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ABSTRACT

Multilabel classification (MLC) is challenging due to labels being often corre-
lated and due to the highly complex decision boundaries. Moreover, uncertainty
quantification, which helps address sparse label combinations, remains an area
with significant room for further exploration. In many high-stakes domains, reli-
able predictions must not only be accurate but also quantify uncertainty to avoid
missing critical cases. Conformal prediction (CP) offers distribution-free cover-
age guarantees, but when applied to individual models it can produce unstable or
overly large prediction sets. Ensemble methods are a well-established approach to
improve stability and efficiency, yet their potential in multilabel settings has not
been fully explored. We investigate ensemble conformal prediction for multilabel
classification. Building on prior work on voting- and score-based ensembles, we
adapt these strategies to the label-wise multilabel setting and conduct a systematic
empirical study across multiple aggregation schemes: (i) majority voting, (ii) cal-
ibrated aggregation of nonconformity scores, and (iii) performance-weighted ag-
gregation. The theoretical perspective frames independence assumptions and vot-
ing bounds in the multilabel ensemble setting, clarifying how coverage guarantees
extend under majority voting. Across standard MLC benchmarks (COCO, Yeast,
Emotions), our ensembles consistently improve over single-model CP yielding
more efficient prediction sets (smaller and more informative), while maintaining
target coverage and achieving higher macro-F1 scores. We provide a systematic
study of ensemble aggregation methods for conformal prediction in multilabel
classification, combining theoretical perspective with a broad comparative evalu-
ation.

1 INTRODUCTION

Multilabel classification (MLC) arises in a wide range of applications such as image tagging, ge-
nomics, music emotion recognition, and clinical decision support Tsoumakas & Katakis (2007);
Zhang & Zhou (2014); Elisseeff & Weston (2001); Trohidis et al. (2008); Rajkomar et al. (2018).
These tasks are challenging due to inter-label dependencies, label imbalance Zhang & Zhou (2014);
Tsoumakas & Katakis (2007), and the need for principled uncertainty quantification. In high-stakes
domains such as medicine and autonomous systems, models must not only be accurate but also
communicate their uncertainty, allowing human experts to act cautiously when predictions are unre-
liable Hendrycks & Dietterich (2019).

Conformal prediction (CP) offers a rigorous framework for uncertainty quantification with finite-
sample coverage guarantees Vovk et al. (2005); Shafer & Vovk (2008). Instead of outputting a
single label decision, CP produces a set of candidate labels guaranteed to contain the ground truth
with probability at least 1− α, for user-specified miscoverage α. CP has recently been extended to
MLC through label-wise calibration, where each label is treated independently Romano et al. (2020);
Sadinle et al. (2019). While effective and simple, this approach does not capture label dependencies,
and the resulting prediction sets may be inefficient or inconsistent across correlated labels.

Ensemble learning is a natural strategy to address these limitations. By combining multiple mod-
els, ensembles reduce variance, improve calibration, and often provide stronger uncertainty esti-
mates Dietterich (2000); Breiman (1996); Wolpert (1992); Lakshminarayanan et al. (2017); Ovadia
et al. (2019). Prior work has studied ensemble conformal prediction in single-label classification and
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regression Cherubin (2019); Gasparin & Ramdas (2024); Ochoa Rivera et al. (2024), analyzing ma-
jority voting, weighted aggregation, and score-based fusion. However, these methods have not been
systematically extended to MLC, where each label requires its own calibration and aggregation.

This work. We present the first systematic study of ensemble conformal prediction for multil-
abel classification. Building on existing ensemble-CP theory, we adapt majority voting, averaged
nonconformity scores, and performance-weighted aggregation to the multilabel setting, providing
label-wise coverage analysis and a unified framework for their use. Our contribution is threefold:

1. Theory. We extend known majority-vote coverage results Cherubin (2019) and recent
score/weighted aggregation analyses Gasparin & Ramdas (2024); Ochoa Rivera et al.
(2024) to the multilabel context, giving label-wise coverage bounds under independence
and dependence assumptions.

2. Framework. We implement homogeneous and heterogeneous multilabel ensembles using
classical models (LR, SGD, MLP) and modern architectures (RNN, Transformer, MLP-
Mixer), with conformal calibration applied at the label level before aggregation.

3. Experiments. On three benchmark MLC datasets—MS-COCO Lin et al. (2014),
Yeast Elisseeff & Weston (2001), and Emotions Trohidis et al. (2008), we show that multil-
abel ensembles consistently improve F1, maintain or improve coverage, and reduce average
prediction set size compared to single-model CP and post-hoc conformalized ensembles.

Overall, our results demonstrate that ensemble methods substantially enhance the efficiency and
reliability of conformal prediction in multilabel tasks. By unifying theory and practice, this study
provides the first comprehensive treatment of multilabel ensemble CP, offering practical guidelines
for designing calibrated ensembles in complex, high-dimensional domains.

2 BACKGROUND AND RELATED WORK

2.1 MULTILABEL CLASSIFICATION

MLC extends traditional classification by allowing each instance to be associated with multiple
labels simultaneously Tsoumakas & Katakis (2007); Zhang & Zhou (2014). This formulation arises
in domains as varied as image annotation Read et al. (2011), text categorization Yang & Liu (1999),
genomics Elisseeff & Weston (2001), and audio tagging Mesaros et al. (2016). A central challenge
in MLC is capturing inter-label dependencies while retaining scalability and predictive accuracy.

Early methods include binary relevance (BR), which trains an independent binary classifier per la-
bel, and transformation-based approaches such as classifier chains and label powerset, which aim to
exploit label correlations Read et al. (2011); Tsoumakas et al. (2010). More recently, deep learn-
ing models—including CNNs, RNNs, and Transformers—set the state-of-the-art in high-cardinality
MLC tasks Nam et al. (2014). Despite these advances, reliable calibration and principled uncertainty
quantification remain open challenges, particularly in the presence of label imbalance or rare labels.

2.2 CONFORMAL PREDICTION

CP is a model-agnostic framework for constructing prediction sets with finite-sample coverage guar-
antees Vovk et al. (2005). Given a target miscoverage rate α, CP ensures that the true label is in-
cluded in the prediction set with probability at least 1−α, assuming only data exchangeability. This
property makes CP attractive in high-stakes domains where reliability is as important as accuracy.

CP has been studied in classification Papadopoulos (2008), regression Lei et al. (2018), and rank-
ing Angelopoulos et al. (2021). In the multilabel setting, Mondrian CP Papadopoulos (2008) applies
calibration label-wise, treating each label as an independent binary task. While simple and com-
putationally efficient, this approach can be conservative, as it ignores inter-label dependencies and
often inflates prediction sets.

Several extensions attempt to mitigate these issues: adaptive thresholds Tibshirani et al. (2019),
label-wise risk control Sadinle et al. (2019), and region-based calibration methods Kivaranovic &
Meinshausen (2020). However, these typically operate in single-model regimes and are not designed
for ensembles. In particular, adaptive thresholds focus on one predictor, label-wise control assumes
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consistency in nonconformity scores, and region-based methods face combinatorial challenges in
multilabel spaces. These limitations motivate ensemble-aware conformal approaches that combine
multiple models while preserving statistical guarantees.

2.3 ENSEMBLE METHODS AND CONFORMAL ENSEMBLES

Ensemble learning is a well-established strategy for improving generalization and calibration by
combining diverse predictors Dietterich (2000); Breiman (1996); Wolpert (1992). Deep ensem-
bles, in particular, have shown strong performance for uncertainty quantification under distribution
shift Lakshminarayanan et al. (2017); Ovadia et al. (2019).

Integrating ensembles with CP has received increasing attention. Cherubin Cherubin (2019) ana-
lyzed majority-vote ensembles of conformal predictors, establishing coverage guarantees under in-
dependence and dependence assumptions in the single-label setting. Gasparin and Ramdas Gasparin
& Ramdas (2024) studied weighted set-merging strategies, while Rivera et al. Ochoa Rivera et al.
(2024) proposed score-based aggregation methods to reduce conservatism. Other studies explored
conformity score fusion Gauraha & Spjuth (2021) and deep ensemble calibration Angelopoulos &
Bates (2021). Despite this progress, these contributions remain focused on single-label tasks.

Our focus. In contrast to the broad progress, the use of ensembles in multilabel conformal predic-
tion remains largely unexplored. Existing MLC-specific CP methods rely on single models and do
not leverage ensemble diversity. Our work bridges this gap: we adapt majority voting, averaged non-
conformity scores, and performance-weighted aggregation to the multilabel setting, provide theoret-
ical label-wise coverage bounds, and validate their performance across benchmark MLC datasets.

3 METHODOLOGY

3.1 PROBLEM SETUP

We address the task of MLC, where each input x ∈ Rd may be associated with multiple relevant
labels from a label set of size L. Let X ⊆ Rd denote the input space and Y = {0, 1}L the label
space, where y ∈ Y is a binary vector indicating the presence or absence of each label. Given
a training dataset D = {(xi, yi)}ni=1, our objective is to learn a function f : X → [0, 1]L that
outputs per-label confidence scores or probabilities. These can be thresholded to obtain a predicted
label set ŷ ∈ {0, 1}L for each input x. In addition to standard multilabel metrics such as macro-F1
and exact match accuracy, we assess the quality of prediction sets using metrics such as empirical
coverage, marginal coverage, and average prediction set size—each formally defined in §??. These
metrics collectively evaluate the reliability, sharpness, and efficiency of the predicted outputs. Our
methodology integrates techniques with multilabel classifiers to produce calibrated prediction sets
that balance accuracy, uncertainty, and interpretability.

3.2 ENSEMBLE LEARNING

To improve predictive robustness and quantify uncertainty, we adopt ensemble learning strategies
both as stand-alone baselines and as integral components of our CP framework. We consider the
following ensemble types:

3.2.1 HOMOGENEOUS

We train M instances of the same base classifier (e.g., LR) on bootstrap-resampled versions of the
training data. For each label, predictions from the M models are aggregated via either:

• Majority Voting (MV): Individual binary predictions are combined via simple majority.

• Probability Averaging (PA): Probabilistic outputs are averaged and thresholded (e.g., at
0.5) to form the final prediction.

This strategy provides variance reduction and improved calibration, particularly when base models
are sensitive to initialization or data sampling.
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3.2.2 HETEROGENEOUS

Heterogeneous ensembles are composed of diverse model architectures, including both linear (LR,
SGD) and nonlinear learners (MLP, RNN, Transformer, MLP-Mixer). Each model is trained per
label under the binary relevance assumption, and inference predictions are aggregated as follows:

• MV: Binary label predictions from all models are combined via unweighted majority.

• PA: Probabilistic outputs are averaged and thresholded (e.g., at 0.5) to form the final pre-
diction.

• F1-Weighted Voting: Each model’s predictions are weighted by their per-label F1 score
on a held-out validation set. Final predictions are obtained by computing a weighted sum
and thresholding at 0.5.

We note that F1-weighted voting introduces label-specific adaptivity, assigning higher influence to
models that demonstrate superior validation performance for a given label.

3.2.3 STACKED

To further enhance predictive quality, we implement a stacked ensemble. The outputs of multiple
base classifiers (LR, SGD, MLP) on a calibration set serve as features to train a LR meta-classifier
for each label. At inference time, the meta-classifier produces calibrated probabilities, which are
post-processed using CP thresholds to form the final multilabel prediction set. This stacking strategy
allows the model to learn optimal combinations of base model predictions in a data-driven manner,
while still providing formal coverage guarantees through conformal calibration.

3.3 CONFORMAL PREDICTION

We provide uncertainty-aware predictions in the multilabel setting with the Mondrian CP frame-
work, handling the multilabel structure label-wise. Our goal is to construct prediction sets that con-
tain as many true labels as possible, while limiting the inclusion of incorrect ones, under a desired
miscoverage rate α (e.g., 0.1 for 90% target coverage).

NONCONFORMITY SCORES AND CALIBRATION

For each label j, we train a binary probabilistic classifier fj (e.g., LR, MLP, or SGD) on the proper
training set. We then compute the nonconformity scores on a separate calibration set as:

s
(j)
i = 1− fj(xi), for calibration samples i with y

(j)
i = 1,

where fj(xi) denotes the predicted probability of label j for instance xi. The rationale is that lower
probabilities for positive labels reflect higher nonconformity. Given these scores, we compute a
threshold qj per label, using the (1− α)-quantile:

qj = Quantile1−α

(
{s(j)i }

i:y
(j)
i =1

)
.

PREDICTION SETS

At test time, for each instance x, we include label j in the predicted set Ŷ (x) if its nonconformity
score is less than or equal to the threshold qj :

Ŷ (x) = {j : 1− fj(x) ≤ qj}.

3.4 ENSEMBLE CONFORMAL PREDICTION: THEORETICAL GUARANTEES

We analyze the theoretical properties of ensemble conformal prediction (ECP) under two aggrega-
tion strategies: majority voting and averaged nonconformity scores. Our results adapt known anal-
yses of majority vote ensembles of conformal predictors Cherubin (2019) to the multilabel setting,
and extend them to additional ensemble rules.
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SETUP AND ASSUMPTIONS

Let D = {(xi, Yi)}ni=1 be a dataset with input features xi ∈ Rd and multi-label outputs Yi ⊆ L =
{1, . . . , L}. We assume the data points are i.i.d. from some unknown distribution P . We consider
M base conformal models trained independently (e.g., via bootstrapping). For each label ℓ, model
m ∈ {1, . . . ,M} provides a calibrated threshold τ

(m)
ℓ for nonconformity scores, such that marginal

label-level coverage holds:

P(x,Y )∼P

(
ℓ ∈ Ŷ (m)(x)

∣∣∣ ℓ ∈ Y
)

≥ 1− α.

Our goal is to understand the coverage properties of the final ensemble prediction set Ŷ ens(x).

Lemma 1 (MV lower bounds, cf. Cherubin (2019)) Let X
(ℓ)
1 , . . . , X

(ℓ)
M ∈ {0, 1} be indicators

where X
(ℓ)
m = 1 if model m’s prediction set includes label ℓ. Assume the models are independent

with success probabilities P(X(ℓ)
m = 1) ≥ 1− α. Then, for any voting threshold k ∈ {1, . . . ,M}:

P

(
M∑

m=1

X(ℓ)
m ≥ k

)
≥

M∑
r=k

(
M

r

)
(1− α)rαM−r.

In particular, for unanimity voting k = M :

P

(
M∑

m=1

X(ℓ)
m ≥ M

)
≥ (1− α)M .

Interpretation. The binomial tail at success probability 1 − α gives a lower bound on ensemble
coverage. If the base models are in fact i.i.d. with exact success probability 1−α, then the binomial
tail is the exact ensemble coverage probability. Thus, majority voting cannot under-cover relative to
the base level, and in practice ensemble coverage is even higher due to pm > 1 − α. This restates
and extends prior analyses of majority vote CP ensembles Cherubin (2019) to the multilabel setting.

Theorem 1 (Unanimity ensemble coverage) Under the assumptions of Lemma 1, a unanimity-
voting ensemble (k = M ) satisfies

(1− α)M ≤ P
(
ℓ ∈ Ŷ ens(x)

∣∣∣ ℓ ∈ Y
)

≤ 1.

Discussion. These bounds describe idealized extremes. In practice, dependencies among base mod-
els (shared training data, architecture, or errors) reduce the diversity of their predictions, so empirical
ensemble coverage typically lies between the theoretical lower bound and the trivial upper bound of
1. This motivates validating ensemble coverage empirically alongside theoretical guarantees.

THEOREM: ENSEMBLE COVERAGE BOUNDS

Theorem 2 (Ensemble Conformal Coverage Bounds) Under the independence assumption
across models, and for voting-based ensemble with unanimity threshold k = M , the ensemble
satisfies:

(1− α)M ≤ P
(
ℓ ∈ Ŷ ens(x)

∣∣∣ ℓ ∈ Y
)

≤ 1.

Proof Sketch. The lower bound follows from Lemma 1, which gives (1 − α)M under indepen-
dence. The upper bound is trivially 1, since all M models may include the label. For intermediate
thresholds k < M , Lemma 1 provides valid binomial lower bounds.

Practical implication. These bounds represent idealized extremes: full independence yields the
conservative lower bound, while the trivial upper bound reflects maximal inclusion. In practice, base
models are often correlated (due to shared training data or architectures), so empirical ensemble
coverage lies between these extremes. This aligns with prior analyses of majority vote conformal
ensembles in the single-label setting Cherubin (2019), while our contribution is to extend these
guarantees to multilabel ensembles.
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EMPIRICAL VALIDATION

We verify these guarantees (§5) by showing that ensemble methods preserve or improve empirical
and marginal coverage while reducing average set size. Theoretical lower bounds are particularly
tight when the voting threshold is high.

4 METHODS

Baseline methods include standard and post-hoc CP strategies for MLC. Our proposed methods,
on the other hand, fully integrate conformal calibration into the ensemble process.

4.1 BASE CLASSIFIERS

We employ a diverse suite of base classifiers (ensemble members) spanning linear, shallow, and deep
architectures. These serve as foundational learners for both standalone evaluation and ECP methods.

Logistic Regression (LR) is a linear model trained independently per label under the binary rele-
vance assumption, optimized using the logistic loss.

Stochastic Gradient Descent (SGD) uses a linear classifier trained with online updates and cali-
brated via Platt scaling (CalibratedClassifierCV) to produce probabilistic outputs suitable
for uncertainty quantification.

Multilayer Perceptron (MLP) is a shallow feedforward neural network comprising a single hidden
layer with ReLU activation, trained with binary cross-entropy loss.

Recurrent Neural Network (RNN) is a unidirectional LSTM network applied to fixed-length CLIP
embeddings, followed by a dense sigmoid-activated output layer to produce per-label probabilities.

Transformer Encoder is a two-layer self-attention-based encoder with multi-head attention, pro-
cessing CLIP embeddings as input tokens and outputting label-wise confidence scores through a
shared linear classifier.

MLP-Mixer is a compact architecture that applies layer normalization and token-channel mixing
via feedforward layers to CLIP embeddings, concluding with a sigmoid output unit for probabilistic
MLC prediction.

Each model is trained in a per-label fashion using the binary relevance framework, enabling scalable
MLC. Each model produces calibrated confidence scores, which are thresholded directly in standard
classification or used to compute nonconformity scores within CP procedures. In ensemble set-
tings, their outputs are aggregated using model- and label-specific weighting schemes to construct
prediction sets with formal coverage guarantees.

4.2 BASELINES

Standard Classification refers to individual models trained per label (i.e., binary classification),
without CP. Predictions are made by thresholding per-label probabilities (at 0.5).

Single-Model CP concerns CP applied independently per label using a single classifier and a held-
out calibration set. No ensembling is involved.

Post-Hoc ECP first constructs ensembles with CP, by calibrating the aggregated outputs of the
ensemble members (e.g., by averaging the probabilities or majority voting). This setting isolates the
impact of applying CP after aggregation, as if the ensemble is a standalone model.

4.3 OUR PROPOSED ECP FRAMEWORK

We propose ensembles of CP models, each independently calibrated before ensembling. This design
preserves individual coverage guarantees and leverages model diversity. With Conformal Ensem-
bles, we evaluate both homogeneous and heterogeneous ensembles, combining per-model CP via
majority voting, probability averaging, or F1-weighted voting. Conformal Stacking (StackECP)

6
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combines base model outputs via a logistic meta-classifier trained on calibration data. The meta-
model outputs are calibrated with conformal thresholds, enabling end-to-end conformal inference.

5 EMPIRICAL ANALYSIS

We evaluate all methods across three diverse MLC benchmarks, covering a range of label cardinali-
ties, label densities, and domain characteristics.

5.1 DATASETS

The selected benchmarks span vision, biology, and audio domains and vary in label cardinality,
density, and co-occurrence, allowing us to test both predictive accuracy and uncertainty calibration
across different domains. COCO Lin et al. (2014) is a popular benchmark in computer vision. We
use the multi-label version with pre-extracted CLIP features Radford et al. (2021). Each image is
associated with multiple object labels (e.g., person, car, dog). The dataset contains 80 labels and
exhibits high label co-occurrence and imbalance. Yeast is a classic bioinformatics dataset introduced
by Elisseeff & Weston (2001) for protein function prediction. It consists of 2,417 samples and 14
labels, with moderate label density. Each instance represents a gene with various expression-based
features. Emotions is a music-related dataset that maps songs to a set of emotion labels such as
happy, sad, and relaxing. It contains 593 instances and 6 labels. This dataset is relatively
balanced and is commonly used in multi-label benchmarking Trohidis et al. (2008).

5.2 EVALUATION METRICS

We evaluate the performance using the following five metrics:

Empirical Coverage is the proportion of true labels captured by the prediction set, averaged across
all validation instances:

Coverage =
1

N

N∑
i=1

|Ŷ (xi) ∩ Yi|
max(1, |Yi|)

.

Average Set Size: The average number of labels predicted per instance:

Set Size =
1

N

N∑
i=1

|Ŷ (xi)|.

Marginal Coverage is the average probability that a true label is included in the predicted set,
computed separately for each label and averaged:

Marginal Coverage =
1

L

L∑
j=1

P
(
j ∈ Ŷ (x)

∣∣∣ j ∈ Y
)
.

Macro-F1 Score averages F1 of all labels (i.e., binary predictions v. ground truth per label) and
Exact Match Accuracy is the fraction of examples where the predicted set exactly matches the
ground truth label set. Each of these metrics is applied to all individual classifiers and to aggregated
predictions of ensembles (see §3.2).

5.3 TRAINING SETUP

Datasets are split into 60% training and 40% test sets; the test set is further divided equally into
calibration and validation subsets (20% each). We adopt a binary relevance approach, training
one binary classifier per label. For ensembles, M = 3 or 5 base models are trained on bootstrap
samples, each independently calibrated using conformal prediction (CP). Homogeneous ensembles
use repeated instances of the same model; heterogeneous ensembles combine LR, SGD, MLP, and
others. Aggregation is performed via majority voting, probability averaging, F1-weighted voting
(based on validation F1 per label), or stacked ensembling with a LR meta-learner calibrated post hoc.
Linear models (LR, SGD) are trained using scikit-learn with standard settings (log loss, Platt
scaling for SGD). Neural models (MLP, RNN, Transformer, Mixer) are implemented in PyTorch.

7
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MLP uses one hidden layer (256 ReLU units); RNN is a unidirectional LSTM with hidden size 128;
Transformer has two attention layers (4 heads); MLP-Mixer uses standard token/channel mixing
and GELU activations. All deep models are trained with Adam (learning rate 10−3), binary cross-
entropy loss, batch size 128, for 10 epochs. 30% of each bootstrap sample is used for calibration.
All models consume CLIP embeddings as input. Training is conducted on a single NVIDIA GPU,
and results are averaged over 3 random seeds for robustness.

5.4 EXPERIMENTAL RESULTS

Table 1 presents a comparative evaluation of our ECP methods across the three MLC datasets (Emo-
tions, Yeast, COCO), compared against non-conformal baselines, single-model conformal predic-
tors (CP), and post-hoc conformalized ensembles. Performance is assessed using empirical coverage
(EC), marginal coverage (MC), average prediction set size, and macro-F1 (runtime analysis in A.5).

Table 1: Performance comparison across Emotions, Yeast, and COCO for multi-label classification.
EC: Empirical Coverage, MC: Marginal Coverage. Best CP-based results per dataset in bold.
Method Emotions Yeast COCO

EC/MC Set Size F1 EC/MC Set Size F1 EC/MC Set Size F1

Non-Conformal
BR (LR) – – 0.615 – – 0.350 – – 0.698
Ensemble (LR) – – 0.349 – – 0.349 – – 0.696
CLIP-RNN – – – – – – – – 0.700
Label Bagging (10/40) – – – – – – – – 0.483 / 0.694

Single CP
CP (LR) 0.891/0.877 3.45 0.647 0.8916/0.883 10.61 0.453 0.910/0.900 8.56 0.525
CP (MLP) 0.903/0.893 4.42 0.543 0.903/0.893 10.54 0.468 0.909/0.899 9.34 0.510
CP (SGD) 1.000/1.000 6.00 0.469 0.898/0.871 10.62 0.456 0.911/0.901 8.67 0.528
CP (RNN) – – – – – – 0.912/0.901 8.08 0.542

Post-hoc CP Ensemble
Het. Ensemble - CP 0.966/0.894 3.49 0.629 0.904/0.893 10.71 0.463 0.905/0.892 7.83 0.548
Multiple MLPs - CP 0.890/0.878 4.49 0.515 – – – – – –
Stacked Het. - CP 0.887/0.878 3.26 0.645 0.874/0.870 10.17 0.466 – – –

ECP (ours)
Hom. CP (MLP-WA) 0.872/0.863 3.17 0.647 0.913/0.893 10.38 0.471 0.904/0.889 7.96 0.543
Hom. CP (LR-MV) – – – 0.909/0.873 10.35 0.4635 0.896/0.897 7.16 0.567
Het. CP (MV/WV) – – – 0.910/0.870 10.10 0.471 0.906/0.887 / 0.887/0.858 7.68 / 7.22 0.555 / 0.575
Stacked Het. CP 0.899/0.883 3.40 0.660 – – – – / – – / – – / –

Our ECP methods consistently outperform single-model CP and post-hoc ensembles across most
metrics. Table 1 groups methods into four categories: Non-Conformal (plain classifiers, no un-
certainty quantification), Single CP (label-wise CP on individual models), Post-hoc CP Ensemble
(ensemble first, then conformalize), and ECP (ours) (conformalize base models individually, then
aggregate). Within each block, we report empirical coverage (EC), marginal coverage (MC), aver-
age set size, and macro-F1. Note that rows such as Het. CP (MV/WV) report results for two separate
ensemble strategies: majority voting (MV) and F1-weighted voting (WV), with the left/right values
corresponding to each variant.

On the Emotions dataset, our stacked heterogeneous ECP achieves the best macro-F1 (0.660), sur-
passing both single-model CP and post-hoc ensembles, while keeping the set size compact (3.40).
Homogeneous MLP ensembles with weighted averaging (WA) are also competitive (0.647 F1,
smallest set size 3.17), showing the benefit of probabilistic aggregation. In contrast, CP (SGD)
reaches perfect coverage (EC = 1) but at the cost of very large sets (average size 6.00), which
in fact equals the total number of possible labels in the Emotions dataset, leading to poor F1 and
illustrating the conservativeness of single-model CP.

For the Yeast dataset, our methods again provide improvements. Both the homogeneous MLP
ensemble (ECP, WA) and the heterogeneous ensemble (ECP, MV) deliver the top macro-F1 (0.471),
with the heterogeneous variant producing more compact sets (10.10 vs. 10.38). Our homogeneous
MLP-WA model also achieves the highest EC (0.913) and MC (0.893), indicating strong reliability.
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Post-hoc CP ensembles improve upon single-model CP, but do not reach the efficiency or predictive
strength of ECP.

The COCO dataset, with its high label cardinality and imbalance, is the most challenging. Here,
our heterogeneous ECP with F1-weighted voting (WV) achieves the highest macro-F1 (0.575) while
maintaining compact sets (7.22). Our homogeneous LR ensemble with majority voting (MV) yields
the smallest prediction sets overall (7.16) with competitive F1 (0.567). Other ECP variants (Hom.
WA, Het. MV) strike balanced trade-offs between accuracy and compactness. In all cases, our ECP
methods maintain valid coverage, while post-hoc ensembles and single CP are less effective.

Summary of takeaways. (i) ECP consistently improves predictive performance and efficiency over
single-model CP and post-hoc ensembles. (ii) Heterogeneous ensembles generally outperform ho-
mogeneous ones due to increased model diversity. (iii) Aggregation strategies matter: MV, WV,
and WA each provide benefits, with stacked ensembles offering the highest gains when sufficient
validation data is available. (iv) Across datasets, our methods achieve either the best F1 or the
most compact sets, while preserving coverage, demonstrating that ECP is a robust framework for
uncertainty-aware multilabel classification.

5.5 ABLATION STUDY

To further isolate the effects of individual design choices in our framework, such as ensemble size,
model diversity, aggregation strategy, and coverage parameters, we report targeted ablation studies
in the Appendix A. On the COCO dataset, we find that increasing the ensemble size up to 5 mod-
els improves macro-F1 and stabilizes empirical coverage, without increasing prediction set size.
Heterogeneous ensembles outperform homogeneous ones possibly due to architectural diversity.
Varying the miscoverage rate α confirms the expected accuracy–coverage trade-off, with higher α
values leading to smaller, more precise prediction sets at the expense of coverage. We also repeated
experiments across five random seeds, with results summarized in Table 2, confirming that our en-
sembles yield consistent improvements and remain robust to training variability. These findings
offer practical guidance for tailoring ECP systems to specific performance requirements.

Table 2: Macro-F1 (mean ± std) across five runs.
Dataset Method Macro-F1
COCO Single CP (MLP) 0.542 ± 0.001

ECP (ours) 0.558 ± 0.003
Emotions Single CP (MLP) 0.554 ± 0.015

ECP (Stacked Ensemble) 0.647 ± 0.024
Yeast Single CP (MLP) 0.466 ± 0.007

ECP (Het. Ensemble) 0.467 ± 0.004

6 CONCLUSION

In this work, we systematically studied ensemble-based conformal prediction (ECP) methods for
multilabel classification, combining the predictive strength of ensembles with the formal uncertainty
guarantees of conformal prediction. By adapting and evaluating multiple aggregation strategies
across three benchmarks, we showed that ECP improves macro-F1 over single-model and post-hoc
conformal baselines, while maintaining valid empirical and marginal coverage and producing more
compact prediction sets. Our multi-seed evaluation further demonstrated that ensembles provide
more stable and robust performance across runs. These findings establish ECP as a practical and
flexible framework for uncertainty-aware multilabel learning. Future work will investigate richer
base architectures, adaptive calibration for rare labels, and efficient conformalization strategies to
extend ECP to extreme-label and large-scale applications.
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REPRODUCIBILITY STATEMENT

Our results are designed to be fully reproducible. All datasets used in this work (MS-COCO, Yeast,
Emotions) are publicly available and described in Section 5.1. Model architectures, training setups,
and ensemble configurations are specified in Section 5.3 and Section 5. Evaluation metrics are for-
mally defined in Section 5.2. To assess robustness, we report results averaged over multiple random
seeds and provide standard deviations in Appendix A.6. Extended ablation studies (Appendix A.1)
further document the sensitivity of our framework to ensemble size, miscoverage rate, and model
diversity. An anonymous implementation, including training scripts and conformal calibration rou-
tines, is submitted in the supplementary materials to facilitate exact reproduction.
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A APPENDIX

A.1 ABLATION STUDIES

To isolate and analyze the contributions of individual components within our proposed ECP frame-
work, we conduct comprehensive ablation experiments using the COCO dataset. Specifically, we
investigate the impact of ensemble size, aggregation strategy (majority voting versus probability
averaging), model diversity (homogeneous versus heterogeneous ensembles), and the sensitivity of
coverage guarantees to the specified miscoverage rate (α).

A.2 IMPACT OF ENSEMBLE SIZE

We first examine the effect of varying the ensemble size M from 1 (single-model baseline) to 10
using homogeneous ensembles of LR classifiers. Figure 1 illustrates the changes in empirical cov-
erage, marginal coverage, macro-F1, and average prediction set size as the ensemble size increases.

Figure 1: Impact of ensemble size on multilabel prediction performance on the COCO dataset.
Left: Empirical and marginal coverage increase moderately with ensemble size, peaking around
M = 2–4. Right: Macro-F1 improves steadily with larger ensembles while average prediction set
size remains compact and stable, showing strong trade-offs between accuracy and efficiency.

Table 3 summarizes detailed numerical results. Increasing the ensemble size from 1 to 5 models
leads to significant improvements in macro-F1 scores (approximately 2.2 percentage points, from
0.5458 to 0.5677) and maintains a relatively stable empirical coverage around 0.89–0.91. Addition-
ally, the average prediction set size remains compact, decreasing slightly from 7.39 to 7.23 labels
per instance. Beyond 5 models, performance gains become marginal, indicating a saturation effect
at approximately M = 5.

Thus, for practical considerations balancing predictive accuracy, coverage, and computational cost,
an ensemble size between 3 and 5 is recommended.

A.3 SENSITIVITY TO MISCOVERAGE RATE

To evaluate the robustness of our ECP framework under varying coverage requirements, we analyze
its sensitivity to the target miscoverage rate α. We vary α across a range of values {0.01, 0.05,
0.10, 0.20}, which correspond to target coverage levels of 99%, 95%, 90%, and 80%, respectively.
Table 4 presents the resulting empirical coverage and macro-F1 scores for each setting.

As expected, reducing the target coverage level (increasing α) results in decreased empirical cover-
age. However, this trade-off allows for more selective predictions, which significantly improves the
macro-F1 score. For example, increasing α from 0.01 to 0.20 improves macro-F1 from 0.28 to 0.67,
illustrating a strong accuracy-coverage trade-off. These results emphasize the importance of tuning
α based on the application’s tolerance for errors versus the need for precision.
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Table 3: Detailed results of varying ensemble size (M ) on COCO dataset.
M EC Avg. Size Macro-F1 MC

1 0.8909 7.39 0.5458 0.8645
2 0.9168 8.96 0.5145 0.9013
3 0.8957 7.25 0.5630 0.8733
4 0.9085 8.02 0.5428 0.8915
5 0.8961 7.23 0.5677 0.8725
6 0.9039 7.66 0.5556 0.8832
7 0.8962 7.15 0.5697 0.8736
8 0.9029 7.51 0.5593 0.8835
9 0.8973 7.18 0.5701 0.8753

10 0.9011 7.39 0.5643 0.8812

Table 4: Effect of target miscoverage rate (α) on empirical coverage and macro-F1.
α Target Coverage Empirical Coverage Macro-F1

0.01 0.99 0.9877 0.2825
0.05 0.95 0.9399 0.4874
0.10 0.90 0.8878 0.5875
0.20 0.80 0.7887 0.6700

A.4 HOMOGENEOUS VS. HETEROGENEOUS ENSEMBLES

To understand the impact of model diversity on conformal ensemble performance, we compare
homogeneous ensembles (composed of identical model types, e.g., multiple MLPs) with heteroge-
neous ensembles (comprising diverse architectures such as LR, SGD, and MLP). This comparison
is conducted across all three datasets under CP with majority voting or weighted aggregation.

Results in Table 1 suggest that heterogeneous ensembles generally offer improved performance in
terms of macro-F1 while maintaining strong empirical and marginal coverage. For instance, on the
Emotions dataset, the Stacked Heterogeneous Ensemble achieves the best overall F1 score (0.6596),
outperforming both single-model CP and homogeneous CP ensembles. Similarly, on COCO, the
heterogeneous ensemble (Het. (2) CP (WV)) obtains the highest F1 (0.5745) while maintaining a
competitive set size (7.22) and adequate marginal coverage.

In contrast, homogeneous ensembles—such as MLP-based WA ensembles—tend to produce slightly
larger prediction sets (e.g., Emotions: size 3.17, F1 0.6467), though they still yield competitive
results when well-calibrated. These findings reinforce the hypothesis that diversity in base models
helps mitigate correlated errors, leading to more compact and accurate prediction sets.

In summary, while homogeneous ensembles provide stable baselines, heterogeneous ensembles
consistently achieve better accuracy–coverage trade-offs, especially when combined with voting
or weighted aggregation mechanisms.

A.5 RUNTIME AND COMPUTATIONAL ANALYSIS

All experiments were conducted on a machine with an NVIDIA GeForce RTX 2080 Ti GPU (11GB
VRAM), 64GB RAM, and Ubuntu 20.04. On the COCO dataset, single-model CP completes cali-
bration and inference in approximately 16 minutes. Ensemble variants with 5 models require around
22 minutes, reflecting a 38% increase in runtime. This overhead scales roughly linearly with ensem-
ble size but remains practical for configurations with 3–5 models. Given the gains in coverage and
predictive robustness, the added cost is considered acceptable for most applications. Parallelization
can further improve efficiency.

A.6 STATISTICAL SIGNIFICANCE

To evaluate whether the performance improvements from ensemble-based conformal predictors are
statistically reliable, we repeated experiments across five random seeds for all three datasets. We

13



702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2026

report the mean and standard deviation (std) of the macro-F1 score in Table 5. The standard deviation
reflects the variability across runs: smaller std indicates more stable performance. In addition, for
Emotions and Yeast we also report coverage and average set size (Table 6), since these metrics are
particularly relevant for smaller-scale MLC benchmarks.

Table 5: Macro-F1 (mean ± std) across five runs.
Dataset Method Macro-F1
COCO Single CP (MLP) 0.542 ± 0.001

ECP (ours) 0.558 ± 0.003
Emotions Single CP (MLP) 0.554 ± 0.015

ECP (Stacked Ensemble) 0.647 ± 0.024
Yeast Single CP (MLP) 0.466 ± 0.007

ECP (Het. Ensemble) 0.467 ± 0.004

Table 6: Extended reliability metrics (mean ± std) across five runs for Emotions and Yeast.
Dataset Method Coverage MC Set Size F1
Emotions Single CP (MLP) 0.8641 ± 0.0255 0.8617 ± 0.0231 3.97 ± 0.23 0.5542 ± 0.0151

ECP (Stacked) 0.8641 ± 0.0419 0.8678 ± 0.0345 3.24 ± 0.30 0.6467 ± 0.0238

Yeast Single CP (MLP) 0.9055 ± 0.0063 0.9025 ± 0.0093 10.55 ± 0.14 0.4661 ± 0.0071
ECP (Het.) 0.9103 ± 0.0082 0.8851 ± 0.0183 10.36 ± 0.25 0.4667 ± 0.0035

Overall, the results confirm that ensemble-based CP improves predictive performance in Emotions
substantially (F1 gain of +0.09, with smaller sets), achieves moderate but consistent gains on COCO,
and maintains competitive performance on Yeast while slightly improving prediction set compact-
ness. On COCO, a Wilcoxon signed-rank test yielded a p-value of 0.062, suggesting marginal
significance. For Emotions, the gain is well beyond the baseline’s variability, confirming a robust
improvement. On Yeast, the improvements are minor in F1 but demonstrate the stability of ensemble
calibration.

A.7 LIMITATIONS AND FUTURE WORK

While our method improves both uncertainty quantification and predictive performance in multi-
label classification, it also opens several avenues for future improvement. First, our current frame-
work treats labels independently through the binary relevance assumption. This simplifies calibra-
tion but ignores structured label dependencies; as the label space grows, this independence can lead
to inefficiencies and redundant prediction sets. Extending ensemble conformal prediction to incor-
porate correlations (e.g., via graphical models, label hierarchies) is an important direction. Second,
ensemble methods add computational overhead, both in training multiple base models and in con-
formal calibration for each label. Although ensembles of moderate size are tractable, scaling to
large base models or extreme multi-label settings (hundreds or thousands of labels) may require
more efficient strategies such as pruning, model distillation, or approximate calibration. Third, per-
formance depends on the quality of base models. Miscalibration, especially for rare labels, can
propagate through the conformal procedure. More adaptive calibration schemes, such as label-wise
adjustments or focal loss–based training, could improve reliability. Future work will also explore
extending our framework beyond binary relevance to structured multi-label outputs, investigating
ensemble methods tailored for extreme label spaces, and developing computationally efficient con-
formalization techniques suitable for real-time or large-scale applications.

A.8 USE OF LARGE LANGUAGE MODELS (LLMS)

During manuscript preparation, ChatGPT (GPT-5) was used to aid in phrasing and grammar polish-
ing. All research ideas, methodological developments, experiments, and analysis were conceived,
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implemented, and validated entirely by the authors. The authors take full responsibility for the
content of the paper.
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