
Score-Optimal Diffusion Schedules

Christopher Williams
Department of Statistics

University of Oxford

Andrew Campbell
Department of Statistics

University of Oxford

Arnaud Doucet
Department of Statistics

University of Oxford

Saifuddin Syed
Department of Statistics

University of Oxford

{williams,campbell,doucet,saifuddin.syed}@stats.ox.ac.uk

Abstract

Denoising diffusion models (DDMs) offer a flexible framework for sampling
from high dimensional data distributions. DDMs generate a path of probability
distributions interpolating between a reference Gaussian distribution and a data
distribution by incrementally injecting noise into the data. To numerically simulate
the sampling process, a discretisation schedule from the reference back towards
clean data must be chosen. An appropriate discretisation schedule is crucial to
obtain high quality samples. However, beyond hand crafted heuristics, a general
method for choosing this schedule remains elusive. This paper presents a novel
algorithm for adaptively selecting an optimal discretisation schedule with respect
to a cost that we derive. Our cost measures the work done by the simulation
procedure to transport samples from one point in the diffusion path to the next.
Our method does not require hyperparameter tuning and adapts to the dynamics
and geometry of the diffusion path. Our algorithm only involves the evaluation
of the estimated Stein score, making it scalable to existing pre-trained models
at inference time and online during training. We find that our learned schedule
recovers performant schedules previously only discovered through manual search
and obtains competitive FID scores on image datasets.

1 Introduction

Denoising Diffusion models (Sohl-Dickstein et al., 2015; Ho et al., 2020; Song et al., 2021) or DDMs
are state-of-the-art generative models. They are formulated through considering a forward noising
process that interpolates from the target to a reference Gaussian distribution by gradually introducing
noise into an empirical data distribution. Simulating the time reversal of this process then produces
samples from the data distribution. Specifically, we evolve data distribution p0 through the forward
diffusion process on time interval [0, 1], described by

dXt = f(t)Xtdt+ g(t)dWt, X0 ∼ p0, (1)

with drift f(t)Xt, diffusion coefficient g(t) and Brownian noise increment dWt. The coefficients
f(t) and g(t) are chosen such that at time t = 1 the distribution of X1 is very close to a reference
Gaussian distribution p1 in distribution. A sample starting at p0 and following Equation (1) until time
t will be distributed according to pt which is a mollified version of the data distribution

pt(xt) =
∫
X0

p0(x0)pt|0(xt|x0)dx0, pt|0(xt|x0) = N (xt; s(t)x0, σ
2(t)I). (2)

38th Conference on Neural Information Processing Systems (NeurIPS 2024).

0.6 0.4 0.2 0.0 0.2 0.4 0.6

X
0

1

2

3

4

5

6

De
ns

ity

Training Data Samples

0.6 0.4 0.2 0.0 0.2 0.4 0.6

X
0

1

2

3

4

5

6

De
ns

ity

Linear Schedule Samples

0.6 0.4 0.2 0.0 0.2 0.4 0.6

X
0

1

2

3

4

5

6

De
ns

ity

Optimised Schedule Samples

Figure 1: Density estimates of the mollified Cantor distribution (left) using a DDM with schedule
T = {ti}100i=0 generated with 100 linearly spaces discretisation times ti = i/100 (middle), compared
to the optimised schedule T ∗ = {t∗i }50i=0 with 50 discretisation times t∗i generated by Algorithm 1
(right). The eight modes present in our true mollified distribution are shown in grey on each plot.

The parameters s(t) and σ2(t) define the noising schedule. They can be found in closed form in
terms of f(t) and g(t) (Karras et al., 2022). To obtain samples from p0, we can reverse the dynamics
of the forward diffusion in Equation (1) to obtain the backward diffusion,

dXt =
(
f(t)Xt − g(t)2∇x log pt(Xt)

)
dt+ g(t)dW̃t, X1 ∼ p1. (3)

By simulating Equation (3) backwards in time, we evolve reference samples X1 ∼ p1 from t = 1
to t = 0 to obtain samples that are terminally distributed according to the data distribution p0. To
simulate Equation (3) numerically, we must decide upon a discretisation of time, T = {ti}Ti=0 with
tT = 1, t0 = 0, which we refer to as the discretisation schedule. For a given noising schedule, it is
important to select an appropriate discretisation schedule such that (3) can be simulated accurately,
i.e. pti and pti−1

should not differ significantly. In this paper, we derive a methodology to compute
an optimal discretisation schedule.

Prior work has often joined together the choice of noising schedule and discretisation schedule. A
uniform splitting of time would be chosen, ti = i/T , with the noising schedule dictating the change
between pti and pti−1

. Two prominent examples have the form s(t) =
√

ᾱ(t), σ2(t) = 1 − ᾱ(t)
with the linear schedule introduced by Ho et al. (2020) having ᾱ(t) = 1− exp

(
−
∫ t

0
β(s)ds

)
with

linear β(t) = βmin + t(βmax − βmin). Alternatively, Nichol and Dhariwal (2021) introduce the cosine
schedule with ᾱ(t) = f(t)/f(0), f(t) = cos

(
t+ϵ
1+ϵ

π
2

)2
for ϵ = 0.008. Karras et al. (2022) refines this

approach by splitting the choice of noising schedule from that of the discretisation schedule, however,
picking the discretisation schedule is still a matter of hyperparameter tuning.

A good discretisation schedule can drastically impact the efficiency of the training and inference of
the generative model, but unfortunately can be difficult to select for complex target distributions. For
example, for a distribution supported on the Cantor set (Figure 1, left), the default linear schedule
fails entirely to capture the modes of the data distribution (Figure 1, middle). However, our optimised
schedule learned using Algorithm 1 recovers these modes (Figure 1, right). Without such an automatic
algorithm, finding performant discretisation schedules often reduces to an expensive and laborious
hyperparameter sweep.

We devise a method for selecting a discretisation schedule that yields high-quality samples from
p0. Our key contribution is defining an appropriate notion of cost incurred when simulating from
one step in the diffusion path to the next. We then choose our discretisation schedule to minimise
the total cost incurred when simulating the entire path from p1 to p0. Our cost purely depends on
the distributional shifts along the diffusion path and assumes perfect score estimation, hence, we
refer to our schedules as score-optimal diffusion schedules. The resulting algorithm is cheap to
compute, easy to implement and requires no hyperparameter search. Our algorithm can be applied
to find discretisation schedules for sampling pre-trained models as well as performed online during
DDM training. We demonstrate our proposed method on highly complex 1D distributions and show
our method scales to high dimensional image data where it recovers previously known performant
discretisation schedules discovered only through manual hyperparameter search. To the best of our
knowledge, this is the first online data-dependent adaptive discretisation schedule tuning algorithm.

2

2 The Cost of Traversing the Diffusion Path

To derive our optimal discretisation schedule, we first need to derive a notion of cost of traversing
from our reference distribution p1 to the data distribution p0 through each intermediate distribution
pt, referred to as the diffusion path. We will then later find the discretisation schedule that minimises
the total cost of traversing this path. Our notion of cost is based on the idea that while integrating
Equation (3) from time t to t′ will always take you from pt to pt′ , the simulation step will need to do
more work to make sure the samples are distributed according to pt′ if pt and pt′ are very different
distributions rather than if they are close. In the following, we will make this intuition precise.

2.1 Predictor/Corrector Decomposition of the Diffusion Update

To begin, let X = Rd and P(X) be the space of Lebesgue probability measures on X with smooth
densities. For t ∈ [0, 1], define the diffusion path pt ∈ P(X) as the law of Xt satisfying the forward
diffusion Equation (1) initialised at the data distribution X0 ∼ p0, or equivalently the law of the Xt

satisfying the backward diffusion Equation (3) initialised at the reference distribution X1 ∼ p1.

Given a sample Xt ∼ pt, a sample Xt′ ∼ pt′ can be generated by integrating the backward diffusion
Equation (3). In Song et al. (2021), it was shown that we can further decompose the backward
diffusion Equation (3) at time t into a deterministic flow governed by the probability flow ODE, and
the stochastic flow driven by Langevin dynamics targeting pt,

dXt =
(
f(t)Xt − 1

2g(t)
2∇ log pt(Xt)

)
dt︸ ︷︷ ︸

Probability Flow Prediction ODE

+ − 1
2g(t)

2∇ log pt(Xt)dt+ g(t)dW̃t.︸ ︷︷ ︸
Langevin Correction SDE

(4)

This decomposition into a deterministic flow and a correction will help us derive our cost in Section
2.2 by analysing the work done by the correction to keep the samples on the diffusion path. Here, we
will first expand upon this decomposition by defining a hypothetical two-step sampling procedure that
could be used to sample the DDM. It consists of: (1) a predictor step that generates a deterministic
prediction of Xt′ and (2) a corrector step that uses Langevin dynamics targeting pt′ to correct any
accrued error. Note we are not advocating for the implementation of such a procedure, only that by
imagining simulating with this hypothetical predictor-corrector algorithm, it will be helpful for our
theoretical derivation of a cost intrinsically linked to the sampling of DDMs. The two stages of the
predictor-corrector algorithm are rigorously defined as follows.
Definition 2.1. A predictor for t, t′ ∈ [0, 1] is a smooth bijective mapping Ft,t′ : X 7→ X, such that
det∇Ft,t′ ̸= 0, and the predicted distribution is the pushforward of pt by Ft,t′ denoted F ♯

t,t′pt.

Definition 2.2. A corrector for t ∈ [0, 1], τ ∈ [0,∞) is a one-parameter family Markov transition
kernel Lt,τ : X × P(X) 7→ [0, 1] such that Zτ ∼ Lt,τ (z,dzτ) is the law of Langevin dynamics
stationary distribution pt at time τ , initialised at z ∈ X, and running at speed v(t) > 0,

Z0 = z, dZτ = v(t)∇ log pt(Zτ)dτ +
√

2v(t)dWτ . (5)

The corrector map Lt,τ is specified through an integration time τ and time-dependent speed v(t). We
assume τ is fixed and we will describe the appropriate choice of v(t) in Section 3.3. The predictor-
corrector algorithm, given Xt ∼ pt, first applies the predictor Z0 = Ft,t′(Xt) and then uses the
corrector to drive the predicted samples towards pt′ ,

Predictor: Z0 = Ft,t′(Xt) Corrector: Xt′,τ ∼ Lt′,τ (Z0,dxτ). (6)

In general, Z0 will not be a sample from pt′ exactly because Ft,t′ may not be a perfect transport from
pt to pt′ . In Section 2.2, assessing the work done by Lt′,τ to drive the Z0 towards pt′ will be key in
deriving our cost. Our cost will then depend upon the specific choice for Ft,t′ . Two natural choices
for Ft,t′ are apparent. Setting Ft,t′ to the identity means our hypothetical sampling algorithm reduces
to the annealed Langevin algorithm for DDMs introduced by Song and Ermon (2019). The second
natural choice is to set Ft,t′ to the integrator of the probability flow ODE (Song et al., 2021).
Example 2.1 (Annealed Langevin). The predictor step is trivial when the predictor map is the identity
Ft,t′(x) = x. In such a case, the predicted state reduces to the initial state, Ft,t′(Xt) = Xt ∼ pt.
The work done by the corrector step will then be related to the full discrepancy between pt and pt′
because the predictor provides no help in transporting the sample.

3

Example 2.2 (Probability Flow ODE). The predictor step is optimal when Ft,t′ is a transport
from pt to pt′ . In such a case, the predicted state produces a sample from the target distribution,
Ft,t′(Xt) ∼ pt′ , and so the corrector step would have to perform no work. An optimal predictor map
Ft,t′ can be obtained by integrating the probability flow ODE from time t, t′,

dxt

dt
= f(t)xt −

1

2
g(t)2∇ log pt(xt). (7)

Practical algorithms numerically integrate Equation (7), e.g. an Euler step with ∆t = t′ − t,

Ft,t′(x) = x+
(
f(t)x− 1

2g(t)
2∇ log pt(x)

)
∆t. (8)

In such a case, the work done by the corrector depends on the error in the probability flow integrator.

2.2 The Incremental Cost of Correction

We now focus on deriving a cost related to the work done by the corrector step in the predictor-
corrector algorithm. Later, in Section 3, we will find the discretisation schedule that minimises the
total cost. To derive the cost, we will analyse the movement of Z0 under the corrector step’s dynamics
Lt′,τ (Z0,dxτ). This requires some care because even if Z0 is already at stationarity, i.e. perfectly
distributed according to pt′ , applying the Langevin correction step will still result in movement of Z0

due to the stochasticity of the update. However, the computed work done by the correction step in
this case should be 0. To correctly assign the work done, we will compare two processes. The first is
the trajectory of Langevin dynamics, Zτ , defined by the corrector Lt′,τ initialised at Z0 = Ft,t′(Xt)

targeting pt′ . The second is a virtual coupled Langevin dynamics Z̃τ initialised at Ft,t′(Xt), driven
by the same noise and speed but targeting the stationary distribution of the predictor F ♯

t,t′pt,

Z0 = Ft,t′(Xt), dZτ = v(t′)∇ log pt′(Zτ)dτ +
√
2v(t′)dWτ , (9)

Z̃0 = Ft,t′(Xt), dZ̃τ = v(t′)∇ logF ♯
t,t′pt(Z̃τ)dτ +

√
2v(t′)dWτ . (10)

Notably, Zτ
d
= Xt′,τ and Z̃τ

d
= Ft,t′(Xt) share the same law as the corrected sample and predicted

sample respectively. Since Zτ and Z̃τ are coupled to have the same noise, the difference in their
trajectory, Zτ − Z̃τ , isolates the change in corrector dynamics due to discrepancy between F ♯

t,t′pt and
pt′ . If F ♯

t,t′pt is very different to pt′ , then Zτ − Z̃τ will be large, signifying the corrector is needing
to do lots of work to push the distribution of Z towards the target pt′ . Conversely, if F ♯

t,t′pt = pt′ ,
then Zτ − Z̃τ = 0 and no work is done. For small τ , (Zτ − Z0)/τ is the initial velocity of Z under
the pt′ corrector dynamics, and similarly for (Z̃τ − Z0)/τ . We can then define the incremental cost
L(t, t′) by taking limits as τ → 0+, measuring the expected L2 norm ∥ · ∥ of the difference,

L(t, t′) = lim
τ→0+

τ−2 E
[∥∥∥(Zτ − Z0)− (Z̃τ − Z0)

∥∥∥2] = lim
τ→0+

τ−2 E
[∥∥∥Zτ − Z̃τ

∥∥∥2] . (11)

We can approximate Zτ − Z̃τ using an Euler step, noting that the coupled noise terms cancel,

Zτ − Z̃τ = τv(t′)(∇ log pt′(Zt,t′)−∇ logF ♯
t,t′pt(Zt,t′)) + o(τ). (12)

By substituting Equation (12) in Equation (11), we have

L(t, t′) = v(t′)2E
[∥∥∥∇ log pt′(Z0)−∇ logF ♯

t,t′pt(Z0)
∥∥∥2] = v(t′)2D(pt′∥F ♯

t,t′pt), (13)

where D(p∥q) = EX∼q[∥∇ log p(X) − ∇ log q(X)∥2] is a statistical divergence on p, q ∈ P(X),
measuring the L2 distance between the scores of q and p with respect q. D(p∥q) is referred to as the
Stein divergence or the Fisher divergence; see e.g. (Johnson, 2004). For a given choice of v(t) and
Ft,t′ we now have a cost measuring the change from pt to pt′ . This cost is intrinsically linked with
the effort performed by a DDM sampling algorithm because it is derived through considering the
work done by a hypothetical predictor-corrector style update. We note, however, that this general cost
can be used to obtain discretisation schedules for use in any style of DDM sampler.

4

2.3 Corrector and Predictor Optimised Cost

By inverting Z0 = Ft,t′(Xt), we can express Equation (13) in terms of an expectation with respect
to the reference sample Xt ∼ pt, and the score of Gt,t′ : X 7→ R+, the incremental weight function
associated with the transport Ft,t′ from the Sequential Monte Carlo literature (Arbel et al., 2021),

L(t, t′) = v(t′)2E
[
∥∇ logGt,t′(Xt)∥2

]
, Gt,t′(x) =

pt′(Ft,t′(x))

pt(x)
|det∇Ft,t′(x)| . (14)

In most cases, it is infeasible to efficiently compute the Jacobian correction in Equation (14). When
Ft,t′(x) = x is the identity map corresponding to the corrector optimised update from Example 2.1
Equation (14) reduces a rescaled Stein discrepancy between pt and pt′ , and Gt,t(x) = pt′(x)/pt(x)
reduces to the likelihood-ratio between pt′ and pt. We will refer to this case as the corrector-optimised
cost denoted Lc(t, t

′), to distinguished it from the predictor-optimised cost Lp(t, t
′) derived above,

where when relevant, we will use subscripts c and p to distinguish between the two:

Lc(t, t
′) = v(t′)2D(pt′∥pt), Lp(t, t

′) = v(t′)2D(pt′∥F ♯
t,t′pt). (15)

The corrector-optimised cost Lc(t, t
′) provides meaningful information during the update from

reference pt to the target pt′ . It is worth computing even when the predictor-optimised cost Lp(t, t
′)

is accessible. Lc(t, t
′) measures the change between the reference and target distribution independent

of the predictor, whereas Lp(t, t
′) measures the residual error between the predictor and target.

Notably, Lc(t, t
′) encodes information about the incremental geometry of the diffusion path, whereas

Lp(t, t
′) quantifies information about the incremental efficiency of the predictor. Generally, one does

not dominate the other, but if the predictor is well-tuned and the predictor flows samples Xt ∼ pt
towards pt′ , we would expect Lp(t, t

′) ≤ Lc(t, t
′).

For deriving our optimal discretisation schedule, we require a notion of how L(t, t′) increases with
small increases in t′ i.e. knowing local changes in incremental cost. In Section 3, we use this local
cost to assign distances to schedules through time, enabling us to find the best schedule. We derive
the desired local cost in Theorem 2.1, see Appendix A for a PDE and geometric interpretation.
Theorem 2.1. Suppose pt(x), Ft,t′(x), v(t) and Gt,t′(x) are three-times continuously differentiable
in t, t′, x and let Ḟt(x) = ∂

∂t′Ft,t′(x)
∣∣
t′=t

and Ġt(x) = ∂
∂t′Gt,t′(x)

∣∣
t′=t

. Suppose the following
hold: (1) for all x ∈ X, t ∈ [0, 1], Ft,t(x) = x and (2) there exists V : X 7→ R such that for all x ∈ X
and t ∈ [0, 1], ∥∇Ġt(x)∥2 ≤ V (x) and supt∈[0,1] EXt∼pt

[V (Xt)] <∞. Then for all t ∈ [0, 1], we
have L(t, t′) = δ(t)∆t2 +O(∆t3), where

δ(t) = v(t)2EXt∼pt

[∥∥∥∇Ġt(Xt)
∥∥∥2] , Ġt =

∂

∂t
log pt +∇ log pt · Ḟt +Tr∇Ḟt. (16)

Theorem 2.1 shows that, under regularity assumptions, then the incremental cost is L(t, t′) ≈ δ(t)∆t2

is locally quadratic and controlled by the local cost δ(t). The δ(t) measures the sensitivity of the
incremental cost L(t, t′) to moving samples along the diffusion path to t′ ≈ t. Notably, δ(t) = 0 if
and only if the predictor satisfies the continuity equation, ∂

∂tpt +∇ · (ptḞt) = 0.

3 Score-Optimal Schedules

Given a discretisation schedule T = (ti)
T
i=0 satisfying 0 = t0 < · · · < tT = 1, our hypothetical

predictor-corrector algorithm recursively uses the predictor and corrector maps to generate a sequence
(Xi)

T
i=0 starting at XT ∼ p1 such that the terminal state X0 approximates samples from p0,

Xi ∼ Lti,τ (Fti+1,ti(Xi+1),dxi). (17)

We want to identify a discretisation schedule that maximises the efficiency of this iterative procedure.
This is not generally possible due to the potential complex interactions that arise from the accrued
errors. To simplify our analysis, we make the following assumption.
Assumption 3.1. For all t, t′, if Xt ∼ pt and Xt′,τ = Lt′,τ (Ft,t′(Xt),dxτ), then Xt′,τ ∼ pt′ .

Assumption 3.1 is reasonable if, in our hypothetical corrector steps, τ is set sufficiently large such
that the Langevin correction converges to stationarity. We find in our experiments that even if the

5

schedules derived under Assumption 3.1 are used in sampling algorithms for which Assumption 3.1
does not hold, we still obtain high quality samples. Equipped with Assumption 3.1, we can measure
the efficiency of the path update through total accumulated cost L =

∑T
i=1 L(ti+1, ti), which we

will use as our objective to optimise T . In this section, we will identify the optimal schedule T ∗

minimising the cost L by considering an infinitely dense limit. We will then provide a tuning
procedure amenable to online schedule optimisation during training. Finally, we will discuss a
suitable choice for v(t), the velocity of our hypothetical corrector steps, as well as related work.

3.1 Diffusion Schedule Path Length and Energy

Let φ : [0, 1] 7→ [0, 1] be a strictly increasing, differentiable function such that φ(0) = 0 and
φ(1) = 1. We will say T is generated by φ if ti = φ(i/T) for all i = 0, . . . , T . The schedule
generator φ dictates how fast our samples move through their diffusion path. Since every schedule T
of size T is generated by some φ, optimising T is equivalent to finding a generator φ minimising
L(φ, T), the total cost accumulated by the schedule of size T generated by φ. By Jensen’s inequality,
we have L(φ, T) ≥ Λ(φ, T)2/T , where for ti = φ(i/T),

L(φ, T) :=
T∑

i=1

L(ti+1, ti), Λ(φ, T) =

T∑
i=1

√
L(ti+1, ti). (18)

As we later prove in Theorem 3.1, in the dense schedule limit as T →∞, the cost L(φ, T) and its
lower bound Λ(φ, T) are controlled by the energy E(φ) and length Λ respectively where,

E(φ) =

∫ 1

0

δ(φ(s))φ̇(s)2ds, Λ =

∫ 1

0

√
δ(t)dt. (19)

The intuition for why E(φ) is an energy, and Λ a length can be gained by first conceptualising the
diffusion time t as a spatial variable rescaled by the metric δ(t) defined by our cost L. We have φ and
φ̇ are position and velocity, respectively. Integrating the speed

∫ 1

0

√
δ(φ(s))φ̇(s)ds =

∫ 1

0

√
δ(t)dt

along a curve φ(s) obtains the “length” Λ, whilst integrating a speed squared,
∫ 1

0
δ(φ(s))φ̇(s)2ds

obtains a “kinetic energy” E(φ). Note that the length is an invariant of the schedule, whereas the
kinetic energy is not. The length Λ measures the intrinsic difficulty of traversing the diffusion path
according to the cost independent of φ, whereas E(φ) measures the efficiency of how the path was
traversed using φ. This geometric intuition hints at the solution to the optimal scheduling problem.
The optimal φ should travel on a geodesic path from p1 to p0, at a constant speed with respect to
metric δ. For this optimal φ, we then have the kinetic energy being equal to the square of length
between p1 and p0. Theorem 3.1 makes the previous discussion precise.
Theorem 3.1. Suppose the assumptions of Theorem 2.1 hold. For all schedule generators φ,

lim
T→∞

TL(φ, T) = E(φ), lim
T→∞

Λ(φ, T) = Λ. (20)

Moreover, E(φ) ≥ Λ2, with equality if and only if φ∗ satisfies,

φ∗(s) = Λ−1(Λs), Λ(t) =

∫ t

0

√
δ(u)du. (21)

Notably independent of the choice of φ, as T →∞, the cost L(φ, T) ∼ E(φ)/T . This implies that
the cost decays to zero at a linear rate, proportional to E(φ) and L(φ, T) ≳ Λ2/T independent of
φ. Equation (21) provides an explicit formula for the optimal schedule generator that minimises the
dense limit of the total cost and obtains the lower bound E(φ∗) = Λ2. The intuition for the formula
φ∗(s) = Λ−1(Λs) is that this implies Λ(φ∗(s)) = Λs meaning say 10% of the way through the
optimal schedule, we should have traversed 10% of the way along the distance between p1 and p0 i.e.
0.1× Λ. This relation holds for constant speed straight lines, meaning φ∗ is the optimal schedule.
For a finite T , Theorem 2.1 implies the optimal schedule T ∗ = {t∗i }Ti=0 generated by φ∗ ensures the
incremental cost is constant L(t∗i+1, t

∗
i) ≈ Λ2/T 2 for all i = 0, . . . , T − 1.

Our geometric intuition in the language of differential geometry is that the diffusion path M =
{pt}t∈[0,1] is Riemannian manifold with metric δ endowed by the incremental cost L(t, t′). The
schedule generator defines a curve s 7→ pφ(s) ∈ M reparametrising the diffusion path between p0
and p1. Theorem 3.1 shows that φ∗ is the geodesic of length Λ inM between p1 and p0 that traverses
the diffusion path at a constant speed

√
δ(φ∗(s))φ̇∗(s) = Λ with respect to δ and minimises the cost.

6

3.2 Estimation of Score-Optimal Schedules

Given a schedule T = {ti}Ti=0 and estimates of the incremental cost L(ti+1, ti), Algorithm 1 adapts
Algorithm 3 from Syed et al. (2021) to estimate the optimal schedule T ∗ = {t∗i }Ti=0 generated by φ∗.
We can use Algorithm 1 to refine the schedule for a pre-trained DDM or learn the schedule jointly with
the score function. For this joint procedure, we detail in Appendix B.1 how function evaluations can be
reused to estimate the cost to minimise computational overhead. For Lc(t, t

′) we need only evaluate
∇ log pt(Xt) and ∇ log pt′(Xt) both available through our model’s score estimate. Computing
Lp(t, t

′) is more challenging since there are Hessian terms that arise in Equation (14). Under the
assumption that the step size ∆t > 0 is sufficiently small, we can approximate∇ log |det∇Ft,t′(Xt)|
through Proposition B.1. This approximation only requires us to compute the gradient trace of the
Jacobian of our predicted score. With computational cost proportionate to the computational effort
for computing the first derivative. Using a Hutchinson trace (Hutchinson, 1989) like estimator in
Proposition B.1, we compute this quantity memory-efficiently in high dimensions, requiring only
standard auto-differentiation back-propagation.

3.3 Choice of Velocity Scaling

Recall that our cost is derived by considering a Langevin dynamics step with velocity v(t). This
velocity should be selected so that Langevin dynamics explores the same proportion of our distribution
at varying times throughout our diffusion path. Thus, v(t) should be on the same scale as the spread
of the target, pt. Commonly used noising schedules have s(t) ≤ 1, and our data distribution is
normalised so the scale of pt is on the order of σ(t). We therefore set v(t) = σ(t). This results
in a σ(t′)-weighted divergence for our incremental cost L(t, t′) = σ(t′)2D(pt′ ||pt). This can be
compared to the weighted denoising score matching loss used to train DDMs (Song et al., 2021),
which is also a squared norm of score differences: λ(t)EX0,Xt

[
∥sθ(Xt, t)−∇ log pt|0(Xt|X0)∥2

]
for some weighting function λ(t) chosen to equalise the magnitude of the cost over the path. In Song
et al. (2021), λ(t) ∝ 1/E[∥∇ log pt|0(Xt|X0)∥2] was chosen, which, as we show in Appendix B.3,
is λ(t) ∝ σ2(t). This choice of velocity scaling provides an alternative perspective on this commonly
used weighting of squared norms of score differences.

Algorithm 1 UpdateSchedule

Require: Schedule T = {ti}Ti=0, incremental costs {L(ti+1, ti)}T−1
i=0

1: Λ̂(ti) =
∑i−1

j=0

√
L(tj+1, tj), i = 0, . . . T ▷ Equation (21);

2: Λ̂ = Λ̂(tT) ▷ Λ in Equation (19)
3: Λ̂−1(·) = Interpolate({(Λ̂(t0), t0), . . . , (Λ̂(tT), tT)}); ▷ E.g. Fritsch and Carlson (1980)
4: t∗i = Λ̂−1(Λ̂ i

T), i = 0, . . . , T ▷ Equation (21)
5: Return: T ∗ = {t∗i }Ti=0

3.4 Related Work

Previous works have devised algorithms and heuristics for designing noising and discretisation
schedules. The DDM training objective is invariant to the noising schedule shape, as demonstrated
by Kingma et al. (2021), necessitating auxiliary costs and objectives for schedule design. Uniform
steps in the signal-to-noise ratio, log (s(ti)/σ(ti)), are used by Lu et al. (2022), but this ignores the
target distribution’s geometry. Watson et al. (2021) optimise the schedule by differentiating through
sampling to maximise quality, but GPU memory constraints necessitate gradient rematerialisation.
We avoid this with a simulation-free cost. Closely related to our work is Sabour et al. (2024), who
minimise a pathwise KL-divergence between discretised and continuous processes. They require
multi-stage optimisation with early stopping to prevent over-optimisation of their objective which
would otherwise result in worse schedules. Amongst the wider literature, various strategies for
discretisation schedule tuning have been proposed. Das et al. (2023) derive an equally spaced
schedule using the Fisher metric but assume Gaussian data. Santos et al. (2023) assign time points
proportional to the Fisher information of pt|0(xt | x0), ignoring the true target distribution. Xue et al.
(2024) derive a schedule to control ODE simulation error, but their cost depends only on the ODE
solver, and not on the data distribution.

7

4 Computational Experiments

4.1 Sampling the Mollified Cantor Distribution

The Cantor distribution (Cantor, 1884) lacks a Lebesgue density, with its cumulative distribution
function represented by the Devil’s staircase and its support being the Cantor set, forming a challeng-
ing 1-D test example. When mollified with Gaussian noise, it becomes absolutely continuous and
possesses a Stein score. We mollify by running a diffusion with the linear schedule for time t = 10−5.
With this mollification, our data density has eight pronounced peaks. We train a one-dimensional
DDM for 150,000 iterations using both a fixed linear schedule and our optimisation algorithm Al-
gorithm 2 initialised at the linear schedule. We find that the non-data-specific default schedule fails
to capture these modes, whilst our adaptive method faithfully reproduces the data distribution. In
Figure 7 we show the complexity of the learned score which displays a self-similar fractal structure.

4.2 Adaptive Schedule Learning for Bimodal Example

We train a DDM on a simple bimodal Gaussian distribution. When the variance of the target bimodal
Gaussian is low, it becomes difficult to adequately sample from the target distribution. In our
instance, the standard Gaussian reference from the diffusion is given, and the target is the density
p0(x) =

1
2pleft(x) +

1
2pright(x), where pleft and pright are normal distributions with means −6 and 6,

respectively, and a common variance σ2 = 0.12.

We learn two diffusion models, one using the linear schedule, and the other using a schedule that
is learned online during training. We compute the likelihood of the samples generated from either
model during training, which is possible in this example because the true probability density is known.
It can be seen in Figure 2 that when the schedule is learned during training, the likelihood evaluation
increases and the true score error decreases, in contrast to the linear schedule that remains constant,
or worsens, in this regard during training.

0 2000 4000 6000 8000
Training Iterations

0.90

0.95

1.00

1.05

1.10

1.15

1.20

Lik
el

ih
oo

d
Av

er
ag

e

Comparison of Linear and Learned Schedules
Linear Schedule
Learned Schedule

0 2000 4000 6000 8000
Training Iterations

300

400

500

600

700

800

900

Sc
or

e
Er

ro
r

Error Comparison of Linear and Learned Schedules
Linear Schedule Error
Learned Schedule Error

Figure 2: Comparison of Linear and Learned Schedules over Training Iterations for the bimodal
example. Each point corresponds to 500 training iterations.

4.3 Scalable Schedule Learning Diffusion

Here we demonstrate that jointly learning the schedule and score using our online training method-
ology (Algorithm 2) scales to high-dimensional data and converges to a stable solution. We train
DDMs on CIFAR-10 and MNIST initialised at the cosine schedule using the codebase from Nichol
and Dhariwal (2021). In Figure 3 (left), we show the incremental costs

√
L(tj+1, tj) for the cosine

schedule and our learned schedule, finding that the increments approximately equalise over the
diffusion path as expected by the discussion in Section 3.1. Figure 3 (right) shows the learned
schedule spends more time at high-frequency details, we visualise a sampling trajectory in Figure 11.

8

Table 1: Sample quality measured by Fréchet Inception Distance (FID) versus schedule on CIFAR10
(32 × 32), FFHQ, AFHQv2, ImageNet (64 × 64). Pretrained models are used from Karras et al.
(2022). All FIDs are calculated using 50000 samples. We highlight the best FID in bold. The
ImageNet model lacks second-order differentiation, so no predictor optimised schedule is shown.

Schedule CIFAR-10 FFHQ AFHQv2 ImageNet

Eq (22) ρ = 3 5.47 2.80 2.05 1.46
Eq (22) ρ = 7 1.96 2.46 2.05 1.42
LogLinear (Lu et al., 2022) 2.05 2.42 2.06 1.45
Convex Schedule 22.1 2.43 2.48 1.64

Corrector optimised 1.99 2.46 2.05 1.44
Predictor optimised 1.99 2.48 2.05 -

Schedules from
low to high FID FID

CO-Cost
(×103)

PO-Cost
(×103)

KLUB
(×106)

Eq (22) ρ = 7 1.96 9.86 2.16 1.75
CO (ours) 1.99 9.54 2.09 1.39
PO (ours) 1.99 9.61 2.09 1.39
LogLinear 2.05 10.5 2.32 1.05
Eq (22) ρ = 3 5.47 17.2 4.02 2.82
Convex Schedule 22.1 45.0 8.17 0.284 0 20 40 60 80 100

Timestep

10 2

10 1

100

101

102

No
ise

 L
ev

el

rho=3
rho=7LogLinear

Convex

CIFAR10 Corrector
CIFAR10 Predictor

Figure 4: (Left) Costs associated with different schedule choices for the CIFAR10 dataset. Schedules
are ordered from lowest FID to highest FID. We compare our Corrector-optimised (CO) cost and
Predictor-optimised (PO) cost versus the Kullback-Leibler Upper Bound (KLUB) from Sabour et al.
(2024). The minimum value for each cost is highlighted in bold. Note low cost is associated with
low FID for our cost and not for the KLUB. (Right) Visualisation of schedules during generative
sampling with 100 timesteps. “rho=3” and “rho=7” refer to Eq 22 with ρ = 3 and ρ = 7 respectively.
LogLinear from Lu et al. (2022) and a convex schedule are also shown. We show our cost optimised
schedules for CIFAR10 both using the corrector optimised cost and the predictor optimised cost.

0 200 400 600 800 1000
Timestep

0.0
2.5
5.0
7.5

10.0
12.5
15.0

Le
ng

th
 In

cr
em

en
t CIFAR Corrector Schedule lr = 0.1

CIFAR Corrector Schedule lr = 0.01
CIFAR Cosine Schedule

0 200 400 600 800 1000
Timestep

0.0

0.2

0.4

0.6

0.8

1.0

(1
t)1/

2

CIFAR Optimal Scedule
Cosine Initial Scedule

Figure 3: (Left) Incremental costs
√
L(tj+1, tj) for the cosine schedule and our online adaptive

algorithm. Higher learning rates enforce equalisation of costs more quickly. (Right) Progression of
the learned schedule during 40k training iterations, depicted through the standard-deviation

√
1− ᾱt.

4.4 Sampling Pre-Trained Models

In this experiment we demonstrate that our algorithm can recover performant schedules for large
image models used in practice and our schedules generate high quality samples. We use the pre-
trained models from Karras et al. (2022), whose DDM is parameterised such that the forward noising
distribution is of the form pt|0(xt|x0) = N (xt;x0, σ

2
t I). The scheduling problem then reduces to

deciding on a stepping scheme through {σi}Ni=1, σN = 0. Karras et al. (2022) suggest a polynomial
based schedule with a parameter ρ that controls the curvature of the schedule

σi<N =
(
σ

1
ρ
max +

i
N−1

(
σ

1
ρ

min − σ
1
ρ
max

))ρ

and σN = 0. (22)

9

A lower ρ value results in steps near σmin being shortened and steps near σmax being lengthened.
Through analysing the truncation error for sampling in Karras et al. (2022), they find that setting
ρ = 3 approximately equalises this error, however it is found empirically that ρ = 7 results in better
sample quality. We also compare against a schedule that takes uniform steps in log σ space Lu et al.
(2022) which we refer to as the LogLinear schedule and a schedule that takes a convex shape in log
space. Schedule visualisations are provided in Figure 4 (right).

We sampled the pre-trained models using these schedules and computed the sample quality using FID.
We use the same number of schedule steps (18 for CIFAR10, 40 for FFHQ and AFHQv2, 256 for
ImageNet) and solver (Heun second order) as Karras et al. (2022). Our results are shown in Figure 4.
Our optimised schedules are able to achieve competitive FID to the best performing ρ = 7 schedule
hand-tuned in Karras et al. (2022). This is expected as our schedules take a similar shape to the
ρ = 7 schedule as shown in Figure 4 (right). Therefore, our method provides an entirely automatic
and hyperparameter free algorithm to recover this performant schedule that was previously only
discovered through trial-and-error.

We further analyse how the number of discretisation points, T , used during sampling affects the
quality of generated samples for different schedules. We report our results on CIFAR10 in Table 2.
Notably, the FID decreases with T for all schedules and achieves comparable FID once T is large
enough. However, when T is small, only the optimised schedules maintain stable performance. This
empirically demonstrates an optimised schedule can improve the sampling efficiency by allowing
for coarser discretisations and, hence, faster sampling, as predicted by Theorem 3.1. We observe an
identical trend for sFID in Table 3 in the Appendix C.2.

points, T 10 20 30 50 100
CO (ours) 2.46 2.02 2.04 2.06 2.07
ρ = 3 50.75 3.92 2.09 2.01 2.05
ρ = 7 2.70 2.00 2.06 2.05 2.07
ρ = 100 3.09 2.06 2.05 2.06 2.07

Table 2: Comparison of FID across different amounts of discretisation points for different schedules
on CIFAR10. CO stands for our corrector optimised schedule.

We also compare corrector optimised schedules to predictor optimised schedules in Table 1. They
provide similar performance so, on image datasets, we encourage the use of the cheaper to compute
corrector optimised schedule. Finally, in Figure 4 (left), we report the raw values of our corrector
optimised costs and compare these costs to the values of the objective introduced in Sabour et al.
(2024). Both algorithms aim to find schedules that minimise these costs and therefore it is desirable
for low values of cost to be associated with good sample quality (i.e. low FID). We find that low
values of our cost correlate much more closely with low FID than the objective introduced by Sabour
et al. (2024). Indeed, Sabour et al. (2024) introduce a bespoke multi-stage optimisation for their cost
because they found over-optimising their objective can lead to worse schedules which is explained by
the objective not correlating well with FID. We further find that our predictor optimised costs are
lower than the corrector optimised costs which is to be expected as the predictor reduces the work
done by the corrector and thus reduces the incremental cost. The overall shape of schedule, however,
between the corrector optimised and predictor optimised costs is similar.

5 Discussion

We have introduced a method for selecting an optimal DDM discretisation schedule by minimising
a cost linked to the work done in transporting samples along the diffusion path. Our algorithm is
computationally cheap and does not require hyperparameter tuning. Our learned schedule achieves
competitive FID scores. Regarding limitations, the computation of Lp can be computationally
expensive due the calculation of second derivatives, however, in Section 4.4 we found Lc to provide
a cheap and performant alternative. Furthermore, our theory is derived assuming perfect score
estimation. Future work can expand on the geometric interpretation of the diffusion path and links to
information geometry to further refine the DDM methodology.

10

References
Arbel, M., Matthews, A., and Doucet, A. (2021). Annealed flow transport Monte Carlo. In

International Conference on Machine Learning.

Cantor, G. (1884). De la puissance des ensembles parfaits de points: Extrait d’une lettre adressée à
l’éditeur. Acta Mathematica, 4:381–392. Reprinted in: E. Zermelo (Ed.), Gesammelte Abhandlun-
gen Mathematischen und Philosophischen Inhalts, Springer, New York, 1980.

Choi, Y., Uh, Y., Yoo, J., and Ha, J.-W. (2020). Stargan v2: Diverse image synthesis for multiple
domains. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition.

Das, A., Fotiadis, S., Batra, A., Nabiei, F., Liao, F., Vakili, S., Shiu, D.-s., and Bernacchia, A. (2023).
Image generation with shortest path diffusion. In International Conference on Machine Learning.

Deng, J., Dong, W., Socher, R., Li, L.-J., Li, K., and Fei-Fei, L. (2009). Imagenet: A large-scale
hierarchical image database. IEEE Conference on Computer Vision and Pattern Recognition.

Fritsch, F. N. and Carlson, R. E. (1980). Monotone piecewise cubic interpolation. SIAM Journal on
Numerical Analysis, 17(2):238–246.

Ho, J., Jain, A., and Abbeel, P. (2020). Denoising diffusion probabilistic models. In Advances in
Neural Information Processing Systems.

Hutchinson, M. (1989). A stochastic estimator of the trace of the influence matrix for Laplacian
smoothing splines. Communications in Statistics - Simulation and Computation, 18(3):1059–1076.

Johnson, O. (2004). Information Theory and the Central Limit Theorem. World Scientific.

Karras, T., Aittala, M., Aila, T., and Laine, S. (2022). Elucidating the design space of diffusion-based
generative models. In Advances in Neural Information Processing Systems.

Karras, T., Laine, S., and Aila, T. (2018). A style-based generator architecture for generative
adversarial networks. arxiv e-prints. In Conference on Computer Vision and Pattern Recognition
(CVPR).

Kingma, D., Salimans, T., Poole, B., and Ho, J. (2021). Variational diffusion models. In Advances in
Neural Information Processing Systems.

Krizhevsky, A., Hinton, G., et al. (2009). Learning multiple layers of features from tiny images.

Lu, C., Zhou, Y., Bao, F., Chen, J., Li, C., and Zhu, J. (2022). DPM-solver: A fast ODE solver for
diffusion probabilistic model sampling in around 10 steps. In Advances in Neural Information
Processing Systems.

Nichol, A. Q. and Dhariwal, P. (2021). Improved denoising diffusion probabilistic models. In
International Conference on Machine Learning.

Poincaré, H. (1890). Sur les équations aux dérivées partielles de la physique mathématique. American
Journal of Mathematics, pages 211–294.

Sabour, A., Fidler, S., and Kreis, K. (2024). Align your steps: Optimizing sampling schedules in
diffusion models. In International Conference on Machine Learning.

Santos, J. E., Fox, Z. R., Lubbers, N., and Lin, Y. T. (2023). Blackout diffusion: generative diffusion
models in discrete-state spaces. In International Conference on Machine Learning.

Sohl-Dickstein, J., Weiss, E. A., Maheswaranathan, N., and Ganguli, S. (2015). Deep unsupervised
learning using nonequilibrium thermodynamics. In International Conference on Machine Learning.

Song, Y. and Ermon, S. (2019). Generative modeling by estimating gradients of the data distribution.
In Advances in Neural Information Processing Systems.

Song, Y., Sohl-Dickstein, J., Kingma, D. P., Kumar, A., Ermon, S., and Poole, B. (2021). Score-based
generative modeling through stochastic differential equations. In International Conference on
Learning Representations.

11

Syed, S., Bouchard-Côté, A., Deligiannidis, G., and Doucet, A. (2021). Non-reversible parallel
tempering: a scalable highly parallel MCMC scheme. Journal of the Royal Statistical Society
(Series B), 84:321–350.

Watson, D., Ho, J., Norouzi, M., and Chan, W. (2021). Learning to efficiently sample from diffusion
probabilistic models. arXiv preprint arXiv:2106.03802.

Xue, S., Liu, Z., Chen, F., Zhang, S., Hu, T., Xie, E., and Li, Z. (2024). Accelerating diffusion
sampling with optimized time steps. arXiv preprint arXiv:2402.17376.

12

A Analysis of incremental cost

A.1 Proof of Theorem 2.1

Proof. We first note that by the mean value theorem, there exists s(t, t′) ∈ [t, t′]

L(t, t′)
|t′ − t|2

= v(t′)2EXt∼pt

[∥∥∥∥∇Gs(t,t′)(Xt)

t′ − t

∥∥∥∥2
]

(23)

= v(t′)2EXt∼pt

[∥∥∥∇Ġs(t,t′)(Xt)
∥∥∥2] (24)

Since all t, t′ we have ∥∇Ġs(t, t
′)(x)∥2 ≤ V (x), and EXt∼pt

[V (Xt)] <∞, the dominated conver-
gence theorem and the continuity of v(t′) implies,

lim
t′ 7→t

L(t, t′)
|t′ − t|2

= v(t)2EXt∼pt

[∥∥∥ lim
t′ 7→t
∇Ġs(t,t′)(Xt)

∥∥∥2] (25)

= v(t)2EXt∼pt

[∥∥∥∇Ġs(t,t′)(Xt)
∥∥∥2] . (26)

The last equality follows since∇Ġt is continuous in t.

We will now compute Ġt. Since Ft,t(x) = x, we have Gt,t(x) = 1 for all x. This implies, we can
express Ġt in terms of the derivative of logGt,t′ ,

Ġt(x) =
∂

∂t′
logGt,t′(x)

∣∣∣∣
t′=t

, (27)

where logGt,t′ equals,
logGt,t′(x) = log pt′(Ft,t′(x))− pt(x) + log det∇Ft,t′(x). (28)

By combining Equation (27) to Equation (28), we obtain,

Ġt(x) =
∂

∂t′
log pt′(Ft,t′(x))

∣∣∣∣
t′=t

+
∂

∂t′
log det∇Ft,t′(x)

∣∣∣∣
t′=t

. (29)

For the first term in Equation (29), we use chain rule to obtain,
∂

∂t′
log pt′(Ft,t′(x)) =

1

pt′(Ft,t′(x))

(
∂pt′

∂t′
(Ft,t′(x)) +∇pt′(Ft,t′(x)) ·

∂Ft,t′

∂t′
(x)

)
, (30)

where ‘·’ denotes a dot product of vectors. By evaluating at t′ = t, we have
∂

∂t′
log pt′(Ft,t′(x))

∣∣∣∣
t′=t

=
1

pt(x)

∂pt
∂t

(x) +
1

pt(x)
∇pt(x) · Ḟt(x) (31)

=
∂

∂t
log pt(x) +∇ log pt(x) · Ḟt(x). (32)

For the second term in Equation (29), we note that as ∆t = t′ − t→ 0

Ft,t′(x) = x+ Ḟt(x)∆t+O(∆t2). (33)
This implies that the Jacobian determinant admits the following asymptotic expansion,

log det∇Ft,t′ = log det(I +∇Ḟt∆t+ o(∆t)) (34)

= log(1 + Tr∇Ḟt∆t+ o(∆t)) (35)

= Tr∇Ḟt∆t+O(∆t2). (36)
Consequentially we have,

∂

∂t′
log det∇Ft,t′(x)

∣∣∣∣
t′=t

= Tr∇Ḟt(x). (37)

By substituting in Equations (32) and (37) into Equation (29) we obtain,

Ġt(x) =
∂

∂t
log pt(x) +∇ log pt(x) · Ḟt(x) + Tr∇Ḟt(x). (38)

13

A.2 Proof of Theorem 3.1

Proof. Let si = i/T and ti = φ(si), Theorem 2.1 implies

L(ti+1, ti) = δ(ti+1)∆t2i + o(∆2
T), (39)√

L(ti+1, ti) =
√
δ(ti+1)∆ti + o(∆T), (40)

where ∆T = maxi |∆ti|. By the the mean value theorem, ∆T ≤ sups∈[0,1] φ̇(s)/T and hence is
O(T−1) as T →∞.

We will first establish the convergence of Λ(φ, T). Using Equation (40) we obtain the following
estimate for TL(φ, T),

Λ(φ, T) =

T−1∑
i=0

√
L(ti+1, ti) =

T−1∑
i=0

√
δ(ti+1)∆ti + o(1). (41)

In the limit as T →∞, this Riemann sum converges to Λ,

lim
T→∞

Λ(φ, T) =

∫ 1

0

√
δ(t)dt. (42)

We will now obtain the limit of TL(φ, T). First denote si = i/T and ∆si = 1/T . Using the
differentiability of φ we have,

∆ti = φ(si+1)− φ(si) =
φ̇(si+1)

T
+ o

(
T−1

)
. (43)

Substituting Equation (46) into Equation (39), we obtain the following estimate for TL(φ, T),

TL(φ, T) = T

T−1∑
i=0

L(ti+1, ti) (44)

= T

T−1∑
i=0

δ(ti+1)∆t2i + o(T−1) (45)

=

T−1∑
i=0

δ(φ(si+1))φ̇(si+1)
2∆si + o(1). (46)

In the limit as t→∞, this converges to the integral for E(φ),

TL(φ, T) =
∫ 1

0

δ(φ(s))φ̇(s)2ds = E(φ). (47)

Combining Jensen’s inequality with the fact that φ is increasing implies,

E(φ) =

∫ 1

0

δ(φ(s))φ̇(s)2ds ≥
(∫ 1

0

√
λ(φ(s))φ̇(s)ds

)2

=

(∫ 1

0

√
δ(t)dt

)2

= Λ2. (48)

The last equality follows by substituting t = φ(s). Note a schedule generator φ∗ obtains the Jensen
lower bound if only if there is a C such that for all s ∈ [0, 1],

C = δ(φ∗(s))φ̇∗(s)2. (49)
By taking square roots and integrating from 0 to s,

√
Cs =

∫ s

0

√
δ(φ∗(s′))φ̇∗(s′)ds′ =

∫ φ∗(s)

0

√
δ(t)dt = Λ(φ∗(s)). (50)

By using the substitution in s = 1, along with the constraints Λ(1) = Λ and φ∗(1) = 1 we obtain√
C = Λ,

√
C = Λ(φ∗(1)) = Λ(1) = Λ. (51)

Finally, by inverting Equation (50), we conclude our proof,

φ∗(s) = Λ−1(
√
Cs) = Λ−1(Λs). (52)

14

A.3 Comparison to Fisher Information

When Ft,t′(x) = x, the quantity Gt,t′(x) = pt′(x)/pt(x) reduces to the Radon–Nykodym derivative
between pt′ and pt, and Ġt(x) reduce to the Fisher score function, ∂

∂t log pt(x). By Theorem 2.1 the
corrector optimised cost satisfies, Lc(t, t

′) = δc(t)∆t2 + o(∆t), where

δc(t) = v(t)2EXt∼pt

[∥∥∥∇Ġ2
t

∥∥∥2] = v(t)2EXt∼pt

[∥∥∥∥∇ ∂

∂t
log pt

∥∥∥∥2
]
. (53)

Suppose pt is sufficiently regular, and the Poincaré inequality (Poincaré, 1890) holds. Since the
expectation of the Fisher score with respect to pt is zero, we have,

δc(t) ≥ C(t)v(t)EXt∼pt

[(
∂

∂t
log pt

)2
]
= C(t)v(t)δF (t), (54)

where C(t) > 0 is some constant. Here δF (t) = VarXt∼pt

[
∂
∂t log pt

]
is the Fisher information for

the diffusion path pt. Suppose we view the diffusion path as a curve in the probability distribution
space with metric δc(t). Equation (54) shows that the topology induced by δc(t) is stronger than the
Fisher information, and geometry is more regular.

B Training Algorithms

B.1 Adaptive training

We may incorporate Algorithm 1 into an online algorithm used during training. For a fixed score
function along the diffusion path, there is an optimal schedule. Similarly, for a fixed schedule, there is
an optimal score function that can be learnt from the data. To incorporate these two steps, we propose
a two-step algorithm for online training.

First, for a fixed schedule, we optimise the score function. Then, using this estimated score function,
we compute the optimal schedule through Algorithm 1. To add regularity throughout training, as
our score predictions are over batches rather than the entire dataset, we do not replace the current
schedule with our computed optimal one. Instead, we take a weighted combination of the current
schedule with the computed optimal one.

The weighting factor γ ∈ (0, 1) is akin to a learning rate for the schedule optimisation. If γ is set too
high, our schedule learning may be overly influenced by the current batch, which could negatively
affect the score training performance.

Algorithm 2 AdaptiveScheduleTraining

Require: Initial schedule T = {ti}Ti=0, learning rate γ ∈ (0, 1), score estimate sθ
1: while not converged do
2: for each batch B from data do
3: Fix T and assign θ ← argminθLtraining(θ,B, T)
4: Fix sθ∗ and over batch estimate L(ti+1, ti), i = 0, . . . , T − 1 (Equation (13))
5: Assign T ∗ ← UpdateSchedule(T ,L(ti+1, ti))
6: Update time locations ti ← γt∗i + (1− γ)ti
7: end for
8: end while

B.2 Estimating predictor optimised cost

Proposition B.1. Let Ft,t′ be the predictor map given by the forward Euler discretisation (8) of
the probability flow ODE. For N ∈ N and let Ĵt,N (x) to be the Jacobian of the Hutchinson trace
estimator (Hutchinson, 1989) for∇(∇ log pt(x))) at x ∈ X and t ∈ [0, 1],

Ĵt,N (x) =
1

N

N∑
n=1

∇(vTn Jt(x)vn), vn ∼ N (0, I). (55)

15

If ∆t is small enough such that,

∆tTr

(
f(t)I − 1

2
g(t)2∇2 log pt(x)

)
< 1. (56)

Then, as N →∞ the following limit exists almost surely,

∇ log det∇Ft,t′(x) = −
∆t

2
g(t)2 lim

N→∞
Ĵt,N +O(∆t2). (57)

Proof. The probability flow ODE update is given through

Ft,t′(x) = x+∆t

(
f(x)x− 1

2
g(t)2∇ log pt(x)

)
. (58)

By taking the gradient, we have,

∇Ft,t′(x) = I +∆t

(
f(t)I − 1

2
g(t)∇2 log pt(x)

)
. (59)

Since log det(1 + ∆t) = ∆tTrA + O(∆t2) that holds when Tr(A) < 1, our assumption in
Equation (56) hold, we can apply a Taylor expansion

log det∇Ft,t′(x) = ∆tTr

(
f(t)I − 1

2
g(t)∇2 log pt(x)

)
+O(∆t2). (60)

By taking a gradient, we have

∇ log det∇Ft,t′(x) = −
∆t

2
g(t)2∇Tr

(
∇2 log pt(X)

)
+O(∆t2) (61)

= −E(vvT)∆t

2
g(t)2∇Tr

(
∇2 log pt(X)

)
+O(∆t2) (62)

= −∆t

2
g(t)2E∇Tr

(
vT∇2 log pt(X)v

)
+O(∆t2). (63)

The last line used the fact that the Hessian of log pt is equivalently the Jacobian ∇(∇ log pt), the
latter we can approximate unbiasedly using the Hutchinson trace estimator to gain Ĵt,N (x).

B.3 Denoising Score Matching Weighting

The standard denoising score matching weighting used by Song et al. (2021) is λ(t) ∝
1/E[||∇ log pt|0(Xt|X0)||2]. For pt|0(xt|x0) = N (xt; s(t)x0, σ

2(t)I) we have,

log pt|0(xt|x0) = −
1

2

||xt − s(t)x0||2

σ(t)2
− d

2
log

(
2πσ(t)2

)
. (64)

Therefore,

∇xt log pt|0(xt|x0) =
s(t)x0 − xt

σ(t)2
(65)

The expectation for E[||∇ log pt|0(Xt|X0)||2] is taken with respect to Xt ∼ pt|0. We therefore have,

E[||∇ log pt|0(Xt|X0)||2] = Ept|0(Xt|X0)

[∥∥∥∥s(t)X0 −Xt

σ(t)2

∥∥∥∥2
]

(66)

= EN (ϵ;0,I)

[∥∥∥∥s(t)X0 − s(t)X0 − σ(t)ϵ

σ(t)2

∥∥∥∥2
]

(67)

= EN (ϵ;0,I)

[∥∥∥∥ −ϵσ(t)

∥∥∥∥2
]

(68)

=
1

σ(t)2
EN (ϵ;0,I)

[
∥ϵ∥2

]
(69)

=
d

σ(t)2
. (70)

where on the second line we have used the reparameterisation trick. Therefore, we have that the
standard weighting for denoising score matching is λ(t) ∝ σ(t)2.

16

0.0 0.2 0.4 0.6 0.8 1.0
time

0.0

0.2

0.4

0.6

0.8

Sc
he

du
le

 (
t) Linear Schedule

Corrector Schedule
Predictor Schedule

6 4 2 0 2 4 6
x

0.0

0.5

1.0

1.5

2.0

De
ns

ity

Corrector Schedule
Predictor Schedule
Linear Schedule
True Density

6 4 2 0 2 4 6
x

500

0

500

Sc
or

e

Corrector Schedule
Predictor Schedule
Linear Schedule

Figure 5: Schedules and density estimates for: linear (blue); Stein score optimised (green); and
predictor optimised (red) schedules. The predictor optimised schedule identifies a bump along the
diffusion path where the reference Gaussian density splits into two modes. In the regions where the
score is evaluated (around ±6), our trained score is accurate compared to the linear schedule score,
which fails to match the slope of the true score, resulting in a wider variance density estimate.

C Experiment Details

C.1 1D Density Estimation

For all 1D experiments, we train a one spatial dimension model with continuous time encoding
via Gaussian Fourier features to embed time values into a higher-dimensional space. The model
architecture includes a hidden dimension of 128, five layers, an embedding dimension of 12, and one
residual time step. It features a combination of residual blocks, both incorporating linear layers with
GELU activation and LayerNorm, tailored to integrate time embeddings.

C.1.1 Bimodal Example

We train our model in the form of f(t) = βt/2 and g(t) =
√
βt using Algorithm 2 with γ = 0.1.

We use the weight function v2tn = (1 − ᾱtn), where αtn = 1 − βtn and ᾱtn =
∏n

i=1 αti . We
train our model for 5 thousand iterations using both a fixed linear schedule and our optimisation
algorithm initialised at the linear schedule. Due to the non-linear dependence during training of the
transport-optimised schedule, initialisation in this context plays an important role. We initialise our
predictor-optimised schedule with the optimal schedule generated with respect to Lc without the
Jacobian term as a first approximation. We then add the Jacobian term, optimise the schedule, and
train for an additional 5 thousand iterations.

In Figure 5 we see that the linear schedule forms an estimate with greater variance than the true data
and the predicted densities of the optimised schedules.

17

0.4 0.2 0.0 0.2 0.4

x

400

300

200

100

0

100

200

300

400

Sc
or

e

Corrector Optimised Score

0.0 0.2 0.4 0.6 0.8 1.0

Time
0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

Sc
he

du
le

 (
t)

Linear Schedule
Corrector Schedule
Predictor Schedule 250

0

250

Sc
or

e

Predictor Optimised Score

0.4 0.2 0.0 0.2 0.4

x

10

0

10

Sc
or

e

Linear Schedule Score

Figure 6: Comparison of sampling from a mollified Cantor distribution using DDMs with two
different schedules: linear (blue) and optimised (green). The optimised schedule enables the DDM to
capture eight distinct data modes centered on the mollified Cantor distribution (grey), whereas the
linear schedule does not have clear mode separation. The optimised schedule diffusion accurately
predicts the score for the mollified Cantor distribution, being near vertical lines interweaving the
Cantor set, where the linear schedule fails to adequately approximate the score.

C.1.2 Mollified Cantor Distribution

We train our model with f(t) = βt/2 and g(t) =
√
βt using the online Algorithm 2 with γ = 0.01.

The weight function is v2tn = (1 − ᾱtn), where αtn = 1 − βtn and ᾱtn =
∏n

i=1 αti . To capture
high-frequency details, we train the one-dimensional model for 150,000 iterations using both a fixed
linear schedule and our optimisation algorithm initialised at the linear schedule. The difference in
sample quality is evident in Figure 1.

C.2 Pretrained Image Models

For sampling pretrained image models, we use the networks and implementation from Karras et al.
(2022), https://github.com/NVlabs/edm. We compute the FID using the provided FID script
within the codebase with the standard 50, 000 samples using the same fixed seeds 0− 49999 for all
schedules. For each image dataset, we use the default sampling strategy included in the codebase
by Karras et al. (2022). For unconditional CIFAR10 this is a deterministic 2nd order Heun solver
with 18 timesteps, therefore a total of 35 NFE (number of function evaluations) for the underlying
denoising network. For both unconditional FFHQ and unconditional AFHQv2 the same deterministic
2nd order Heun solver is used with 40 timesteps (NFE = 79). For class conditional ImageNet, the
bespoke stochastic solver from Karras et al. (2022) is used with 256 timesteps (NFE=511). The
stochasticity settings are left at their default values for this dataset of Schurn = 40, Smin = 0.05,
Smax = 50, Snoise = 1.003.

To compute the corrector optimised schedule for each dataset, we use Algorithm 1. We use 100
data samples for each dataset when computing Lc as we find the variation in learned schedule
is small between different samples from the dataset. Our initial discretisation schedule used to
calculate Λ(t) is LogLinear with 100 steps. We then fit a monotonic spline to the cumulative
estimated Λ(t) and invert this function to find φ∗ function from which we can derive our schedules.
This takes on the order of 5 minutes to find the Corrector Optimised Schedule for CIFAR10 on a
single RTX 2080Ti GPU. For predictor optimised schedules we repeat the same procedure however
also include estimation of the Hessian term. We use 5 samples of v for each image datapoint
when using Hutchinson’s trace estimator. It takes 5 GPU hours to compute the Predictor Opti-
mised Schedule for CIFAR10 due to the extra computational cost of computing the second derivatives.

We compare the corrector optimised and predictor optimised schedules for the 4 image datasets in
Figure 8. We find that all of the schedules have the same general shape with increasing step sizes in
log space as the generative process approaches clean data. However, the curvature of the schedule
varies between datasets which is to be expected as the schedule is determined through the score which
will vary depending on the data distribution. We find that, in general, the higher resolution datasets
(FFHQ, AFHQv2 and ImageNet) favour shorter steps nearer the start of the generative process at the
expense of larger steps at low noise levels near the end of the generative process.

18

https://github.com/NVlabs/edm

0.50 0.25 0.00 0.25 0.50
400

200

0

200

400
t = 1

0.50 0.25 0.00 0.25 0.50
300

200

100

0

100

200

300
t = 3

0.50 0.25 0.00 0.25 0.50
200

100

0

100

200
t = 5

0.50 0.25 0.00 0.25 0.50
150

100

50

0

50

100

150
t = 7

0.50 0.25 0.00 0.25 0.50

100

50

0

50

100

t = 9

0.50 0.25 0.00 0.25 0.50
100

50

0

50

100
t = 11

0.50 0.25 0.00 0.25 0.50
75

50

25

0

25

50

75
t = 13

0.50 0.25 0.00 0.25 0.50

50

25

0

25

50

t = 15

0.50 0.25 0.00 0.25 0.50

40

20

0

20

40

t = 17

0.50 0.25 0.00 0.25 0.50

40

20

0

20

40
t = 19

0.50 0.25 0.00 0.25 0.50

20

0

20

t = 21

0.50 0.25 0.00 0.25 0.50

20

10

0

10

20

t = 23

0.50 0.25 0.00 0.25 0.50

20

10

0

10

20

t = 25

0.50 0.25 0.00 0.25 0.50

10

0

10

t = 27

0.50 0.25 0.00 0.25 0.50
15

10

5

0

5

10

15
t = 29

0.50 0.25 0.00 0.25 0.50

10

5

0

5

10

t = 31

0.50 0.25 0.00 0.25 0.50

5

0

5

t = 33

0.50 0.25 0.00 0.25 0.50
7.5

5.0

2.5

0.0

2.5

5.0

7.5
t = 35

0.50 0.25 0.00 0.25 0.50
6

4

2

0

2

4

6
t = 37

0.50 0.25 0.00 0.25 0.50

4

2

0

2

4

t = 39

Figure 7: Evolution of the estimated score for the mollified Cantor distribution Section 4.1 with a
Corrector Optimised Schedule. In this case the linear schedule fails to evenly progress the progression
of the score, see Figure 6 showing the terminal score estimate in this case. The estimated score
exhibits a self-similar nature of interweaving roots around the centers of mass of the mollified Cantor
distribution. Identification of these roots amounts to estimated modes in our density estimate, see
Figure 1.

19

0 20 40 60 80 100
Timestep

10 2

10 1

100

101

102

No
ise

 L
ev

el

CIFAR10 Corrector
CIFAR10 Predictor
FFHQ Corrector
FFHQ Predictor
AFHQv2 Corrector
AFHQv2 Predictor
ImageNet Corrector

Figure 8: Corrector optimised and predictor optimised schedules for the 4 image datasets, CIFAR10,
FFHQ, AFHQv2 and ImageNet.

10 2 10 1 100 101 102

Noise Level

0

2500

5000

7500

10000

12500

15000

(
)

CIFAR10 Corrector
CIFAR10 Predictor
FFHQ Corrector
FFHQ Predictor
AFHQv2 Corrector
AFHQv2 Predictor
ImageNet Corrector

Figure 9: Local cost
√
δ(σ) versus σ for 4 image datasets and using the corrector optimised versus

predictor optimised costs.

We analyse the local cost as a function of noise level
√
δ(σ) for the 4 images datasets within Figure 9.

This local cost is used as the metric when determining velocities in the space of schedules from p1 to
p0.

points, T 10 20 30 50 100
CO (ours) 3.94 3.78 3.80 3.81 3.81
ρ = 3 24.08 4.90 3.80 3.77 3.80
ρ = 7 4.02 3.76 3.78 3.80 3.81
ρ = 100 4.31 3.81 3.81 3.81 3.81

Table 3: Comparison of sFID across different amounts of discretisation points for different schedules
on CIFAR10. CO stands for our corrector optimised schedule.

C.3 Online Schedule Optimisation of Images

MNIST: For the MNIST experiments, we trained a model with an image size of 32, 32 channels,
with a U-Net architecture, with 1 residual block per U-Net resolution, without learning sigma, and

20

0 10000 20000 30000 40000 50000 60000
Iteration

700

800

900

1000

1100

1200

1300

1400

Le
ng

th

Schedule lr=0.05
Cosine Schedule

0 10000 20000 30000 40000 50000 60000
Iteration

1500

2000

2500

3000

3500

4000

4500

5000

En
er

gy

Schedule lr=0.05
Cosine Schedule

0 100 200 300 400 500
Timestep

0.0

0.2

0.4

0.6

0.8

1.0

(1
t)0.

5

Schedule lr=0.05
Cosine Schedule

Figure 10: Progression of the length and energy Equation (18) over training of MNIST. Both models
are trained from initialisation, one with adaptive schedule learning (red) and one without (blue). We
can see that the energy and length quantities increase during training. Recall that for a fixed path
of scores t 7→ ∇ log pt that the length Λ is constant. As we are learning the score, this value is not
constant during training. Interestingly, by optimising the schedule during training we observe a larger
length value, possibly indicating that the diffusion path learned with the optimised schedule differs
greatly from the path learned without.

Figure 11: Sample progression of MNIST digits for the standard cosine schedule with ϵ = 0.008
(top) against our optimised schedule (bottom). As we can see, the cosine schedule spends more time
near the Gaussian reference distribution whereas the optimised schedule quickly determines large
scale features and spends more time toward the data distribution.

0 10000 20000 30000 40000 50000
Iteration

3500

4000

4500

5000

5500

6000

6500

Co
rre

ct
or

 O
pt

im
ise

d
lo

ss

Schedule lr=0.1
Schedule lr=0.01
Cosine Schedule

0 10000 20000 30000 40000 50000
Iteration

15000

20000

25000

30000

35000

40000

Le
ng

th

Schedule lr=0.1
Schedule lr=0.01
Cosine Schedule

Figure 12: Progression of the length Λ and cost through online training for CIFAR-10. For the larger
learning rate, Algorithm 2 seems to garner a larger Λ value at a faster rate that the lower schedule
learning rate. For the fixed cosine schedule run, Λ is stable, perhaps because the score estimate has
stabilised for the fixed cosine schedule already during the model training burn-in phase.

21

with a dropout rate of 0.3. The diffusion process was configured with 500 diffusion steps. Training
was conducted with a learning rate of 1e-4.

The schedule was also initialised with the Cosine schedule and trained for 60,000 iterations on an
NVIDIA 1080 Ti GPU with 12 GB RAM. The batch size for MNIST was set to 128. We trained two
models: one with the schedule optimisation and one without. The schedule training rate was set to
γ = 0.05, as stated in Algorithm 2. Training took approximately 12 hours for either model.

CIFAR-10: For the CIFAR-10 experiments, we trained a model with an image size of 32, 128
channels, and a U-Net architecture with 3 residual blocks per multiplier resolution (described in
codebase Nichol and Dhariwal (2021)), without learning sigma, and with a dropout rate of 0.3. The
diffusion process was configured with 1000 diffusion steps and a cosine noise schedule.

The schedule was initialised with the Cosine schedule and trained for 160,000 iterations on 4 NVIDIA
A40 GPUs, each with 48 GB RAM. The batch size was set to 1,536. After training for 160,000
iterations, we trained two models online: one with the corrector schedule optimisation and one
without, for an additional 50,000 iterations on a single GPU with a batch size of 384. The burn in
phase for training took approximately 50 hours, with the individual schedule optimisations after this
taking approximately 24 hours.

C.4 Licenses

Codebases:

• Improved Denoising Diffusion Probabilistic Models Nichol and Dhariwal (2021): MIT
License

• Elucidating the Design Space of Diffusion-Based Generative Models Karras et al. (2022):
Attribution-NonCommercial-ShareAlike 4.0 International

Datasets:

• CIFAR-10 Krizhevsky et al. (2009): MIT license
• FFHQ Karras et al. (2018): Creative Commons BY-NC-SA 4.0 license
• AFHQv2 Choi et al. (2020): Creative Commons BY-NC 4.0 license
• ImageNet Deng et al. (2009): Unknown License

D Acknowledgements of Funding

CW acknowledges support from DST Australia. AC acknowledges support from the EPSRC CDT in
Modern Statistics and Statistical Machine Learning (EP/S023151/1). SS acknowledges support from
the NSERC Postdoctoral Fellow Program.

22

NeurIPS Paper Checklist
1. Claims

Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?
Answer: [Yes] .
Justification: Our main theoretical and experimental contributions are clearly stated in the
abstract and demonstrated in the paper. They reflect the paper’s contributions and scope.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: We discuss the limitations of our work in Section 5.

3. Theory Assumptions and Proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?
Answer: [Yes] .
Justification: All the proofs are proven in the supplementary material. They are duly
cross-referenced.

4. Experimental Result Reproducibility
Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?
Answer: [Yes]
Justification: We provide detailed descriptions of our experimental procedures in Appendix C
and provide the code to run our experiments.

5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?
Answer: [Yes]
Justification: We provide the code necessary to run our experiments.

6. Experimental Setting/Details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?
Answer: [Yes]
Justification: We provide all our experiment details in Appendix C.

7. Experiment Statistical Significance
Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?
Answer: [No]
Justification: Our main metric is FID score for which it is standard practice to report
it calculated on the first 50,000 images generated from the model. Standard deviations
could be bootstrapped from this set but this is not standard practice. Furthermore, the
computational cost to sample large image models 50,000 times multiple times is prohibitive
for our academic compute cluster.

8. Experiments Compute Resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

23

Answer: [Yes]
Justification: We provide details of the compute resources used in Appendix C.

9. Code Of Ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?
Answer: [Yes] .
Justification: After careful review of the NeurIPS Code of Ethics, it is clear that the research
presented in this paper conforms with the Code of Ethics in every respect.

10. Broader Impacts
Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?
Answer: [NA] .
Justification: This paper is mostly theoretical and methodological. We do not see immediate
societal impact of this work. However, we acknowledge that large scale implementation of
our algorithm might suffer from the same societal biases as any other generative models.
Indeed it could improve the quality of generative models and hence been used to generate
deepfakes for disinformation.

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?
Answer: [NA] .
Justification: The paper poses no such risks.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?
Answer: [Yes]
Justification: We provide the references and licenses for the codebases and datasets used in
our work in Appendix C.4.

13. New Assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?
Answer: [NA]
Justification: This paper does not introduce any new assets.
Guidelines:

14. Crowdsourcing and Research with Human Subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?
Answer: [NA] .
Justification: The paper does not involve crowdsourcing nor research with human subjects.

15. Institutional Review Board (IRB) Approvals or Equivalent for Research with Human
Subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
Answer: [NA] .
Justification: The paper does not involve crowdsourcing nor research with human subjects.

24

https://neurips.cc/public/EthicsGuidelines

	Introduction
	The Cost of Traversing the Diffusion Path
	Predictor/Corrector Decomposition of the Diffusion Update
	The Incremental Cost of Correction
	Corrector and Predictor Optimised Cost

	Score-Optimal Schedules
	Diffusion Schedule Path Length and Energy
	Estimation of Score-Optimal Schedules
	Choice of Velocity Scaling
	Related Work

	Computational Experiments
	Sampling the Mollified Cantor Distribution
	Adaptive Schedule Learning for Bimodal Example
	Scalable Schedule Learning Diffusion
	Sampling Pre-Trained Models

	Discussion
	Analysis of incremental cost
	Proof of thm:incremental
	Proof of thm:geodesics
	Comparison to Fisher Information

	Training Algorithms
	Adaptive training
	Estimating predictor optimised cost
	Denoising Score Matching Weighting

	Experiment Details
	1D Density Estimation
	Bimodal Example
	Mollified Cantor Distribution

	Pretrained Image Models
	Online Schedule Optimisation of Images
	Licenses

	Acknowledgements of Funding

