∞) denote constants for the lower and upper
thresholds, respectively. Here, we use the frozen parameter
ω, which is replaced with ω for every F ∈ N iteration, as
we should use the weight learned via Equation (9).

To further stabilize training, we automatically adjust η so
that ÊB[f

DVW (x, a)−2] ≈ 1. We adjust η by SGD with
respect to the following loss function:

L(η) =
(
ÊB

[
η

Varω(x, a) + cf

]
− 1

)2

, (11)

where the term η/ (Varω(x, a) + cf ) is the value inside the
max of Equation (10). The max is removed to avoid zero
gradient. While the target value can be set to a value other
than 1, doing so would be equivalent to adjusting the learn-
ing rate in the standard SGD. To avoid introducing an unnec-
essary hyperparameter, we have fixed the target value to 1.
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Figure 1. Comparison of the normalized gaps. VWLS-MDVI
switches to the second run of WLS-MDVI around 106 samples.
Left: M = M̃ = 100 and Right: M = M̃ = 1000.

7. Experiments
This section reports the experimental sample efficiency of
the proposed VWLS-MDVI and deep RL with DVW.

7.1. Linear MDP Experiments

To empirically validate the negative and positive claims
made in Section 4.3 and demonstrate the sample efficiency
of VWLS-MDVI, we compare VWLS-MDVI to WLS-MDVI
with two different weighting functions: f = 1 and f =
f∗, where f∗ := min(σ(v∗) +

√
H1, H1) is the oracle

weighting function from Theorem 4.4. The evaluation is
conducted on randomly generated hard linear MDPs that are
based on Theorem H.3 in Weisz et al. (2022). For simplicity,
all algorithms use the last policy for evaluation. Specifically,
for the k ∈ [K] th iteration to update the parameter θ, we
report the normalized optimality gap ∥v∗ − vπk

∥∞/∥v∗∥∞
in terms of the total number of samples used so far. We
normalize the gap by ∥v∗∥∞ as the maximum gap can vary
depending on the MDPs.

Figure 1 compares algorithms under M = M̃ = 100 (Left)
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Figure 2. Comparison of the normalized gaps. Top Row: τ =
κ = 0 and Bottom Row: τ > 0, κ > 0. Left Column: M = 3
and Right Column: M = 10.

and M = M̃ = 1000 (Right). The results are averaged over
300 random MDPs. For WLS-MDVI (f = 1), increasing
M from 100 to 1000 results in a smaller optimality gap,
which is expected due to the increase in the number of
samples. On the other hand, WLS-MDVI (f = f∗) achieves
a gap very close to 0 even withM = 100, demonstrating the
effectiveness of variance-weighted regression in improving
sample efficiency, as claimed in Section 4.3. Similarly,
it is observed that the VWLS-MDVI (Mσ = 100000)
achieves a smaller gap with much fewer samples than
that of WLS-MDVI. However, the gap of VWLS-MDVI
(Mσ = 5000) does not reach that of f = f∗. This suggests
that the accuracy of the VarianceEstimation is
important for guaranteeing good performance. Further
experimental details are provided in Appendix L.1.

7.2. Deep RL Experiments

We perform two deep RL experiments to evaluate the effec-
tiveness of DVW: one to compare DVWwith the oracle weight-
ing function of Theorem 4.4, and another to demonstrate
the effectiveness of DVW to online deep RL. The details of
the experiments are provided in Section 7.2.1.

7.2.1. COMPARISON OF f = fDVW WITH f ≈ σ(v∗)

To investigate the effectiveness of DVW, we evaluate the
behavior of M-DQN with weighted regression (8) under
three weighting functions: the oracle weighting (f = f∗),
the uniform weighting (f = 1), and the DVW weighting
(f = fDVW). Furthermore, for the purpose of ablation study,
we compare the algorithms with and without regularization
(τ > 0, κ > 0 vs τ = 0, κ = 0). To remove the challenge
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Figure 3. Comparison of returns on MinAtar benchmarks. We report the return of the greedy policy with respect to qθ for each algorithm.

of exploration for didactic purposes, we use a dataset B,
which is constructed by pairs of (x, a, r, x′) for the entire
state-action space with M next-state samples. In other
words, B is a dataset of size MXA.

We evaluate them in randomly generated environments
where we can compute oracle values. Specifically, we use
a modified version of the gridworld environment described
by Fu et al. (2019). For the k th iteration to update the
q-networks, we evaluate the normalized optimality gap
averaged over 20 environments and 3 random seeds for each.

Figure 2 compares algorithms under M = 3 (Left Column)
and M = 10 (Right Column). In both cases, DVW
consistently achieves a smaller gap compared to f = 1,
and moreover, the gap of DVW is comparable to that of the
oracle weighting f = f∗. In addition, the gap is smaller
when τ > 0, κ > 0 compared to when τ = κ = 0. It can be
inferred that DVW weighting and KL-entropy regularization
contribute to improving sample efficiency, and that perfor-
mance is significantly improved when both are present.

7.2.2. DVW FOR ONLINE RL

We evaluate the effectiveness of DVW using a set of
the challenging benchmarks for online RL. Similar to
Section 7.2.1, we evaluate four algorithms that varied with
and without DVW (DVW vs N/A), and with and without
regularization (M-DQN vs DQN). We compare their
performance on the MinAtar environment (Young & Tian,
2019), which possesses high-dimensional features and more
challenging exploration than Section 7.2.1, while facili-

tating fast training. For a fair comparison, the algorithms
use the same network architecture and same epsilon-greedy
exploration strategy. Each algorithm is executed five times
with different random seeds for each environment.

Figure 3 shows the average returns of the algorithms. We
observe that DVW improves the performance of M-DQN and
DQN in almost all the environments. Although our theory
does not cover online RL, this experiment suggests that the
extension of DVW to wider problem settings is effective.

8. Conclusion
In this study, we proposed both a theoretical algorithm,
i.e., VWLS-MDVI, and a practical algorithm, i.e., DVW.
VWLS-MDVI achieved the first-ever nearly minimax opti-
mal sample complexity in infinite-horizon Linear MDPs by
utilizing the combination of KL-entropy regularization and
variance-weighted regression. We extended our theoretical
observations and developed the DVW algorithm, which re-
weights the least-squares loss of value-based RL algorithms
using the estimated variance of the value function. Our ex-
periments demonstrated that DVW effectively helps improve
the performance of value-based deep RL algorithms.
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A. Notations for Theoretical Analysis

Table 2. Table of Notations for Theoretical Analysis

Notation Meaning

A, X action space of size A, state space
γ, H discount factor in [0, 1) and effective horizon H := 1/(1− γ)
ϕ, d feature map of a linear MDP and its dimension (Assumption 3.2)
r reward function bounded by 1
P , Pπ transition kernel, Pπ := Pπ
Fv , Fq the sets of all bounded Borel-measurable functions over X and X ×A, respectively

π′
k a non-stationary policy that follows πk, πk−1, . . . sequentially (Section 3.1)
P i
j , P i

∗ P i
j := Pπi

Pπi−1
· · ·Pπj+1

Pπj
and P i

∗ := (Pπ∗)
i (Section 3.1)

Tπ , T i
j Bellman operator for a policy π, T i

j := TπiTπi−1 · · ·Tπj+1Tπj (Section 3.1)
vπ′

k
value function of π′

k; vπ′
k
= πkTπk−1

· · ·Tπ1qπ0 .

ε, δ admissible suboptimality, admissible failure probability

εk εk : (x, a) 7→ γP̂k−1(M)vk−1(x, a)− γPvk−1(x, a) in WLS-MDVI
Ek Ek : (x, a) 7→

∑k
j=1 α

k−jεj(x, a)

f a bounded positive weighting function over X ×A
ρf a design over X ×A
Cf , uC core set, uC := 4d log log(d+ 4) + 28 (Section 3.2)
Gf design matrix with respect to f , ϕ, and ρf (Theorem 4.1)
uf , lf uf := max(x,a)∈X×A f(x, a), lf := min(x,a)∈X×A f(x, a) (Appendix H)
W (f1, f2) solution of a weighted least-squares estimation (Lemma 4.3)

P̂k P̂k(M)vk : (x, a) 7→ 1
M

∑M
m=1 vk(yk,m,x,a) (Section 3.1)

θk, θk parameter of qk in WLS-MDVI (qk = ϕ⊤θk), θk = θk + αθk−1 =
∑k

j=0 α
k−jθj

θ∗k, θ
∗
k parameter that satisfies ϕ⊤θ∗k = r + γPvk−1, θ

∗
k =

∑k
j=1 α

k−jθ∗j (Appendix H)
sk, vk, wk sk := ϕ⊤(x, a)θk, vk := wk − αwk−1, wk(x) := maxa∈A sk(x, a) (WLS-MDVI)
α, β weights for MDVI updates α := τ/(τ + κ), β := 1/(τ + κ) (Section 3.1)
K,M the number of iterations and the number of samples from the generative model in WLS-MDVI

V̂ar V̂ar(x, a) = 1
2M

∑M
m=1

(
vσ(ym,x,a)− vσ(zm,x,a)

)2
(Section 5.1)

Mσ number of samples from the generative model in VarianceEstimation
vσ the input value function to VarianceEstimation
ω parameter for VarianceEstimation

Ak, A∞, Aγ,k

∑k−1
j=0 α

j ,
∑∞

j=0 α
j ,
∑k−1

j=0 α
jγk−j

Fk,m σ-algebra in the filtration for WLS-MDVI (Appendix H)
Fm σ-algebra in the filtration for VarianceEstimation (Appendix I)
ι1, ι2,n ι1 = log(2c0uCKδ), ι2,n = log(2c20uCK/(c0 − n)δ) for n ∈ N (Appendix H)
ξ2,n ξ2,n = ι2,n + log log2(16KH

2) (Appendix H)
□ an indefinite constant independent of H , X , A, ε, and δ (Appendix H)

E1 event of f close to σ(v∗)
E2 event of vk bound for all k
E3 event of small Ek for all k (not variance-aware)
E4 event of small εk for all k (not variance-aware)
E5 event of small Ek for all k (variance-aware)
E6 event of vσ close to v∗ (Appendix I)
E7 event of learned ϕ⊤ω close to σ(v∗) (Appendix I)
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B. Equivalence of MDVI Update Rules (Kozuno et al., 2022)
We show the equivalence of MDVI’s updates (1) to those used in Tabular MDVI. The following transformation is
identical to that of Kozuno et al. (2022) but is included here for completeness. We first recall MDVI’s updates (1):

qk+1 = r + γP̂kπk

(
qk − τ log

πk
πk−1

− κ log πk
)
,

where πk (·|x) = argmax
p∈∆(A)

∑
a∈A

p(a)

(
qk(x, a)− τ log

p(a)

πk−1 (a|x)
− κ log p(a)

)
for all x ∈ X ,

The policy update can be rewritten in a closed-form solution as follows (e.g., Equation (5) of Kozuno et al. (2019)):

πk(a|x) =
πk−1(a|x)α exp (βqk(x, a))∑
b∈A πk−1(b|x)α exp (βqk(x, b))

,

where α := τ/(τ + κ), and β := 1/(τ + κ). It can be further rewritten as, defining sk = qk + αsk−1,

πk(a|x) =
exp (βsk(x, a))∑
b∈A exp (βsk(x, b))

.

Plugging in this policy expression to vk, we deduce that

vk(x) =
1

β
log
∑
a∈A

exp (βqk(x, a) + α log πk−1(a|x))

=
1

β
log
∑
a∈A

exp (βsk(x, a))−
α

β
log
∑
a∈A

exp (βsk−1(x, a)) .

Kozuno et al. (2019, Appendix B) show that when β → ∞, vk(x) = wk(x) − αwk−1(x) . Furthermore, the Boltzmann
policy becomes a greedy policy. Accordingly, the update rules used in Tabular MDVI is a limit case of the original
MDVI updates.

C. Auxiliary Lemmas
In this appendix, we prove some auxiliary lemmas used in the proof. Some of the lemmas are identical to those of Kozuno
et al. (2022) but are included here for completeness.

Lemma C.1. For any events A and B, P(A ∩B) ≥ P(B)− P(Ac|B).

Proof. P(A∩B) = P((A∪Bc)∩B) ≥ 1−P(Ac ∩B)−P(Bc) = P(B)−P(Ac ∩B) . The claim holds by P(Ac ∩B) =
P(Ac|B)P(B) ≤ P(Ac|B).

Lemma C.2. For any positive real values a and b,
√
a+ b ≤

√
a+
√
b.

Proof. Indeed, a+ b ≤ a+ 2
√
ab+ b = (

√
a+
√
b)2.

Lemma C.3. Let a, b, and c are positive real values. If |a2 − b2| ≤ c2, then |a− b| ≤ c.

Proof. Without loss of generality, assume that a ≥ b. Then, c2 ≥ (a2 − b2) = (a + b)(a − b) ≥ (a − b)2 and thus
|a− b| ≤ c.

Lemma C.4. For any real values (an)Nn=1, (
∑N

n=1 an)
2 ≤ N

∑N
n=1 a

2
n.
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Proof. Indeed, from the Cauchy–Schwarz inequality,(
N∑

n=1

an · 1

)2

≤

(
N∑

n=1

1

)(
N∑

n=1

a2n

)
= N

N∑
n=1

a2n ,

which is the desired result.

Lemma C.5. For any k ∈ [K],

Aγ,k =

γ
αk − γk

α− γ
if α ̸= γ

kγk otherwise
.

Proof. Indeed, if α ̸= γ

Aγ,k =

k−1∑
j=0

αjγk−j = γk
(α/γ)k − 1

(α/γ)− 1
= γ

αk − γk

α− γ
.

If α = γ, Aγ,k = kγk by definition.

Lemma C.6. For any real value x ∈ (0, 1], 1− x ≤ log(1/x).

Proof. Since log(1/x) is convex and differentiable, log(1/x) ≥ log(1/y)− (x− y)/y. Choosing y = 1, we concludes the
proof.

Lemma C.7. Suppose α, γ ∈ [0, 1), ε ∈ (0, 1], c ∈ [1,∞), m ∈ N, and n ∈ [0,∞). Let K :=
m

1− α
log

cH

ε
. Then,

KnαK ≤
(

mn

(1− α)e

)n ( ε

cH

)m−1

.

Proof. Using Lemma C.6 for α ∈ [0, 1),

K =
m

1− α
log

cH

ε
≥ logα

( ε

cH

)m
.

Therefore,

KnαK ≤
(

m

1− α
log

cH

ε

)n ( ε

cH

)m
=

mn

(1− α)n
( ε

cH

)m(
log

cH

ε

)n

.

Since x
(
log

1

x

)n

≤
(n
e

)n
for any x ∈ (0, 1] as shown later,

KnαK ≤
(

mn

(1− α)e

)n ( ε

cH

)m−1

.

Now it remains to show f(x) := x

(
log

1

x

)n

≤
(n
e

)n
for x < 1. We have that

f ′(x) = (− log x)n − n(− log x)n−1 =⇒ f ′(x) = 0 at x = e−n.

Therefore, f takes its maximum
(n
e

)n
at e−n when x ∈ (0, 1).

The following lemma is a special case of a well-known inequality that for any increasing function f
K∑

k=1

f(k) ≤
∫ K+1

1

f(x)dx .

Lemma C.8. For any K ∈ N and n ∈ [0,∞),
K∑

k=1

kn ≤ 1

n+ 1
(K + 1)n+1.
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D. Tools from Probability Theory
We extensively use the following concentration inequality, which is derived based on a proof idea of Bernstein’s inequality
(Bernstein, 1946; Boucheron et al., 2013) for a martingale (Lattimore & Szepesvari, 2020, Excercises 5.14 (f)). For a
real-valued stochastic process (Xn)

N
n=1 adapted to a filtration (Fn)

N
n=1, we let En[Xn] := E[Xn|Fn−1] for n ≥ 1, and

E1[X1] := E[X1].

Lemma D.1 (Azuma-Hoeffding Inequality). Consider a real-valued stochastic process (Xn)
N
n=1 adapted to a filtration

(Fn)
N
n=1. Assume that Xn ∈ [ln, un] and En[Xn] = 0 almost surely, for all n. Then,

P

 N∑
n=1

Xn ≥

√√√√ N∑
n=1

(un − ln)2
2

log
1

δ

 ≤ δ
for any δ ∈ (0, 1).

Lemma D.2 (Conditional Azuma-Hoeffding’s Inequality). Consider a real-valued stochastic process (Xn)
N
n=1 adapted

to a filtration (Fn)
N
n=1. Assume that En[Xn] = 0 almost surely, for all n. Furthermore, let E be an event that implies

Xn ∈ [ln, un] with P(E) ≥ 1− δ′ for all n and for some δ′ ∈ (0, 1). Then,

P

 N∑
n=1

Xn ≥

√√√√ N∑
n=1

(un − ln)2
2

log
1

δ(1− δ′)

∣∣∣∣∣∣E
 ≤ δ

for any δ ∈ (0, 1).

Proof. Let A denote the events of

N∑
n=1

Xn ≥

√√√√ N∑
n=1

(un − ln)2
2

log
1

δ(1− δ′)
.

Accordingly,

P(A|E) = P(A ∩ E)
P(E)

(a)

≤ δ(1− δ′)
P(E)

(b)

≤ δ ,

where (a) follows from the Azuma-Hoeffding inequality (Lemma D.1), and (b) follows from P(E) ≥ 1− δ′.

Lemma D.3 (Lemma 13 in Zhang et al. (2021)). Consider a real-valued stochastic process (Xn)
N
n=1 adapted to a filtration

(Fn)
N
n=1. Suppose that |Xn| ≤ U and En[Xn] = 0 almost surely, for all n and for some U ∈ [0,∞). Then, letting

VN :=
∑N

n=1 En[X
2
n],

P

(∣∣∣∣∣
N∑

n=1

Xn

∣∣∣∣∣ ≥ 2
√
2

√
VN log

(
1

δ

)
+ 2

√
ϵ log

(
1

δ

)
+ 2U log

(
1

δ

))
≤ 2

(
log2

(
NU2

ϵ
+ 1

))
δ ,

for any ϵ, δ > 0.

In our analysis, we use the following corollary of this inequality.

Lemma D.4 (Conditional Bernstein-type Inequality). Consider a real-valued stochastic process (Xn)
N
n=1 adapted to a

filtration (Fn)
N
n=1. Suppose that En[Xn] = 0 almost surely, for all n. Furthermore, let E be an event that implies |Xn| ≤ U

with P(E) ≥ 1− δ′ for all n, for some δ′ ∈ (0, 1) and U ∈ [0,∞). Then, letting VN :=
∑N

n=1 En[X
2
n],

P

(∣∣∣∣∣
N∑

n=1

Xn

∣∣∣∣∣ ≥ 2
√
2

√
(1 + VN ) log

(
2 log2 (NU

2)

δ(1− δ′)

)
+ 2U log

(
2 log2(NU

2)

δ(1− δ′)

)∣∣∣∣∣E
)
≤ δ ,

for any δ > 0.
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Proof. Let A and B denote the events of∣∣∣∣∣
N∑

n=1

Xn

∣∣∣∣∣ ≥ 2
√
2

√
(1 + VN ) log

(
2 log2(NU

2)

δ(1− δ′)

)
+ 2U log

(
2 log2(NU

2)

δ(1− δ′)

)
and |Xn| ≤ U for all n, respectively. Since E ⊂ B, it follows that A∩E ⊂ A∩B, and P(A∩E) ≤ P(A∩B). Accordingly,

P(A|E) = P(A ∩ E)
P(E)

≤ P(A ∩B)

P(E)
(a)

≤ δ(1− δ′)
P(E)

(b)

≤ δ ,

where (a) follows from Lemma D.3 with 1 +
√
VN ≥

√
1 + VN due to Lemma C.2 and ϵ = 2. Then, (b) follows from

P(E) ≥ 1− δ′.

Lemma D.5 (Popoviciu’s Inequality for Variances). The variance of any random variable bounded by x is bounded by x2.

E. Total Variance Technique (Kozuno et al., 2022)
This section introduces the total variance technique for non-stationary policy. The proof is identical to that of Kozuno et al.
(2022) but is included here for completeness.

The following lemma is due to Azar et al. (2013).
Lemma E.1. Suppose two real-valued random variables X,Y whose variances, VX and VY , exist and are finite. Then,√
VX ≤

√
V [X − Y ] +

√
VY .

For completeness, we prove Lemma E.1.

Proof. Indeed, from Cauchy-Schwartz inequality,

VX = V[X − Y + Y ]

= V[X − Y ] + VY + 2E [(X − Y − E[X − Y ])(Y − EY )]

≤ V[X − Y ] + VY + 2
√
V[X − Y ]VY =

(√
V [X − Y ] +

√
VY
)2

.

This is the desired result.

The following lemma is an extension of Lemma 7 by Azar et al. (2013) and its refined version by Agarwal et al. (2020).
Lemma E.2. Suppose a sequence of deterministic policies (πk)Kk=0 and let

qπ′
k
:=

{
r + γPvπ′

k−1
for k ∈ [K]

qπ0 for k = 0
.

Furthermore, let σ2
k and Σ2

k be non-negative functions over X ×A defined by

σ2
k(x, a) :=

{
P (vπ′

k−1
)
2
(x, a)− (Pvπ′

k−1
)
2
(x, a) for k ∈ [K]

P (vπ0
)
2
(x, a)− (Pvπ0

)
2
(x, a) for k = 0

and

Σ2
k(x, a) := Ek

( ∞∑
t=0

γtr(Xt, At)− qπ′
k
(X0, A0)

)2
∣∣∣∣∣∣X0 = x,A0 = a

 (12)

for k ∈ {0} ∪ [K], where Ek is the expectation over (Xt, At)
∞
t=0 wherein At ∼ πk−t(·|Xt) until t = k, and At ∼ π0(·|Xt)

thereafter. Then,

k−1∑
j=0

γj+1P k−1
k−j σk−j ≤

√
2H31

for any k ∈ [K].
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For its proof, we need the following lemma.

Lemma E.3. Suppose a sequence of deterministic policies (πk)Kk=0 and notations in Lemma E.2. Then, for any k ∈ [K],
we have that

Σ2
k = γ2σ2

k + γ2Pπk−1
Σ2

k−1 .

Proof. Let Ru
s :=

∑u
t=s γ

t−sr(Xt, At) and Ek [·|x, a] := Ek [·|X0 = x,A0 = a]. We have that

Σ2
k(x, a) = Ek

[(
R∞

0 − qπ′
k
(X0, A0)

)2∣∣∣∣x, a] := Ek

[
(I1 + γI2)

2
∣∣∣x, a] ,

where I1 := r(X0, A0) + γqπ′
k−1

(X1, A1)− qπ′
k
(X0, A0), and I2 := R∞

1 − qπ′
k−1

(X1, A1). With these notations, we see
that

Σ2
k(x, a) = Ek

[
I21 + γ2I22 + 2γI1I2

∣∣x, a]
= Ek

[
I21 + γ2I22 + 2γI1Ek−1 [I2|X1, A1]

∣∣x, a]
= Ek

[
I21
∣∣x, a]+ γ2Ek

[
I22
∣∣x, a]

= Ek

[
I21
∣∣x, a]+ γ2Pπk−1Σ2

k−1(x, a) ,

where the second line follows from the law of total expectation, and the third line follows since Ek−1 [I2|X1, A1] = 0 due
to the Markov property. The first term in the last line is γ2σ2

k(x, a) because

Ek

[
I21
∣∣x, a] (a)

= γ2Ek

[(
qπ′

k−1
(X1, A1)︸ ︷︷ ︸

vπ′
k−1

(X1) from (b)

−(Pvπ′
k−1

)(X0, A0)
)2∣∣∣∣∣x, a

]

= γ2
(
P
(
vπ′

k−1

)2)
(x, a) + γ2(Pvπ′

k−1
)2(x, a)− 2(Pvπ′

k−1
)2(x, a)

= γ2
(
P
(
vπ′

k−1

)2)
(x, a)− γ2(Pvπ′

k−1
)2(x, a) ,

where (a) follows from the definition that qπ′
k
= r + γPvπ′

k−1
, and (b) follows since the policies are deterministic. From

this argument, it is clear that Σ2
k = γ2σ2

k + γ2Pπk−1
Σ2

k−1 , which is the desired result.

Now, we are ready to prove Lemma E.2.

Proof of Lemma E.2. Let Hk :=
∑k−1

j=0 γ
j . Using Jensen’s inequality twice,

k−1∑
j=0

γj+1P k−1
k−j σk−j ≤

k−1∑
j=0

γj+1
√
P k−1
k−j σ

2
k−j

≤ γHk

k−1∑
j=0

γj+1

Hk

√
P k−1
k−j σ

2
k−j

≤

√√√√Hk

k−1∑
j=0

γj+2P k−1
k−j σ

2
k−j ≤

√√√√H

k−1∑
j=0

γj+2P k−1
k−j σ

2
k−j .
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From Lemma E.3, we have that

k−1∑
j=0

γj+2P k−1
k−j σ

2
k−j =

k−1∑
j=0

γjP k−1
k−j

(
Σ2

k−j − γ2Pπk−1−jΣ2
k−1−j

)
=

k−1∑
j=0

γjP k−1
k−j

(
Σ2

k−j − γPπk−1−jΣ2
k−1−j + γ(1− γ)Pπk−1−jΣ2

k−1−j

)
=

k−1∑
j=0

γjP k−1
k−j Σ

2
k−j −

k∑
j=1

γjP k−1
k−j Σ

2
k−j + γ(1− γ)

k−1∑
j=0

γjP k−1
k−1−jΣ

2
k−1−j .

The final line is equal to Σ2
k−γkP

k−1
0 Σ2

0+γ(1−γ)
∑k−1

j=0 γ
jP k−1

k−1−jΣ
2
k−1−j . Finally, from the monotonicity of stochastic

matrices and that 0 ≤ Σ2
j ≤ H21 for any j,

k−1∑
j=0

γj+1P k−1
k−j σk−j ≤

√
2H31 .

This concludes the proof.

F. Proof of Theorem 3.3
As a reminder, let Φ := {ϕ(x, a) : (x, a) ∈ X ×A} ⊂ Rd. ForG ∈ Rd×d and ϕ ∈ Rd, we use the notation ∥ϕ∥2G := ϕ⊤Gϕ.
Additionally, we use the operator norm of a matrix G and denote it as ∥G∥ = supϕ⊤ϕ=1

√
(Gϕ)⊤Gϕ.

We first introduce an algorithm for computing the G-optimal design for finite X , called the Frank-Wolfe algorithm from Todd
(2016). The pseudocode is provided in Algorithm 7. The following theorem shows that Algorithm 7 outputs a near-optimal
design with a small core set.

Theorem F.1 (Proposition 3.17, Todd (2016)). Let uC := 4d log log(d+ 4) + 28. For Φ satisfying Assumption 3.2 and if Φ
is finite, Algorithm 7 with f : X ×A → (0,∞) and εFW = d outputs a design ρ such that g(ρ) ≤ 2d and the core set C
with size at most uC .

We extend the theorem to a compact Φ by passing to the limit. The proof of Theorem 3.3 is a modification of Exercise 21.3
in Lattimore & Szepesvari (2020).

Proof of Theorem 3.3. Suppose that Φ satisfies Assumption 3.2 such that Φ is a compact subset of Rd and spans Rd. Let
(Φn)n be a sequence of finite subsets with Φn ⊂ Φn+1. We suppose that Φn spans Rd and limn→∞D (Φ,Φn) = 0
where D is the Hausdorff metric. Then let ρn be a G-optimal design for Φn with support of size at most uC and
Gn :=

∑
(x,a)∈X×A ρn(x, a)ϕ(x, a)ϕ(x, a)

⊤. Such the design is ensured to exist by Theorem F.1. Given any ϕ ∈ Φ, we
have

∥ϕ∥G−1
n
≤ min

b∈Φn

(
∥ϕ− b∥G−1

n
+ ∥b∥G−1

n

)
≤
√
2d+ min

b∈Φn

∥ϕ− b∥G−1
n
, (13)

where the first inequality is due to the triangle inequality and the second inequality is due to Theorem F.1. Let W ∈ Rd×d

be an invertible matrix and wi ∈ Rd be its i ∈ [d] th column. We suppose that wi ∈ Φ for any i ∈ [d]. Such W can be
constructed due to the assumption that Φ spans Rd. Then, the operator norm of G−1/2

n is bounded by

∥∥∥G−1/2
n

∥∥∥ =
∥∥∥W−1WG−1/2

n

∥∥∥ ≤ ∥∥W−1
∥∥∥∥∥G−1/2

n W
∥∥∥ =

∥∥W−1
∥∥ sup

ϕ⊤ϕ=1

∥Wϕ∥G−1
n
, (14)

where the last equality is due to
∥∥∥G−1/2

n W
∥∥∥ = supϕ⊤ϕ=1

√
(G

−1/2
n Wϕ)⊤G

−1/2
n Wϕ = supϕ⊤ϕ=1 ∥Wϕ∥G−1

n
. Let ϕi be

the i th element of ϕ ∈ Rd. Equation (14) is further bounded by
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sup
ϕ⊤ϕ=1

∥Wϕ∥G−1
n
≤ sup

ϕ⊤ϕ=1

d∑
i=1

|ϕi| ∥wi∥G−1
n︸ ︷︷ ︸

≤
√
2d

≤ 2d .

Therefore, we have
∥∥∥G−1/2

n

∥∥∥ ≤ 2d
∥∥W−1

∥∥. Taking the limit n→∞ shows that

lim sup
n→∞

∥ϕ∥G−1
n

(a)

≤
√
2d+ lim sup

n→∞
min
b∈Φ
∥ϕ− b∥G−1

n

(b)

≤
√
2d+ 2d

∥∥W−1
∥∥ lim sup

n→∞
min
b∈Φ

√
(ϕ− b)⊤(ϕ− b) =

√
2d ,

where (a) is due to (13) and (b) uses
∥∥∥G−1/2

n

∥∥∥ ≤ 2d
∥∥W−1

∥∥.

Since ∥ · ∥G−1
n

: Φ→ R is continuous and Φ is compact, it follows that

lim sup
n→∞

sup
ϕ∈Φ
∥ϕ∥2

G−1
n
≤ 2d . (15)

Notice that ρn may be represented as a tuple of vector/probability pairs with at most uC entries and where the vectors lie in
Φ. Since the set of all such tuples with the obvious topology forms a compact set, it follows that (ρn) has a cluster point ρ∗,
which represents a distribution on Φ with support at most uC . Then, Equation (15) shows that g (ρ∗) ≤ 2d. This concludes
the proof.

G. Proof of Weighted KW Bound (Lemma 4.3)
Proof.

∣∣ϕ⊤(x, a)W (f, z)
∣∣ can be rewritten as

∣∣ϕ⊤(x, a)W (f, z)
∣∣ =

∣∣∣∣∣∣ϕ⊤(x, a)G−1
f

∑
(y,b)∈Cf

ρf (y, b)
ϕ(y, b)

f(y, b)

z(y, b)

f(y, b)

∣∣∣∣∣∣
(a)

≤

∣∣∣∣∣∣
∑

(y,b)∈Cf

ρf (y, b)ϕ
⊤(x, a)G−1

f

ϕ(y, b)

f(y, b)

∣∣∣∣∣∣ max
(y′,b′)∈Cf

∣∣∣∣ z(y′, b′)f(y′, b′)

∣∣∣∣
(b)

≤
∑

(y,b)∈Cf

∣∣∣∣ρf (y, b)ϕ⊤(x, a)G−1
f

ϕ(y, b)

f(y, b)

∣∣∣∣ max
(y′,b′)∈Cf

∣∣∣∣ z(y′, b′)f(y′, b′)

∣∣∣∣ ,
(16)

where (a) is due to Hölder’s inequality and (b) is due to the triangle inequality.

Next, for any (x, a) ∈ X ×A, we have ∑
(y,b)∈Cf

∣∣∣∣ρf (y, b)ϕ(x, a)⊤G−1
f

ϕ(y, b)

f(y, b)

∣∣∣∣
2

(a)

≤
∑

(y,b)∈Cf

ρf (y, b)

∣∣∣∣ϕ(x, a)⊤G−1
f

ϕ(y, b)

f(y, b)

∣∣∣∣2
(b)
= f2(x, a)

ϕ(x, a)⊤

f(x, a)
G−1

f

ϕ(x, a)

f(x, a)︸ ︷︷ ︸
≤2d from Theorem 4.1

(17)

where (a) is due to Jensen’s inequality, (b) is due to the definition of Gf . The claim holds by taking the square root for both
sides of the inequality (17) and applying the result to the inequality (16).

H. Formal Theorems and Proofs of Theorem 4.4 and Theorem 5.1
This section provides the concrete proofs of Theorem 4.4 and Theorem 5.1. Instead of the informal theorems of Theorem 4.4
and Theorem 5.1, we are going to prove the formal theorems below, Theorem H.1 and Theorem H.2, respectively.

20



Regularization and Variance-Weighted Regression is Minimax Optimality in Linear MDPs

Theorem H.1 (Sample complexity of WLS-MDVI with f ≈ σ(v∗)). Let c0 be a positive constant such that 8 ≥ c0 ≥ 6 and
σ̃ ∈ Fq be a random variable. Assume that ε ∈ (0, 1/H] and an event

σ(v∗) ≤ σ̃ ≤ σ(v∗) + 2
√
H1

occurs with probability at least 1− 4δ/c0. Define

fwls := max
(
min(σ̃, H1),

√
H1
)
,

Kwls :=

⌈
3

1− α
log c1H + 1

⌉
,

and Mwls :=

⌈
c2dH

2

ε2
log

(
2c20uCK

wls

(c0 − 5)δ
log2

16KwlsH2

(c0 − 5)δ

)⌉
where c1, c2 ≥ 1 are positive constants and uC = 4d log log(d+ 4) + 28. Then, there exist c1, c2 ≥ 1 independent of d, H ,
X , A, ε, and δ such that WLS-MDVI is run with the settings α = γ, f = fwls, K = Kwls, M =Mwls it outputs a sequence
of policies (πk)Kk=0 such that ∥v∗−vπ′

K
∥∞ ≤ ε with probability at least 1− δ, using Õ (uCKM) = Õ

(
d2H3/ε2

)
samples

from the generative model.

Theorem H.2 (Sapmle complexity of WLS-MDVI with f = 1). Assume that ε ∈ (0, 1/H]. Let c0 be a positive constant
such that 8 ≥ c0 ≥ 6. Define

K ls :=

⌈
3

1− α
log c3H + 1

⌉
and M ls :=

⌈
c4dH

2

ε
log

2c20uCK
ls

(c0 − 5)δ

⌉
where c3, c4 ≥ 1 are positive constants and uC = 4d log log(d+ 4) + 28. Then, there exist c3, c4 ≥ 1 independent of d, H ,
X , A, ε and δ such that when WLS-MDVI is run with the settings α = γ, f = 1, K = K ls, and M =M ls, it outputs vK
such that ∥v∗ − vK∥∞ ≤

1
2

√
H with probability at least 1− 3δ/c0, using Õ (uCKM) = Õ

(
d2H3/ε

)
samples from the

generative model.

The proof sketch is provided in Appendix H.2.

H.1. Notation and Frequently Used Facts for Proofs

Before moving on to the proofs, we introduce some notations and frequently used facts for theoretical analysis.

Notation for proofs. □ denotes an indefinite constant that changes throughout the proof and is independent of d, H , X ,
A, ε, and δ.

For a sequence of policies (πk)k∈Z, we let T i
j := Tπi

Tπi−1
· · ·Tπj+1

Tπj
for i ≥ j, and T i

j := I otherwise.

For k ∈ {1, . . . , N}, we write θ∗k ∈ Rd as the underlying unknown parameter vector satisfying ϕ⊤θ∗k = r + γPvk−1. θ∗k is
ensured to exist by the property of linear MDPs. We also write θ

∗
k as its past moving average, i.e., θ

∗
k =

∑k
j=1 α

k−jθ∗j .

For Theorem H.2, Fk,m denotes the σ-algebra generated by random variables {yj,n,x,a|(j, n, x, a) ∈ [k − 2]× [M ]×X ×
A} ∪ {yj,n,x,a|(j, n, x, a) ∈ {k − 1} × [m− 1]×X ×A}. With an abuse of notation, for Theorem H.1, Fk,m denotes the
σ-algebra generated by random variables {σ̃} ∪ {yj,n,x,a|(j, n, x, a) ∈ [k − 2]× [M ]×X ×A} ∪ {yj,n,x,a|(j, n, x, a) ∈
{k − 1} × [m− 1]×X ×A}. Whether Fk,m is for Theorem H.2 or Theorem H.1 shall be clear from the context.

For the bounded positive function f used in WLS-MDVI, we introduce the shorthand uf := max(x,a)∈X×A f(x, a) and
lf := min(x,a)∈X×A f(x, a).

Finally, throughout the proof, for 8 ≥ c0 > n > 0, we write ι1 := log(2c0uCK/δ), ι2,n := ι1 + log(c0/(c0 − n)) =
log(2c20uCK/(c0 − n)δ), and ξ2,n := ι2,n + log log2(16KH

2). Note that for any 8 ≥ c0 > n > 0,

ξ2,n ≥ ι2,n ≥ ι1 (18)

due to 8 ≥ c0−n > 0 and 16KH2/δ ≥ 16. WhetherK is from Theorem H.1 or Theorem H.2 shall be clear from the context.
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Frequently Used Facts. Recall that Aγ,k :=
∑k−1

j=0 γ
k−jαj and Ak :=

∑k−1
j=0 α

j for any non-negative integer k with
A∞ := 1/(1 − α). We often use α = γ due to the settings of Theorems H.1 and H.2. This indicates that A∞ = H and
Aγ,k = kγk.

Recall that θk = argminθ∈Rd

∑
(y,b)∈Cf

ρf (y,b)
f2(y,b)

(
ϕ⊤(y, b)θ − q̂k(y, b)

)2
. Using the definition of W defined in Lemma 4.3

and Gf defined in Equation (5), the closed-form solution to θk is represented as θk = W (f, q̂k). In the similar manner,
θ∗k =W (f, ϕ⊤θ∗k).

Since q̂k − ϕ⊤θ∗k = εk, we have

θk − θ∗k =W (f, q̂k)−W (f, ϕ⊤θ∗k) =W (f, εk)

and θk − θ
∗
k =W

f, k∑
j=1

αk−jεj

 =W (f,Ek) ,

Moreover, for any k ∈ {1, . . . ,K}, we have that

sk = ϕ⊤θk

= ϕ⊤θ
∗
k + ϕ⊤W (f,Ek)

=

k∑
j=1

αk−j(r + γP (wj−1 − αwj−2)) + ϕ⊤W (f,Ek)

= Akr + γPwk−1 + ϕ⊤W (f,Ek) .

(19)

In addition, we often mention the “monotonicity” of stochastic matrices: any stochastic matrix ρ satisfies that ρv ≥ ρu for
any vectors v, u s.t. v ≥ u. Examples of stochastic matrices in the proof are P , π, Pπ , and πP . The monotonicity property
is so frequently used that we do not always mention it.

H.2. Proof Sketch

This section provides proof sketches of Theorems H.1 and H.2, those are necessary to show Theorem J.1. The proofs follow
the strategy of Kozuno et al. (2022) but with modifications for the linear function approximation.

Step 1: Error Propagation Analysis. The proof of Theorem H.1 is done by deriving a tight bound for v∗ − vπ′
K

. Recall
that K is the number of iterations in WLS-MDVI and W is the operator defined in Lemma 4.3. The following lemmas
provide the bound for any k ∈ [K]. We provide the proof in Appendix H.3.1.

Lemma H.3 (Error Propagation Analysis (vπ′
k
)). For any k ∈ [K], 0 ≤ v∗ − vπ′

k
≤ Γk where

Γk :=
1

A∞

k−1∑
j=0

γj
(
πkP

k−1
k−j − π∗P

j
∗

)
ϕ⊤W (f,Ek−j) + 2H

(
αk +

Aγ,k

A∞

)
1 .

Let

♡k := H−1
k−1∑
j=0

γjπkP
k−1
k−j

∣∣ϕ⊤W (f,Ek−j)
∣∣ ,

♣k := H−1
k−1∑
j=0

γjπ∗P
j
∗
∣∣ϕ⊤W (f,Ek−j)

∣∣ ,
and ♢k := □H

(
αk +

Aγ,k

A∞

)
.

We derive the bound of ∥v∗ − vπ′
K
∥∞ by bounding ♡K , ♣K and ♢K . Since ♢k can be easily controlled by Lemma C.7,

we focus on the bounds of ♡K and ♣K . To derive the tight bounds of ♡K and ♣K , we need to transform them into “TV
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technique compatible” forms; we will transform ♡k into
∑k−1

j=0 γ
jπkP

k−1
k−j σ(vπk−j

) and ♣k into
∑k−1

j=0 γ
jπ∗P

j
∗σ(v∗). The

transformations are provided in Step 3 and 4.

On the other hand, the proof of Theorem H.2 is done by deriving a coarse bound of v∗ − vK . Then, the following bound
(Lemma H.4) is helpful. The proof is provided in Appendix H.3.2.

Lemma H.4 (Error Propagation Analysis (vk)). For any k ∈ [K],

−2γkH1−
k−1∑
j=0

γjπk−1P
k−1
k−j ϕ

⊤W (f, εk−j) ≤ v∗ − vk ≤ Γk−1 + 2Hγk1−
k−1∑
j=0

γjπk−1P
k−2
k−1−jϕ

⊤W (f, εk−j) .

We first prove Theorem H.2 in the next Step 2 since it is straightforward compared to Theorem H.1.

Step 2: Prove Theorem H.2. Note that f = 1 in Theorem H.2. As you can see from Lemma H.4, we need the bounds of
|ϕ⊤W (1, εk)| and |ϕ⊤W (1, Ek)| for the proof.

By bounding εk and Ek using the Azuma-Hoeffding inequality (Lemma D.1), the weighted KW bound with f = 1
(Lemma 4.3) and the settings of Theorem H.2 yild |ϕ⊤W (1, εk)| ≤ Õ(1/

√
H)1 and |ϕ⊤W (1, Ek)| ≤ Õ(

√
H)1 with

high-probability. Furthermore, ♢K is bounded by Õ(1) due to Lemma C.7.

Inserting these results into Lemma H.4, we obtain ∥v∗ − vK∥∞ ≤ Õ(
√
H) with high-probability, which is the desired

result of Theorem H.2.

The detailed proofs of Step 2 are provided in Appendix H.4 and Appendix H.5.

Step 3: Refined Bound of ♣K for Theorem H.1. Recall that the weighting function f satisfies σ(v∗) ≤ f ≤ σ(v∗) +
2
√
H1 and

√
H1 ≤ f ≤ H1 in Theorem H.1. The assumptions allow us to apply TV technique to ♣K when the bound of

ϕ⊤W (f,Ek) scales to f . This is where the weighted KW bound (Lemma 4.3) comes in.

Due to Lemma 4.3, we have |ϕ⊤W (f,Ek)| ≤
√
2df max(y,b)∈Cf

|Ek(y, b)/f(y, b)|. Thus, the tight bound of can be
obtained by tightly bounding max(y,b)∈Cf

|Ek(y, b)/f(y, b)|.

By applying the Bernstein-type inequality (Lemma D.4) to |Ek/f |, discounted sum of σ(vj)/f from j = 1 to k appears
inside the bound of |Ek/f |. We decompose it as σ(vj)/f ≤ |v∗ − vj |/

√
H + 1 by Lemma E.1 and Lemma D.5. Therefore,

we obtain a discounted sum of |v∗ − vj | in |Ek/f | bound, which can be bounded in a similar way to Step 2.

Now we have the bound of ϕ⊤W (f,Ek) which scales to f . Combined with the settings of Theorem H.1, we obtain
|ϕ⊤W (f,Ek)| ≤ Õ(ε(σ(v∗)/

√
H + 1)). The TV technique is therefore applicable to ♣K and thus ♣K ≤ Õ(ε).

The detailed proofs of Step 3 are provided in Appendix H.6.1.

Step 4: Refined Bound of ♡K for Theorem H.1. We need a further transformation since TV technique in ♡K requires
σ(vπ′

k
), not σ(v∗). To this end, we decompose σ(v∗) as σ(v∗) ≤ σ(v∗ − vπ′

k
) + σ(vπ′

k
) ≤ |v∗ − vπ′

k
| + σ(vπ′

k
) by

Lemma E.1 and Lemma D.5. Thus, we need the bound of |v∗ − vπ′
k
| which requires the coarse bound of ∥ϕ⊤W (f,Ek)∥∞.

By applying the Azuma-Hoeffding inequality to Ek, the settings of Theorem H.2 yields ∥ϕ⊤W (f,Ek)∥∞ ≤ Õ(
√
H).

Inserting this bound to Lemma H.3, ∥v∗ − vπ′
k
∥∞ ≤ Õ(

√
H) + 2(H + k)γk (Lemma H.15).

By taking a similar procedure as Step 3, together with the bound of ∥v∗ − vπ′
k
∥∞, ♡K is bounded by

Õ(εH−1.5)
∑k−1

j=0 πkP
k−1
k−j (σ(vπk−j

) +
√
H1). Then, the TV technique yilds ♡K ≤ Õ(ε).

The detailed proofs of Step 4 are provided in Appendix H.6.2.

Finally, we obtain the desired result of Theorem H.1 by inserting the bounds of ♡K and ♣K to Lemma H.15 (Ap-
pendix H.6.3.)
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H.3. Proofs of Error Propagation Analysis (Step 1)

H.3.1. PROOF OF LEMMA H.3

Proof. Note that

0 ≤ v∗ − vπ′
k
=

Ak

A∞

(
v∗ − vπ′

k

)
+ αk

(
v∗ − vπ′

k

)
≤ Ak

A∞

(
v∗ − vπ′

k

)
+ 2Hαk1

due to v∗− vπ′
k
≤ 2H1. Therefore, we need an upper bound for Ak(v∗− vπ′

k
). We decompose Ak(v∗− vπ′

k
) to Akv∗−wk

and wk − Akvπ′
k
. Then, we derive upper bounds for each of them (inequalities (20) and (21), respectively). The desired

result is obtained by summing up those bounds.

Upper bound for Akv∗ − wk. We prove by induction that for any k ∈ [K],

Akv∗ − wk ≤ HAγ,k1−
k−1∑
j=0

γjπ∗P
j
∗ϕ

TW (f,Ek−j) . (20)

We have that

Akv∗ − wk

(a)

≤ π∗(Akq∗ − sk)
(b)
= π∗

(
Akq∗ −Akr − γPwk−1 − ϕTW (f,Ek)

)
(c)
= π∗

(
γP (Akv∗ − wk−1)− ϕTW (f,Ek)

)
(d)

≤ π∗
(
γP (Ak−1v∗ − wk−1) + αk−1γH1− ϕTW (f,Ek)

)
,

where (a) is due to the greediness of πk, (b) is due to the equation (19), (c) is due to the Bellman equation for q∗, and (d) is
due to the fact that (Ak − Ak−1)v∗ = αk−1v∗ ≤ αk−1H1. For k = 1, using (a), (b), and (c) with the facts that w0 = 0
and A1 = 1, we have

A1v∗ − w1 ≤ π∗
(
γPv∗ − ϕTW (f,E1)

)
≤ γH1− π∗ϕTW (f,E1)

and thus the inequality (20) holds for k = 1. From the step (d) above and induction, it is straightforward to verify that the
inequality (20) holds for other k.

Upper bound for wk −Akvπ′
k
. We prove by induction that for any k ∈ [K],

wk −Akvπ′
k
≤ HAγ,k1+

k−1∑
j=0

γjπkP
k−1
k−j ϕ

TW (f,Ek−j) . (21)

Recalling that vπ′
k
= πkT

k−1
0 qπ0

, we deduce that

wk −Akvπ′
k

(a)
= πk

(
sk −AkT

k−1
0 qπ0

)
(b)
= πk

(
Akr + γPwk−1 −AkT

k−1
1 qπ0 + ϕTW (f,Ek)

)
(c)
= πk

(
γP
(
wk−1 −Akvπ′

k−1

)
+ ϕTW (f,Ek)

)
(d)

≤ πk
(
γP (wk−1 −Ak−1vπ′

k−1
) + αk−1γH1+ ϕTW (f,Ek)

)
,

where (a) follows from the definition of wk, (b) is due to the equation (19) and T k−1
0 qπ0 = T k−1

1 qπ0 , (c) is due to the
equation r − T k−1

1 qπ0 = −Pvπ′
k−1

which follows from the definition of the Bellman operator, and (d) is due to the fact that
(Ak −Ak−1)vπ′

k−1
= αk−1vπ′

k−1
≥ −αk−1H1. For k = 1, using (a), (b), and (c) with the facts that w0 = 0 and A1 = 1,

we have
w1 −A1vπ′

1
= π1

(
−γPvπ′

0
+ ϕTW (f,E1)

)
≤ γH1+ π1ϕ

TW (f,E1) ,

and thus the inequality (21) holds for k = 1. From the step (d) above and induction, it is straightforward to verify that the
inequality (21) holds for other k.
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H.3.2. PROOF OF LEMMA H.4

We first prove an intermediate result.

Lemma H.5. For any k ∈ [K],

vπ′
k−1

+

k−1∑
j=0

γjπk−1P
k−2
k−1−jϕ

⊤W (f, εk−j)− γkH1 ≤ vk ≤ vπ′
k
+

k−1∑
j=0

γjπkP
k−1
k−j ϕ

⊤W (f, εk−j) + γkH1 .

Proof. From the greediness of πk−1, vk = wk − αwk−1 ≤ πk(sk − αsk−1) = πk(r + γPvk−1 + ϕ⊤W (f, εk)). By
induction on k, therefore,

vk ≤
k−1∑
j=0

γjπkP
k−1
k−j

(
r + ϕ⊤W (f, εk−j)

)
+ γkπkP

k−1
0 v0︸ ︷︷ ︸

=0

≤
k−1∑
j=0

γjπkP
k−1
k−j

(
r + ϕ⊤W (f, εk−j)

)
.

Note that

T k−1
0 qπ0 =

k−1∑
j=0

γjP k−1
k−j r + γk P k−1

0 qπ0︸ ︷︷ ︸
≥−H1

=⇒
k−1∑
j=0

γjP k−1
k−j r ≤ T

k−1
0 qπ0 + γkH .

Accordingly, vk ≤ πkT k−1
0 qπ0 +

∑k−1
j=0 γ

jπkP
k−1
k−j ϕ

⊤W (f, εk−j) + γkH1 .

Similarly, from the greediness of πk, vk = wk − αwk−1 ≥ πk−1(sk − αsk−1) ≥ πk−1(r + γPvk−1 + ϕ⊤W (f, εk)). By
induction on k, therefore,

vk ≥
k−1∑
j=0

γjπk−1P
k−2
k−1−j

(
r + ϕ⊤W (f, εk−j)

)
+ γk−1πk−1P

k−2
0 Pv0︸ ︷︷ ︸

=0

.

Note that T k−2
0 qπ0

= T k−2
0 (r + γPvπ0

) and

T k−2
0 qπ0

=

k−1∑
j=0

γjP k−2
k−1−jr + γk P k−2

0 Pvπ0︸ ︷︷ ︸
≤H1

=⇒
k−1∑
j=0

γjP k−2
k−1−jr ≥ T

k−2
0 qπ0 − γkH .

Accordingly, vk ≥ πk−1T
k−2
0 qπ0

+
∑k−1

j=0 γ
jπk−1P

k−2
k−1−jϕ

⊤W (f, εk−j)− γkH1 .

Proof of Lemma H.4. From Lemma H.5 and πkTπk−1
· · ·Tπ1qπ0 = vπ′

k
≤ v∗, we have that

vπ′
k−1

+

k−1∑
j=0

γjπk−1P
k−2
k−1−jϕ

⊤W (f, εk−j)− 2γkH1 ≤ vk ≤ v∗ +
k−1∑
j=0

γjπkP
k−1
k−j ϕ

⊤W (f, εk−j) + 2γkH1 , (22)

where we loosened the bound by multiplying γkH by 2. By simple algebra, for any k ∈ [K],

v∗ − vk ≥ −2γkH −
k−1∑
j=0

γjπkP
k−1
k−j ϕ

⊤W (f, εk−j) (23)

and vπ′
k−1
− vk ≤ 2γkH1−

k−1∑
j=0

γjπk−1P
k−2
k−1−jϕ

⊤W (f, εk−j) . (24)

For the second inequality, from Lemma H.3,

vπ′
k−1
≥ v∗ −

1

A∞

k−2∑
j=0

γj
(
πk−1P

k−2
k−1−j − π∗P

j
∗

)
ϕ⊤W (f,Ek−1−j)− 2H

(
αk−1 +

Aγ,k−1

A∞

)
1 (25)
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for any k ∈ {2, . . . ,K}. Since vπ0
≥ v∗ − 2H and the empty sum is defined to be 0, the inequality (25) holds for k = 1.

Therefore, by applying (25) to (24), we have that

v∗ − vk ≤ 2Hγk + 2H

(
αk−1 +

Aγ,k−1

A∞

)
1

+
1

A∞

k−2∑
j=0

γj
(
πk−1P

k−2
k−1−j − π∗P

j
∗

)
ϕ⊤W (f,Ek−1−j)−

k−1∑
j=0

γjπk−1P
k−2
k−1−jϕ

⊤W (f, εk−j)

(26)

for any k ∈ [K]. Lemma H.4 holds by combining (26) and (23).

H.4. Lemmas and Proofs of ϕ⊤W (f, εk) and ϕ⊤W (f,Ek) Bounds (Step 2)

This section provides formal lemmas and proofs about the high-probability bounds of ϕ⊤W (f, εk) and ϕ⊤W (f,Ek).

We first introduce the necessary events for the proofs.

Event 1 (E1). The input f of WLS-MDVI satisfies σ(v∗)(x, a) ≤ f(x, a) ≤ σ(v∗)(x, a) + 2
√
H , and

√
H ≤ f(x, a) ≤ H

for all (x, a) ∈ X ×A.

Event 2 (E2). vk is bounded by 2H for all k ∈ [K].

Event 3 (E3).
∣∣ϕ⊤(x, a)W (f,Ek)

∣∣ ≤ (8Huf/lf )
√
dA∞ι2,5/M for all (x, a, k) ∈ X ×A× [K].

Event 4 (E4).
∣∣ϕ⊤(x, a)W (f, εk)

∣∣ ≤ (8γHf(x, a)/lf )
√
dι2,5/M for all (x, a, k) ∈ X ×A× [K].

Event 5 (E5). |ϕ⊤(x, a)W (f,Ek)| ≤
√
2df(x, a)

(
8Hξ2,5/(lfM) + 2

√
2ξ2,5/(l2fM) + Vk

)
where

Vk := 2

√√√√2ξ2,5
M

k∑
j=1

α2(k−j) max
(y,b)∈Cf

σ2(vj−1)(y, b)

f2(y, b)
,

for all (x, a, k) ∈ X ×A× [K]

E1 is for the condition of f in Theorem H.1, and E2 is for the use of concentration inequalities. Our goal is to show that E3,
E4, and E5 occur with high probability in Theorem H.2 and Theorem H.1.

H.4.1. LEMMAS AND PROOFS OF vk BOUND (E2)

We first show that E2 occurs with high probability. The following Lemma H.6 is for Theorem H.2, and Lemma H.7 is for
Theorem H.1.

Lemma H.6. With the settings of Theorem H.2, there exists c4 ≥ 1 independent of d, H , X , A, ε and δ such that
P (E2c) ≤ δ/c0.

Lemma H.7. With the settings of Theorem H.1, there exists c2 ≥ 1 independent of d, H , X , A, ε and δ such that
P (E2c|E1) ≤ δ/c0.

Proof. From the greediness of the policies πk and πk−1,

πk−1ϕ
⊤θk = πk−1(sk − αsk−1) ≤ vk ≤ πk(sk − αsk−1) = πkϕ

⊤θk. (27)

Let ε′k := εk/∥vk−1∥∞ be a normalized error. We prove the claim by bounding ϕ⊤θk as∣∣ϕ⊤θk∣∣ = ∣∣ϕ⊤W (f, q̂k)
∣∣ (a)

≤
∣∣ϕ⊤W (f, ϕ⊤θ∗k)

∣∣+ ∣∣ϕ⊤W (f, εk)
∣∣ = |r + γPvk−1|+

∣∣ϕ⊤W (f, εk)
∣∣

(b)

≤ (1 + γ∥vk−1∥∞)1+
uf
√
2d

lf
max

(x,a)∈Cf

|εk(x, a)|1

(c)
= (1 + γ∥vk−1∥∞)1+

uf
√
2d

lf
∥vk−1∥∞ max

(x,a)∈Cf

|ε′k(x, a)|1 , (28)
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where (a) uses the triangle inequality, (b) is due to Lemma 4.3 and since r is bounded by 1, and (c) uses ε′k = εk/∥vk−1∥∞.
We also used the shorthand uf := max(x,a)∈X×A f(x, a) and lf := min(x,a)∈X×A f(x, a).

We need to bound max(x,a)∈Cf
|ε′k(x, a)|. For (x, a) ∈ X ×A,

ε′k(x, a) =
γ

M

M∑
m=1

(
vk−1(yk−1,m,x,a)− Pvk−1(x, a)

)
/∥vk−1∥∞︸ ︷︷ ︸

bounded by 2

is a sum of bounded martingale differences with respect to (Fk,m)Mm=1. Using the Azuma-Hoeffding inequality (Lemma D.1)
and taking the union bound over (x, a) ∈ Cf and k ∈ [K], we have

P

(
∃(x, a, k) ∈ Cf × [K] s.t. |ε′k(x, a)| ≥ γ

√
8ι1
M

)
≤ δ

c0
. (29)

We are now ready to prove Lemma H.6 and Lemma H.7 by induction. The claims hold for k = 0 since v0 = 0. Assume that
vk−1 is bounded by 2H for some k ≥ 1.

Lemma H.6 proof Note that uf/lf = 1 due to the settings of Theorem H.2. Therefore, the following inequality holds
with probability at least 1− δ/c0.

∥ϕ⊤θk∥∞
(a)

≤ 1 + γ2H + 2H
√
2d max

(x,a)∈Cf

|ε′k(x, a)|
(b)

≤ 1 + γ2H + 8Hγ

√
dι1
M

,

where (a) is due to (28) with the induction hypothesis and (b) the second inequality is due to (29). Since H = 1/(1− γ), by
simple algebra, some M such that M ≥ 64γ2H2dι1 satisfies ∥ϕ⊤θk∥∞ ≤ 2H with probability at least 1− δ/c0.

Recall that M =
⌈
c4dH

2ι2,5/ε
⌉

in Theorem H.2. Due to the assumption of ε ≤ 1/H and ι2,5 ≥ ι1 by (18), the value of M
in Theorem H.2 satisfies M ≥ 64γ2H2dι1 for some c4. Lemma H.6 hence holds by inserting the result into the inequality
(27) with induction.

Lemma H.7 proof Note that uf/lf ≤
√
H due to the condition of Lemma H.7. Therefore, the following inequality holds

with probability at least 1− δ/c0.

∥ϕ⊤θk∥∞
(a)

≤ 1 + γ2H + 2H
√
2dH max

(x,a)∈Cf

|ε′k(x, a)|
(b)

≤ 1 + γ2H + 8Hγ

√
dHι1
M

,

where (a) is due to (28) with the induction hypothesis and (b) the second inequality is due to (29). Since H = 1/(1− γ), by
simple algebra, some M such that M ≥ 64γ2H3dι1 satisfies ∥ϕ⊤θk∥∞ ≤ 2H with probability at least 1− δ/c0.

Recall that M =
⌈
c2dH

2ξ2,5/ε
2
⌉

in Theorem H.1. Due to the assumption of ε ≤ 1/H and ξ2,5 ≥ ι1 by (18), the value
of M in Theorem H.1 satisfies M ≥ 64γ2H3dι1 for some c2. Lemma H.7 hence holds by inserting the result into the
inequality (27) with induction.

H.4.2. LEMMAS AND PROOFS OF COARSE ϕ⊤W (f,Ek) BOUND (E3)

The following Lemma H.8 is for Theorem H.2, and Lemma H.9 is for Theorem H.1.

Lemma H.8. With the settings of Theorem H.2, there exists c4 ≥ 1 independent of d, H , X , A, ε and δ such that
P(E3c|E2) ≤ δ/c0.

Lemma H.9. With the settings of Theorem H.1, there exists c2 ≥ 1 independent of d, H , X , A, ε and δ such that
P(E3c|E1 ∩ E2) ≤ δ/c0.

27



Regularization and Variance-Weighted Regression is Minimax Optimality in Linear MDPs

Proof. For any (x, a) ∈ X ×A and k ∈ [K], we have

∣∣ϕ⊤(x, a)W (f,Ek)
∣∣ ≤ √2df(x, a)

lf
max

(y′,b′)∈Cf

∣∣∣∣∣∣
k∑

j=1

αk−jεj(y
′, b′)

∣∣∣∣∣∣︸ ︷︷ ︸
♡k

, (30)

where the inequality is due to the weighted KW bound (Lemma 4.3).

We need to bound ♡k. Note that for a fixed k ∈ [K] and (x, a) ∈ Cf ,

k∑
j=1

αk−jεj(x, a) =
γ

M

k∑
j=1

αk−j
M∑

m=1

(
vj−1(yj−1,m,x,a)− Pvj−1(x, a)

)
︸ ︷︷ ︸

bounded by 4H due to E2

is a sum of bounded martingale differences with respect to (Fj,m)k,Mj=1,m=1. We are now ready to prove Lemma H.8 and
Lemma H.9 using the conditional Azuma-Hoeffding inequality (Lemma D.2).

Lemma H.8 proof In the settings of Theorem H.2, some c4 satisfies that P(E2) ≥ 1− δ/c0 due to Lemma H.6. Using the
conditional Azuma-Hoeffding inequality (Lemma D.2) and taking the union bound over (x, a) ∈ Cf and k ∈ [K],

P

∃(x, a, k) ∈ Cf × [K] s.t.
k∑

j=1

αk−jεj(x, a) ≥ γH
√

32A∞ι2,1
M

∣∣∣∣∣∣E2
 ≤ δ

c0
.

where ι2,1 = ι1 + log(c0/(c0 − 1)) is due to the condition by E2. We used ι2,1 since 1/(1− δ/c0) ≤ c0/(c0 − 1).

Therefore, ♡k ≤ H
√
32A∞ι2,1/M with probability at least 1− δ/c0 for all k ∈ [K]. The claim holds by inserting ♡k into

the inequality (30).

Lemma H.9 proof In the settings of Theorem H.1, we have P(E1) ≥ 1−4δ/c0 and some c2 satisfies that P (E2c|E1) ≤ δ/c0
due to Lemma H.7. Therefore, P(E1 ∩ E2) ≥ 1− 5δ/c0 holds due to Lemma C.1.

Using Lemma D.2 and taking the union bound over (x, a) ∈ Cf and k ∈ [K],

P

∃(x, a, k) ∈ Cf × [K] s.t.
k∑

j=1

αk−jεj(x, a) ≥ γH
√

32A∞ι2,5
M

∣∣∣∣∣∣E1 ∩ E2
 ≤ δ

c0
,

where ι2,5 = ι1 + log(c0/(c0 − 5)) is due to the condition by E1 ∩ E2. We used ι2,5 since 1/(1− 5δ/c0) ≤ c0/(c0 − 5).
Lemma H.9 holds in the same way as the proof of Lemma H.8.

H.4.3. LEMMAS AND PROOFS OF COARSE ϕ⊤W (f, εk) BOUND (E4)

The following Lemma H.10 is for Theorem H.2, and Lemma H.11 is for Theorem H.1.

Lemma H.10. With the settings of Theorem H.2, there exists c4 ≥ 1 independent of d, H , X , A, ε and δ such that
P(E4c|E2) ≤ δ/c0.

Lemma H.11. With the settings of Theorem H.1, there exists c2 ≥ 1 independent of d, H , X , A, ε and δ such that
P(E4c|E1 ∩ E2) ≤ δ/c0.

Proof. For any (x, a) ∈ X ×A and k ∈ [K], we have

|ϕ⊤(x, a)W (f, εk)| ≤
√
2df(x, a)

lf
max

(y′,b′)∈Cf

|εk(y′, b′)|︸ ︷︷ ︸
♡k

, (31)
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where the inequality is due to the weighted KW bound (Lemma 4.3).

We need to bound ♡k. Note that for a fixed k ∈ [K] and (x, a) ∈ Cf ,

εk(x, a) =
γ

M

M∑
m=1

(
vk−1(yk−1,m,x,a)− Pvk−1(x, a)

)
︸ ︷︷ ︸

bounded by 4H due to E2

is a sum of bounded martingale differences with respect to (Fk,m)Mm=1. We are ready to prove Lemma H.10 and Lemma H.11
using the conditional Azuma-Hoeffding inequality (Lemma D.2).

Lemma H.10 proof Note that some c4 satisfies that P(E2) ≥ 1− δ/c0 in the settings of Theorem H.2 due to Lemma H.6.
Using the conditional Azuma-Hoeffding inequality (Lemma D.2) and taking the union bound over (x, a) ∈ Cf and k ∈ [K],
we have

P

(
∃(x, a, k) ∈ Cf × [K] s.t. |εk(x, a)| ≥ γH

√
32ι2,1
M

∣∣∣∣∣E2
)
≤ δ

c0
.

where ι2,1 = ι1 + log(c0/(c0 − 1)) is due to the condition by E2. We used ι2,1 since 1/(1− δ/c0) ≤ c0/(c0 − 1).

Therefore, ♡k ≤ γH
√
32ι2,1/M with probability at least 1− δ/c0 for all k ∈ [K]. The claim holds by inserting ♡k into

the inequality (31).

Lemma H.11 proof Due to Lemma C.1 and Lemma H.7, some c2 satisfies that P(E1 ∩ E2) ≥ 1− 5δ/c0 in the settings of
Theorem H.1. Therefore, using Lemma D.2 and taking the union bound over (x, a) ∈ Cf and k ∈ [K],

P

(
∃(x, a, k) ∈ Cf × [K] s.t. |εk(x, a)| ≥ γH

√
32ι2,5
M

∣∣∣∣∣E1 ∩ E2
)
≤ δ

c0
.

where ι2,5 = ι1 + log(c0/(c0 − 5)) is due to the condition by E1 ∩ E2. We used ι2,5 since 1/(1− 5δ/c0) ≤ c0/(c0 − 5).

The claim holds in the same way as the proof of Lemma H.10.

H.4.4. LEMMA AND PROOF OF REFINED ϕ⊤W (f,Ek) BOUND (E5)

The following Lemma H.12 is for Theorem H.1.

Lemma H.12. With the settings of Theorem H.1, there exists c2 ≥ 1 independent of d, H , X , A, ε and δ such that
P (E5c|E1 ∩ E2) ≤ δ/c0.

Proof. For any (x, a) ∈ X ×A and k ∈ [K], we have

∣∣ϕ⊤(x, a)W (f,Ek)
∣∣ ≤ √2df(x, a) max

(y′,b′)∈Cf

1

f(y′, b′)

∣∣∣∣∣∣
k∑

j=1

αk−jεj(y
′, b′)

∣∣∣∣∣∣ . (32)

where the inequality is due to the weighted KW bound (Lemma 4.3).

We further bound Equation (32) by bounding
∣∣∣∑k

j=1 α
k−jεj(x, y)

∣∣∣ over (x, y) ∈ Cf . For a fixed k ∈ [K] and (x, a) ∈ Cf ,

k∑
j=1

αk−jεj(x, a) = γ

k∑
j=1

αk−j 1

M

M∑
m=1

(
vj−1(yj−1,m,x,a)− Pvj−1(x, a)

)
︸ ︷︷ ︸

bounded by 4H due to E2

is a sum of bounded martingale differences with respect to (Fj,m)k,Mj=1,m=1.
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In the settings of Theorem H.1, we have P(E1) ≥ 1−4δ/c0 and some c2 satisfies that P (E2c|E1) ≤ δ/c0 due to Lemma H.7.
Therefore, P(E1 ∩ E2) ≥ 1− 5δ/c0 holds due to Lemma C.1. Using the conditional Bernstein-type inequality (Lemma D.4)
and taking the union bound over k ∈ [K] and (x, a) ∈ Cf , we have

P


∣∣∣∣∣∣

k∑
j=1

αk−jεj(x, a)

∣∣∣∣∣∣ ≥ 8Hξ2,5
M

+ 2
√
2

√√√√√ξ2,5
M

1 +

k∑
j=1

α2(k−j)Var(vj−1)(x, a)


∣∣∣∣∣∣∣E1 ∩ E2

 ≤ δ

c0
, (33)

for all (x, a, k) ∈ Cf × [K]. Here, ξ2,5 = ι1 + log(c0/(c0 − 5)) + log log2(16KH
2) is due to the condition by E1 ∩ E2.

We used ξ2,5 since 1/(1− 5δ/c0) ≤ c0/(c0 − 5).

Using the result, we have the following inequality with probability at least 1− δ/c0. For all (x, a, k) ∈ Cf × [K],

max
(y′,b′)∈Cf

1

f(y′, b′)

∣∣∣∣∣∣
k∑

j=1

αk−jεj(y
′, b′)

∣∣∣∣∣∣
(a)

≤ max
(y′,b′)∈Cf

1

f(y′, b′)

8Hξ2,5
M

+ 2
√
2

√√√√√ξ2,5
M

1 +

k∑
j=1

α2(k−j)Var(vj−1)(y′, b′)




(b)

≤ max
(y′,b′)∈Cf

1

f(y′, b′)

8Hξ2,5
M

+ 2
√
2

√
ξ2,5
M

+ 2
√
2

√√√√ξ2,5
M

k∑
j=1

α2(k−j)Var(vj−1)(y′, b′)


(c)

≤ 8Hξ2,5
Mlf

+ 2
√
2

√
ξ2,5
Ml2f

+ 2
√
2

√√√√ξ2,5
M

k∑
j=1

α2(k−j) max
(y′,b′)∈Cf

Var(vj−1)(y′, b′)

f(y′, b′)

where (a) is due to (33), (b) is due to Lemma C.2, and (c) uses lf = min(x,a)∈X×A f(x, a). The claim holds by inserting
the result into the inequality (32).

We are now ready to prove Theorem H.2.

H.5. Proof of Theorem H.2 (Step2)

Proof of Theorem H.2. We condition the proof by the event E2∩E3∩E4. Note that when WLS-MDVI is run with the settings
defined in Theorem H.2, P(E2c) ≤ δ/c0 due to Lemma H.6, P(E3c|E2) ≤ δ/c0 due to Lemma H.8, and P(E4c|E2) ≤ δ/c0
due to Lemma H.10 . Using Lemma C.1, these indicate that

P(E2 ∩ E3 ∩ E4) ≥ P(E2)− P ((E3 ∩ E4)c|E2) ≥ P(E2)− P(E3c|E2)− P(E4c|E2) ≥ 1− 3δ

c0
.

Therefore, E2 ∩ E3 ∩ E4 occurs with probability at least 1− 2δ/c0.

We now prove the claim by bounding v∗ − vK . Recall Lemma H.4 that, for any k ∈ [K],

−2γkH1−
k−1∑
j=0

γjπk−1P
k−1
k−j ϕ

⊤W (f, εk−j) ≤ v∗ − vk ≤ Γk−1 + 2Hγk1−
k−1∑
j=0

γjπk−1P
k−2
k−1−jϕ

⊤W (f, εk−j) ,

where

Γk :=
1

A∞

k−1∑
j=0

γj
(
πkP

k−1
k−j − π∗P

j
∗

)
ϕ⊤W (f,Ek−j) + 2H

(
αk +

Aγ,k

A∞

)
1 .
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When α = γ, this bounds ∥v∗ − vK∥∞ as

∥v∗ − vK∥∞ ≤
1

H

K−1∑
j=0

γj
∥∥∥(πKPK−1

K−j − π∗P
j
∗

)
ϕ⊤W (f,EK−j)

∥∥∥
∞︸ ︷︷ ︸

♡

+□(H +K)γK︸ ︷︷ ︸
♣

+H max
j∈[K]

∥∥ϕ⊤W (1, εj)
∥∥
∞︸ ︷︷ ︸

♢

.

(34)

We bound for each of them. Note that uf/lf = 1, K =
⌈

3
1−α log c3H + 1

⌉
, and M =

⌈
c4dH

2ι2,5/ε
⌉

due to the settings
of Theorem H.2.

First, ♡ can be bounded as

♡ ≤ 2

H

K−1∑
j=0

γj
∥∥ϕ⊤W (f,EK−j)

∥∥
∞

(a)

≤ 2

H

K−1∑
j=0

γj

(
8H

√
dHι2,5
M

)
(b)

≤ □

√
H

c4
ε

(c)

≤ □

√
H

c4
,

where (a) is due to E3, (b) is due to the value of M , and (c) is due to ε ∈ (0, 1/H].

Second, Lemma C.7 with the value of K indicates that

♣ ≤ □
c3
.

Finally, ♢ can be bounded as

♢
(a)

≤ 8γH2

√
dι2,5
M

(b)

≤ □H

√
ε

c4

(c)

≤ □

√
H

c4
,

where (a) is due to E4, (b) is due to the value of M , and (c) is due to ε ∈ (0, 1/H].

Inserting these results into the inequality (34), we have ∥v∗ − vK∥∞ ≤ □
√
H(c−1

3 + c−0.5
4 ). Therefore, for some c3 and c4,

the claim holds.

H.6. Proof of Theorem H.1 (Step 3) and (Step 4)

As discribed in Appendix H.2, the proof requires tight bounds on ♡k = H−1
∑k−1

j=0 γ
jπkP

k−1
k−j |ϕ⊤W (f,Ek−j)| and

♣k = H−1
∑k−1

j=0 γ
jπ∗P

j
∗ |ϕ⊤W (f,Ek−j)|. We first derive the bound of ♣K and then derive the bound of ♡K .

H.6.1. H−1
∑K−1

j=0 γjπ∗P
j
∗ |ϕ⊤W (f,EK−j)| BOUND (♣K )

As discribed in Step 3 of Appendix H.2, we need a bound of the discounted sum of σ(v∗ − vk) for ♣k. Then, the following
lemma is useful.

Lemma H.13. Conditioned on E2 ∩ E3 ∩ E4,

∥v∗ − vk∥∞ < min {3H,Ψk} and ∥σ(v∗ − vk)∥∞ < min {3H,Ψk} ,

where

Ψk = 3H

(
max(γ, α)k−1 +

Aγ,k−1

A∞

)
+

24H2uf
lf

√
dι2
M

(
1 +

√
1

A∞

)
for all k ∈ [K].
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Proof. Let ek := γkH +Hmax
j∈[k]

∥∥ϕ⊤W (f, εj)
∥∥
∞. From Lemma H.4, for any k ∈ [K],

v∗ − vk ≥− 2γkH1−
k−1∑
j=0

γjπk−1P
k−1
k−j ϕ

⊤W (f, εk−j) ≥ −2ek1 ,

and v∗ − vk ≤Γk−1 + 2Hγk1−
k−1∑
j=0

γjπk−1P
k−2
k−1−jϕ

⊤W (f, εk−j)

≤2H
(
αk−1 +

Aγ,k−1

A∞
+

1

A∞
max

j∈[k−1]

∥∥ϕ⊤W (f,Ej)
∥∥
∞

)
1+ 2ek1 .

Note that ∥v∗−vk∥∞ ≤ 3H due to E2 for any k ∈ [K]. Also, due to E4 and E3,
∥∥ϕ⊤W (f, εk)

∥∥
∞ ≤ (8Huf/lf )

√
dι2,5/M

and
∥∥ϕ⊤W (f,Ek)

∥∥
∞ ≤ (8Huf/lf )

√
dA∞ι2,5/M for any k ∈ [K]. Therefore,

|v∗ − vk| ≤ 3Hmin

{
1,max(γ, α)k−1 +

Aγ,k−1

A∞
+

8Huf
lf

√
dι2,5
M

(
1 +

√
1

A∞

)}
1

for all k ∈ [K]. Also, due to Lemma D.5,

σ(v∗ − vk) ≤ 3Hmin

{
1, 2max(γ, α)k−1 +

Aγ,k−1

A∞
+

8Huf
lf

√
dι2,5
M

(
1 +

√
1

A∞

)}
1 .

This concludes the proof.

Now we have the following bound on ♣K .

Lemma H.14. Assume that ε ∈ (0, 1/H]. Conditioned on E1 ∩ E2 ∩ E3 ∩ E4 ∩ E5, with the settings of Theorem H.1,

♣K =
1

H

K−1∑
k=0

γkπ∗P
k
∗ |ϕ⊤W (f,EK−k)| ≤ □

(
c−1
1 + c−0.5

2

)
ε1 .

Proof. Using the conditions E1 ∩ E2 ∩ E3 ∩ E4 ∩ E5, for all k ∈ [K], we have

max
(x,a)∈Cf

σ(vk)(x, a)

f(x, a)

(a)

≤ max
(x,a)∈Cf

σ(v∗)(x, a)

f(x, a)︸ ︷︷ ︸
≤1 from E1

+
σ(v∗ − vk)(x, a)

lf

(b)

≤ 1 +
Ψk√
H

, (35)

where (a) is due to Lemma E.1 and (b) is due to the conditions of E2 ∩ E3 ∩ E4 and Lemma H.13.

Note that with the conditions and the settings of ε ∈ (0, 1/H], α = γ, and M =
⌈
c2dH

2ξ2,5
ε2

⌉
, we have A∞ = H ,

Aγ,k = kγk, and uf/lf ≤
√
H . Therefore,

Ψk√
H

= 3
√
H

(
max(γ, α)k−1 +

Aγ,k−1

A∞

)
+

24Huf
lf

√
dHι2
M

(
1 +

√
1

A∞

)
≤ □

(
√
Hγk−1 +

(k − 1)γk−1

√
H

+H2

√
dι2,5
M︸ ︷︷ ︸

≤εH

)
≤ □

(√
Hγk−1 +

(k − 1)γk−1

√
H

+ 1

)
,

where the last inequality uses that ε ∈ (0, 1/H]. Using this result, for any k ∈ [K],

γ2(K−k)

(
1 +

Ψk√
H

)2

≤ □

(√
HγK−1 +

(k − 1)γK−1

√
H

+ γK−k

)2

≤ □

(
Hγ2K−2 +

(k − 1)2γ2K−2

H
+ γ2K−2k

)2

(36)
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where the last inequality is due to the Cauchy-Schwarz inequality (Lemma C.4). This result implies that

VK = 2

√√√√2ξ2,5
M

K∑
j=1

α2(K−j) max
(y,b)∈Cf

σ2(vj−1)(y, b)

f2(y, b)

(a)

≤ 2

√√√√2ξ2,5
M

K∑
j=1

γ2(K−j)

(
1 +

Ψj√
H

)2

(b)

≤

√√√√√√√
□ξ2,5
M

(
HKγ2K−2 +

γ2K−2

H

K∑
i=1

(i− 1)2︸ ︷︷ ︸
≤K3 by Lemma C.8

+

K∑
j=1

γ2(K−j)

︸ ︷︷ ︸
H

)

(c)

≤
√

□ξ2,5
M

(√
HKγK−1 +

K1.5γK−1

√
H

+
√
H

)
(d)

≤
√

□Hξ2,5
M

(
1 +

1

c1

)
(e)

≤ □ε√
c2Hd

(
1 +

1

c1

)
,

(37)

where (a) is due to (35), (b) is due to (36), and (c) is due to Lemma C.2. (d) uses that
√
KγK−1 ≤ K1.5γK−1 ≤ □/c1 due

to the value of K and Lemma C.7, and (e) is due to the definition of M .

Finally,

1

H

K−1∑
k=0

γkπ∗P
k
∗
∣∣ϕ⊤W (f,EK−k)

∣∣ (a)

≤
√
2d

H

(
8Hξ2,5
lfM

+ 2

√
2ξ2,5
l2fM

+ VK

)
K−1∑
k=0

γkπ∗P
k
∗ f

(b)

≤ □
√
d

H

(
ξ2,5
√
H

M
+

1

H

√
ξ2,5
M

+ VK

)
K−1∑
k=0

γkπ∗P
k
∗ f

(c)

≤ □
√
d

H

(
ξ2,5
√
H

M
+

1

H

√
ξ2,5
M

+ VK

)(
H
√
H1+

K−1∑
k=0

γkπ∗P
k
∗ σ(v∗)︸ ︷︷ ︸

≤
√
2H31 by Lemma E.2

)

(d)

≤ □
√
d

H

(
ε2

c2dH
√
H

+
ε

H2
√
c2d

+
ε√
c2Hd

(
1 +

1

c1

))
1

≤ □
(
c−0.5
2 + c−1

1 c−0.5
2

)
ε1

≤ □
(
c−1
1 + c−0.5

2

)
ε1 .

where (a) is due to E5 and since Vk is increasing with respect to k, (b) is due to lf ≥
√
H by E1, (c) is due to σ(v∗) ≤ f ≤

σ(v∗) + 2
√
H1 by E1, and (d) is due to M =

⌈
c2dH

2ξ2,5
ε2

⌉
with the inequality (37). This concludes the proof.

H.6.2. H−1
∑K−1

k=0 γkπKP
K−1
K−k |ϕ⊤W (f,EK−k)| BOUND (♡K )

As discribed in Step 4 of Appendix H.2, we need a coarse bound of σ(v∗ − vπ′
k
) for ♡k. Then, the following lemma is

useful.
Lemma H.15. Conditioned on E1 ∩ E3, with the settings of Theorem H.1, the output policies (πk)Kk=0 satisfy that ∥v∗ −
vπ′

k
∥∞ ≤ □/

√
c21+ 2(H + k)γk for all k ∈ [K].

Proof of Lemma H.15. Note that A∞ = H due to α = γ and uf/lf ≤
√
H due to E1. Moreover, E3 and the setting of

M =
⌈
c2dH

2ξ2,5
ε2

⌉
indicate that

∥∥ϕ⊤W (f,Ek)
∥∥
∞ ≤ □

uf
lf

√
dA∞H2ι2,5

M
≤ □Hϵ
√
c2
≤ □
√
c2
,

for any k ∈ [K] where the last inequality is due to ϵ ∈ (0, 1/H].

Therefore,

1

A∞

k−1∑
j=0

γj
(
πkP

k−1
k−j − π∗P

j
∗

)
ϕTW (f,Ek−j) ≤

2

H

k−1∑
j=0

γj
∥∥ϕTW (f,Ek−j)

∥∥
∞ 1 ≤ □

√
c2

1 ,
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and thus v∗ − vπ′
k
≤ □/

√
c21+ 2(H + k)γk1 due to Lemma H.3. This concludes the proof.

Now we are ready to derive the bound of ♡K .
Lemma H.16. Assume that ε ∈ (0, 1/H]. Conditioned on E1 ∩ E2 ∩ E3 ∩ E4 ∩ E5, with the settings of Theorem H.1,

♡K =
1

H

K−1∑
k=0

γkπKP
K−1
K−k

∣∣ϕ⊤W (f,EK−k)
∣∣ ≤ □

(
c−1
1 + c−0.5

2

)
ε1 .

Proof. Following similar steps as in the proofs of Appendix H.6.1, we obtain the following bounds.

Ψk√
H
≤ □

(√
Hγk−1 +

(k − 1)γk−1

√
H

+ 1

)
for any k ∈ [K] ,

VK ≤
□ε√
c2Hd

(
1 +

1

c1

)
,

and
1

H

K−1∑
k=0

γkπKP
K−1
K−k |ϕ

⊤W (f,EK−k)| ≤
□
√
d

H

(
ξ2,5
√
H

M
+

1

H

√
ξ2,5
M

+ VK

)(
H
√
H1+

K−1∑
k=0

γkπKP
K−1
K−kσ(v∗)

)
.

(38)

We thus need to bound
∑K−1

k=0 γkπKP
K−1
K−kσ(v∗). Note that σ(v∗) can be decomposed as

σ(v∗)
(a)

≤ σ(v∗ − vπ′
k
) + σ(vπ′

k
)

(b)

≤ ∥v∗ − vπ′
k
∥∞1+ σ(vπ′

k
)

(c)

≤ □
√
c2

1+ 2(H + k)γk1+ σ(vπ′
k
) ,

where (a) is due to Lemma E.1, (b) is due Lemma D.5, and (c) is due to Lemma H.15. Accordingly,

K−1∑
k=0

γkπKP
K−1
K−kσ(v∗) ≤

K−1∑
k=0

γkπKP
K−1
K−k

(
□
√
c2

1+ 2(H +K − k)γK−k1+ σ(vπ′
K−k

)

)

≤ □H
√
c2

1+□

(
HKγK + γK

K−1∑
k=0

(K − k)︸ ︷︷ ︸
K2 by Lemma C.8

)
1+

K−1∑
k=0

γkπKP
K−1
K−kσ(vπ′

K−k
)︸ ︷︷ ︸√

2H31 by Lemma E.2

(a)

≤ □H
√
H
(
c−0.5
2 + c−1

1 + 1
)
1

(b)

≤ □H
√
H1

where (a) uses that KγK ≤ K2γK ≤ □/c1 due to the value of K and Lemma C.7, and (b) uses c1, c2 ≥ 1.

Inserting the result into the inequality (38), and following similar steps as in the proof of Appendix H.6.1, we have

1

H

K−1∑
k=0

γkπKP
K−1
K−k |ϕ

⊤W (f,EK−k)| ≤
□
√
d

H

(
ε2

c2dH
√
H

+
ε

H2
√
c2d

+
ε√
c2Hd

(
1 +

1

c1

))
1 ≤ □

(
c−1
1 + c−0.5

2

)
ε1 .

This concludes the proof.

H.6.3. PROOF OF THEOREM H.1

The derived bounds of ♡K and ♣K yield the following proof of Theorem H.1.

Proof of Theorem H.1. We condition the proof by the event E1 ∩ E2 ∩ E3 ∩ E4 ∩ E5. Note that when WLS-MDVI is run with
the settings defined in Theorem H.1,

P(E1) ≥ 1− 4δ/c0 , P (E2c|E1) ≤ δ/c0︸ ︷︷ ︸
from Lemma H.7

, P (E3c|E1 ∩ E2) ≤ δ/c0︸ ︷︷ ︸
from Lemma H.9

,

P (E4c|E1 ∩ E2) ≤ δ/c0︸ ︷︷ ︸
from Lemma H.11

P (E5c|E1 ∩ E2) ≤ δ/c0︸ ︷︷ ︸
from Lemma H.12

.
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With Lemma C.1, these indicates that

P(E1 ∩ E2 ∩ E3 ∩ E4 ∩ E5) ≥ P(E1 ∩ E2)− P((E3 ∩ E4 ∩ E5)c|E1 ∩ E2)
≥ P(E1)− P(E2c|E1)
− P(E3c|E1 ∩ E2)− P(E4c|E1 ∩ E2)− P(E5c|E1 ∩ E2)
≥ 1− 8δ/c0

Therefore, these events occur with probability at least 1− 8δ/c0.

Note that under the current settings of Theorem H.1, A∞ = H and 2(H +K)γK ≤ □/c1 due to Lemma C.7. Combined
with Lemma H.3, Lemma H.14, and Lemma H.16, we have

∣∣v∗ − vπ′
K

∣∣ ≤ 1

A∞

K−1∑
i=0

γiπKP
K−1
K−i

∣∣ϕ⊤W (f,EK−i)
∣∣

︸ ︷︷ ︸
≤□(c−1

1 +c−0.5
2 )ϵ1 due to Lemma H.16

+
1

A∞

K−1∑
j=0

γjπ∗P
j
∗
∣∣ϕ⊤W (f,EK−j)

∣∣
︸ ︷︷ ︸

≤□(c−1
1 +c−0.5

2 )ϵ1 due to Lemma H.14

+2 (H +K) γK1︸ ︷︷ ︸
≤□c−1

1 1

≤ □

(
1

c1
+

1√
c2

)
ϵ1.

Therefore, for some c1 and c2, the claim holds.

I. Formal Theorem and Proof of Theorem 5.2
Instead of the informal theorem Theorem 5.2, we are going to prove the following formal theorem.
Theorem I.1 (Accuracy of VarianceEstimation). Let c0 be a positive constant such that 8 ≥ c0 ≥ 6 and v ∈ Fv be
a random variable. Assume that an event

∥v∗ − v∥∞ ≤
1

2

√
H

occurs with probability at least 1− 3δ/c0. With a positive constant c5 ≥ 1, define

M var :=

⌈
c5dH

2 log
2c20uCK

(c0 − 3)δ

⌉
.

When VarianceEstimation is run with the settings vσ = v and Mσ =M var, there exists c5 ≥ 1 independent of d, H ,
X , A, and δ such that the output ω satisfies σ(v∗) ≤

√
max(ϕ⊤ω, 0) +

√
H ≤ σ(v∗) + 2

√
H with probability at least

1− 4δ/c0, using Õ (2uCMσ) = Õ
(
d2H2

)
samples from the generative model.

We let Fm be the σ-algebra generated by random variables {v}∪{yn,x,a|(n, x, a) ∈ [m−1]×X ×A}∪{zn,x,a|(n, x, a) ∈
[m− 1]×X ×A}. Recall that v ∈ Fv is the random variable that is inputted to VarianceEstimation as vσ = v and
ω ∈ Rd is the parameter to approximate the variance as Varω := ϕ⊤ω.

We first introduce the necessary events.
Event 6. E6 denotes the event |v∗ − vσ| ≤ 1

2

√
H1.

Event 7. E7 denotes the event
∣∣∣σ∗ −√max(ϕ⊤ω, 0)

∣∣∣ ≤ √H1.

Due to the setting of Theorem I.1, P(E6) ≥ 1− 3δ/c0. We need the following pivotal lemma to show Theorem I.1.
Lemma I.2. When VarianceEstimation is run with the settings of Theorem I.1, there exists c5 independent of d, H ,
X , A, and δ such that P(E7c|E6) ≤ δ/c0.

Proof. For the input vσ , we write Var(vσ) as Varv by abuse of notation. Let ω∗ be the unknown underlying parameter that
satisfies ϕ⊤ω∗ = Varv . This is ensured to exist by Assumption 3.2.

The weighted KW bound (Lemma 4.3) indicates that

|Varω −Varv| =
∣∣ϕ⊤ω − ϕ⊤ω∗∣∣ = ∣∣∣ϕ⊤W (

1, V̂ar−Varv

)∣∣∣ ≤ √2d1 max
(y′,b′)∈C

∣∣∣V̂ar(y′, b′)−Varv(y
′, b′)

∣∣∣︸ ︷︷ ︸
♡

. (39)
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We are going to bound
∣∣∣V̂ar(x, a)−Varv(x, a)

∣∣∣ for (x, a) ∈ C. Note that
(
vσ (ym,x,a)− vσ(zm,x,a)

)2
/2 is the unbiased

estimator of Varv since

E
[(
vσ(ym,x,a)− vσ(zm,x,a)

)2]
= E

[(
vσ (ym,x,a)− Pvσ(x, a) + Pvσ(x, a)− vσ(zm,x,a)

)2]
= E

[(
vσ (ym,x,a)− Pvσ(x, a)

)2]
+ E

[(
vσ(zm,x,a)− Pvσ(x, a)

)2]
− 2E

[(
vσ (ym,x,a)− Pvσ(x, a)

)(
vσ(zm,x,a)− Pvσ(x, a)

)]
= 2Varv(x, a) .

Moreover, E6 implies |vσ| ≤ |vσ−v∗|+ |v∗| ≤ 3
2H . Also, due to Lemma D.5, Varv ≤ 9

4H
2 ≤ 3H2. For a fixed (x, a) ∈ C,

V̂ar(x, a)−Varv(x, a) =
1

Mσ

Mσ∑
m=1

(
(vσ (ym,x,a)− vσ(zm,x,a))

2
/2−Varv(x, a)

)
︸ ︷︷ ︸

bounded by 8H2

is a sum of bounded martingale differences with respect to (Fm)Mσ
m=1. Therefore, using the conditional Azuma-Hoeffding

inequality (Lemma D.2) and taking the union bound over (x, a) ∈ C, we have

P
(
∃(x, a, k) ∈ C s.t.

∣∣∣V̂ar(x, a)−Varv(x, a)
∣∣∣ ≥ H2

√
128ι2,3
Mσ

∣∣∣∣E6) ≤ δ

c0
,

where ι2,3 = ι1+log(c0/(c0−3)) is due to the condition by E6 with P(E6) ≥ 1−3δ/c0. We used ι2,3 since 1/(1−3δ/c0) ≤
c0/(c0 − 3). Inserting the result into (39), with probability 1− δ/c0,

|Varω −Varv| ≤ 16H2

√
dι2,3
Mσ

1 .

Due to the setting of Mσ =
⌈
c5dH

2ι2,3
⌉
, some c5 exists such that |ϕ⊤ω − Varv| ≤ 1

4H1. This implies that∣∣max(ϕ⊤ω, 0)−Varv
∣∣ ≤ 1

4H1 since Varv ≥ 0, and furthermore,
∣∣∣√max(Varθ, 0)−

√
Varv

∣∣∣ ≤ 1
2

√
H1 due to

Lemma C.3. Finally,∣∣∣∣√max(ϕ⊤ω, 0)− σ(v∗)
∣∣∣∣ (a)

≤
∣∣∣∣√max(ϕ⊤ω, 0)−

√
Varv

∣∣∣∣+ ∣∣∣σ(v∗)−√Varv

∣∣∣
(b)

≤
∣∣∣∣√max(ϕ⊤ω, 0)−

√
Varv

∣∣∣∣+ |v∗ − vσ|︸ ︷︷ ︸
≤ 1

2

√
H1 due to E6

≤
√
H1 ,

where (a) is due to Lemma E.1, (b) is due to Lemma D.5. This concludes the proof.

We are now ready to prove Theorem I.1.

Proof of Theorem I.1. The claim holds by showing that the event E6 ∩ E7 occurs with high probability. Note that when
VarianceEstimation is run with the settings defined in Theorem I.1, P(E6c) ≤ 3δ/c0 and P(E7c|E6) ≤ δ/c0.
According to Lemma C.1, we have

P(E6 ∩ E7) ≥ P(E6)− P(E7c|E6) ≥ 1− 4δ/c0 .

Therefore, these events occur with probability at least 1− 4δ/c0 and thus the claim holds.
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J. Formal Theorem and Proof of Theorem 5.3
Instead of the informal Theorem J.1, we prove the following formal theorem. In the theorem, we denote K ls and M ls as
the values defined in Theorem H.2, Kwls and Mwls as the values defined in Theorem H.1, and M var as the value defined in
Theorem I.1.

Theorem J.1 (Sample complexity of VWLS-MDVI). Assume that ε ∈ (0, 1/H] and c0 = 8. There exist positive constants
c1, c2, c3, c4, c5 ≥ 1 independent of d, H , X , A, ε and δ such that when VWLS-MDVI is run with the settings α = γ,
K = K ls, M =M ls, K̃ = Kwls, M̃ =Mwls, and Mσ =M var, the output sequence of policies π′ satisfy ∥v∗ − vπ′∥∞ ≤ ε
with probability at least 1− δ, using

Õ
(
uCKM + uCK̃M̃ + uC(Mσ + 1)

)
= Õ

(
d2H3/ε2

)
samples from the generative model.

Proof. The claim is easily seen from Theorem H.2, Theorem I.1, and Theorem H.1.

From Theorem H.2, the first WLS-MDVI in VWLS-MDVI outputs vK such that ∥v∗ − vK∥∞ ≤ 1/2
√
H with probability

1− 3δ/c0. This vK satisfies the requirement of Theorem I.1.

According to Theorem I.1, VarianceEstimation in VWLS-MDVI outputs ω such that σ(v∗) ≤
√
max(ϕTω,0) +

√
H1 ≤ σ(v∗) + 2

√
H1 with probability 1− 4δ/c0. Therefore, σ̃ = min

(√
max(ϕTω,0) +

√
H1, H1

)
defined in the

algorithm can be used as the weighting function of Theorem H.1.

Finally, Theorem H.1 indicates that the second WLS-MDVI in VWLS-MDVI outputs the ε-optimal policy with probability
1− 8δ/c0. When c0 = 8, VWLS-MDVI outputs the ε-optimal policy with probability at least 1− δ.

K. Pseudocode of Missing Algorithms

Algorithm 5 Tabular MDVI (α,K,M)

Input: α ∈ [0, 1), K, and M .
Initialize s0 = 0 ∈ RX×A and w0 = w−1 = 0 ∈ RX .
for k = 0 to K − 1 do
vk = wk − αwk−1.
for each state-action pair (x, a) ∈ X ×A do
qk+1(x, a) = r(x, a) + γP̂k(M)vk(x, a).
sk+1 = qk+1 + αsk and wk+1(x) = maxa∈A sk+1(x, a) for each x ∈ X .

end for
end for
Return: (πk)Kk=0 , where πk is greedy policy with respect to sk.

Algorithm 6 InitializeDesign
Choose an arbitrary nonzero c0 ∈ Rd

for j = 0 to d− 1 do
(xj , aj) = argmax(x,a)∈X×A c

⊤
j ϕ(x, a).

(xj , aj) = argmin(x,a)∈X×A c
⊤
j ϕ(x, a).

yj = ϕ(xj , aj)− ϕ(xj , aj).
Choose an arbitrary nonzero cj+1 orthogonal to y0, . . . , yj .

end for
Let Z := {(xj , aj), (xj , aj) | j = 0, . . . , d− 1}.
Choose ρ to put equal weight on each of the distinct points of Z.
Return: ρ.
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Algorithm 7 Frank-Wolfe for finite X (f, εFW)

# We write X be the size of X . Without loss of generality, we assume X = [X] and A = [A].
Input: f : X ×A → (0,∞), εFW ∈ R.
ρ = InitializeDesign() by Algorithm 6.
Let U : ρ 7→ diag(ρ) ∈ RXA×XA where diag constructs a diagonal matrix with elements of ρ.
For (x, a) ∈ X ×A, let Φf ∈ RXA×d be a matrix where its (xA+ a) th row is ϕ(x, a)/f(x, a).
Let H : ρ 7→ (ΦfU(ρ)Φf )

−1.
Let ω : (x, a, ρ) 7→ ϕ(x, a)⊤H(ρ)ϕ(x, a)
Let δ : ρ 7→ max(x,a)∈X×A(ω(x, a, ρ)− d)/d
while δ(ρ) > εFW do

Let (y, b) := argmax(x,a)∈X×A ω(x, a)
Let λ∗ := (ω(y, b)− d) / ((d− 1)ω(y, b))
ρ(y, b)← ρ(y, b) + λ∗

ρ← ρ/(1 + λ∗)
end while
C =

{
(x, a) | ω(x, a, ρ) ≥ d

(
1 + δ(ρ)d

2 −
√
δ(ρ)(d− 1) + δ(ρ)2d2

4

)}
G =

∑
(y,b)∈C

ρ(y,b)
f2(y,b)ϕ(y, b)ϕ(y, b)

⊤

Return: ρ, C, G.

Algorithm 8 DVW for online (Munchausen-)DQN
Input: K ∈ N the number of update iteration, F ∈ N the target update interval, T ∈ N the number of environment steps
in one iteration.
Initialize θ and ω at random. θ = θ̂ = θ and ω = ω.
Initialize η = 1.
Initialize B = {}.
for k = 0 to K − 1 do

for t = 0 to T − 1 do
Collect a transition b = (x, a, r, x′) from the environment.
B ← B ∪ {b}.

end for
Sample a random batch of transition Bk ∈ B.
On Bk, update ω with one step of SGD on L(ω), see Equation (9).
On Bk, update η with one step of SGD on L(η), see Equation (11).
On Bk and with f of Equation (10), update θ with one step of SGD on L(θ), see Equation (8).
if k mod F = 0 then
θ̂ ← θ.
θ ← θ.
ω ← ω.

end if
end for
Return: A greedy policy with respect to qθ
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L. Experiment Details
The source code for all the experiments is available at https://github.com/matsuolab/
Variance-Weighted-MDVI.

L.1. Details of Section 7.1

Hard linear MDP. The hard linear MDP we used is based on the Theorem H.3 in Weisz et al. (2022). Specifically, the
MDP has two states: X = {x0, x1} with x0 being the initial state and x1 being the absorbing state. To add randomness to
the MDP, the action space is constructed as A = {a0, a1, . . . , aA} where ai ∈ Rd−2 for i = [A] is randomly sampled from
a multivariate uniform distribution of U(0,1) with d− 2 dimension. Same as Weisz et al. (2022), for all a, the feature map
is defined as

ϕ (x0, a) =
(
1, 0, a⊤

)⊤
and ϕ (x1, a) = (0, 1, 0, . . . , 0)⊤ .

Using ψ = (1, 0, . . . , 0)⊤, we make the state x0 be the rewarding state as

r (x0, a) = ϕ (x0, a)
⊤
ψ = 1 and r (x1, a) = ϕ (x0, a)

⊤
ψ = 0 .

Let µ (x0) =
(
γ, 0, 0.01a⊤0

)⊤
and µ (x1) =

(
1− γ, 1,−0.01a⊤0

)⊤
be the design parameters for the transition probability

kernel. This implies that

P (x0 | x0, a) = γ + 0.01 · a⊤0 a, P (x1 | x0, a) = 1− γ − 0.01 · a⊤0 a,
P (x0 | x1, a) = 0, P (x1 | x1, a) = 1 .

Intuitively, choosing an action similar to a0 increases the probability of transitioning to x0 and yields a higher return. We
provide the hyperparameters of the MDP in Table 3.

Table 3. Hyperparameters of hard linear MDP in Section 7.1

Parameter Value

MDP parameter
action space size A = 30
dimension of the feature map d = 4
discount factor γ = 0.9

Algorithm parameter
weight for MDVI update α = 0.9
accuracy of the Frank-Wolfe algorithm εFW = 0.01

Algorithm implementations. The algorithms WLS-MDVI and VWLS-MDVI are implemented according to Algorithm 1
and Algorithm 3. The optimal designs are computed using the Frank-Wolfe (FW) algorithm (Algorithm 7). We provide the
hyperparameters of the algorithms in Table 3.

L.2. Details of Section 7.2.1

Gridworld environment. The gridworld environment we used is a 25× 25 grid with randomly placed 8 pitfalls. This is
similar to the gridworld environment of Fu et al. (2019), but there are some differences.

The agent starts from the top left grid and can move to any of its neighboring grids with success probability 0.6, or to a
different random direction with probability 0.4. The agent receives +1 reward when it reaches the goal grid located at the
bottom right grid. Other rewards are set to 0. When the agent enters a pitfall, the agent can no longer move and receives 0
reward until the environment terminates. We use γ = 0.995 and the environment terminates after 200 steps.
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Algorithm implementations. We implement the environment and algorithms using ShinRL (Kitamura & Yonetani, 2021).
For the implementation of M-DQN, same as Vieillard et al. (2020b), we clip the value of log-policy term by max(log πθ, l0)
with l0 > 0 to avoid numerical issues in Equation (8). We provide the hyperparameters used in the experiment in Table 4. In
the table, we denote FC(n) be a fully convolutional layer with n neurons.

Table 4. Hyperparameters of algorithms in Section 7.2.1

Parameter Value

Shared
optimizer Adam
iteration (K) 2000000
target update interval (F ) 100
learning rate 10−3

discount factor (γ) 0.995
horizon (H) 200
q-network structure FC(128)− FC(128)− FC(|A|)
activations Relu

Munchausen-DQN parameters
entropy regularization coefficient (κ) 10−5

KL regularization coefficient (τ ) κγ/(1− γ)
clipping value (l0) −1

DVW parameters
ω and η-optimizer Adam
activations Relu
Var-network structure FC(128)− FC(128)− FC(|A|)
lower threshold parameter (cf ) 0.1
upper threshold parameter (cf ) 0.1
learning rate of Varω 10−3

learning rate of η 5.0× 10−3
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L.3. Details of Section 7.2.2

Algorithm implementation. We implement algorithms as variations of DQN from CleanRL (Huang et al., 2022). For a
fair comparison, all the algorithms use the same epsilon-greedy exploration strategy. It randomly chooses an action with
probability et otherwise chooses a greedy action w.r.t. qθ. For the implementation of M-DQN, same as Vieillard et al.
(2020b), we clip the value of log-policy term by max(log πθ, l0) with l0 > 0 to avoid numerical issues in Equation (8).

We provide the hyperparameters used in the experiment in Table 5. In the table, we denote FC(n) be a fully convolutional
layer with n neurons, and Convd

a,b(c) be a 2D convolutional layer with c filters of size a× b and of stride d.

Table 5. Hyperparameters of algorithms in Section 7.2.2

Parameter Value

Shared
ek (random actions rate) start from 1.0 and linearly decay to 0.1 until the period of 106 steps
θ-optimizer Adam
iteration (K) 107

target update interval (F ) 1000
learning rate of qθ 2.5× 10−4

replay buffer size (|B|) 105

batch size (|Bk|) 32
train frequency (T ) 4
discount factor (γ) 0.99
q-network structure Conv1

3,3(16)− FC(128)− FC(|A|)
activations Relu

Munchausen-DQN parameters
entropy regularization coefficient (κ) 0.003
KL regularization coefficient (τ ) 0.027
clipping value (l0) −1

DVW parameters
ω and η-optimizer Adam
Var-network structure Conv1

3,3(16)− FC(128)− FC(|A|)
lower threshold parameter (cf ) 0.1
upper threshold parameter (cf ) 0.1
learning rate of Varω 2.5× 10−4

learning rate of η 10−3
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