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Abstract—In this paper we present two approaches to improve
computational efficiency of a keyword spotting system running on
a resource constrained device. This embedded keyword spotting
system detects a pre-specified keyword in real time at low
cost of CPU and memory. Our system is a two stage cascade.
The first stage extracts keyword hypotheses from input audio
streams. After the first stage is triggered, hand-crafted features
are extracted from the keyword hypothesis and fed to a support
vector machine (SVM) classifier on the second stage. This paper
focuses on improving the computational efficiency of the second
stage SVM classifier. More specifically, select a subset of feature
dimensions and merge the SVM classifier to a smaller size, while
maintaining the keyword spotting performance. Experimental
results indicate that we can remove more than 36% of the non-
discriminative SVM features, and reduce the number of support
vectors by more than 60% without significant performance
degradation. This results in more than 15% relative reduction
in CPU utilization.

Keywords—keyword spotting, feature selection, support vector
merging

I. INTRODUCTION

Keyword spotting works to detect the words of interest
in speech utterances, which has been an active research area
in speech recognition for decades. One approach for keyword
detection applies general large vocabulary continuous speech
recognition (LVCSR) systems to decode the audio signal,
with keyword searching conducted in the resulting lattices or
confusion networks [1], [2], [3], [4]. These methods require
relatively high computational resources for the LVCSR decod-
ing, and are impractical for an embedded device.

Another widely used approach for keyword spotting builds
hidden Markov models (HMM) for each keyword and non-
keyword audio signal [5], [6], [7], [8]. The non-keyword audio
signal includes other spoken words, background noise, etc.
There can be one or more HMMs built to model the non-
keyword audio characteristics, which are named filler models.
Viterbi decoding is used to search the best path in the decoding
graph, and the decoding output is further processed to make the
decision on keyword presence. This approach can be extended
to include discriminative information by incorporating a hybrid
DNN-HMM decoding framework [9].

In recent years, with the burgeoning applications of deep
learning techniques, some keyword spotting systems are built
on DNN/RNN structures directly, without involving an HMM
[10], [11], [12]. Those systems estimate the posteriors of
keywords with context information, either by stacking frames
within a context window for a DNN, or using an RNN. Then,

posterior threshold tuning or smoothing is applied for decision
making.

For our work, an embedded always-on keyword spotting
system running on a device with real-time keyword detection,
small memory footprint and low CPU utilization is of interest.
We use a two-stage keyword spotting framework, with a
keyword hypothesis extractor and an SVM classifier working
together in a cascading manner. The first stage extractor runs
on audio streams and extracts audio segments hypothesized to
contain the pre-specified keyword. It is tuned for high recall.
Given the hypothesized keyword audio segments from the
first stage, hand-crafted features are computed. Those features
are dumped to the second stage for decision-making. On the
second stage an SVM classifier is applied on the features of the
hypothesized keyword candidates, with the purpose of filtering
out false accepts.

Due to limited computational resources on the device, it is
important to improve the efficiency of our two-stage embedded
keyword spotting system. This paper focuses on the optimiza-
tion of the second stage SVM classifier. Two techniques are
investigated for our experiments: feature selection and support
vector merging. Feature selection refers to the process of
selecting a subset of feature dimensions which contain most
of the discriminative characteristics for the keyword, while
support vector merging works to reduce the number of support
vectors by merging similar ones for an existing SVM model.

The remaining part of this paper is organized as follows:
Section II summarizes the two-stage keyword spotting system.
Section III discusses the feature selection and support vector
merging techniques used to optimize the second stage SVM
classifier. Experimental results including keyword spotting
performance and system CPU utilization with selected feature
dimensions and merged SVM model are presented in Section
IV. Section V is the conclusion.

II. SYSTEM OVERVIEW

As shown in Figure 1, our embedded keyword spotting
system is a cascade of two stages: an audio keyword hypothesis
extractor as the first stage, and an SVM classifier as the second
stage.

Fig. 1: Two-stage embedded keyword spotting system
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A. Stage One: Audio Keyword Hypothesis Extractor

For our keyword spotting system, the first stage consists
of a DNN-HMM decoder. DNN acoustic models have shown
superior performance over traditional Gaussian mixture model
(GMM) models for speech recognition, and has become state-
of-the-art in recent years [13]. For the DNN-HMM framework,
HMM is used to model the sequential structure of speech, as
in the GMM-HMM speech recognition system, while DNN
predicts HMM states posterior information given input acoustic
features. For our work, the layer-wise pre-training is applied
to guarantee good convergence of the network.

The first stage extracts the audio segments which poten-
tially contain the spoken keyword. The input acoustic feature
for the first stage is computed as 20-dimensional log-filterbank
energies (LFBE) for a 25ms audio window shifting at 10ms.
The input to the DNN consists of stacked LFBE features for
a context window, with 20 frames before and 10 frames after.
The DNN outputs posteriors for keyword phone states and
background speech/non-speech states.

Let fW denote the confidence score for audio segment W
computed by the first stage keyword hypothesis extractor. A
higher value of fW indicates that it is more likely the keyword
is spoken in W . Note that the keyword spotting system is
running on input audio streams, and the length of hypothesis
segmentW varies based on the the way the keyword is spoken.
The first stage is triggered when fW ≥ f , with f being
a threshold. A D-dimensional feature vector v is extracted
from W for the second stage classification. The first stage
decision threshold f is tuned to achieve high recall, at a cost
of relatively high false accepts, because any loss in recall on
the first stage cannot be recovered from the second stage.

B. Stage Two: SVM Classifier

As mentioned in Section II-A, when the first stage is
triggered, a fixed D-dimensional feature vector v is extracted
from the hypothesized keyword audio segmentW , based on its
acoustic features and the information extracted from the first
stage. For our system the feature vector v is of dimension
71 (D = 71). The model shrinking techniques described in
Section III are general approaches working for different types
of input SVM features.

1) Features: The feature vector v for keyword hypothe-
sized audio segment W includes the information from both
segments and phones. Segment level features include the
duration of segment, keyword likelihood score, normalized
likelihood score and posterior for the keyword. Regarding
the phone based features, we consider absolute and relative
phone duration, phone log-likelihood, averaged phone/speech
confidence scores, local context features such as left/right
phone confidence, and entropy based features based on con-
text phone log-likelihoods. There are also speech/non-speech
scores computed for the context window before and after the
keyword hypothesized audio segment W .

2) SVM: The second stage runs an SVM classifier on v to
make a keyword detection decision. SVM finds a hyperplane
that separates data of different classes with the maximum
margin [14], [15]. Kernels are used when the data are not
linearly separable in the original feature space. Widely used

kernels include linear kernel, polynomial kernel, RBF kernel
etc. For our work, the RBF kernel shows better performance
compared to other kernels. Thus, we use the RBF kernel.

III. MODEL SHRINKING FOR SVM

Since embedded keyword spotting is limited by the com-
putational resources on the device, it is important to develop
the system to detect a keyword in real-time, at a low cost
of CPU and memory. The computational complexity of the
second stage SVM classifier is directly proportional to the
number of features and the number of support vectors. Here
we present two methods to optimize the second stage SVM
classifier in our embedded keyword spotting system: the first
technique is to select a subset of feature dimensions with most
of the discriminative information, and the second technique is
to merge close support vector pairs together. As a result, we get
a reduced size SVM model which maintains the classification
performance with a smaller number of feature dimensions
and support vectors. This reduced size SVM also has lower
complexity, which can help prevent overfitting.

A. SVM Feature Selection

Feature selection selects a subset of feature dimensions,
to maintain the majority of discriminative information, while
removing redundancy and noise [16]. For our case, we select
the SVM feature dimensions that include most of the discrim-
inative information between the first stage extracted true posi-
tive and false positive keyword hypothesis. The discriminative
information included in each feature dimension is measured
based on Kullback-Leibler (KL) divergence [17]. This KL
divergence based feature selection has been used for different
applications [18], [19].

Let C denote a corpus with N hypothesized keyword audio
segments extracted from the first stage. These N segments are
labeled asW1, . . . ,WN , which can be divided into two groups:
the true positive segment group Ctp which consists of the
segments with a keyword, and the false positive segment group
Cfp which consists of segments with no keyword. For each
segmentWn, n ∈ {1, . . . , N}, a D-dimensional feature vector
vn is extracted. Feature selection selects a subset of feature
dimensions maintaining most of the discriminative information
for distinguishing Ctp and Cfp.

For each dimension d ∈ {1, . . . , D}, let Pd and Qd denote
the distribution of feature values in Ctp and Cfp, respectively.
Examples of Pd and Qd for a specific dimension d are shown
on Figure 2, where the x-axis is the feature value and y-axis
labels the sample density distribution. The red and blue colors
represent true positive group Ctp and false positive group Cfp.
It can be observed that feature dimension 15 shown on Figure
2 includes more distinguish information to separate Ctp and
Cfp, compared to feature dimension 23.

We use KL divergence to measure the difference between
Ctp and Cfp for each feature dimension. The KL divergence
of Qd from Pd is defined as

DKL(Pd ‖ Qd) =

∫ +∞

−∞
Pd(x) ln

Pd(x)

Qd(x)
dx. (1)

370370



Fig. 2: Density examples for two feature dimensions (dim 15
and dim 23)

Since this is an asymmetric measure, we calculate both
DKL(Pd ‖ Qd) and DKL(Qd ‖ Pd), and take the minimum
of the two as a symmetric KL divergence measure. Only those
dimensions with symmetric KL divergence above a threshold
are retained. That is, given a threshold θ, we keep dimension
d′ when

min(DKL(Pd′ ‖ Qd′), DKL(Qd′ ‖ Pd′)) ≥ θ. (2)

The threshold θ can be tuned on a development set, which
selects a value of θ to remove as many no-discriminative fea-
ture dimensions as possible, with no significant classification
performance degradation. As a result, the new feature vector
v′ is of dimension D′ (D′ ≤ D) after feature selection. For
our case, D′ = 45, and examples of selected features include
phone durations etc.

B. Support Vector Merging

We also merge support vector pairs which are close to each
other, with the purpose of reducing the number of support
vectors [20]. Alternatively, the support vector number can be
reduced by changing slack variable penalty or kernel related
parameters (e.g. γ for RBF kernel) for SVM training. However,
our experiments with changing hyperparameters for SVM
training show performance degradation in keyword spotting.

Thus, for SVM training, we select the hyperparameters such
as slack variable penalty and kernel parameters from a tuning
step, choosing the values of these hyperparameters to optimize
the classification performance on a development set. We fix
these hyperparameters for SVM training. After that, we merge
support vectors for the trained SVM to get a merged SVM
model with fewer number of support vectors. As shown
in Section IV, this reduces the SVM model size with no
significant change in performance. The support vector merging
algorithm used is based on [20]. Figure 3 shows the algorithm
flowchart.

Fig. 3: Support vector merging algorithm

Given the original trained SVM model with Ns support
vectors and the target support vector number Nz for merging,
the algorithm selects the closest support vector pair (SVi, SVj)
belonging to the same positive or negative class based on Eu-
clidean distance, and merges the pair to a single support vector
SV ′ by interpolating SVi, SVj via an optimized weight. In
more detail, let φ(SVi), φ(SVj) represent the high-dimensional
space mappings of support vectors SVi, SVj , and αi, αj be
the corresponding weights for these two support vectors. The
merging algorithm replaces φ(SVi) and φ(SVj) by

M =
αi

αi + αj
φ(SVi) +

αj

αi + αj
φ(SVj). (3)

As a result, the merged support vector SV ′ is computed by
optimizing

min
SV ′

||M − φ(SV ′)||. (4)

It can be shown that for the RBF kernel, the merged support
vector is SV ′ = kSVi + (1 − k)SVj , where the interpolation
weight k is derived from optimizing an objective function.
When the merged support vector SV ′ is computed, its weight
α′ for SV ′ also needs to be updated as

α′ =
(αi + αj)M · φ(SV ′)

||φ(SV ′)||2 . (5)
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The merging process is run iteratively until the target number
of support vectors is reached. As the last step, the weights for
all remaining support vectors (either original support vectors
or merged ones) are optimized globally. [21]

IV. EXPERIMENTAL RESULTS

Our embedded keyword spotting system is run on a device.
The device is activated when the keyword is spoken. To eval-
uate the keyword spotting performance, we use two metrics.
The first one is the miss-rate which is defined as one minus
recall. The second one is the false accept rate (FAR), which
is the frequency of false positive detections.

A high-performance keyword spotting system targets a low
miss-rate and low FAR. For our experiments, we train multiple
SVM models with full feature dimensions and selected feature
dimensions. The SVM model trained on selected feature di-
mensions is further shrunk via support vector merging. As a
result, we have reduced size SVM models in selected feature
subset, either with or without support vector merging. By
comparing those reduced size SVM models with the baseline
SVM trained on full feature dimensions with no support
vector merging, we investigate the effects of feature selection
and support vector merging on keyword detection accuracy
and CPU utilization. Note that the detailed information about
datasets, absolute evaluation numbers etc has been obscured in
this paper due to confidentiality reasons. This paper compares
systems with model shrinking techniques with baseline system
in terms of relative difference in keyword spotting performance
and CPU utilization.

A. Master Test Set

Our embedded keyword spotting system is evaluated on
a master test set. The master test set consists of multiple
test sets from distinct sources, e.g. some datasets include
recordings of utterances from activated devices with embedded
keyword spotting system, when these devices are exposed
to Amazon employees who join an internal Beta group for
device testing. Note that those utterances could either contain
a valid keyword, or actually be false positives. We also record
audio with/without keyword for evaluation purpose. Several
background audio datasets are included in the master test set
as well, mainly used to measure FAR in general background.
For our experiments, we select a specific word as the keyword
and build the keyword spotting system for it. The particular
test set we have been using has tens of hours of audio in total
with several thousands of instances of the selected keyword.

B. Accuracy Performance

For evaluating the accuracy of our keyword spotting sys-
tem, we focus on a selected low miss-rate range we are
interested in. At the same miss-rate within the range of interest,
we compare the system with baseline SVM to systems with
reduced size SVM, computing the relative difference in FAR
for all the reduced size systems. We also select a system
operating point (OP) with a specific miss-rate number within
the range and show the relative difference in FAR for all the
reduced size systems at the operating point.

The full SVM feature set has 71 dimensions (D = 71).
We use the keyword spotting system with SVM trained on

the full feature set with no support vector merging as the
baseline. The baseline SVM model has approximately 15.9k
support vectors. With the application of the KL divergence
based feature selection procedure described in Section III-A,
only 45 dimensions are kept (D′ = 45). This counts for more
than 36% reduction in feature dimensions. The SVM trained on
selected feature dimensions has approximately 15.7k support
vectors. We apply support vector merging technique described
in Section III-B on the 15.7k support vector SVM trained
on selected feature dimensions, reducing the support vector
to 10k and 6k, respectively. For the keyword spotting systems
with these three reduced size SVMs, Table I shows the relative
difference in FAR given the same miss-rate.

TABLE I: Within the selected miss-rate range of interest,
the maximum, minimum, and operating point associated FAR
relative difference (given the same miss-rate) for the keyword
spotting systems with reduced size SVM compared to the
keyword spotting system with baseline SVM.

Shrinked models (select dim) max min OP

original 15.7k SVM +1.9% -2.5% +0.1%
merged 10k SVM +1.4% -2.1% +0.5%
merged 6k SVM +3.4% -1.7% +0.2%

The three rows of Table I show the original size SVM
(approximately 15.7k support vectors), merged 10k support
vector SVM and merged 6k support vector SVM, respectively.
All three SVMs are trained on selected feature dimensions. We
compute the relative difference in FAR for these three keyword
spotting systems with reduced size SVM models compared
to the baseline system with SVM trained on full feature set
and with no support vector merging. For the selected miss-
rate range of interest, the first two columns of Table I show
the maximum and minimum relative difference in FAR with
the same miss-rate within the selected range, respectively. The
last column shows the FAR relative difference for the selected
operating point.

It can be observed that when the SVM is trained on
selected 45 feature dimensions and the support vectors are
merged to 6k, the keyword spotting system still shows similar
performance compared to the baseline system with original
size SVM trained on full feature dimension with no support
vector merging, in the selected miss-rate range of interest. The
FAR difference for the selected miss-rate range is within our
tolerance region. At the selected operating point, all the four
systems with different feature dimensions and support vector
numbers perform with no significant difference.

C. CPU Utilization

To measure the CPU reduction by taking advantage of
second stage SVM model shrinking techniques, we run our
embedded keyword spotting system on the device on a selected
set of audio files, and measure the 1-second window average
CPU usage. The dataset used contains several hours of audio
for intensive CPU profiling purpose.

Figure 4 shows the relative CPU percentage for all the four
systems described in Section IV-B, where the x-axis represents
CPU profiling audio percentile and the y-axis represents the
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Fig. 4: CPU utilization for the baseline keyword spotting
system and three systems with reduced size SVM. The keyword
spotting system CPU utilization is shown as relative CPU
percentage. It is plotted based on the percentile of the CPU
profiling audio files.

relative on-device CPU percentage for the embedded keyword
spotting system. The maximum CPU usage (P100 number for
the baseline system) is scaled to 100%. The CPU usage for
all the four systems are scaled in the same way to show
relative CPU percentage. It can be observed that all four
systems show similar CPU usage up to the 90% percentile. The
feature selection and support vector merging show significant
CPU reduction in the high percentile region. As expected, the
baseline full feature dimension SVM with no support vector
merging (red solid curve) has the largest CPU usage among
all four systems. The CPU utilization is reduced by training
the SVM on selected feature dimensions (purple dashed curve),
and further reduced by merging the selected feature dimension
SVM to 10k (blue dotted curve) and 6k (green dotdash curve)
support vectors.

In our CPU utilization measurement, there is a constant
CPU consumption from the first stage keyword hypothesis
extractor. The SVM classification on second stage runs only
when the first stage is triggered by accepting the keyword
hypothesis segment. This means the SVM stage directly con-
tributes to the CPU spikes and system latency. As a result,
shrinking the second stage SVM model helps bring down
CPU spikes and reduce system latency. Applying a reduced
size SVM model also reduces memory usage for the keyword
spotting system running, though for our case memory is not a
major concern.

The detailed CPU utilization relative reduction information
for our keyword spotting systems with reduced size SVM is
shown in Table II. As described in Section IV-B, the baseline
keyword spotting system uses the original size SVM in full
feature dimension. The three rows of Table II include the CPU
relative reduction information for the systems with original

size SVM, merged 10k support vector SVM, and merged 6k
support vector SVM, respectively. All three SVMs in Table II
are trained on selected feature dimensions. These three reduced
size systems are compared to the baseline SVM system. The
four columns are for the 50, 90, 99 and 100 percentile. It can
be observed that when we select feature dimensions including
most of the discriminative information, and merge the SVM to
6k support vectors, the CPU utilization is significantly reduced
in the high percentile region, with 18.2% and 15.1% relative
reduction for P99 and P100, respectively.

TABLE II: CPU utilization relative reduction for our keyword
spotting system with reduced size SVM. Table I shows that
at the selected operating point, all systems perform with no
significant difference for keyword spotting.

Shrinked models (select dim) P50 P90 P99 P100

original 15.7k SVM 0% 0% -6.0% 0%
merged 10k SVM 0% 0% -12.0% -9.1%
merged 6k SVM 0% 0% -18.2% -15.1%

V. CONCLUSIONS

In this paper we have presented our on-device keyword
spotting system. It is a two-stage embedded system, with a
cascading structure of an audio keyword hypothesis extractor
and an SVM classifier. This paper focuses on how to optimize
the second stage SVM classifier, i.e., how to shrink the model
to reduce computational cost, with no significant performance
degradation. Two techniques are discussed: feature selection
and support vector merging. Experimental results show that
our keyword spotting system built for a selected keyword
detection maintains the performance when more than 36% of
non-discriminative SVM feature dimensions are removed, plus
more than 60% reduction in support vector number. As a result,
more than 15% of relative CPU reduction can be achieved in
the high percentile region.
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