
Improving Vertical Federated Learning by Efficient
Communication with ADMM

Anonymous Author(s)
Affiliation
Address
email

Abstract

Vertical Federated learning (VFL) allows each client to collect partial features and1

jointly train the shared model. In this paper, we identified two challenges in VFL:2

(1) some works directly average the learned feature embeddings and therefore might3

lose the unique properties of each local feature set; (2) server needs to communicate4

gradients with the clients for each training step, incurring high communication cost.5

We aim to address the above challenges and propose an efficient VFL with multiple6

heads (VIM) framework, where each head corresponds to local clients by taking7

the separate contribution of each client into account. In addition, we propose an8

Alternating Direction Method of Multipliers (ADMM)-based method to solve our9

optimization problem, which reduces the communication cost by allowing multiple10

local updates in each step. We show that VIM achieves significantly higher accuracy11

and faster convergence compared with state-of-the-arts on four datasets, and the12

weights of learned heads reflect the importance of local clients.13

1 Introduction14

Federated learning (FL) has enabled large-scale training with data privacy guarantees on distributed15

data for different applications [34, 3, 12, 33, 31]. In general, FL can be categorized into Horizontal16

FL (HFL) [24] where data samples are distributed across clients, and Vertical FL (VFL) [31] where17

features of the samples are partitioned across clients and the labels are usually owned by the server (or18

the active party in two-party setting [13]). In particular, VFL allows agents with partial information of19

the same dataset to jointly train the model, which leads to many real-world applications [16, 31, 12].20

A batch of
local embedding

Clients

Server

……

Feature Set 1

……

Feature Set k Feature Set M

local feature
extractor

multiple
linear heads

A batch of ADMM dual variables and residual
variables, and one corresponding linear head

Figure 1: Overview of VIMADMM

Despite the importance and practicality of VFL, there are mainly21

two weaknesses of the state-of-the-art (SOTA) VFL frameworks:22

(1) some VFL frameworks directly average the feature embed-23

dings from local agents, and therefore fail to capture the unique24

properties of each local feature set [4]; (2) the server usually needs25

to send gradients to clients for each training step which leads to26

high communication cost and potentially rapid consumption of27

privacy budget [4, 16, 19].28

To solve the above challenges, in this work, we propose an efficient29

VFL optimization framework with multiple heads (VIM), where30

each head corresponds to one local client, taking the individual31

contribution of clients into consideration and thereby improving32

the overall performance. In particular, we propose an Alternating Direction Method of Multipliers33

(ADMM) [2]-based method to solve our optimization problem, which allows multiple local updates34

in each step, thus yielding faster convergences and reducing the communication cost. This is critical35

to preserving privacy since the privacy costs increases as the number of communication rounds36

increases [1]. We consider various VFL settings including with model splitting (i.e., clients host37

partial models) and without model splitting (i.e., clients hold the entire model). Under the with model38

Submitted to 36th Conference on Neural Information Processing Systems (NeurIPS 2022). Do not distribute.

splitting setting, we propose the gradient-based algorithm VIMSGD as well as the ADMM-based39

algorithm VIMADMM under VIM framework. Compared to gradient-based methods, VIMADMM not only40

reduces communication frequency but also reduces the dimensionality by only exchanging ADMM-41

related variables. With modifications of communication strategies and updating rules for servers and42

clients, we extend VIMADMM to the without model splitting setting and propose VIMADMM-J. Moreover,43

we show that a byproduct of VIM is that the weights of learned linear heads reflect the importance44

of local clients, which enables functionalities such as client-level explanation, client denoising and45

client summarization. Our technical contributions are:46

• We propose an efficient and effective VFL optimization framework with multiple heads (VIM). To47

solve our optimization problem, we propose an ADMM-based method, which reduces communica-48

tion costs by allowing multiple local updates at each step.49

• We conduct extensive experiments on MNIST, CIFAR, NUS-WIDE, and ModelNet40 datasets,50

and show that ADMM-based algorithms under VIM converge faster, achieve higher accuracy than51

existing VFL frameworks.52

• We evaluate our client-level explanation under VIM based on the linear heads weights norm, and53

demonstrate the functionalities it enables such as clients denoising and summarization.54

2 Related Work55

Vertical Federated Learning. VFL has been well studied for simple models including trees [5, 30],56

kernel models [11], and linear and logistic regression [13, 32, 36, 9, 15, 23]. For DNNs, there are57

two popular VFL settings: with model splitting [29, 19, 4] and without model splitting [16, 18]. In58

the model splitting setting, split learning [29] is the first related paradigm, where each client trains59

a partial network up to a cut layer, the server concatenates local activations and trains the rest of60

the network. However, despite its promising performance in HFL, it was not evaluated on vertically61

partitioned data. VAFL [4] is proposed for VFL where the server averages the local embeddings and62

sends gradients back to clients to update local models. However, such embedding averaging might63

lose the unique properties of each client. FedMVT [19] focuses on the semi-supervised VFL with64

multi-view learning. For VFL without model splitting setting, in FDML [16] framework, each client65

submits local logits to the server, who averages over the logits and send gradients back to clients. We66

note that all SOTA methods [4, 19, 16] require the communication of gradients at each training step,67

leading to high communication costs before convergence.68

3 VFL with Multiple Heads (VIM)69

3.1 Framework Overview70

In VFL, we have M clients {1, 2, . . . ,M} who hold different feature sets of the same training71

samples to jointly train a machine learning model. We consider the classification task and denote dc72

as the number of classes. Suppose there is a training dataset D = {xj , yj}Nj=1 containing N samples,73

the server owns the labels {yj}Nj=1, and each client k has a local feature set Xk = {xk
j }Nj=1, where74

the vector xk
j ∈ Rdk

denotes the local (partial) features of sample j. The overall feature xj ∈ Rd of75

sample j is the concatenation of all local features {x1
j , x

2
j , . . . , x

M
j }, with d =

∑M
k=1 d

k.76

Due to the privacy protection requirement of VFL, each client k does not share raw local feature77

set Xk with other clients or the server. Instead, VFL consists of two steps: (1) local processing78

step: each client learns a local model that maps the local features to local outputs and sends them79

to the server. (2) server aggregation step: the server aggregates the local outputs from all clients80

to compute the final prediction for each sample as well as the corresponding losses. Depending on81

whether or not the server holds a model, there are two popular VFL settings [10]: VFL with model82

splitting [4, 29] and VFL without model splitting [16]: (i) In the model splitting setting, each client83

trains a feature extractor as the local model that outputs local embeddings, and the server owns a84

model which predicts the final results based on the aggregated embeddings. (ii) In the VFL without85

model splitting setting, the clients host the entire model that outputs the local logits, and the server86

simply performs the logits aggregation operation without hosting any model. In both settings, the87

local model is updated by federated backward propagation [10]: a) the server first computes the88

gradients of the loss w.r.t the local output (either embeddings or logits) from each client separately89

and sends the gradients back to clients; b) each client calculates the gradients of local output w.r.t the90

local model parameters and updates the local model using the chain rule.91

We will first dive into the details of the model splitting setting and introduce our framework VIM as92

well as the corresponding SGD-based method VIMSGD and ADMM-based method VIMADMM. Then,93

2

we will show that our ADMM-based method can be easily extended to the VFL without model94

splitting setting with slight modifications, which is based on different communication strategies and95

update rules for server and clients, yielding the method VIMADMM-J.96

3.2 VFL with Model Splitting97

Setup. Let f parameterized by θk be the local model (i.e., feature extractor) of client k, which98

outputs a local embedding vector hk
j = f(xk

j ; θk) ∈ Rdf for each local feature xk
j . We denote99

the parameters of the model on the server-side as θ0. Overall, the clients and the server aim to100

collaboratively solve the Empirical Risk Minimization (ERM) objective:101

min
{θk}Mk=1

,θ0

N∑
j=1

ℓ({h1
j , . . . , h

M
j }, yj ; θ0) +

M∑
k=1

βR(θk) + βR(θ0) with hk
j = f(xk

j ; θk), ∀k ∈ [M], (1)

where ℓ is a loss function (e.g., cross-entropy loss with softmax function), R is a regularizer on102

model parameters, and β ∈ R is the regularization weight for client k or the server. We considerR to103

be differentiable but are optimistic that it can be extended to other regularizers as future work. In104

principle, β can be different for different models, and we use the same β here for simplicity.105

VIM Formulation. We start by noting that for the server aggregation step, the SOTA method,106

VAFL [4], directly averages the local embeddings
∑M

k=1 αkh
k
j where the scalar αk ∈ R is the107

aggregation weight for client k and it can be optimized during training as an additional parame-108

ter in the ERM loss. Therefore, the objective function of VAFL is min{θk}M
k=1,{αk}M

k=1,θ0

∑N
j=1109

ℓ(
∑M

k=1 αkh
k
j , yj ; θ0)+

∑M
k=1 βR(θk)+βR(θ0). However, such an aggregation implicitly assumes110

that each dimension of the embedding vectors from different clients shares the same contextual111

meaning in the latent space so that they can be directly averaged. Such a design may be suboptimal,112

since in VFL different local embeddings can represent different aspects of the same sample, and113

therefore average-based aggregation might lose the unique properties of each local feature set.114

To address the above average-based aggregation problem, we propose VIM, a novel VFL framework115

where the server learns a model with multiple linear heads corresponding to local clients, taking116

the separate contribution of each client into account. Specifically, the server’s model θ0 consists117

of M linear heads W1,W2, . . . ,WM with Wk ∈ Rdf×dc , k ∈ [M], and the server’s model outputs118 ∑K
k=1 h

k
jWk as the prediction for sample j, yielding our VIM objective:119

min
{Wk}Mk=1

,{θk}Mk=1

LVIM({Wk}, {θk}) :=
∑N

j=1 ℓ(
∑M

k=1 f(x
k
j ; θk)Wk, yj) +

∑M
k=1 βkRk(θk) +

∑M
k=1 βkRk(Wk) (2)

Despite the simplicity of linear heads, recent studies in representation learning show that the linear120

classifier is an efficient approach to predicting the labels on top of embedding representations [26, 20],121

given the expressive power of the local feature extractor which captures essential information from122

raw feature sets.123

VIMSGD. Existing VFL frameworks often use SGD to alternatively update the server’s model124

and local models [4, 19] where the clients send a batch of embeddings to the server, and the server125

sends a batch of gradients to clients at each communication round. We provide the SGD-based126

algorithm VIMSGD under the VIM framework (The Algorithm 1 and detailed description are deferred127

to Appendix A), which serves as a strong baseline.128

VIMADMM. The SGD-based methods including the state-of-art VAFL require the server to send129

the gradients w.r.t embeddings back to clients at every training step of the local models. However, such130

(1) frequent communication and (2) the high dimensionality of gradients (i.e., bdf for b samples) lead131

to high communication costs. To address the above limitations, we propose an ADMM-based method132

for VIM, reducing the communication frequency by allowing multiple local updates at each round,133

and reducing the dimensionality by only exchanging ADMM-related variables (i.e., (2b + df)dc134

for b samples where dc ≪ df , b for most VFL settings today [4, 16]). Specifically, we note that135

Eq. 2 can be viewed as the sharing problem (e.g., [2, Section 7.3]) involving each agent adjusting136

its variable to minimize its individual cost R(θk) +R(Wk), as well as the shared objective term137

ℓ(
∑M

k=1 h
k
jWk, yj). Moreover, the multiple heads in VIM enable the application of ADMM via a138

special decomposition into simpler sub-problems that can be solved in a distributed manner. We139

begin by rewriting Eq. 2 to an equivalent constrained optimization problem by introducing auxiliary140

variables z1, z2, . . . , zN ∈ Rdc :141

min
{Wk}Mk=1

,{θk}Mk=1
,{zj}Nj=1

∑N
j=1 ℓ(zj , yj) +

∑M
k=1 βkRk(θk) +

∑M
k=1 βkRk(Wk) s.t.

∑M
k=1 f(x

k
j ; θk)Wk − zj = 0, ∀j ∈ [N]. (3)

3

Notably, each linear constraint implies a consensus between the server’s output
∑M

k=1 h
k
jWk and the142

auxiliary variable zj for each sample j. The augmented Lagrangian which adds a quadratic term to143

the Lagrangian of Eq. 3 is given by:144

min
{Wk}Mk=1

,{θk}Mk=1
,{zj}Nj=1,{λj}Nj=1

LADMM({Wk}Mk=1, {θk}Mk=1, {zj}Nj=1, {λj}Nj=1) :=

N∑
j=1

ℓ(zj , yj) (4)

+

M∑
k=1

βk (Rk(θk) +Rk(Wk)) +

N∑
j=1

λ⊤
j

(
M∑
k=1

f(xk
j ; θk)Wk − zj

)
+

ρ

2

N∑
j=1

∥∥∥∥∥
M∑
k=1

f(xk
j ; θk)Wk − zj

∥∥∥∥∥
2

F

,

where λj ∈ Rdc is the dual variable for sample j, and ρ ∈ R+ is a constant penalty145

factor. To solve Eq. 4, we follow the standard ADMM algorithm [2] and update the pri-146

mal variables {Wk} , {θk}, {zj} and the dual variables {λj} alternatively as in Eq. 5,147

W
(t+1)
k = argmin

Wk

L({θ(t)k′ },Wk, {z(t)j }, {λ
(t)
j }), ∀k ∈ [M],

θ
(t+1)
k = argmin

θk

L(θk, {W (t+1)

k′ }, {z(t)j }, {λ
(t)
j }), ∀k ∈ [M],

z
(t+1)
j = argmin

zj

L({θ(t+1)
k }, {W (t+1)

k }, zj , {λ(t)

j′ }),∀j ∈ [N],

λj
(t+1) = argmin

λj

L({θ(t+1)
k }, {W (t+1)

k }, {z(t+1)

j′ }, λj), ∀j ∈ [N],

(5)

which decomposes the problem in148

Eq. 3 into four sets of sub-problems149

over {Wk} , {θk}, {zj}, {λj}, and150

each sub-problem can be solved in151

parallel. In practice, we propose the152

following strategy for the alternative153

updating in the server and clients: (i)154

updating {zj}, {λj} and {Wk} at155

server-side, (ii) updating {θk} at the156

client-side in parallel. Moreover, we157

consider the realistic setting of stochastic ADMM with mini-batches. Concretely, at communication158

round t, the server samples a set of data indices, B(t), with batch size |B(t)| = b. Then we describe159

the key steps of VIMADMM as follows:160

(1) Communication from client to server. Each client k sends a batch of embeddings {hk
j
(t)}j∈B(t)161

to the server, where hk
j
(t)

= f(xk
j ; θ

(t)
k) ,∀j ∈ B(t).162

(2) Sever updates auxiliary variables {zj}. After receiving the local embeddings from all clients, the163

server updates the auxiliary variable for each sample j as:164

z
(t)
j = argmin

zj

ℓ(zj , yj)− λ
(t−1)
j

⊤
zj +

ρ

2

∥∥∥∥∥
M∑
k=1

hk
j

(t)
W

(t)
k − zj

∥∥∥∥∥
2

F

, ∀j ∈ B(t) (6)

Since the optimization problem in Eq. 6 is convex and differentiable with respect to zj , we use the165

L-BFGS-B algorithm [37] to solve the minimization problem.166

(3) Sever updates dual variables {λj}. The server updates the dual variable for each sample j as:167

λ
(t)
j = λ

(t−1)
j + ρ

(
M∑
k=1

hk
j

(t)
W

(t)
k − z

(t)
j

)
, ∀j ∈ B(t) (7)

(4) Sever updates linear heads {Wk}. Each linear head of the server is then updated as:168

W
(t+1)
k = argmin

Wk

βR(Wk) +
∑

j∈B(t) λ
(t)
j

⊤
hk
j
(t)
Wk +

∑
j∈B(t)

ρ
2

∥∥∥∑i∈[M],i̸=k h
i
j
(t)
Wi

(t) + hk
j
(t)
Wk − zj

(t)
∥∥∥2
F
,∀k ∈ [M] (8)

For squared ℓ2 regularizer R, we solve W
(t+1)
k in an inexact way to save the computation by one169

step of SGD with the objective of Eq. 8.170

(5) Communication from server to client. After the updates in Eq. 8, we define a residual variable171

skj
(t+1) for each sample j of k-th client, which provides supervision for updating local model:172

skj
(t+1)

≜ zj
(t) −

∑
i∈[M],i ̸=k

hi
j
(t)

Wi
(t+1),∀j ∈ B(t), ∀k ∈ [M] (9)

The server sends the dual variables {λ(t+1)
j }j∈B(t) and the residual variables {skj

(t+1)}j∈B(t) of all173

samples, as well as the corresponding linear head W
(t+1)
k to each client k.174

(6) Client updates local model parameters θk. Finally, every client k locally updates the model175

parameters θk as follows:176

θ
(t+1)
k = argmin

θk

βR(θk) +
∑

j∈B(t) λ
(t+1)
j

⊤
f(xk

j ; θk)W
(t+1)
k + ρ

2

∑
j∈B(t)

∥∥∥skj (t+1) − f(xk
j ; θk)W

(t+1)
k

∥∥∥2
F
. (10)

4

VAFL VIMSGD VIMADMM FDML VIMADMM-J

MNIST CIFAR NUS-WIDE ModelNet40

W
/s

pl
itt

in
g

0 4 8 12 16 20 24 28
epochs

90
91
92
93
94
95
96
97
98
99

100

te
st

 a
cc

ur
ac

y

0 6 12 18 24 30 36 42 48
epochs

30
35
40
45
50
55
60
65
70
75
80

0 2 4 6 8 10 12 14
epochs

50
55
60
65
70
75
80
85
90
95

100

0 2 4 6 8 10 12
epochs

50
55
60
65
70
75
80
85
90
95

100

W
/o

sp
lit

tin
g

0 4 8 12 16 20 24 28
epochs

90
91
92
93
94
95
96
97
98
99

100

te
st

 a
cc

ur
ac

y

0 6 12 18 24 30 36 42 48
epochs

30
35
40
45
50
55
60
65
70
75
80

0 2 4 6 8 10 12 14
epochs

50
55
60
65
70
75
80
85
90
95

100

0 1 2 3 4
epochs

32
40
48
56
64
72
80
88
96

Figure 2: Performance comparison under w/ and w/o model splitting. Our methods outperform baselines.

Due to the nonconvexity of the loss function of DNN, we use τ local steps of SGD to update the177

local model at each round with the objective of Eq. 10. We note that multiple local updates of178

Eq. 10 enabled by ADMM lead to better local models at each communication round compared to179

gradient-based methods, thus VIMADMM requires fewer communication rounds to converge as we will180

show in Sec. 4.1. These six steps of VIMADMM are summarized in Algorithm 2 in Appendix A.181

Note that ADMM auxiliary variables {zj} and dual variables {λj} are only used during the training182

time optimization process. Therefore, in the test phase, for any sample xj′ , the server directly uses183

the trained multiple linear heads to make prediction
∑M

k=1 h
k
j′Wk.184

3.3 VFL without Model Splitting185

Setup. Recall the VFL without model splitting setting described in Section 3.1. Let p parame-186

terized by θ̃k be the local model (i.e., whole model) of client k, which outputs local logits okj =187

p(xk
j ; θ̃k) ∈ Rdc for each local feature xk

j . The clients and the server aim to jointly solve the problem:188

min{θ̃k}M
k=1

∑N
j=1 ℓ({o1j , . . . , oMj }, yj) + β

∑M
k=1R(θ̃k) with okj = p(xk

j ; θ̃k),∀k ∈ [M].189

VIMADMM-J. In the state-of-art VFL framework FDML, the server averages the local logits as190

final prediction
∑M

k=i o
k
j , and FDML also suffers from the high communication cost by sending191

the gradients w.r.t. local logits to each client at each training step of the local model. To solve192

this problem with our VIM framework, we adapt VIMADMM to the without model splitting setting193

and propose VIMADMM-J, where each linear head Wk is held by the corresponding client k, and is194

always updated locally. The detailed description of key steps of VIMADMM-J and the corresponding195

Algorithm 3 are presented in Appendix A.196

4 Experiments197

In this section, we show that our proposed framework VIM achieves significantly faster convergence198

and higher accuracy than SOTA and enables client-level explainability on four real-world datasets.199

Data and Models. We consider the classification task on four datasets: MNIST [22], CIFAR [21],200

NUS-WIDE [6], a multi-modality dataset with image features and textual features, and Model-201

Net40 [27], a multi-view image dataset. As shown in Figure 3 row 1, we simulate VFL scenarios by202

splitting the data features to {14, 9, 4, 4} clients for the four datasets respectively. As for the local203

model, we use a two-layer fully connected model for MNIST and NUS-WIDE, a CNN model for204

CIFAR, and ResNet-18 [14] for ModelNet40. To prevent over-fitting, we adopt standard stopping205

criteria, i.e., stop training when the model converges or the validation accuracy starts to drop more206

than 2%. We refer to Appendix B for more details about datasets, networks, and parameter selection.207

Baselines. We compare VIMSGD, VIMADMM with VAFL [4] under w/ model splitting , and compare208

VIMADMM-J with FDML [16] under w/o model splitting . Experiments are run 3 times.209

4.1 Performance Evaluation under VFL210

We observe from Figure 2 that three VIM algorithms consistently outperform baselines under VFL.211

Specifically, (1) VIMADMM and VIMSGD converge significantly faster than VAFL on four datasets and212

achieve higher accuracy than VAFL especially on CIFAR, which shows that the aggregation in VIM213

is better than embedding averaging as in VAFL by learning separate linear weights for each client.214

(2) ADMM-based methods converge faster than gradient-based methods. For example, on CIFAR,215

VIMADMM and VIMADMM-J achieves 73.85%, 73.12% at epoch 8, while VAFL, VIMSGD, FDML, only216

achieves 46.16%, 56.26%, 56.50% at epoch 50. This is because the multiple local updates enabled217

by ADMM lead to better local models at each round, thereby speeding up the convergence and218

reducing the communication costs. For instance, each epoch consists of 44 communication rounds on219

5

MNIST CIFAR NUS-WIDE ModelNet40

in
pu

tf
ea

tu
re

s Client 1
Client 2
Client 3
Client 4
Client 5
Client 6
Client 7
Client 8
Client 9
Client 10
Client 11
Client 12
Client 13
Client 14

Client 1 Client 2 Client 3

Client 4 Client 5 Client 6

Client 7 Client 8 Client 9

Client 1 Client 2 Client 3 Client 4

cl
ea

n

1 2 3 4 5 6 7 8 9 10 11 12 13 14
1.0

1.2

1.4

1.6

1.8

2.0

2.2

2.4

2.6

W
ei

gh
ts

 L
2 N

or
m

1 2 3 4 5 6 7 8 9
1.7

1.8

1.9

2.0

2.1

2.2

1 2 3 4
0.0

0.5

1.0

1.5

2.0

2.5

1 2 3 4
3.2

3.3

3.4

3.5

3.6

3.7

3.8

3.9

no
is

y
te

st
cl

ie
nt

1 2 3 4 5 6 7 8 9 10 11 12 13 14
0

20

40

60

80

100

Te
st

 A
cc

ur
ac

y

1 2 3 4 5 6 7 8 9
60.0

62.5

65.0

67.5

70.0

72.5

75.0

77.5

1 2 3 4
0

20

40

60

80

1 2 3 4
60

65

70

75

80

85

90

95

de
no

is
in

g

1 2 3 4 5 6 7 8 9 10 11 12 13 14
Index of Client

1.0

1.2

1.4

1.6

1.8

2.0

2.2

2.4

2.6

W
ei

gh
ts

 L
2 N

or
m

1 2 3 4 5 6 7 8 9
Index of Client

1.7

1.8

1.9

2.0

2.1

1 2 3 4
Index of Client

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

1 2 3 4
Index of Client

3.2

3.3

3.4

3.5

3.6

3.7

3.8

3.9

Figure 3: Input features for each client (row 1), the weights norm of linear heads under clean setting (row 2)
and under one noisy client (row 4), and test accuracy when each client’s test input features are perturbed (row 3)
where red line denotes the test accuracy without perturbation.

CIFAR. Our VIMADMM takes 42 fewer epochs than VAFL to converge, which saves more than 1.8k220

communication rounds in practice. We defer the analysis of the effect of penalty factor ρ and local221

steps τ on VIMADMM, and the communication cost comparison to Appendix B.222

4.2 Client-level Explainability of VIM223

We show that the weights of learned linear heads reflect the importance of local clients based on the224

weights norm histogram, which enables functionalities such as test-time noise validation and client225

denoising. We defer the results on client summarization and the visualization of the local embedding226

that justifies the design of VIM to the Appendix B.227

Client Importance. Given a trained VIMADMM model, we plot the weights norm of each client’s228

corresponding linear heads in the server in Figure 3 row 2. Combining it with row 1, we find229

that the client with important local features indeed results in high weights. For example, clients230

6,7,8 in MNIST holding middle rows of images that contain the center of digits, have high weights,231

while clients 1, 14 holding the black background pixels have low weights. A similar phenomenon232

is observed on CIFAR for client 5 (center) and client 1 (corner). On ModelNet40, clients have233

complementary views of the same objects, so their features have similar importance, leading to234

similar weights norms. Based on our observation, we conclude that the weights of linear heads can235

reflect the importance of local clients. We use this principle to infer that, for NUS-WIDE, the first236

500 dim. of textual features have higher importance than other multimodality features, resulting in237

the high weights norm of client 3.238

Client Importance Validation via Noisy Test Client. Given a trained VIMADMM model, we add239

Gaussian noise to the test local features to verify the client-level importance indicated by the linear240

heads. For each time, we only perturb the features of one client and keep other clients’ features241

unchanged. The results in Figure 3 row 3 show that perturbing the client with high weights affects242

more for the test accuracy, which verifies that clients with higher weights are more important.243

Client Denoising. We study the denoising ability of VIM under training-time noisy clients. We244

construct one noisy client (i.e., client 7, 5, 2, 3 for MNIST, CIFAR, NUS-WIDE, ModelNet40245

respectively) by adding Gaussian noise to its local features and re-train the VIMADMM model. The246

obtained weights norm in Figure 3 row 4 shows that VIMADMM can automatically detect the noisy247

client and lower its weights (compared to the clean one in Figure 3 row 2). Table 4 in Appendix B248

shows that under the noisy training scenario, VIMADMM and VIMSGD outperform VAFL with faster249

convergence and higher test accuracy.250

5 Conclusions251

In this work, we propose an efficient VFL framework with multiple heads (VIM). To solve our252

optimization problem, we propose an ADMM-based method for efficient communication. Extensive253

experiments verify the superior performance of our algorithms, and show that VIM enables client-level254

explainability.255

6

References256

[1] Martin Abadi, Andy Chu, Ian Goodfellow, H Brendan McMahan, Ilya Mironov, Kunal Talwar,257

and Li Zhang. Deep learning with differential privacy. In Proceedings of the 2016 ACM SIGSAC258

conference on computer and communications security, pages 308–318, 2016.259

[2] Stephen Boyd, Neal Parikh, and Eric Chu. Distributed optimization and statistical learning via260

the alternating direction method of multipliers. Now Publishers Inc, 2011.261

[3] Theodora S Brisimi, Ruidi Chen, Theofanie Mela, Alex Olshevsky, Ioannis Ch Paschalidis,262

and Wei Shi. Federated learning of predictive models from federated electronic health records.263

International journal of medical informatics, 112:59–67, 2018.264

[4] Tianyi Chen, Xiao Jin, Yuejiao Sun, and Wotao Yin. Vafl: a method of vertical asynchronous265

federated learning. arXiv preprint arXiv:2007.06081, 2020.266

[5] Kewei Cheng, Tao Fan, Yilun Jin, Yang Liu, Tianjian Chen, Dimitrios Papadopoulos, and267

Qiang Yang. Secureboost: A lossless federated learning framework. IEEE Intelligent Systems,268

36(6):87–98, 2021.269

[6] Tat-Seng Chua, Jinhui Tang, Richang Hong, Haojie Li, Zhiping Luo, and Yantao Zheng. Nus-270

wide: a real-world web image database from national university of singapore. In Proceedings of271

the ACM international conference on image and video retrieval, pages 1–9, 2009.272

[7] Anis Elgabli, Jihong Park, Sabbir Ahmed, and Mehdi Bennis. L-fgadmm: Layer-wise federated273

group admm for communication efficient decentralized deep learning. In 2020 IEEE Wireless274

Communications and Networking Conference (WCNC), pages 1–6. IEEE, 2020.275

[8] Anis Elgabli, Jihong Park, Amrit S Bedi, Mehdi Bennis, and Vaneet Aggarwal. Gadmm: Fast276

and communication efficient framework for distributed machine learning. J. Mach. Learn. Res.,277

21(76):1–39, 2020.278

[9] Siwei Feng and Han Yu. Multi-participant multi-class vertical federated learning. arXiv preprint279

arXiv:2001.11154, 2020.280

[10] Chong Fu, Xuhong Zhang, Shouling Ji, Jinyin Chen, Jingzheng Wu, Shanqing Guo, Jun Zhou,281

Alex X Liu, and Ting Wang. Label inference attacks against vertical federated learning. In282

31st USENIX Security Symposium (USENIX Security 22), Boston, MA, August 2022. USENIX283

Association.284

[11] Bin Gu, Zhiyuan Dang, Xiang Li, and Heng Huang. Federated doubly stochastic kernel285

learning for vertically partitioned data. In Proceedings of the 26th ACM SIGKDD International286

Conference on Knowledge Discovery & Data Mining, pages 2483–2493, 2020.287

[12] Andrew Hard, Kanishka Rao, Rajiv Mathews, Françoise Beaufays, Sean Augenstein, Hubert288

Eichner, Chloé Kiddon, and Daniel Ramage. Federated learning for mobile keyboard prediction.289

arXiv preprint arXiv:1811.03604, 2018.290

[13] Stephen Hardy, Wilko Henecka, Hamish Ivey-Law, Richard Nock, Giorgio Patrini, Guillaume291

Smith, and Brian Thorne. Private federated learning on vertically partitioned data via entity292

resolution and additively homomorphic encryption. arXiv preprint arXiv:1711.10677, 2017.293

[14] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for image294

recognition. In Proceedings of the IEEE conference on computer vision and pattern recognition,295

pages 770–778, 2016.296

[15] Yaochen Hu, Peng Liu, Linglong Kong, and Di Niu. Learning privately over distributed features:297

An admm sharing approach. arXiv preprint arXiv:1907.07735, 2019.298

[16] Yaochen Hu, Di Niu, Jianming Yang, and Shengping Zhou. Fdml: A collaborative machine299

learning framework for distributed features. In Proceedings of the 25th ACM SIGKDD Interna-300

tional Conference on Knowledge Discovery & Data Mining, pages 2232–2240, 2019.301

7

[17] Zonghao Huang, Rui Hu, Yuanxiong Guo, Eric Chan-Tin, and Yanmin Gong. Dp-admm:302

Admm-based distributed learning with differential privacy. IEEE Transactions on Information303

Forensics and Security, 15:1002–1012, 2019.304

[18] Xiao Jin, Pin-Yu Chen, Chia-Yi Hsu, Chia-Mu Yu, and Tianyi Chen. Catastrophic data leakage305

in vertical federated learning. Advances in Neural Information Processing Systems, 34, 2021.306

[19] Yan Kang, Yang Liu, and Tianjian Chen. Fedmvt: Semi-supervised vertical federated learning307

with multiview training. arXiv preprint arXiv:2008.10838, 2020.308

[20] Prannay Khosla, Piotr Teterwak, Chen Wang, Aaron Sarna, Yonglong Tian, Phillip Isola, Aaron309

Maschinot, Ce Liu, and Dilip Krishnan. Supervised contrastive learning. Advances in Neural310

Information Processing Systems, 33:18661–18673, 2020.311

[21] Alex Krizhevsky. Learning multiple layers of features from tiny images. Technical report, 2009.312

[22] Yann LeCun and Corinna Cortes. MNIST handwritten digit database. 2010.313

[23] Yang Liu, Yan Kang, Xinwei Zhang, Liping Li, Yong Cheng, Tianjian Chen, Mingyi Hong,314

and Qiang Yang. A communication efficient collaborative learning framework for distributed315

features. arXiv preprint arXiv:1912.11187, 2019.316

[24] Brendan McMahan, Eider Moore, Daniel Ramage, Seth Hampson, and Blaise Aguera y Arcas.317

Communication-Efficient Learning of Deep Networks from Decentralized Data. In Proceedings318

of the 20th International Conference on Artificial Intelligence and Statistics, volume 54 of319

Proceedings of Machine Learning Research, pages 1273–1282. PMLR, 20–22 Apr 2017.320

[25] Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer, James Bradbury, Gregory Chanan,321

Trevor Killeen, Zeming Lin, Natalia Gimelshein, Luca Antiga, Alban Desmaison, Andreas322

Kopf, Edward Yang, Zachary DeVito, Martin Raison, Alykhan Tejani, Sasank Chilamkurthy,323

Benoit Steiner, Lu Fang, Junjie Bai, and Soumith Chintala. Pytorch: An imperative style, high-324

performance deep learning library. In H. Wallach, H. Larochelle, A. Beygelzimer, F. d'Alché-325

Buc, E. Fox, and R. Garnett, editors, Advances in Neural Information Processing Systems 32,326

pages 8024–8035. Curran Associates, Inc., 2019.327

[26] Alec Radford, Jong Wook Kim, Chris Hallacy, Aditya Ramesh, Gabriel Goh, Sandhini Agarwal,328

Girish Sastry, Amanda Askell, Pamela Mishkin, Jack Clark, et al. Learning transferable visual329

models from natural language supervision. In International Conference on Machine Learning,330

pages 8748–8763. PMLR, 2021.331

[27] Jong-Chyi Su, Matheus Gadelha, Rui Wang, and Subhransu Maji. A deeper look at 3d shape332

classifiers. In Second Workshop on 3D Reconstruction Meets Semantics, ECCV, 2018.333

[28] Laurens van der Maaten and Geoffrey Hinton. Visualizing data using t-sne. Journal of Machine334

Learning Research, 9(86):2579–2605, 2008.335

[29] Praneeth Vepakomma, Otkrist Gupta, Tristan Swedish, and Ramesh Raskar. Split learn-336

ing for health: Distributed deep learning without sharing raw patient data. arXiv preprint337

arXiv:1812.00564, 2018.338

[30] Yuncheng Wu, Shaofeng Cai, Xiaokui Xiao, Gang Chen, and Beng Chin Ooi. Privacy preserving339

vertical federated learning for tree-based models. Proceedings of the VLDB Endowment,340

13(12):2090–2103, 2020.341

[31] Qiang Yang, Yang Liu, Tianjian Chen, and Yongxin Tong. Federated machine learning: Concept342

and applications. ACM Transactions on Intelligent Systems and Technology (TIST), 10(2):12,343

2019.344

[32] Shengwen Yang, Bing Ren, Xuhui Zhou, and Liping Liu. Parallel distributed logistic regression345

for vertical federated learning without third-party coordinator. arXiv preprint arXiv:1911.09824,346

2019.347

[33] Timothy Yang, Galen Andrew, Hubert Eichner, Haicheng Sun, Wei Li, Nicholas Kong, Daniel348

Ramage, and Françoise Beaufays. Applied federated learning: Improving google keyboard349

query suggestions. arXiv preprint arXiv:1812.02903, 2018.350

8

[34] Wensi Yang, Yuhang Zhang, Kejiang Ye, Li Li, and Cheng-Zhong Xu. Ffd: a federated learning351

based method for credit card fraud detection. In International Conference on Big Data, pages352

18–32. Springer, 2019.353

[35] Sheng Yue, Ju Ren, Jiang Xin, Sen Lin, and Junshan Zhang. Inexact-admm based federated354

meta-learning for fast and continual edge learning. In Proceedings of the Twenty-second355

International Symposium on Theory, Algorithmic Foundations, and Protocol Design for Mobile356

Networks and Mobile Computing, pages 91–100, 2021.357

[36] Qingsong Zhang, Bin Gu, Cheng Deng, and Heng Huang. Secure bilevel asynchronous vertical358

federated learning with backward updating. In Proceedings of the AAAI Conference on Artificial359

Intelligence, volume 35, pages 10896–10904, 2021.360

[37] Ciyou Zhu, Richard H Byrd, Peihuang Lu, and Jorge Nocedal. Algorithm 778: L-bfgs-b:361

Fortran subroutines for large-scale bound-constrained optimization. ACM Transactions on362

mathematical software (TOMS), 23(4):550–560, 1997.363

9

Contents364

A Algorithm Details 11365

A.1 VIMSGD . 11366

A.2 VIMADMM . 11367

A.3 VIMADMM-J . 11368

B Experimental Details 13369

B.1 Datasets and Models . 13370

B.2 Platform . 14371

B.3 Hyperparameters . 14372

B.4 Additional Results . 14373

C Discussion 17374

10

A Algorithm Details375

A.1 VIMSGD376

At each communication round t, the server samples a set of data indices, B(t), with batch size377

|B(t)| = b. Then we describe the key steps of VIMSGD as follows:378

(1) Communication from client to server. Each client k sends a batch of embeddings {hk
j
(t)}j∈B(t)379

to the server, where hk
j
(t)

= f(xk
j ; θ

(t)
k),∀j ∈ B(t).380

(2) Sever updates linear heads {Wk}. According to VIM objective in Eq. 2, each linear head of the381

server is updated as:382

W
(t+1)
k ←W

(t)
k − η∇

W
(t)
k

LVIM(W (t)
k),∀k ∈ [M] (11)

where η is the server learning rate, and383

∇
W

(t)
k

LVIM(W (t)
k) = ∇

W
(t)
k

 N∑
j=1

ℓ(

M∑
i=1

hi
j

(t)
Wi

(t), yj) + βR(Wk
(t))

 (12)

(3) Communication from server to client. Server computes gradients w.r.t each local embedding384

∇
hk
j
(t)LVIM(W (t+1)

k) by the VIM objective in Eq. 2, where385

∇
hk
j
(t)LVIM(W (t+1)

k) = ∇
hk
j
(t)ℓ(

M∑
i=1

hi
j

(t)
Wi

(t+1), yj),∀j ∈ B(t), k ∈ [M] (13)

Server sends gradients {∇
hk
j
(t)LVIM(W (t+1)

k)}j∈B(t) to each client k, ∀k ∈ [M].386

(4) Client updates local model parameters θk. Finally, every client k locally updates the model387

parameters θk according to the VIM objective in Eq. 2 as follows:388

θ
(t+1)
k = θ

(t)
k − ηk∇

θ
(t)
k

LVIM(W (t+1)
k),∀k ∈ [M] (14)

where ηk is the local learning rate for client k, and389

∇
θ
(t)
k

LVIM(W (t+1)
k) =

N∑
j=1

∇
θ
(t)
k

hk
j

(t)∇
hk
j
(t)LVIM(W (t+1)

k) + β∇
θ
(t)
k

R(θ(t)k) (15)

These four steps of VIMSGD are summarized in Algorithm 1.390

A.2 VIMADMM391

We summarize the steps of VIMADMM are summarized in Algorithm 2.392

A.3 VIMADMM-J393

At each communication round t, the server samples a set of data indices, B(t), with batch size394

|B(t)| = b. Then we describe the key steps of VIMADMM-J as follows:395

(1) Communication from client to server. Each client k sends a batch of local logits {okj
(t)}j∈B(t) to396

the server, where okj
(t)

= f(xk
j ; θ

(t)
k)W

(t)
k ,∀j ∈ B(t)397

(2) Sever updates auxiliary variables {zj}. After receiving the local logits from all clients, the server398

updates the auxiliary variable for each sample j as:399

z
(t)
j = argmin

zj

ℓ(zj , yj)− λ
(t−1)
j

⊤
zj +

ρ

2

∥∥∥∥∥
M∑
k=1

okj
(t) − zj

∥∥∥∥∥
2

F

,∀j ∈ B(t) (16)

11

Algorithm 1: VIMSGD
Input: number of communication rounds T , number of clients M , number of training samples N , batch

size b , input features {{x1
j}Nj=1, {x2

j}Nj=1, . . . , {xM
j }Nj=1}, the labels {yj}Nj=1, local model

{θk}Mk=1; linear heads {Wk}Mk=1; server learning rate η; client learning rate {ηk}Mk=1;
1 for communication round t ∈ [T] do
2 Server samples a set of data indices B(t) with |B(t)| = b
3 for client k ∈ [M] do
4 generates a local training batch {xk

j }j∈B(t)

5 computes local embeddings hk
j
(t) ← f(xk

j ; θk), ∀j ∈ B(t)

6 sends local embeddings {hk
j
(t)}j∈B(t) to the server

7 Server updates linear heads W (t+1)
k by Eq. 11 , ∀k ∈ [M]

8 Server computes gradients w.r.t embeddings∇
hk
j
(t)LVIM(W

(t+1)
k) by Eq. 13 ,∀j ∈ B(t), k ∈ [M]

9 Server sends gradients {∇
hk
j
(t)LVIM(W

(t+1)
k)}j∈B(t) to each client k, ∀k ∈ [M]

10 for client k ∈ [M] do
11 updates local model θ(t+1)

k by Eq. 14

Algorithm 2: VIMADMM
Input: number of communication rounds T , number of clients M , number of training samples N , batch

size b , input features {{x1
j}Nj=1, {x2

j}Nj=1, . . . , {xM
j }Nj=1}, the labels {yj}Nj=1, local model

{θk}Mk=1; linear heads {Wk}Mk=1; auxiliary variables {zj}Nj=1; dual variables {λj}Nj=1;
1 for communication round t ∈ [T] do
2 Server samples a set of data indices B(t) with |B(t)| = b
3 for client k ∈ [M] do
4 generates a local training batch {xk

j }j∈B(t)

5 computes local embeddings hk
j
(t) ← f(xk

j ; θk), ∀j ∈ B(t)

6 sends local embeddings {hk
j
(t)}j∈B(t) to the server

7 Server updates auxiliary variables z(t)j via Eq. 6 ,∀j ∈ B(t)

8 Server updates dual variables λ(t)
j via Eq. 7 ,∀j ∈ B(t)

9 Server updates linear heads W (t+1)
k with objective of Eq. 8 ,∀k ∈ [M]

10 Server computes residual variables skj
(t+1)

via Eq. 9 , ∀j ∈ B(t), k ∈ [M]

11 Server sends {λ(t)
j }j∈B(t) , {skj

(t+1)}j∈B(t) and corresponding W
(t+1)
k to each client k, ∀k ∈ [M]

12 for client k ∈ [M] do
13 for local step e ∈ [τ] do
14 updates local model θ(t+1)

k via SGD with objective of Eq. 10

Since the optimization problem in Eq. 16 is convex and differentiable with respect to zj , we use the400

L-BFGS-B algorithm [37] to solve the minimization problem.401

(3) Sever updates dual variables {λj}. After the updates in Eq. 16, the server updates the dual402

variable for each sample j as:403

λ
(t)
j = λ

(t−1)
j + ρ

(
M∑
k=1

okj
(t) − z

(t)
j

)
,∀j ∈ B(t) (17)

(4) Communication from server to client. After the updates in Eq. 17, we define a residual variable404

skj
(t+1) for each sample j of k-th client, which provides supervision for updating local model:405

skj
(t+1)

≜ zj
(t) −

∑
i∈[M],i̸=k

oij
(t)

(18)

12

Algorithm 3: VIMADMM-J
Input: number of communication rounds T , number of clients M , number of training samples N , batch

size b , input features {{x1
j}Nj=1, {x2

j}Nj=1, . . . , {xM
j }Nj=1}, the labels {yj}Nj=1, local model

{θk}Mk=1; linear heads {Wk}Mk=1; auxiliary variables {zj}Nj=1; dual variables {λj}Nj=1;
1 for communication round t ∈ [T] do
2 Server samples a set of data indices B(t) with |B(t)| = bs
3 for client k ∈ [M] do
4 generates a local training batch {xk

j }j∈B(t)

5 computes local logits okj
(t)

= f(xk
j ; θ

(t)
k)W

(t)
k , ∀j ∈ B(t)

6 sends local logits {okj
(t)}j∈B(t) to the server

7 Server updates auxiliary variables z(t)j via Eq. 16, ∀j ∈ B(t)

8 Server updates dual variables λ(t)
j via Eq. 17 , ∀j ∈ B(t)

9 Server computes residual variables skj
(t+1)

via Eq. 18 , ∀j ∈ B(t), k ∈ [M]

10 Server sends {λ(t)
j }j∈B(t) , {skj

(t+1)}j∈B(t) to each client k, ∀k ∈ [M]

11 for client k ∈ [M] do
12 for local step e ∈ [τ] do
13 updates local linear head W

(t+1)
k via SGD with objective of Eq. 19

14 updates local model θ(t+1)
k via SGD with objective of Eq. 20

The server sends the dual variables {λ(t+1)
j }j∈B(t) and the residual variables {skj

(t+1)}j∈B(t) of all406

samples to each client k.407

(5) Client updates linear head Wk and local model θk alternatively. The linear head of each client is408

locally updated as:409

W
(t+1)
k = argmin

Wk

βR(Wk)+
∑

j∈B(t)

λ
(t)
j

⊤
f(xjk ; θ

(t)
k)Wk+

∑
j∈B(t)

ρ

2

∥∥∥skj (t+1) − f(xjk ; θ
(t)
k)Wk

∥∥∥2
F
, ∀k ∈ [M]

(19)
Each client updates the local model parameters θk as follows:410

θ
(t+1)
k = argmin

θk

βR(θk) +
∑

j∈B(t)

λ
(t)
j

⊤
f(xjk ; θk)W

(t+1)
k +

∑
j∈B(t)

ρ

2

∥∥∥skj (t+1) − f(xjk ; θk)W
(t+1)
k

∥∥∥2
F
.

(20)

Due to the nonconvexity of the loss function of DNN, we use τ local steps of SGD to update Wk and411

θk alternatively at each round with the objective of Eq. 19 and Eq. 20. Specifically, at each local step,412

we first update Wk and then update θk.413

These five steps of VIMADMM-J are summarized in Algorithm 3.414

B Experimental Details415

B.1 Datasets and Models416

We consider a diverse set of datasets and tasks.417

• MNIST [22] contains images with handwritten digits. We create the VFL scenario by418

splitting the input features evenly by rows for 14 clients. We use a fully connected model of419

two linear layers with ReLU activations as the local model.420

• CIFAR [21] contains colour images. We split each image into patches for 9 clients. We use421

a standard CNN architecture from the PyTorch library 1 as the local model.422

• NUS-WIDE [6] is a multi-modality dataset with 634 low-level image features and 1000423

textual tag features. We distribute image features to 2 clients (300 dim and 334 dim), and424

1https://github.com/pytorch/opacus

13

https://github.com/pytorch/opacus

text features to 2 clients (500 dim and 500 dim). We use a fully connected model of two425

linear layers with ReLU activations as the local model.426

• ModelNet40 [27] is a multi-view image dataset, containing the shaded images from 12427

views for the same objects. We use 4 views and distribute them to 4 clients respectively. We428

use ResNet-18 [14] as the local model.429

We split each dataset into the train, validation, and test sets. See Table 1 for more details about the430

number of samples and the number of classes for each dataset.431

B.2 Platform432

We simulate the vertical federated learning setup (1 server and N users) on a Linux machine with433

AMD Ryzen Threadripper 3990X 64-Core CPUs and 4 NVIDIA GeForce RTX 3090 GPUs. The434

algorithms are implemented by PyTorch [25]. Please see the submitted code for full details. We run435

each experiment 3 times with different random seeds.436

B.3 Hyperparameters437

We detail our hyperparameter tuning protocol and the hyperparameter values here. For all VFL438

training experiments, we use the SGD optimizer with learning rate η for the server’s model, and439

the SGD optimizer with momentum 0.9 and learning rate ηk for client k’s local model. We set440

η = η1, η2, . . . , ηM for all methods. The regularization weight β is set to 0.005. The embedding441

dimension df is set to 60, and batch size b is set to 1024 for all datasets.442

Vanilla VFL Training For Vanilla VFL training experiments, we tune learning rates443

by performing a grid search separately for all methods over {0.1, 0.3, 0.5, 0.8} on444

MNIST, {0.003, 0.005, 0.008, 0.01, 0.05, 0.1} on CIFAR, {0.1, 0.5} on NUS-WIDE,445

{0.0005, 0.005, 0.01, 0.05, 0.1} on ModelNet40. Table 1 summarize hyperparameters for all446

methods.447

Table 1: Dataset description and hyperparameters for Vanilla VFL Training.

Dataset # features dc M
samples VAFL VIMSGD VIMADMM FDML VIMADMM-J

train validation test η η η ρ τ η η ρ τ

MNIST 28 × 28 10 14 54000 6000 10000 0.3 0.3 0.05 2 20 0.1 0.05 0.5 20

CIFAR 32 × 32 × 3 10 9 45000 5000 10000 0.003 0.005 0.005 2 30 0.005 0.005 2 30

NUS-WIDE 1634 5 4 54000 6000 10000 0.1 0.5 0.05 2 20 0.1 0.05 2 20

ModelNet40 224 × 224 × 3 ×N 40 4 8877 966 2468 0.05 0.05 0.05 0.5 5 0.05 0.05 0.5 5

Client-level Explainability In the experiments of client importance validation via noisy test client,448

for each time, we perturb the features of all test samples at one client by adding Gaussian noise449

sampled from N
(
0, σ̄2

)
to its features. In order to observe the difference in test accuracy between450

important clients and unimportant clients, we set σ̄ to 10 for MNIST, 1 for CIFAR and NUS-WIDE,451

and 3 for ModelNet40.452

In the experiments of client denoising, we construct one noisy client (i.e., client 7, 5, 2, 3 for MNIST,453

CIFAR, NUS-WIDE, ModelNet40 respectively) by adding Gaussian noise sampled from N
(
0, σ̃2

)
454

to all its training samples and test samples. We set σ̃ to 1 for MNIST, NUS-WIDE and ModelNet40,455

and 3 for CIFAR.456

B.4 Additional Results457

Comparison under Communication Cost. Here we report the memory of parameters communi-458

cated between clients and the server to evaluate communication cost. We use batch size 1024 and459

local embedding size 60 for all datasets following the hyper-parameters listed in Table 1.460

Table 2 shows that for each round, VAFL, VIMSGD and VIMADMM have the same number of parameters461

sent from each client to the server (i.e., 0.23 MB for a batch of embeddings), and VIMADMM has a462

smaller number of parameters sent from server to each client (i.e., 0.08 MB in total for a batch of463

14

dual variables, residual variables as well as one corresponding linear head) than VAFL and VIMSGD464

(i.e., 0.23 MB for a batch of gradients w.r.t. embeddings).465

Table 2 and Figure 4 also show that VIMADMM requires significantly lower communication costs to466

reach a target performance. For example, in CIFAR, to achieve a target accuracy of 65.0%, VAFL467

needs 9463.85 MB while VIMADMM only requires 124.54 MB, which is about 76x lower costs.468

Method
Communication costs (MB) per round Communication costs (MB) to reach target performance

Each client to server Server to each client Total MNIST CIFAR NUS-WIDE ModelNet40
(≥ 96.5%) (≥ 65.0%) (≥ 85.0%) (≥ 89.0%)

VAFL 0.23 0.23 0.46 6954.02 9463.85 695.40 134.96

VIMSGD 0.23 0.23 0.46 3824.71 5381.40 198.69 84.35

VIMADMM 0.23 0.08 0.31 700.08 124.54 66.67 11.32

Table 2: Communication cost comparison.

469

VAFL VIMSGD VIMADMM

MNIST CIFAR NUS-WIDE ModelNet40

0 800
1600

2400
3200

4000
4800

5600
6400

Communication Cost (MB)

90
91
92
93
94
95
96
97
98
99

100

te
st

 a
cc

ur
ac

y

0
1000

2000
3000

4000
5000

6000
7000

8000
9000

10000

Communication Cost (MB)

0
8

16
24
32
40
48
56
64
72
80

0 150 300 450 600 750 900
1050

1200

Communication Cost (MB)

42
48
54
60
66
72
78
84
90
96

0 20 40 60 80 100 120 140 160
Communication Cost (MB)

0
10
20
30
40
50
60
70
80
90

100

Figure 4: Performance of Vanilla VFL under w/ model splitting setting. Ours consume significantly lower
communication costs to reach a target performance.

Figure 5: T-SNE of embeddings on NUS-WIDE.

Client ratio Type Dataset

MNIST CIFAR NUS-WIDE

100% all 97.12± 0.01 74.12± 0.40 88.46± 0.10

50%
important 96.58± 0.07 70.28± 0.44 87.29± 0.17

unimportant 78.11± 0.30 62.67± 2.67 75.80± 0.38

20%
important 88.72± 0.04 66.06± 0.47 80.28± 0.08

unimportant 29.11± 0.07 54.99± 0.05 59.34± 0.09

Table 3: Client summarization of VIMADMM.

470

471

T-SNE of Local Embeddings. From the T-SNE [28] visualizations in Figure 5, we show that client472

3 produces linear separable local embeddings (left), which are better than client 4’s embeddings (right)473

that overlap different classes. Therefore, the embedding averaging from VAFL [4] is suboptimal,474

which justifies the design of VIM, taking the properties of different local embeddings into account.475

Figure 6 presents the T-SNE visualizations of local embeddings for the model trained from VIMADMM.476

Similar to the results of NUS-WIDE in Figure 5, Figure 6 shows that important clients learn better477

local embeddings than unimportant clients on MNIST and CIFAR, which justifies our design of478

multiple linear heads in VIM. For ModelNet40, since clients with multi-view data are of similar479

importance, their local embeddings are similar and are linearly separable.480

Client Summarization. We study the functionality of client summarization enabled by VIM. (1)481

We first rank the importance of clients according to the weights norm histogram (i.e., Figure 3 row482

2), then we select u% proportion of the most “important" clients to re-train the VIMADMM model.483

We find that its performance is closed to the one trained by all clients. Table 3 shows that the484

test accuracy-drop of training with 50% of the most important clients is less than 1% on MNIST485

and NUS-WIDE, and less than 4% on CIFAR; the accuracy-drop of training with 20% of the most486

important clients is less than 10% on all datasets. (2) We select u% proportion of the least important487

clients to re-train the model, and we find that its performance is significantly lower than the one488

trained with important clients, which indicates the effectiveness of VIM for client selection. (3) For489

the multi-view dataset ModelNet40, we find that the test accuracy of models trained with 12, 8, and490

4 clients are similar, i.e., 91.04%, 90.69%, and 90.64%, suggesting that a few views can already491

provide sufficient training information and the agents with multiview data are of similar importance492

which is also reflected by our linear head weights.493

15

MNIST CIFAR ModelNet40

im
po

rt
an

t

Client 9

0
1
2
3
4
5
6
7
8
9

Client 5

0
1
2
3
4
5
6
7
8
9

Client 4

un
im

po
rt

an
t

Client 1
0
1
2
3
4
5
6
7
8
9

Client 1

0
1
2
3
4
5
6
7
8
9

Client 1

Figure 6: T-SNE visualizations of local embeddings from important client and unimportant client for VIMADMM.

MNIST CIFAR NUS-WIDE ModelNet40

V
ar

yi
ng

ρ

0 4 8 12 16 20 24 28
epochs

90
91
92
93
94
95
96
97
98
99

100

te
st

 a
cc

ur
ac

y

0.5
1
2

0 2 4 6 8 10
epochs

30
35
40
45
50
55
60
65
70
75
80

0.5
1
2

0 2 4 6 8 10
epochs

76
78
80
82
84
86
88
90
92
94

0.5
1
2

0 1 2 3 4
epochs

50
55
60
65
70
75
80
85
90
95

100

0.5
1
2

V
ar

yi
ng

τ

0 4 8 12 16 20 24 28
epochs

90
91
92
93
94
95
96
97
98
99

100

te
st

 a
cc

ur
ac

y

10
15
20

0 2 4 6 8 10
epochs

30
35
40
45
50
55
60
65
70
75
80

10
20
30

0 2 4 6 8 10
epochs

76
78
80
82
84
86
88
90
92
94

10
15
20

0 1 2 3 4 5 6
epochs

50
55
60
65
70
75
80
85
90
95

100

1
3
5

Figure 7: Performance of VIMADMM with different penalty factor ρ on four datasets.

Effect of Penalty Factor ρ and Local Steps τ for VIMADMM The results in Figure 7 first row show494

that VIMADMM is not sensitive to ρ on four datasets, and we suggest that the practitioners choose495

the optimal ρ from 0.5 to 2, which will not influence the test accuracy significantly. The results in496

Figure 7 second row show that when τ is larger, the VIMADMM algorithm converges faster. This is497

because the local models can be trained better with more local update steps (i.e., larger τ) at each498

communication round. Therefore, we suggest that the practitioners choosex a τ that leads to the499

converged local model at each communication round.500

Additional Results on Client Denoising Table 4 presents the test accuracy of VAFL, VIMSGD,501

and VIMADMM at different epochs (communication rounds) on different datasets under one noisy502

client. Note that each epoch consists of N/b communication rounds. Table 4 shows that under the503

noisy training scenario, VIMADMM and VIMSGD consistently outperform VAFL with faster convergence504

and higher test accuracy, which indicates the effectiveness of VIM’s multiple linear heads in client505

denoising.506

Table 4: Test accuracy under one noisy client whose training local features and test local features are
perturbed by Gaussian noise.

Method
Test accuracy @ epoch (communication round)

MNIST CIFAR NUS-WIDE ModelNet40

2 (106) 5 (265) 10 (530) 2 (88) 5 (220) 10 (440) 2 (106) 5 (265) 10 (530) 2 (18) 5 (45) 10 (90)

VAFL 91.07 ± 0.17 94.36 ± 0.16 95.59 ± 0.11 28.83 ± 1.04 38.77 ± 0.39 46.98 ± 0.70 51.88 ± 0.72 77.68 ± 0.74 85.31 ± 0.15 43.23 ± 3.07 80.13 ± 1.10 89.56 ± 0.41

VIMSGD 95.04 ± 0.14 96.01 ± 0.03 96.43 ± 0.08 42.75 ± 0.13 50.06 ± 0.18 55.53 ± 0.37 85.35 ± 0.24 86.42 ± 0.24 87.14 ± 0.29 77.94 ± 1.00 88.74 ± 0.07 89.69 ± 0.42

VIMADMM 96.22 ± 0.07 96.60 ± 0.04 96.82 ± 0.07 67.08 ± 0.43 70.70 ± 0.34 71.76 ± 0.14 86.38 ± 0.20 87.00 ± 0.27 87.18 ± 0.14 90.05 ± 0.38 90.71 ± 0.31 90.59 ± 0.05

More results for a large number of clients. We evaluate baselines and our methods under 100507

clients on MNIST by allowing the agents to obtain overlapped features, and the results show that our508

16

methods still outperform baselines. Specifically, we divide the features into 100 overlapped subsets509

for 100 clients so that each client has 14 pixels. We train the methods using the hyper-parameters510

setup listed in Table 1.511

The results in Table 5 show that VIM methods (i.e., VIMSGD, VIMADMM, VIMADMM-J) have higher512

accuracy than baselines in both w/ and w/o model splitting settings.513

W/ model splitting W/o model splitting

VAFL VIMSGD VIMADMM FDML VIMADMM-J
95.38 95.45 95.77 95.85 95.96

Table 5: Performance of Vanilla VFL when M = 100 on MNIST

514

C Discussion515

Challenges of ADMM in VFL. There are several key challenges of deploying ADMM in VFL for516

distributed optimization:517

(1) how to ensure the consensus among clients and form it as a constrained optimization problem518

(e.g., from Eq. 2 to Eq. 3);519

(2) how to decompose the optimization problem into small sub-problems that can be solved in parallel520

by ADMM (e.g., from Eq. 3 to Eq. 5).521

For the first challenge, although ADMM is flexible to introduce auxiliary variables and thus formulate522

a constrained optimization problem in HFL, it raises new challenges in VFL. For example, the ADMM-523

based methods in HFL [8, 7, 17, 35] usually use the global model as the auxiliary variable and enforce524

the consistency between the global model and each local model. However, VFL communicates525

embeddings, and it is not feasible to enforce local embeddings from different clients to be the same526

as they provide unique information from different aspects. Therefore, in this paper, we introduce the527

auxiliary variable zj for each sample j and construct the constraint between zj and server’s output528 ∑M
k=1 h

k
jWk (i.e., the logits), which enables the optimization for each Wk by ADMM (i.e., Eq. 5).529

For the second challenge, we propose the bi-level optimization for server’s model and clients’ models530

to train DNNs for VFL with model splitting, while the existing ADMM-based method in VFL [15]531

only considers logistic regression with linear models in client-side, which does not apply to DNNs.532

The initial attempt we made is to decompose the optimization for server’s linear heads by ADMM533

while still using chain rule of SGD to update local models, which does not exhibit much superiority534

over pure SGD-based methods. Later, we decompose the optimization for both server’s linear heads535

and local models by ADMM, leading to our current algorithm VIMADMM that enables multiple local536

updates for clients at each communication round and achieves significantly better performance as we537

show in Sec. 4.1.538

17

	Introduction
	Related Work
	VFL with Multiple Heads (VIM)
	Framework Overview
	VFL with Model Splitting
	VFL without Model Splitting

	Experiments
	Performance Evaluation under VFL
	Client-level Explainability of VIM

	Conclusions
	Algorithm Details
	VIMSGD
	VIMADMM
	VIMADMM-J

	Experimental Details
	Datasets and Models
	Platform
	Hyperparameters
	Additional Results

	Discussion

