EFFICIENT MULTILABEL UNCERTAINTY QUANTIFICATION WITH CONFORMAL ENSEMBLES

Anonymous authors

000

001

002003004

010 011

012

013

014

016

018

019

020

021

024

025

026

027

028

029

031

032 033 034

037

038

040

041

042

043 044

046

047

048

050 051

052

Paper under double-blind review

ABSTRACT

Multilabel classification (MLC) is challenging due to labels being often correlated and due to the highly complex decision boundaries. Moreover, uncertainty quantification, which helps address sparse label combinations, remains an area with significant room for further exploration. In many high-stakes domains, reliable predictions must not only be accurate but also quantify uncertainty to avoid missing critical cases. Conformal prediction (CP) offers distribution-free coverage guarantees, but when applied to individual models it can produce unstable or overly large prediction sets. Ensemble methods are a well-established approach to improve stability and efficiency, yet their potential in multilabel settings has not been fully explored. We investigate ensemble conformal prediction for multilabel classification. Building on prior work on voting- and score-based ensembles, we adapt these strategies to the *label-wise* multilabel setting and conduct a systematic empirical study across multiple aggregation schemes: (i) majority voting, (ii) calibrated aggregation of nonconformity scores, and (iii) performance-weighted aggregation. The theoretical perspective frames independence assumptions and voting bounds in the multilabel ensemble setting, clarifying how coverage guarantees extend under majority voting. Across standard MLC benchmarks (COCO, Yeast, Emotions), our ensembles consistently improve over single-model CP yielding more efficient prediction sets (smaller and more informative), while maintaining target coverage and achieving higher macro-F1 scores. We provide a systematic study of ensemble aggregation methods for conformal prediction in multilabel classification, combining theoretical perspective with a broad comparative evaluation.

1 Introduction

Multilabel classification (MLC) arises in a wide range of applications such as image tagging, genomics, music emotion recognition, and clinical decision support Tsoumakas & Katakis (2007); Zhang & Zhou (2014); Elisseeff & Weston (2001); Trohidis et al. (2008); Rajkomar et al. (2018). These tasks are challenging due to inter-label dependencies, label imbalance Zhang & Zhou (2014); Tsoumakas & Katakis (2007), and the need for principled uncertainty quantification. In high-stakes domains such as medicine and autonomous systems, models must not only be accurate but also communicate their uncertainty, allowing human experts to act cautiously when predictions are unreliable Hendrycks & Dietterich (2019).

Conformal prediction (CP) offers a rigorous framework for uncertainty quantification with finite-sample coverage guarantees Vovk et al. (2005); Shafer & Vovk (2008). Instead of outputting a single label decision, CP produces a *set* of candidate labels guaranteed to contain the ground truth with probability at least $1-\alpha$, for user-specified miscoverage α . CP has recently been extended to MLC through label-wise calibration, where each label is treated independently Romano et al. (2020); Sadinle et al. (2019). While effective and simple, this approach does not capture label dependencies, and the resulting prediction sets may be inefficient or inconsistent across correlated labels.

Ensemble learning is a natural strategy to address these limitations. By combining multiple models, ensembles reduce variance, improve calibration, and often provide stronger uncertainty estimates Dietterich (2000); Breiman (1996); Wolpert (1992); Lakshminarayanan et al. (2017); Ovadia et al. (2019). Prior work has studied ensemble conformal prediction in single-label classification and

regression Cherubin (2019); Gasparin & Ramdas (2024); Ochoa Rivera et al. (2024), analyzing majority voting, weighted aggregation, and score-based fusion. However, these methods have not been systematically extended to MLC, where each label requires its own calibration and aggregation.

This work. We present the first systematic study of *ensemble conformal prediction for multilabel classification*. Building on existing ensemble-CP theory, we adapt majority voting, averaged nonconformity scores, and performance-weighted aggregation to the multilabel setting, providing label-wise coverage analysis and a unified framework for their use. Our contribution is threefold:

- 1. **Theory.** We extend known majority-vote coverage results Cherubin (2019) and recent score/weighted aggregation analyses Gasparin & Ramdas (2024); Ochoa Rivera et al. (2024) to the multilabel context, giving label-wise coverage bounds under independence and dependence assumptions.
- 2. **Framework.** We implement homogeneous and heterogeneous multilabel ensembles using classical models (LR, SGD, MLP) and modern architectures (RNN, Transformer, MLP-Mixer), with conformal calibration applied at the label level before aggregation.
- 3. Experiments. On three benchmark MLC datasets—MS-COCO Lin et al. (2014), Yeast Elisseeff & Weston (2001), and Emotions Trohidis et al. (2008), we show that multilabel ensembles consistently improve F1, maintain or improve coverage, and reduce average prediction set size compared to single-model CP and post-hoc conformalized ensembles.

Overall, our results demonstrate that ensemble methods substantially enhance the efficiency and reliability of conformal prediction in multilabel tasks. By unifying theory and practice, this study provides the first comprehensive treatment of multilabel ensemble CP, offering practical guidelines for designing calibrated ensembles in complex, high-dimensional domains.

2 BACKGROUND AND RELATED WORK

2.1 MULTILABEL CLASSIFICATION

MLC extends traditional classification by allowing each instance to be associated with multiple labels simultaneously Tsoumakas & Katakis (2007); Zhang & Zhou (2014). This formulation arises in domains as varied as image annotation Read et al. (2011), text categorization Yang & Liu (1999), genomics Elisseeff & Weston (2001), and audio tagging Mesaros et al. (2016). A central challenge in MLC is capturing inter-label dependencies while retaining scalability and predictive accuracy.

Early methods include *binary relevance* (BR), which trains an independent binary classifier per label, and transformation-based approaches such as classifier chains and label powerset, which aim to exploit label correlations Read et al. (2011); Tsoumakas et al. (2010). More recently, deep learning models—including CNNs, RNNs, and Transformers—set the state-of-the-art in high-cardinality MLC tasks Nam et al. (2014). Despite these advances, reliable calibration and principled uncertainty quantification remain open challenges, particularly in the presence of label imbalance or rare labels.

2.2 Conformal Prediction

CP is a model-agnostic framework for constructing prediction sets with finite-sample coverage guarantees Vovk et al. (2005). Given a target miscoverage rate α , CP ensures that the true label is included in the prediction set with probability at least $1-\alpha$, assuming only data exchangeability. This property makes CP attractive in high-stakes domains where reliability is as important as accuracy.

CP has been studied in classification Papadopoulos (2008), regression Lei et al. (2018), and ranking Angelopoulos et al. (2021). In the multilabel setting, Mondrian CP Papadopoulos (2008) applies calibration label-wise, treating each label as an independent binary task. While simple and computationally efficient, this approach can be conservative, as it ignores inter-label dependencies and often inflates prediction sets.

Several extensions attempt to mitigate these issues: adaptive thresholds Tibshirani et al. (2019), label-wise risk control Sadinle et al. (2019), and region-based calibration methods Kivaranovic & Meinshausen (2020). However, these typically operate in single-model regimes and are not designed for ensembles. In particular, adaptive thresholds focus on one predictor, label-wise control assumes

consistency in nonconformity scores, and region-based methods face combinatorial challenges in multilabel spaces. These limitations motivate ensemble-aware conformal approaches that combine multiple models while preserving statistical guarantees.

2.3 Ensemble Methods and Conformal Ensembles

Ensemble learning is a well-established strategy for improving generalization and calibration by combining diverse predictors Dietterich (2000); Breiman (1996); Wolpert (1992). Deep ensembles, in particular, have shown strong performance for uncertainty quantification under distribution shift Lakshminarayanan et al. (2017); Ovadia et al. (2019).

Integrating ensembles with CP has received increasing attention. Cherubin Cherubin (2019) analyzed majority-vote ensembles of conformal predictors, establishing coverage guarantees under independence and dependence assumptions in the single-label setting. Gasparin and Ramdas Gasparin & Ramdas (2024) studied weighted set-merging strategies, while Rivera et al. Ochoa Rivera et al. (2024) proposed score-based aggregation methods to reduce conservatism. Other studies explored conformity score fusion Gauraha & Spjuth (2021) and deep ensemble calibration Angelopoulos & Bates (2021). Despite this progress, these contributions remain focused on single-label tasks.

Our focus. In contrast to the broad progress, the use of ensembles in *multilabel* conformal prediction remains largely unexplored. Existing MLC-specific CP methods rely on single models and do not leverage ensemble diversity. Our work bridges this gap: we adapt majority voting, averaged nonconformity scores, and performance-weighted aggregation to the multilabel setting, provide theoretical label-wise coverage bounds, and validate their performance across benchmark MLC datasets.

3 METHODOLOGY

3.1 PROBLEM SETUP

We address the task of MLC, where each input $x \in \mathbb{R}^d$ may be associated with multiple relevant labels from a label set of size L. Let $\mathcal{X} \subseteq \mathbb{R}^d$ denote the input space and $\mathcal{Y} = \{0,1\}^L$ the label space, where $y \in \mathcal{Y}$ is a binary vector indicating the presence or absence of each label. Given a training dataset $\mathcal{D} = \{(x_i,y_i)\}_{i=1}^n$, our objective is to learn a function $f:\mathcal{X} \to [0,1]^L$ that outputs per-label confidence scores or probabilities. These can be thresholded to obtain a predicted label set $\hat{y} \in \{0,1\}^L$ for each input x. In addition to standard multilabel metrics such as macro-F1 and exact match accuracy, we assess the quality of prediction sets using metrics such as empirical coverage, marginal coverage, and average prediction set size—each formally defined in §??. These metrics collectively evaluate the reliability, sharpness, and efficiency of the predicted outputs. Our methodology integrates techniques with multilabel classifiers to produce calibrated prediction sets that balance accuracy, uncertainty, and interpretability.

3.2 Ensemble Learning

To improve predictive robustness and quantify uncertainty, we adopt ensemble learning strategies both as stand-alone baselines and as integral components of our CP framework. We consider the following ensemble types:

3.2.1 Homogeneous

We train M instances of the same base classifier (e.g., LR) on bootstrap-resampled versions of the training data. For each label, predictions from the M models are aggregated via either:

- Majority Voting (MV): Individual binary predictions are combined via simple majority.
- **Probability Averaging (PA)**: Probabilistic outputs are averaged and thresholded (e.g., at 0.5) to form the final prediction.

This strategy provides variance reduction and improved calibration, particularly when base models are sensitive to initialization or data sampling.

3.2.2 Heterogeneous

Heterogeneous ensembles are composed of diverse model architectures, including both linear (LR, SGD) and nonlinear learners (MLP, RNN, Transformer, MLP-Mixer). Each model is trained per label under the binary relevance assumption, and inference predictions are aggregated as follows:

- MV: Binary label predictions from all models are combined via unweighted majority.
- PA: Probabilistic outputs are averaged and thresholded (e.g., at 0.5) to form the final prediction.
- F1-Weighted Voting: Each model's predictions are weighted by their per-label F1 score
 on a held-out validation set. Final predictions are obtained by computing a weighted sum
 and thresholding at 0.5.

We note that F1-weighted voting introduces label-specific adaptivity, assigning higher influence to models that demonstrate superior validation performance for a given label.

3.2.3 STACKED

To further enhance predictive quality, we implement a stacked ensemble. The outputs of multiple base classifiers (LR, SGD, MLP) on a calibration set serve as features to train a LR meta-classifier for each label. At inference time, the meta-classifier produces calibrated probabilities, which are post-processed using CP thresholds to form the final multilabel prediction set. This stacking strategy allows the model to learn optimal combinations of base model predictions in a data-driven manner, while still providing formal coverage guarantees through conformal calibration.

3.3 CONFORMAL PREDICTION

We provide uncertainty-aware predictions in the multilabel setting with the **Mondrian CP** framework, handling the multilabel structure label-wise. Our goal is to construct prediction sets that contain as many true labels as possible, while limiting the inclusion of incorrect ones, under a desired miscoverage rate α (e.g., 0.1 for 90% target coverage).

NONCONFORMITY SCORES AND CALIBRATION

For each label j, we train a binary probabilistic classifier f_j (e.g., LR, MLP, or SGD) on the proper training set. We then compute the nonconformity scores on a separate calibration set as:

$$s_i^{(j)} = 1 - f_j(x_i), \quad \text{for calibration samples i with $y_i^{(j)} = 1$},$$

where $f_j(x_i)$ denotes the predicted probability of label j for instance x_i . The rationale is that lower probabilities for positive labels reflect higher nonconformity. Given these scores, we compute a threshold q_j per label, using the $(1 - \alpha)$ -quantile:

$$q_j = \mathsf{Quantile}_{1-\alpha}\left(\{s_i^{(j)}\}_{i:y_i^{(j)}=1}\right).$$

PREDICTION SETS

At test time, for each instance x, we include label j in the predicted set $\hat{Y}(x)$ if its nonconformity score is less than or equal to the threshold q_j :

$$\hat{Y}(x) = \{j : 1 - f_j(x) \le q_j\}.$$

3.4 ENSEMBLE CONFORMAL PREDICTION: THEORETICAL GUARANTEES

We analyze the theoretical properties of ensemble conformal prediction (ECP) under two aggregation strategies: *majority voting* and *averaged nonconformity scores*. Our results adapt known analyses of majority vote ensembles of conformal predictors Cherubin (2019) to the multilabel setting, and extend them to additional ensemble rules.

SETUP AND ASSUMPTIONS

Let $\mathcal{D}=\{(x_i,Y_i)\}_{i=1}^n$ be a dataset with input features $x_i\in\mathbb{R}^d$ and multi-label outputs $Y_i\subseteq\mathcal{L}=\{1,\ldots,L\}$. We assume the data points are i.i.d. from some unknown distribution \mathcal{P} . We consider M base conformal models trained independently (e.g., via bootstrapping). For each label ℓ , model $m\in\{1,\ldots,M\}$ provides a calibrated threshold $\tau_\ell^{(m)}$ for nonconformity scores, such that marginal label-level coverage holds:

$$\mathbb{P}_{(x,Y)\sim\mathcal{P}}\Big(\ell\in\hat{Y}^{(m)}(x)\ \Big|\ \ell\in Y\Big)\ \geq\ 1-\alpha.$$

Our goal is to understand the coverage properties of the final ensemble prediction set $\hat{Y}^{\text{ens}}(x)$.

Lemma 1 (MV lower bounds, cf. Cherubin (2019)) Let $X_1^{(\ell)}, \ldots, X_M^{(\ell)} \in \{0, 1\}$ be indicators where $X_m^{(\ell)} = 1$ if model m's prediction set includes label ℓ . Assume the models are independent with success probabilities $\mathbb{P}(X_m^{(\ell)} = 1) > 1 - \alpha$. Then, for any voting threshold $k \in \{1, \ldots, M\}$:

$$\mathbb{P}\left(\sum_{m=1}^{M} X_m^{(\ell)} \ge k\right) \ge \sum_{r=k}^{M} {M \choose r} (1-\alpha)^r \alpha^{M-r}.$$

In particular, for unanimity voting k = M:

$$\mathbb{P}\left(\sum_{m=1}^{M} X_m^{(\ell)} \ge M\right) \ge (1-\alpha)^M.$$

Interpretation. The binomial tail at success probability $1 - \alpha$ gives a *lower bound* on ensemble coverage. If the base models are in fact i.i.d. with exact success probability $1 - \alpha$, then the binomial tail is the exact ensemble coverage probability. Thus, majority voting cannot under-cover relative to the base level, and in practice ensemble coverage is even higher due to $p_m > 1 - \alpha$. This restates and extends prior analyses of majority vote CP ensembles Cherubin (2019) to the multilabel setting.

Theorem 1 (Unanimity ensemble coverage) *Under the assumptions of Lemma 1, a unanimity-voting ensemble* (k = M) *satisfies*

$$(1-\alpha)^M \le \mathbb{P}\Big(\ell \in \hat{Y}^{\mathit{ens}}(x) \mid \ell \in Y\Big) \le 1.$$

Discussion. These bounds describe idealized extremes. In practice, dependencies among base models (shared training data, architecture, or errors) reduce the diversity of their predictions, so empirical ensemble coverage typically lies between the theoretical lower bound and the trivial upper bound of 1. This motivates validating ensemble coverage empirically alongside theoretical guarantees.

THEOREM: ENSEMBLE COVERAGE BOUNDS

Theorem 2 (Ensemble Conformal Coverage Bounds) Under the independence assumption across models, and for voting-based ensemble with unanimity threshold k=M, the ensemble satisfies:

$$(1-\alpha)^M \le \mathbb{P}\Big(\ell \in \hat{Y}^{ens}(x) \mid \ell \in Y\Big) \le 1.$$

Proof Sketch. The lower bound follows from Lemma 1, which gives $(1 - \alpha)^M$ under independence. The upper bound is trivially 1, since all M models may include the label. For intermediate thresholds k < M, Lemma 1 provides valid binomial lower bounds.

Practical implication. These bounds represent idealized extremes: full independence yields the conservative lower bound, while the trivial upper bound reflects maximal inclusion. In practice, base models are often correlated (due to shared training data or architectures), so empirical ensemble coverage lies between these extremes. This aligns with prior analyses of majority vote conformal ensembles in the single-label setting Cherubin (2019), while our contribution is to extend these guarantees to multilabel ensembles.

EMPIRICAL VALIDATION

We verify these guarantees (§5) by showing that ensemble methods preserve or improve empirical and marginal coverage while reducing average set size. Theoretical lower bounds are particularly tight when the voting threshold is high.

4 METHODS

Baseline methods include standard and post-hoc CP strategies for MLC. **Our proposed methods**, on the other hand, fully integrate conformal calibration into the ensemble process.

4.1 BASE CLASSIFIERS

We employ a diverse suite of base classifiers (ensemble members) spanning linear, shallow, and deep architectures. These serve as foundational learners for both standalone evaluation and ECP methods.

Logistic Regression (LR) is a linear model trained independently per label under the binary relevance assumption, optimized using the logistic loss.

Stochastic Gradient Descent (SGD) uses a linear classifier trained with online updates and calibrated via Platt scaling (CalibratedClassifierCV) to produce probabilistic outputs suitable for uncertainty quantification.

Multilayer Perceptron (MLP) is a shallow feedforward neural network comprising a single hidden layer with ReLU activation, trained with binary cross-entropy loss.

Recurrent Neural Network (RNN) is a unidirectional LSTM network applied to fixed-length CLIP embeddings, followed by a dense sigmoid-activated output layer to produce per-label probabilities.

Transformer Encoder is a two-layer self-attention-based encoder with multi-head attention, processing CLIP embeddings as input tokens and outputting label-wise confidence scores through a shared linear classifier.

MLP-Mixer is a compact architecture that applies layer normalization and token-channel mixing via feedforward layers to CLIP embeddings, concluding with a sigmoid output unit for probabilistic MLC prediction.

Each model is trained in a per-label fashion using the binary relevance framework, enabling scalable MLC. Each model produces calibrated confidence scores, which are thresholded directly in standard classification or used to compute nonconformity scores within CP procedures. In ensemble settings, their outputs are aggregated using model- and label-specific weighting schemes to construct prediction sets with formal coverage guarantees.

4.2 Baselines

Standard Classification refers to individual models trained per label (i.e., binary classification), without CP. Predictions are made by thresholding per-label probabilities (at 0.5).

Single-Model CP concerns CP applied independently per label using a single classifier and a held-out calibration set. No ensembling is involved.

Post-Hoc ECP first constructs ensembles with CP, by calibrating the aggregated outputs of the ensemble members (e.g., by averaging the probabilities or majority voting). This setting isolates the impact of applying CP after aggregation, as if the ensemble is a standalone model.

4.3 OUR PROPOSED ECP FRAMEWORK

We propose ensembles of CP models, each independently calibrated before ensembling. This design preserves individual coverage guarantees and leverages model diversity. With **Conformal Ensembles**, we evaluate both homogeneous and heterogeneous ensembles, combining per-model CP via majority voting, probability averaging, or F1-weighted voting. **Conformal Stacking (StackECP)**

combines base model outputs via a logistic meta-classifier trained on calibration data. The meta-model outputs are calibrated with conformal thresholds, enabling end-to-end conformal inference.

5 EMPIRICAL ANALYSIS

We evaluate all methods across three diverse MLC benchmarks, covering a range of label cardinalities, label densities, and domain characteristics.

5.1 Datasets

The selected benchmarks span vision, biology, and audio domains and vary in label cardinality, density, and co-occurrence, allowing us to test both predictive accuracy and uncertainty calibration across different domains. **COCO** Lin et al. (2014) is a popular benchmark in computer vision. We use the multi-label version with pre-extracted CLIP features Radford et al. (2021). Each image is associated with multiple object labels (e.g., person, car, dog). The dataset contains 80 labels and exhibits high label co-occurrence and imbalance. **Yeast** is a classic bioinformatics dataset introduced by Elisseeff & Weston (2001) for protein function prediction. It consists of 2,417 samples and 14 labels, with moderate label density. Each instance represents a gene with various expression-based features. **Emotions** is a music-related dataset that maps songs to a set of emotion labels such as happy, sad, and relaxing. It contains 593 instances and 6 labels. This dataset is relatively balanced and is commonly used in multi-label benchmarking Trohidis et al. (2008).

5.2 EVALUATION METRICS

We evaluate the performance using the following five metrics:

Empirical Coverage is the proportion of true labels captured by the prediction set, averaged across all validation instances:

Coverage =
$$\frac{1}{N} \sum_{i=1}^{N} \frac{|\hat{Y}(x_i) \cap Y_i|}{\max(1, |Y_i|)}.$$

Average Set Size: The average number of labels predicted per instance:

Set Size
$$=\frac{1}{N}\sum_{i=1}^{N}|\hat{Y}(x_i)|.$$

Marginal Coverage is the average probability that a true label is included in the predicted set, computed separately for each label and averaged:

Marginal Coverage
$$=\frac{1}{L}\sum_{j=1}^{L}\mathbb{P}\left(j\in\hat{Y}(x)\,\Big|\,j\in Y\right).$$

Macro-F1 Score averages F1 of all labels (i.e., binary predictions v. ground truth per label) and **Exact Match Accuracy** is the fraction of examples where the predicted set exactly matches the ground truth label set. Each of these metrics is applied to all individual classifiers and to aggregated predictions of ensembles (see §3.2).

5.3 Training Setup

Datasets are split into 60% training and 40% test sets; the test set is further divided equally into calibration and validation subsets (20% each). We adopt a **binary relevance** approach, training one binary classifier per label. For ensembles, M=3 or 5 base models are trained on bootstrap samples, each independently calibrated using conformal prediction (CP). Homogeneous ensembles use repeated instances of the same model; heterogeneous ensembles combine LR, SGD, MLP, and others. Aggregation is performed via majority voting, probability averaging, F1-weighted voting (based on validation F1 per label), or stacked ensembling with a LR meta-learner calibrated post hoc. Linear models (LR, SGD) are trained using scikit-learn with standard settings (log loss, Platt scaling for SGD). Neural models (MLP, RNN, Transformer, Mixer) are implemented in PyTorch.

MLP uses one hidden layer (256 ReLU units); RNN is a unidirectional LSTM with hidden size 128; Transformer has two attention layers (4 heads); MLP-Mixer uses standard token/channel mixing and GELU activations. All deep models are trained with Adam (learning rate 10^{-3}), binary crossentropy loss, batch size 128, for 10 epochs. 30% of each bootstrap sample is used for calibration. All models consume CLIP embeddings as input. Training is conducted on a single NVIDIA GPU, and results are averaged over 3 random seeds for robustness.

5.4 EXPERIMENTAL RESULTS

Table 1 presents a comparative evaluation of our ECP methods across the three MLC datasets (Emotions, Yeast, COCO), compared against non-conformal baselines, single-model conformal predictors (CP), and post-hoc conformalized ensembles. Performance is assessed using empirical coverage (EC), marginal coverage (MC), average prediction set size, and macro-F1 (runtime analysis in A.5).

Table 1: Performance comparison across Emotions, Yeast, and COCO for multi-label classification. EC: Empirical Coverage, MC: Marginal Coverage. Best CP-based results per dataset in **bold**.

Method	Emotions		Yeast		coco				
	EC/MC	Set Size	F1	EC/MC	Set Size	F1	EC/MC	Set Size	F1
Non-Conformal									
BR (LR)	_	_	0.615	_	_	0.350	_	_	0.698
Ensemble (LR)	_	_	0.349	_	_	0.349	_	_	0.696
CLIP-RNN	_	_	_	_	_	_	_	_	0.700
Label Bagging (10/40)	-	-	-	-	-	-	-	-	0.483 / 0.694
Single CP									
CP (LR)	0.891/0.877	3.45	0.647	0.8916/0.883	10.61	0.453	0.910/0.900	8.56	0.525
CP (MLP)	0.903/0.893	4.42	0.543	0.903/0.893	10.54	0.468	0.909/0.899	9.34	0.510
CP (SGD)	1.000/1.000	6.00	0.469	0.898/0.871	10.62	0.456	0.911/0.901	8.67	0.528
CP (RNN)	-	-	-	_	-	-	0.912/0.901	8.08	0.542
Post-hoc CP Ensemble									
Het. Ensemble - CP	0.966/0.894	3.49	0.629	0.904/0.893	10.71	0.463	0.905/0.892	7.83	0.548
Multiple MLPs - CP	0.890/0.878	4.49	0.515	-	_	_	_	_	_
Stacked Het CP	0.887/0.878	3.26	0.645	0.874/0.870	10.17	0.466	-	-	-
ECP (ours)									
Hom. CP (MLP-WA)	0.872/0.863	3.17	0.647	0.913/0.893	10.38	0.471	0.904/0.889	7.96	0.543
Hom. CP (LR-MV)	_	_	_	0.909/0.873	10.35	0.4635	0.896/0.897	7.16	0.567
Het. CP (MV/WV)	_	_	_	0.910/0.870	10.10	0.471	0.906/0.887 / 0.887/0.858	7.68 / 7.22	0.555 / 0.575
Stacked Het. CP	0.899/0.883	3.40	0.660	-	-	-	-/-	-/-	-/-

Our ECP methods consistently outperform single-model CP and post-hoc ensembles across most metrics. Table 1 groups methods into four categories: *Non-Conformal* (plain classifiers, no uncertainty quantification), *Single CP* (label-wise CP on individual models), *Post-hoc CP Ensemble* (ensemble first, then conformalize), and *ECP* (ours) (conformalize base models individually, then aggregate). Within each block, we report empirical coverage (EC), marginal coverage (MC), average set size, and macro-F1. Note that rows such as *Het. CP* (MV/WV) report results for two separate ensemble strategies: majority voting (MV) and F1-weighted voting (WV), with the left/right values corresponding to each variant.

On the Emotions dataset, our stacked heterogeneous ECP achieves the best macro-F1 (0.660), surpassing both single-model CP and post-hoc ensembles, while keeping the set size compact (3.40). Homogeneous MLP ensembles with weighted averaging (WA) are also competitive (0.647 F1, smallest set size 3.17), showing the benefit of probabilistic aggregation. In contrast, CP (SGD) reaches perfect coverage (EC = 1) but at the cost of very large sets (average size 6.00), which in fact equals the total number of possible labels in the Emotions dataset, leading to poor F1 and illustrating the conservativeness of single-model CP.

For the Yeast dataset, our methods again provide improvements. Both the homogeneous MLP ensemble (ECP, WA) and the heterogeneous ensemble (ECP, MV) deliver the top macro-F1 (0.471), with the heterogeneous variant producing more compact sets (10.10 vs. 10.38). Our homogeneous MLP-WA model also achieves the highest EC (0.913) and MC (0.893), indicating strong reliability.

Post-hoc CP ensembles improve upon single-model CP, but do not reach the efficiency or predictive strength of ECP.

The COCO dataset, with its high label cardinality and imbalance, is the most challenging. Here, our heterogeneous ECP with F1-weighted voting (WV) achieves the highest macro-F1 (0.575) while maintaining compact sets (7.22). Our homogeneous LR ensemble with majority voting (MV) yields the smallest prediction sets overall (7.16) with competitive F1 (0.567). Other ECP variants (Hom. WA, Het. MV) strike balanced trade-offs between accuracy and compactness. In all cases, our ECP methods maintain valid coverage, while post-hoc ensembles and single CP are less effective.

Summary of takeaways. (i) ECP consistently improves predictive performance and efficiency over single-model CP and post-hoc ensembles. (ii) Heterogeneous ensembles generally outperform homogeneous ones due to increased model diversity. (iii) Aggregation strategies matter: MV, WV, and WA each provide benefits, with stacked ensembles offering the highest gains when sufficient validation data is available. (iv) Across datasets, our methods achieve either the best F1 or the most compact sets, while preserving coverage, demonstrating that ECP is a robust framework for uncertainty-aware multilabel classification.

5.5 ABLATION STUDY

To further isolate the effects of individual design choices in our framework, such as ensemble size, model diversity, aggregation strategy, and coverage parameters, we report targeted ablation studies in the Appendix A. On the COCO dataset, we find that increasing the ensemble size up to 5 models improves macro-F1 and stabilizes empirical coverage, without increasing prediction set size. Heterogeneous ensembles outperform homogeneous ones possibly due to architectural diversity. Varying the miscoverage rate α confirms the expected accuracy—coverage trade-off, with higher α values leading to smaller, more precise prediction sets at the expense of coverage. We also repeated experiments across five random seeds, with results summarized in Table 2, confirming that our ensembles yield consistent improvements and remain robust to training variability. These findings offer practical guidance for tailoring ECP systems to specific performance requirements.

Table 2: Macro-F1 (mean \pm std) across five runs.

Dataset	Method	Macro-F1			
COCO	Single CP (MLP) ECP (ours)	0.542 ± 0.001 0.558 ± 0.003			
Emotions	Single CP (MLP) ECP (Stacked Ensemble)	0.554 ± 0.015 0.647 ± 0.024			
Yeast	Single CP (MLP) ECP (Het. Ensemble)	0.466 ± 0.007 0.467 ± 0.004			

6 Conclusion

In this work, we systematically studied ensemble-based conformal prediction (ECP) methods for multilabel classification, combining the predictive strength of ensembles with the formal uncertainty guarantees of conformal prediction. By adapting and evaluating multiple aggregation strategies across three benchmarks, we showed that ECP improves macro-F1 over single-model and post-hoc conformal baselines, while maintaining valid empirical and marginal coverage and producing more compact prediction sets. Our multi-seed evaluation further demonstrated that ensembles provide more stable and robust performance across runs. These findings establish ECP as a practical and flexible framework for uncertainty-aware multilabel learning. Future work will investigate richer base architectures, adaptive calibration for rare labels, and efficient conformalization strategies to extend ECP to extreme-label and large-scale applications.

REPRODUCIBILITY STATEMENT

Our results are designed to be fully reproducible. All datasets used in this work (MS-COCO, Yeast, Emotions) are publicly available and described in Section 5.1. Model architectures, training setups, and ensemble configurations are specified in Section 5.3 and Section 5. Evaluation metrics are formally defined in Section 5.2. To assess robustness, we report results averaged over multiple random seeds and provide standard deviations in Appendix A.6. Extended ablation studies (Appendix A.1) further document the sensitivity of our framework to ensemble size, miscoverage rate, and model diversity. An anonymous implementation, including training scripts and conformal calibration routines, is submitted in the supplementary materials to facilitate exact reproduction.

REFERENCES

- Anastasios N Angelopoulos and Stephen Bates. A gentle introduction to conformal prediction and distribution-free uncertainty quantification. *arXiv* preprint arXiv:2107.07511, 2021.
- Anastasios N Angelopoulos, Stephen Bates, Michael I Jordan, and Emmanuel J Candès. Uncertainty sets for image classifiers using conformal prediction. *arXiv preprint arXiv:2009.14193*, 2021.
- Leo Breiman. Bagging predictors. Machine learning, 24(2):123–140, 1996.
- Giovanni Cherubin. Majority vote ensembles of conformal predictors. *Machine Learning*, 108(3): 501–527, 2019.
- Thomas G Dietterich. Ensemble methods in machine learning. *Multiple classifier systems*, pp. 1–15, 2000.
- André Elisseeff and Jason Weston. A kernel method for multi-labelled classification. In *Advances in neural information processing systems*, volume 14, pp. 681–687, 2001.
- Matteo Gasparin and Aaditya Ramdas. Merging uncertainty sets via majority vote. *arXiv preprint* arXiv:2401.09379, 2024.
- Niharika Gauraha and Ola Spjuth. Synergy conformal prediction. In *Conformal and Probabilistic Prediction and Applications*, volume 152, pp. 1–20, 2021.
- Dan Hendrycks and Thomas Dietterich. Benchmarking neural network robustness to common corruptions and perturbations. *arXiv preprint arXiv:1903.12261*, 2019.
- Dusan Kivaranovic and Nicolai Meinshausen. Adaptive conformal prediction for multi-output regression and classification. *arXiv preprint arXiv:2007.03514*, 2020.
- Balaji Lakshminarayanan, Alexander Pritzel, and Charles Blundell. Simple and scalable predictive uncertainty estimation using deep ensembles. *Advances in neural information processing systems*, 30, 2017.
- Jing Lei, Max G'Sell, Alessandro Rinaldo, Ryan J Tibshirani, and Larry Wasserman. Distribution-free predictive inference for regression. *Journal of the American Statistical Association*, 113 (523):1094–1111, 2018.
- Tsung-Yi Lin, Michael Maire, Serge Belongie, James Hays, Pietro Perona, Deva Ramanan, Piotr Dollár, and C Lawrence Zitnick. Microsoft coco: Common objects in context. In *European conference on computer vision*, pp. 740–755. Springer, 2014.
- Annamaria Mesaros, Toni Heittola, and Tuomas Virtanen. Metrics for polyphonic sound event detection. In *Applied Sciences*, 2016.
- Jinseok Nam, Enrique Mencia, Hyunwoo Kim, Iryna Gurevych, and Johannes Fürnkranz. Large-scale multi-label text classification—revisiting neural networks. In European Conference on Machine Learning and Principles and Practice of Knowledge Discovery in Databases (ECML PKDD), pp. 437–452. Springer, 2014.

 2019.

- Eduardo Ochoa Rivera, Yash Patel, and Ambuj Tewari. Conformal prediction for ensembles: Improving efficiency via score-based aggregation. *arXiv preprint arXiv:2405.16246*, 2024.

 Yaniv Ovadia, Elad Fertig, Jaehee Ren, Zachary Nado, D. Sculley, Sebastian Nowozin, Joshua V. Dillon, and Balaji Lakshminarayanan. Can you trust your model's uncertainty? evaluating predictive uncertainty under dataset shift. *Advances in Neural Information Processing Systems*, 32,
 - Harris Papadopoulos. Inductive conformal prediction: Theory and application to neural networks. *Tools in Artificial Intelligence*, 2008.
 - Alec Radford, Jong Wook Kim, Chris Hallacy, Aditya Ramesh, Gabriel Goh, Sandhini Agarwal, Girish Sastry, Amanda Askell, Pamela Mishkin, Jack Clark, Gretchen Krueger, and Ilya Sutskever. Learning transferable visual models from natural language supervision. In *Proceedings of the 38th International Conference on Machine Learning (ICML)*, pp. 8748–8763, 2021.
 - Alvin Rajkomar, Eyal Oren, Kai Chen, Andrew M Dai, Noam Hajaj, Michael Hardt, Peter J Liu, Xiaobing Liu, Joseph Marcus, Mayur Sun, et al. Scalable and accurate deep learning with electronic health records. *npj Digital Medicine*, 1(1):1–10, 2018.
 - Jesse Read, Bernhard Pfahringer, Geoff Holmes, and Eibe Frank. Classifier chains for multi-label classification. In *Machine learning*, volume 85, pp. 333–359, 2011.
 - Yaniv Romano, Maurizio Sesia, and Emmanuel J Candès. Classification with valid and adaptive coverage. *Advances in Neural Information Processing Systems*, 33:3581–3591, 2020.
 - Mauricio Sadinle, Jing Lei, and Larry Wasserman. Least ambiguous set-valued classifiers with bounded error levels. In *Journal of the American Statistical Association*, volume 114, pp. 223–231, 2019.
 - Glenn Shafer and Vladimir Vovk. A tutorial on conformal prediction. *Journal of Machine Learning Research*, 9(Mar):371–421, 2008.
 - Jack Tibshirani et al. Conformal prediction under covariate shift. *Advances in Neural Information Processing Systems*, 32, 2019.
 - Konstantinos Trohidis, Grigorios Tsoumakas, George Kalliris, and Ioannis Vlahavas. Multi-label classification of music by emotion. In *Proceedings of the 9th International Conference on Music Information Retrieval (ISMIR)*, pp. 325–330, 2008.
 - Grigorios Tsoumakas and Ioannis Katakis. Multi-label classification: An overview. *International Journal of Data Warehousing and Mining (IJDWM)*, 3(3):1–13, 2007.
 - Grigorios Tsoumakas, Ioannis Katakis, and Ioannis Vlahavas. Mining multi-label data. In *Data mining and knowledge discovery handbook*, pp. 667–685. Springer, 2010.
 - Vladimir Vovk, Alexander Gammerman, and Glenn Shafer. *Algorithmic learning in a random world*. Springer, 2005.
 - David H Wolpert. Stacked generalization. In *Neural networks*, volume 5, pp. 241–259, 1992.
 - Yiming Yang and Xin Liu. An evaluation of statistical approaches to text categorization. *Information retrieval*, 1(1-2):69–90, 1999.
 - Min-Ling Zhang and Zhi-Hua Zhou. A review on multi-label learning algorithms. *IEEE transactions on knowledge and data engineering*, 26(8):1819–1837, 2014.

A APPENDIX

A.1 ABLATION STUDIES

To isolate and analyze the contributions of individual components within our proposed ECP framework, we conduct comprehensive ablation experiments using the COCO dataset. Specifically, we investigate the impact of ensemble size, aggregation strategy (majority voting versus probability averaging), model diversity (homogeneous versus heterogeneous ensembles), and the sensitivity of coverage guarantees to the specified miscoverage rate (α) .

A.2 IMPACT OF ENSEMBLE SIZE

We first examine the effect of varying the ensemble size M from 1 (single-model baseline) to 10 using homogeneous ensembles of LR classifiers. Figure 1 illustrates the changes in empirical coverage, marginal coverage, macro-F1, and average prediction set size as the ensemble size increases.

Impact of Ensemble Size on Multilabel Prediction

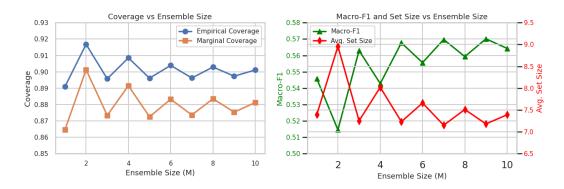


Figure 1: Impact of ensemble size on multilabel prediction performance on the COCO dataset. Left: Empirical and marginal coverage increase moderately with ensemble size, peaking around M=2–4. Right: Macro-F1 improves steadily with larger ensembles while average prediction set size remains compact and stable, showing strong trade-offs between accuracy and efficiency.

Table 3 summarizes detailed numerical results. Increasing the ensemble size from 1 to 5 models leads to significant improvements in macro-F1 scores (approximately 2.2 percentage points, from 0.5458 to 0.5677) and maintains a relatively stable empirical coverage around 0.89–0.91. Additionally, the average prediction set size remains compact, decreasing slightly from 7.39 to 7.23 labels per instance. Beyond 5 models, performance gains become marginal, indicating a saturation effect at approximately M=5.

Thus, for practical considerations balancing predictive accuracy, coverage, and computational cost, an ensemble size between 3 and 5 is recommended.

A.3 SENSITIVITY TO MISCOVERAGE RATE

To evaluate the robustness of our ECP framework under varying coverage requirements, we analyze its sensitivity to the target miscoverage rate α . We vary α across a range of values $\{0.01, 0.05, 0.10, 0.20\}$, which correspond to target coverage levels of 99%, 95%, 90%, and 80%, respectively. Table 4 presents the resulting empirical coverage and macro-F1 scores for each setting.

As expected, reducing the target coverage level (increasing α) results in decreased empirical coverage. However, this trade-off allows for more selective predictions, which significantly improves the macro-F1 score. For example, increasing α from 0.01 to 0.20 improves macro-F1 from 0.28 to 0.67, illustrating a strong accuracy-coverage trade-off. These results emphasize the importance of tuning α based on the application's tolerance for errors versus the need for precision.

Table 3: Detailed results of varying ensemble size (M) on COCO dataset.

M	EC	Avg. Size	Macro-F1	MC
1	0.8909	7.39	0.5458	0.8645
2	0.9168	8.96	0.5145	0.9013
3	0.8957	7.25	0.5630	0.8733
4	0.9085	8.02	0.5428	0.8915
5	0.8961	7.23	0.5677	0.8725
6	0.9039	7.66	0.5556	0.8832
7	0.8962	7.15	0.5697	0.8736
8	0.9029	7.51	0.5593	0.8835
9	0.8973	7.18	0.5701	0.8753
10	0.9011	7.39	0.5643	0.8812

Table 4: Effect of target miscoverage rate (α) on empirical coverage and macro-F1.

α	Target Coverage	Empirical Coverage	Macro-F1
0.01	0.99	0.9877	0.2825
0.05	0.95	0.9399	0.4874
0.10	0.90	0.8878	0.5875
0.20	0.80	0.7887	0.6700

A.4 HOMOGENEOUS VS. HETEROGENEOUS ENSEMBLES

To understand the impact of model diversity on conformal ensemble performance, we compare homogeneous ensembles (composed of identical model types, e.g., multiple MLPs) with heterogeneous ensembles (comprising diverse architectures such as LR, SGD, and MLP). This comparison is conducted across all three datasets under CP with majority voting or weighted aggregation.

Results in Table 1 suggest that heterogeneous ensembles generally offer improved performance in terms of macro-F1 while maintaining strong empirical and marginal coverage. For instance, on the Emotions dataset, the *Stacked Heterogeneous Ensemble* achieves the best overall F1 score (0.6596), outperforming both single-model CP and homogeneous CP ensembles. Similarly, on COCO, the heterogeneous ensemble (Het. (2) CP (WV)) obtains the highest F1 (0.5745) while maintaining a competitive set size (7.22) and adequate marginal coverage.

In contrast, homogeneous ensembles—such as MLP-based WA ensembles—tend to produce slightly larger prediction sets (e.g., Emotions: size 3.17, F1 0.6467), though they still yield competitive results when well-calibrated. These findings reinforce the hypothesis that diversity in base models helps mitigate correlated errors, leading to more compact and accurate prediction sets.

In summary, while homogeneous ensembles provide stable baselines, heterogeneous ensembles consistently achieve better accuracy-coverage trade-offs, especially when combined with voting or weighted aggregation mechanisms.

A.5 RUNTIME AND COMPUTATIONAL ANALYSIS

All experiments were conducted on a machine with an NVIDIA GeForce RTX 2080 Ti GPU (11GB VRAM), 64GB RAM, and Ubuntu 20.04. On the COCO dataset, single-model CP completes calibration and inference in approximately 16 minutes. Ensemble variants with 5 models require around 22 minutes, reflecting a 38% increase in runtime. This overhead scales roughly linearly with ensemble size but remains practical for configurations with 3–5 models. Given the gains in coverage and predictive robustness, the added cost is considered acceptable for most applications. Parallelization can further improve efficiency.

A.6 STATISTICAL SIGNIFICANCE

To evaluate whether the performance improvements from ensemble-based conformal predictors are statistically reliable, we repeated experiments across five random seeds for all three datasets. We

report the mean and standard deviation (std) of the macro-F1 score in Table 5. The standard deviation reflects the variability across runs: smaller std indicates more stable performance. In addition, for Emotions and Yeast we also report coverage and average set size (Table 6), since these metrics are particularly relevant for smaller-scale MLC benchmarks.

Table 5: Macro-F1 (mean \pm std) across five runs.

	,	
Dataset	Method	Macro-F1
COCO	Single CP (MLP) ECP (ours)	0.542 ± 0.001 0.558 ± 0.003
Emotions	Single CP (MLP) ECP (Stacked Ensemble)	0.554 ± 0.015 0.647 ± 0.024
Yeast	Single CP (MLP) ECP (Het. Ensemble)	0.466 ± 0.007 0.467 ± 0.004

Table 6: Extended reliability metrics (mean ± std) across five runs for Emotions and Yeast.

Dataset	Method	Coverage	MC	Set Size	F1
Emotions	Single CP (MLP) ECP (Stacked)				0.5542 ± 0.0151 0.6467 ± 0.0238
Yeast	Single CP (MLP) ECP (Het.)				0.4661 ± 0.0071 0.4667 ± 0.0035

Overall, the results confirm that ensemble-based CP improves predictive performance in Emotions substantially (F1 gain of +0.09, with smaller sets), achieves moderate but consistent gains on COCO, and maintains competitive performance on Yeast while slightly improving prediction set compactness. On COCO, a Wilcoxon signed-rank test yielded a p-value of 0.062, suggesting marginal significance. For Emotions, the gain is well beyond the baseline's variability, confirming a robust improvement. On Yeast, the improvements are minor in F1 but demonstrate the stability of ensemble calibration.

A.7 LIMITATIONS AND FUTURE WORK

While our method improves both uncertainty quantification and predictive performance in multilabel classification, it also opens several avenues for future improvement. First, our current framework treats labels independently through the binary relevance assumption. This simplifies calibration but ignores structured label dependencies; as the label space grows, this independence can lead to inefficiencies and redundant prediction sets. Extending ensemble conformal prediction to incorporate correlations (e.g., via graphical models, label hierarchies) is an important direction. Second, ensemble methods add computational overhead, both in training multiple base models and in conformal calibration for each label. Although ensembles of moderate size are tractable, scaling to large base models or extreme multi-label settings (hundreds or thousands of labels) may require more efficient strategies such as pruning, model distillation, or approximate calibration. Third, performance depends on the quality of base models. Miscalibration, especially for rare labels, can propagate through the conformal procedure. More adaptive calibration schemes, such as label-wise adjustments or focal loss-based training, could improve reliability. Future work will also explore extending our framework beyond binary relevance to structured multi-label outputs, investigating ensemble methods tailored for extreme label spaces, and developing computationally efficient conformalization techniques suitable for real-time or large-scale applications.

A.8 USE OF LARGE LANGUAGE MODELS (LLMS)

During manuscript preparation, ChatGPT (GPT-5) was used to aid in phrasing and grammar polishing. All research ideas, methodological developments, experiments, and analysis were conceived,

implemented, and validated entirely by the authors. The authors take full responsibility for the content of the paper.