© o N o o h W N

- o

HYBRIDMIND: Meta Selection of Natural Language
and Symbolic Language for Enhanced LLM Reasoning

Anonymous Author(s)
Affiliation
Address
email

Abstract

LLMs approach logical and mathematical reasoning through natural or symbolic
languages. While natural language offers human-accessible flexibility but suffers
from ambiguity, symbolic reasoning provides precise, machine-executable infer-
ences at the cost of strict domain constraints. We introduce HYBRIDMIND, an
adaptive strategy that selects the optimal reasoning approach for each reasoning
problem. Through extensive experiments, we evaluate both prompting-based ap-
proaches with state-of-the-art LLMs and fine-tuned open-source models. We find
that fine-tuning LLaMA-3.1-8B-Instruct as a meta-selector outperforms GPT-40’s
natural language reasoning by 4.4% on FOLIO and 1.3% on MATH. More notably,
using GPT-3.5-turbo as a prompted meta-selector yields a 10% improvement on
FOLIO’s challenging subset compared to GPT-40. We will release our code and
data to support future research.

1 Introduction

Mathematical reasoning with LLMs is typically approached through two paradigms. The first
paradigm focuses on designing various prompting strategies to elicit detailed and natural language
(NL) reasoning processes. This line of research continues from Chain-of-Thought prompting (Wei
et al., 2023; Zhou et al., 2023; Zheng et al., 2024a). The second one leverages LLMs to generate
solutions in the form of symbolic language, which can then be executed with external tools to derive
the final answer (Olausson et al., 2023; Ye et al., 2023; Zhou et al., 2024a; Gu et al., 2024; Gou et al.,
2024; Gao et al., 2023; Chen et al., 2023).

We propose HYBRIDMIND, which leverages the best of both worlds. By dynamically meta-selecting
whether to reason in natural language, symbolic language, or a combination of the two, HYBRIDMIND
tailors the solution style to the characteristics of each problem. Conceptual or explanatory tasks benefit
from the clarity of step-by-step NL reasoning, while problems requiring exact heavy computation are
more effectively handled in symbolic form (Gao et al., 2023; Zhou et al., 2024b). In other words,
rather than forcing a single method to fit all problem types, HYBRIDMIND adaptively selects the
right choice for a problem.

The contributions of our paper are threefold. 1) We propose HYBRIDMIND, a method that dynamically
chooses between natural language reasoning and symbolic (Python code or first-order logic formulas)
reasoning based on a specific reasoning problem. This “meta-selection” strategy ensures that the
language model uses the most effective approach, natural language or symbolic reasoning, depending
on each problem’s characteristics. 2) STaR finetuning over LLaMA-3.1-8B as a meta-selector yields
a 4.4% accuracy gain on the FOLIO dataset, a logical reasoning dataset measuring complex logical
reasoning capabilities of LLMs (Han et al., 2024). Using GPT-3.5-Turbo as a meta-selector yields
a 10% improvement on the more challenging subset of FOLIO over GPT-40. 3) We also identify
key statistics beyond final performance and perform case study and prompt ablation study. We

Submitted to 39th Conference on Neural Information Processing Systems (NeurIPS 2025). Do not distribute.

38
39
40

41

42
43
44
45
46
47
48
49
50
51
52

53

54
55
56
57
58
59
60

61

62
63

also provide justifications for the performance difference of FOLIO with MATH to interpret the
performance improvement of our method, discussing how the difference between Python code and
first-order logic formulas could affect the meta-selection results.

2 Method

We consider four fundamental approaches involving reasoning with natural language and symbolic
language. Natural Language (NL), Symbolic Language (SL), SymbolNL, and NLSymbol. NL
represents that the LLM tackles the problem by generating a step-by-step breakdown of the reasoning
process in natural language, guiding toward the solution. SL represents that the LLM is instructed to
generate a symbolic language solution or symbolic form of the problem and it will be executed to
arrive at the final solution. SymbolNL is a two-stage method. In the first stage, the LLM is prompted
to write a solution in symbolic language or converts the problem into symbolic language. In the
second stage, the LLM step-by-step analyzes the problem in natural language based on the symbolic
form to obtain the final answer. NLSymbol is also a two-stage method. The LLM first generates a
natural language solution or hints for solving the problem. Then the output will be used to generate
symbolic language for solving the problem. Details can be found in Appendix.

3 Experiments

Our experiments are designed to test whether large language models can reason more effectively
by dynamically choosing between natural language reasoning and symbolic language reasoning (or
mixing both) rather than relying on a single approach. We explore whether the model can analyze
each problem first and then pick the most suitable method — natural language, symbolic language, or
a combination to arrive at a solution. By doing so, we aim to see if different types of problems in
math and logical reasoning benefits from different styles of reasoning, and whether a “meta-selection”
strategy can yield higher accuracy. Implementation details can be found in Appendix B.4.

3.1 Experiments on FOLIO

Method WikiLogic HybLogic Avg.
Baselines

Random 75.68 60.00 67.70

NL 80.18 60.87 70.35

SL 72.07 69.57 70.80

NL (8§ MV) 81.98 66.09 73.89
Finetune

2-class (base) 81.08 63.48 72.12

2-class SFT 81.08 60.87 70.35

STaR 82.88 66.69 74.78

Prompting (0-shot)

GPT-3.5-Turbo 80.18 59.13 69.74
GPT-40-mini 75.68 60.00 67.70
GPT-40 80.18 66.96 73.45
03-mini 80.18 62.61 71.24

Prompting (2-shot)

GPT-40-mini 81.08 66.09 73.45

GPT-40 81.08 67.83 74.34

03-mini 80.18 70.43 75.22

HYBRIDMIND (GPT-3.5-Turbo) 79.28 73.91 76.55
Upperbound

Best-of-two (NL/SL) 92.79 83.48 88.05

Table 1: Model performance on FOLIO fest set. Bold and underlined numbers indicate the best and
second-best performance in each category, respectively. MV: Majority Vote. Best-of-2 (NL/SL): At
least one of NL/SL is correct.

For FOLIO, NL and SL denote solving the questions based on Chain-of-Thought (Wei et al., 2023)
and LINC (Olausson et al., 2023) using GPT-40. We only sample once for both methods for efficiency.

64
65
66
67
68
69

70

71
72
73
74

75
76
77
78
79

80

81
82
83
84
85
86

Baseline and upperbound. Although state-of-the-art LLMs achieve better performance at reason-
ing in natural language compared to symbolic language on both of the two subsets we tested (Table 1),
the accuracy of at least one of the methods being correct (best-of-2) is around 17% higher than NL or
SL reasoning. This score is higher than performing reasoning solely in natural language or symbolic
language, demonstrating the complementary strengths of these different reasoning approaches and
the potential benefits of selecting between one of them effectively.

Counting & Number & Intermediate &

Method Algebra Probability Geometry Theory Algebra Precalculus Prealgebra Avg.
Baselines
NL 92.67 78.69 61.38 81.48 5891 60.07 89.78 76.98
SL 72.37 78.48 46.56 71.48 44.30 28.94 80.60 62.00
SymboINL 79.87 74.05 56.99 81.48 58.69 57.51 81.63 71.43
NLSymbol 64.95 82.07 50.31 81.11 51.72 39.38 85.07 65.24
MV (4 methods) 88.29 84.60 57.62 85.56 59.36 53.85 89.78 75.98
Finetune
2-class (base) 72.37 78.48 46.56 71.78 44.30 28.94 80.60 62.00
2-class 92.67 78.69 61.38 81.48 5891 60.07 89.78 76.98
4-class (base) 72.37 78.48 46.56 71.78 44.30 28.94 80.60 62.00
STaR (fine-tuning) 90.65 79.32 61.17 77.04 58.03 58.24 86.91 75.20
HYBRIDMIND (4-class) 9242 79.54 61.38 82.78 60.35 60.99 89.78 77.50
Prompting (0-shot)
GPT-3.5-Turbo 84.58 78.27 58.04 75.93 55.26 47.44 85.30 71.28
GPT-40 91.58 81.65 60.96 79.26 60.69 57.69 88.98 76.64
03-mini 87.87 79.75 58.87 76.30 56.81 50.18 87.26 73.24
Upperbound
Best-of-2 (NL/SL) 95.79 87.55 66.81 89.63 68.77 64.10 93.57 82.84
Best-of-4 97.47 92.41 72.86 94.07 76.63 72.71 94.60 87.30

Table 2: Model performance on MATH test set. Bold and underlined numbers indicate the best and
second-best performance in each category, respectively. MV: Majority Vote. Best-of-2 (NL/SL): At
least one of NL/SL is correct. Best-of-4: At least of one of NL/SL/SymbolNL/NLSymbol is correct.

3.2 Experiments on MATH

The results of experiments on MATH are in Table 2. NL baseline achieves the highest performance,
while SL performs the worst among the four baseline methods '. NLSymbol shows apparently better
results, indicating that outlining a reasoning path prior to generating code can improve reasoning
with code, particularly in models with limited code capabilities.

In this section, we demonstrate that a smaller-scale model can be fine-tuned as a meta-selector to
choose the most effective strategy for a given mathematical reasoning problem, achieving stronger
performance than state-of-the-art baselines. Detailed analyses and meta-selector statistics on FOLIO
and MATH (provided in the Appendix) further show that our approach produces a more balanced and
principled selection between SL and NL.

4 Conclusion and Future Work

In this paper, we proposed HYBRIDMIND, meta selection of natural language, symbolic language
or a mix of both for enhancing LLM math and logical reasoning. Extensive experiments on MATH
and FOLIO show that dynamically selecting between reasoning with natural language and reasoning
with symbolic language improves the reasoning performance of state-of-the-art LLMs, especially
on the harder subset of FOLIO. We performed extensive analysis to understand the performance
improvement achieved by HYBRIDMIND.

'While SL achieves better performance than CoT in Gao et al. (2023), our adopted dataset and base model
are both different from the ones used in their study.

87

88
89

90
91
92
93

94
95
96

97
98

99
100
101
102

103
104
105

106
107
108

109
110
111
112
113
114
115
116
17
118

119
120
121

122
123

124
125

126
127
128
129

131

132

133
134

References

Janice Ahn, Rishu Verma, Renze Lou, Di Liu, Rui Zhang, and Wenpeng Yin. Large language models
for mathematical reasoning: Progresses and challenges. arXiv preprint arXiv:2402.00157, 2024.

Wenhu Chen, Xueguang Ma, Xinyi Wang, and William W. Cohen. Program of thoughts prompting:
Disentangling computation from reasoning for numerical reasoning tasks. Transactions on Ma-
chine Learning Research, 2023. ISSN 2835-8856. URL https://openreview.net/forum?id=
YfZ4ZPt8zd.

Luyu Gao, Aman Madaan, Shuyan Zhou, Uri Alon, Pengfei Liu, Yiming Yang, Jamie Callan, and
Graham Neubig. Pal: Program-aided language models, 2023. URL https://arxiv.org/abs/
2211.10435.

Peizhong Gao, Ao Xie, Shaoguang Mao, Wenshan Wu, Yan Xia, Haipeng Mi, and Furu Wei. Meta
reasoning for large language models, 2024. URL https://arxiv.org/abs/2406.11698.

Zhibin Gou, Zhihong Shao, Yeyun Gong, yelong shen, Yujiu Yang, Minlie Huang, Nan Duan, and
Weizhu Chen. ToRA: A tool-integrated reasoning agent for mathematical problem solving. In The
Twelfth International Conference on Learning Representations, 2024. URL https://openreview.
net/forum?id=Ep@TtjVoap.

Alex Gu, Baptiste Roziere, Hugh Leather, Armando Solar-Lezama, Gabriel Synnaeve, and Sida I.
Wang. Cruxeval: A benchmark for code reasoning, understanding and execution, 2024. URL
https://arxiv.org/abs/2401.03065.

Shashank Gupta, Vaishnavi Shrivastava, Ameet Deshpande, Ashwin Kalyan, Peter Clark, Ashish
Sabharwal, and Tushar Khot. Bias runs deep: Implicit reasoning biases in persona-assigned llms.
arXiv preprint arXiv:2311.04892, 2023.

Simeng Han, Hailey Schoelkopf, Yilun Zhao, Zhenting Qi, Martin Riddell, Wenfei Zhou, James
Coady, David Peng, Yujie Qiao, Luke Benson, Lucy Sun, Alexander Wardle-Solano, Hannah
Szabd, Ekaterina Zubova, Matthew Burtell, Jonathan Fan, Yixin Liu, Brian Wong, Malcolm Sailor,
Ansong Ni, Linyong Nan, Jungo Kasai, Tao Yu, Rui Zhang, Alexander Fabbri, Wojciech Maciej
Kryscinski, Semih Yavuz, Ye Liu, Xi Victoria Lin, Shafiq Joty, Yingbo Zhou, Caiming Xiong, Rex
Ying, Arman Cohan, and Dragomir Radev. FOLIO: Natural language reasoning with first-order
logic. In Yaser Al-Onaizan, Mohit Bansal, and Yun-Nung Chen (eds.), Proceedings of the 2024
Conference on Empirical Methods in Natural Language Processing, pp. 22017-22031, Miami,
Florida, USA, November 2024. Association for Computational Linguistics. doi: 10.18653/v1/
2024.emnlp-main.1229. URL https://aclanthology.org/2024.emnlp-main.1229/.

Dan Hendrycks, Collin Burns, Saurav Kadavath, Akul Arora, Steven Basart, Eric Tang, Dawn Song,
and Jacob Steinhardt. Measuring mathematical problem solving with the math dataset, 2021. URL
https://arxiv.org/abs/2103.03874.

Shima Imani, Liang Du, and Harsh Shrivastava. Mathprompter: Mathematical reasoning using large
language models, 2023. URL https://arxiv.org/abs/2303.05398.

Takeshi Kojima, Shixiang Shane Gu, Machel Reid, Yutaka Matsuo, and Yusuke Iwasawa. Large
language models are zero-shot reasoners, 2023. URL https://arxiv.org/abs/2205.11916.

Tianyu Liu, Yijia Xiao, Xiao Luo, Hua Xu, Wenjin Zheng, and Hongyu Zhao. Geneverse: A
collection of open-source multimodal large language models for genomic and proteomic research.
In Yaser Al-Onaizan, Mohit Bansal, and Yun-Nung Chen (eds.), Findings of the Association for
Computational Linguistics: EMNLP 2024, pp. 4819-4836, Miami, Florida, USA, November 2024.
Association for Computational Linguistics. doi: 10.18653/v1/2024.findings-emnlp.277. URL
https://aclanthology.org/2024.findings-emnlp.277/.

Qing Lyu, Shreya Havaldar, Adam Stein, Li Zhang, Delip Rao, Eric Wong, Marianna Apidianaki,
and Chris Callison-Burch. Faithful chain-of-thought reasoning, 2023. URL https://arxiv.org/
abs/2301.13379.

https://openreview.net/forum?id=YfZ4ZPt8zd
https://openreview.net/forum?id=YfZ4ZPt8zd
https://openreview.net/forum?id=YfZ4ZPt8zd
https://arxiv.org/abs/2211.10435
https://arxiv.org/abs/2211.10435
https://arxiv.org/abs/2211.10435
https://arxiv.org/abs/2406.11698
https://openreview.net/forum?id=Ep0TtjVoap
https://openreview.net/forum?id=Ep0TtjVoap
https://openreview.net/forum?id=Ep0TtjVoap
https://arxiv.org/abs/2401.03065
https://aclanthology.org/2024.emnlp-main.1229/
https://arxiv.org/abs/2103.03874
https://arxiv.org/abs/2303.05398
https://arxiv.org/abs/2205.11916
https://aclanthology.org/2024.findings-emnlp.277/
https://arxiv.org/abs/2301.13379
https://arxiv.org/abs/2301.13379
https://arxiv.org/abs/2301.13379

135
136
137
138
139
140

141
142

143
144
145
146

147
148

149
150
151

152
153
154

155
156
157

158
159
160

161
162

163
164

166
167
168

169
170

171
172
173

174
175
176

177
178
179

180
181
182

Theo Olausson, Alex Gu, Ben Lipkin, Cedegao Zhang, Armando Solar-Lezama, Joshua Tenenbaum,
and Roger Levy. Linc: A neurosymbolic approach for logical reasoning by combining language
models with first-order logic provers. In Proceedings of the 2023 Conference on Empirical Methods
in Natural Language Processing, pp. 5153-5176. Association for Computational Linguistics,
2023. doi: 10.18653/v1/2023.emnlp-main.313. URL http://dx.doi.org/10.18653/v1/2023.
emnlp-main.313.

OpenAl, Josh Achiam, and Others. Gpt-4 technical report, 2024. URL https://arxiv.org/abs/
2303.08774.

Yuval Reif and Roy Schwartz. Beyond performance: Quantifying and mitigating label bias in
llms. In Proceedings of the 2024 Conference of the North American Chapter of the Association
for Computational Linguistics: Human Language Technologies (Volume 1: Long Papers), pp.
6784-6798, 2024.

Stuart Russell and Peter Norvig. Artificial Intelligence: A Modern Approach. Prentice Hall, 3 edition,
2010.

Pauli Virtanen, Ralf Gommers, Travis E Oliphant, Matt Haberland, Tyler Reddy, David Cournapeau,
Evgeni Burovski, Pearu Peterson, Warren Weckesser, Jonathan Bright, et al. Scipy 1.0: fundamental
algorithms for scientific computing in python. Nature methods, 17(3):261-272, 2020.

Xuezhi Wang, Jason Wei, Dale Schuurmans, Quoc Le, Ed Chi, Sharan Narang, Aakanksha Chowdh-
ery, and Denny Zhou. Self-consistency improves chain of thought reasoning in language models,
2023. URL https://arxiv.org/abs/2203.11171.

Jason Wei, Xuezhi Wang, Dale Schuurmans, Maarten Bosma, Brian Ichter, Fei Xia, Ed Chi, Quoc Le,
and Denny Zhou. Chain-of-thought prompting elicits reasoning in large language models, 2023.
URL https://arxiv.org/abs/2201.11903.

Fangzhi Xu, Qika Lin, Jiawei Han, Tianzhe Zhao, Jun Liu, and Erik Cambria. Are large language
models really good logical reasoners? a comprehensive evaluation and beyond. IEEE Transactions
on Knowledge and Data Engineering, 2025.

Jundong Xu, Hao Fei, Liangming Pan, Qian Liu, Mong-Li Lee, and Wynne Hsu. Faithful logical
reasoning via symbolic chain-of-thought, 2024. URL https://arxiv.org/abs/2405.18357.

Kaiyu Yang, Gabriel Poesia, Jingxuan He, Wenda Li, Kristin Lauter, Swarat Chaudhuri, and Dawn
Song. Formal mathematical reasoning: A new frontier in ai, 2024. URL https://arxiv.org/
abs/2412.16075.

Xi Ye, Qiaochu Chen, Isil Dillig, and Greg Durrett. SatL.M: Satisfiability-aided language models
using declarative prompting. In Thirty-seventh Conference on Neural Information Processing
Systems, 2023. URL https://openreview.net/forum?id=TqW5PL1Poi.

Eric Zelikman, Yuhuai Wu, Jesse Mu, and Noah Goodman. Star: Bootstrapping reasoning with
reasoning. Advances in Neural Information Processing Systems, 35:15476—15488, 2022.

Jiaxin Zhang, Zhongzhi Li, Mingliang Zhang, Fei Yin, Chenglin Liu, and Yashar Moshfeghi. Geoeval:
benchmark for evaluating llms and multi-modal models on geometry problem-solving. arXiv
preprint arXiv:2402.10104, 2024.

Wayne Xin Zhao, Kun Zhou, Junyi Li, Tianyi Tang, Xiaolei Wang, Yupeng Hou, Yinggian Min,
Beichen Zhang, Junjie Zhang, Zican Dong, et al. A survey of large language models. arXiv
preprint arXiv:2303.18223, 2023.

Huaixiu Steven Zheng, Swaroop Mishra, Xinyun Chen, Heng-Tze Cheng, Ed H. Chi, Quoc V Le,
and Denny Zhou. Take a step back: Evoking reasoning via abstraction in large language models,
2024a. URL https://arxiv.org/abs/2310.06117.

Yaowei Zheng, Richong Zhang, Junhao Zhang, Yanhan Ye, Zheyan Luo, Zhangchi Feng, and
Yongqiang Ma. Llamafactory: Unified efficient fine-tuning of 100+ language models. arXiv
preprint arXiv:2403.13372, 2024b.

http://dx.doi.org/10.18653/v1/2023.emnlp-main.313
http://dx.doi.org/10.18653/v1/2023.emnlp-main.313
http://dx.doi.org/10.18653/v1/2023.emnlp-main.313
https://arxiv.org/abs/2303.08774
https://arxiv.org/abs/2303.08774
https://arxiv.org/abs/2303.08774
https://arxiv.org/abs/2203.11171
https://arxiv.org/abs/2201.11903
https://arxiv.org/abs/2405.18357
https://arxiv.org/abs/2412.16075
https://arxiv.org/abs/2412.16075
https://arxiv.org/abs/2412.16075
https://openreview.net/forum?id=TqW5PL1Poi
https://arxiv.org/abs/2310.06117

183
184
185
186

187
188
189

190
191
192

193
194

195

196

197

198

199
200
201
202
203
204
205

207
208
209
210
211
212
213
214
215

NLOutput ¢ __SLoOutput NLSymbol Output X SymbolNL Output 2

| Lets think step by step.
H i 0

k
T,
y
t

100.

You are given a challenging math Logic: N
reasoning question:... There are four All students
methods that can possibly solve this love reading..
problen:.... Evaluate the strengths and
weaknesses of each method....

To solve the problem,
I need to first
understand the task at
hand

The final decision is

John computes the sum of the elements
of each of the 15 two-element subsets
of {1,2,3,4,5,6}. What is the sum of
these 15 sums?

Figure 1: Illustration of HYBRIDMIND. HYBRIDMIND enables the model to analyze the problem
and choose the most suitable approach among NL, SL, NLSymbol, and SymbolNL. We have different
reasoning paths for logic and mathematical reasoning problems. In this example, HYBRIDMIND
selects SL for a mathematical reasoning problem, which leads to the right solution (105).

Denny Zhou, Nathanael Schirli, Le Hou, Jason Wei, Nathan Scales, Xuezhi Wang, Dale Schuurmans,
Claire Cui, Olivier Bousquet, Quoc V Le, and Ed H. Chi. Least-to-most prompting enables
complex reasoning in large language models. In The Eleventh International Conference on
Learning Representations, 2023. URL https://openreview.net/forum?id=WZH7099tgfM.

Jin Peng Zhou, Charles Staats, Wenda Li, Christian Szegedy, Kilian Q. Weinberger, and Yuhuai Wu.
Don’t trust: Verify — grounding llm quantitative reasoning with autoformalization, 2024a. URL
https://arxiv.org/abs/2403.18120.

Pei Zhou, Jay Pujara, Xiang Ren, Xinyun Chen, Heng-Tze Cheng, Quoc V. Le, Ed H. Chi, Denny
Zhou, Swaroop Mishra, and Huaixiu Steven Zheng. Self-discover: Large language models
self-compose reasoning structures, 2024b. URL https://arxiv.org/abs/2402.03620.

Yukai Zhou, Zhijie Huang, Feiyang Lu, Zhan Qin, and Wenjie Wang. Don’t say no: Jailbreaking llm
by suppressing refusal. arXiv preprint arXiv:2404.16369, 2024c.

A Appendix / supplemental material

A.1 Method illustraion
A.2 Related Work

Reasoning with natural language and symbolic language

Reasoning with NL and SL. Recent research has substantially advanced the logical and mathe-
matical reasoning capabilities of LLMs by incorporating step-by-step reasoning (Kojima et al., 2023;
Wei et al., 2023; Wang et al., 2023; Zhou et al., 2023; Zheng et al., 2024a). These methods encourage
models to produce explicit intermediate reasoning steps in natural language. While these methods
have proven successful across various tasks, they depend entirely on language representations and
can yield incoherent or unreliable solutions when confronted with logically complex problems (Han
et al., 2024; Olausson et al., 2023).

Symbolic-based approaches take questions in natural language form and generate symbolic forms
alone such as Python code or First-Order Logic or generate symbolic forms together with natural
language reasoning steps(Gou et al., 2024; Gao et al., 2023; Chen et al., 2023; Imani et al., 2023;
Zhou et al., 2024a). External code executors or symbolic engines are then leveraged for verification or
deriving the final answer These methods guide the model to generate executable symbolic language
forms, enabling direct checks of intermediate or final outputs. Meanwhile, SymbCoT (Xu et al.,
2024) converts premises into a symbolic format and uses an LLM-based solver and verifier to validate
each step. By grounding reasoning in a checkable programmatic or symbolic form, these methods
can offer stronger verifiability than solely natural language—based solutions due to incorporation of
an external execution engine.

https://openreview.net/forum?id=WZH7099tgfM
https://arxiv.org/abs/2403.18120
https://arxiv.org/abs/2402.03620

216
217
218
219
220
221

222

223

224
225
226
227
228
229
230
231

232
233
234

236

237

239

240
241

242

243
244
245
246

Meta selection with LLMs Zhou et al. (2024b); Gao et al. (2024) use meta prompts to enable
LLMs to choose multiple fundamental reasoning modules, such as critical thinking and step-by-
step reasoning, and organize them into a clear reasoning structure that guides the model during
decoding. However, these methods only adopt natural language reasoning while HYBRIDMIND
exploits the of natural language reasoning and symbolic language reasoning, taking into consideration
the characteristics of logical and mathematical reasoning problems

A.3 Example figures

Table 3: HYBRIDMIND output example

Input

Premises

All runners who ranked in the top 1000 in the Boston Marathon
finished the marathon within 3 hours.

All runners from the University Running Club ranked in the top 1000 Question
in the Boston Marathon.

Some of the runners wearing T-shirts with the bulldog logo are major-
ing in Computer Science.

Input

Six-digit integers will be written using each of the digits 1
through 6 exactly once per six-digit integer. How many dif-
Tim is a runner and if Tim finishes the Boston Marathon within 3 ferent positive integers can be written such that all pairs of
hours, then he is not both from University Running Club and ranked in consecutive digits of each integer are relatively prime? (Note:
the top 1000 in the Boston Marathon. Lis relatively prime to all integers.)
Tim is a runner and if Tim majors in computer science, then he is

. . A . Rationale
either wearing a T-shirt with the bulldog logo or is a runner from the
University Running Club. ... given the limited number of permutations and the straight-
Conclusion forward nature of checking the pairwise condition—the SL
Tim majors in computer science. (Symbolic Language) method is the most effective. ...
Output Outputs
... While the premises are not overly complex, the relationships between Selected method: SL (Symbolic Language).
the entities involved are intertwined and require careful consideration.
Given the structured nature of the premises and the need for precise (b) HYBRIDMIND output on MATH.

logical deductions ... Selected method: SL (Symbolic Language).

(a) HYBRIDMIND output on FOLIO.

A.4 Method details

The SymboINL approach emphasizes the importance of analyzing the code’s execution through
natural language reasoning, allowing for corrections and insights even if the initial code has errors. In
contrast, NLSymbol starts with a natural language outline to clarify the problem before writing the
code, which can enhances the likelihood of successful implementation. These two formats leverage
both reasoning forms to improve problem-solving effectiveness. The optimal choice among these
approaches varies significantly across problem types — some problems benefit from the precision of
symbolic reasoning, while others require the flexibility of natural language decomposition (Olausson
et al., 2023; Chen et al., 2023; Zhou et al., 2024a).

This observation motivates HYBRIDMIND, a meta-selection framework that analyzes each problem’s
characteristics to determine the most suitable reasoning approach. As illustrated in Figure 1, before
using a specific approach to derive the final answer, HYBRIDMIND uses a meta-selection module to
first analyze the problem and decide which reasoning approach to apply among NL, SL, SymbolNL
and NLSymbol, before using the selected approach to generate a solution.

The core intuition behind HYBRIDMIND is that not all problems benefit equally from the same
reasoning approach (Zhou et al., 2024¢). Some problems may require step-by-step natural language
reasoning, while others are better suited for symbolic solutions. HYBRIDMIND empowers the model
to dynamically adapt its strategy by selecting the most appropriate method, ensuring flexibility and
maximizing performance across different problem types.

A.5 Choice of symbolic language

In mathematical reasoning and logical reasoning, the choice between symbolic languages such
as Python and formal logical systems like first-order logic (FOL) arises from their fundamental
differences in execution and purpose (Russell & Norvig, 2010). Python is a procedural language
designed for computation, making it well-suited for mathematical reasoning tasks that involve

254

261
262

264
265
266
267
268

269
270
271
272

273

274
275
276
277
278
279
280

281

282
283
284
285
286
287
288
289
290

291

292
293

numerical calculations, symbolic algebra, and algorithmic problem-solving. We include examples
where NL reasoning is better and where SL reasoning is better in the appendix. With built-in support
for arithmetic operations, iterative processes, and specialized libraries such as NumPy and SymPy,
Python efficiently performs both exact and approximate computations (Gao et al., 2023; Zhou et al.,
2024a). In contrast, FOL provides a declarative framework for logical reasoning, allowing for the
formal specification of knowledge, relationships, and inferential rules (Han et al., 2024; Olausson
et al., 2023; Lyu et al., 2023). Unlike Python, which executes a sequence of computational steps, FOL
is primarily used for theorem proving and rule-based inference, relying on formal logical operators,
quantifiers, and axioms to establish truths within a domain. While Python can simulate logical
reasoning through symbolic computation, its execution semantics is step-wise and does not allow
general deduction, which may result in unnecessary steps to reach the final value (Russell & Norvig,
2010). Consequently, we select Python to be the symbolic language for math reasoning, and FOL to
be the symbolic language for logical reasoning.

A.6 Training data generation

We present a systematic procedure for generating labeled training data for our meta-selector. We
use a state-of-the-art LLM, GPT-40 to solve a logical or math reasoning problem based on NL,
SL, NLSymbol, and SymbolNL. Each problem is solved in four aforementioned ways using the
same LLM. Labels are automatically created by measuring answer correctness with exact match:
whichever approach yields the correct solution is treated as the “label” for that problem. If multiple
approaches work, one is chosen at random?. These “correctness-labeled” examples are then used to
train a meta-selector model that can predict which solution strategy is most likely to be correct when
given a new problem.

This training data generation method has two major advantages. 1) The data generation is fully
automatic with the label directly generated with the original logical or math reasoning dataset answer
labels. 2) Different prompting strategies can complement one another; the meta-selector can learn to
pick the more suitable strategy for a given problem.

A.7 Result details

Our experiments are designed to test whether large language models can reason more effectively
by dynamically choosing between natural language reasoning and symbolic language reasoning (or
mixing both) rather than relying on a single approach. We explore whether the model can analyze
each problem first and then pick the most suitable method — natural language, symbolic language, or
a combination to arrive at a solution. By doing so, we aim to see if different types of problems in
math and logical reasoning benefits from different styles of reasoning, and whether a “meta-selection”
strategy can yield higher accuracy. Implementation details can be found in Appendix B.4.

A.8 Datasets

In our experiments, we consider two challenging datasets: MATH (Hendrycks et al., 2021) for
evaluating mathematical reasoning and FOLIO (Han et al., 2024) for evaluating logical reasoning.
These two datasets are widely adopted (OpenAl et al., 2024; Xu et al., 2025) and offer a range of
categories and difficulty levels, enabling us to conduct various analyses. The MATH dataset comprises
7,498 training samples and 5,000 testing samples in total across 7 categories and 5 difficulty levels;
and the FOLIO dataset contains 1,001 training samples and 226 testing samples spanning 2 categories.
Our finetuning methods are trained on the entire training set and evaluated based on the entire testing
set. Since we reported model performance by category, our experimental setting consists of a total of
9 subsets. Detailed sample counts for each category are provided in Appendix B.5.

A.9 Model choice

We selected several advanced LLMs as the base models for our meta-selector. For open-source LLMs,
we employ Llama-3.1-8B-Instruct; for proprietary LLMs, we utilize GPT-3.5-turbo, GPT-40, and

Notably, having 4 labels for whether each of the method solves the problem correctly produces a more
rigorous setting, but it leads to severe label imbalance which is hard to be mitigated in our initial experiments

294
295
296
297
298

299
300
301

303
304

305

306
307
308
309

311
312
313

314

315
316
317

319
320
321

322
323
324

326

327

328
329
330
331

332
333
334
335
336
337

03-mini. 3 Finetuning with our training data reduces the bias of keeping selecting NL reasoning, but
hurts the final performance. We then transform these base models into meta-selectors by applying
either finetuning or prompting. To ensure a fair evaluation, we use 8 shots for both NL and SL,
whereas SymbolNL and NLSymbol both use 4 shots at each stage. Details of the complete prompt
texts are in the Appendix B.6.

For open-source models, we consider both zero-shot prompting approach and fine-tuning approaches
including Supervised Fine-Tuning (SFT) (Zhao et al., 2023; Zheng et al., 2024b; Liu et al., 2024) and
iterative finetuning strategy, STaR (Zelikman et al., 2022), to train a meta-selector. Our fine-tuning
experiments are based on LLaMA-factory (Zheng et al., 2024b), which is widely employed in LLM
development (Liu et al., 2024; Zhao et al., 2023). Proprietary models are based on both the zero-shot
prompting and few-shots prompting approaches to act as a meta-selector.

A.10 NL, SL, NLSymbol and SymboINL

We perform meta selection over NL, SL, NLSymbol, and SymbolNL for MATH since all of the four
methods achieve high performance on MATH. Furthermore, the oracle accuracy of at least one of
the methods is at least 10.3% higher than that of only one other methods, showing the potential of
these methods to be complementary. However, NLSymbol and SymbolNL both achieve very low
performance on FOLIO. The first-order logic formulas generated by NLSymbol in the second stage
tend to be unexecutable and SymbolNL and the output generated by SymbolNL in the first stage
would distract the model from generating a reasoning path. Therefore, for FOLIO we adopt two-class
meta-selection over NL and SL without considering NLSymbol and SymbolNL.

A.11 Analysis on MATH

HYBRIDMIND can mitigate the bias of choosing correct methods. The bias of LLMs is shown
to have negative effects towards generating correct outputs in reasoning tasks (Gupta et al., 2023;
Reif & Schwartz, 2024). We noticed that small-scale models before fine-tuning, tended always to
choose NL as their final solution, and thus, it is important to investigate the output distribution by
choices under both mathematical reasoning and logical reasoning questions. We then investigated the
frequency of choice to solve problems in the MATH and FOLIO datasets, shown in Table 7. Details
and case studies are included in the Appendix.

Case study. Table 5a provides an example where HYBRIDMIND accurately discovers complex
logical relationships between entities in different premises and identifies “the need for precise logical
deductions to reach the conclusion.” It successfully selects SL. This underscores its capacity to
dynamically select the most suitable reasoning approach.

B Analysis

B.1 Analysis on FOLIO

The FOLIO dataset consists of two subsets: WikiLogic and HybLogic. WikilLogic presents simpler
logical reasoning tasks (1 — 5 reasoning steps), whereas HybLogic includes more logically complex
problems (5 — 8 reasoning steps). HYBRIDMIND improves model performance on HybLogic set by
13.04% (Table 1).

Meta-selector statistics. Initially, the meta selector utilized only a simple instruction prompt,
providing limited performance improvement (Vanilla in Table 4a). Subsequent prompt engineering
informs the model of the weaknesses of NL: NL reasoning can be be prone to errors if the problem is
especially logically challenging and its chain-of-though becomes long or convoluted. It also informs
the model of the weakness of SL reasoning (weakness info): SL is not ideal if the premises and
conclusion rely heavily on nuanced interpretations of language, or involve concepts that are hard

3In our initial experiments, we have also tested other models with 3-shot and 8-shot prompting, such as
Qwen?2.5-14B-Instruct, Qwen-32B-Coder-Instruct, and CodelLlama for meta-selection, however, these models
only selected reasoning with NL for all of the tested examples, even when they are given multiple shots, which
rendered them a non-optimal choice for testing with our method.

10

338
339

341
342
343
344
345
346
347
348
349
350

352
353
354
355
356
357
358

359
360

Table 4: Analysis on FOLIO

Strategy WikiLogic HybLogic Avg.
NL 80.18 60.87 70.35
Vanilla 80.18 62.61 71.24
+ wn info 80.18 59.13 69.47
+ wn info + 2-shots 79.28 73.91 76.55

(a) Comparison of different prompting strategies on the
FOLIO test set using GPT-3.5-Turbo.

w/o wn info w/ wn info
Subset NL SL NL SL
WikiLogic 111 0 102 9
HybLogic 110 5 31 84

(b) Distribution of NL vs. SL selectedby Hy-
BRIDMIND on WikilLogic and HybLogic w/o
weakness info and w/ weakness info.

to formalize in FOL. Details and case studies are included in the Appendix. We also show detailed

analysis on MATH in the Appendix.

B.2 Analysis on MATH

Table 5: HYBRIDMIND output example

Input

Premises

All runners who ranked in the top 1000 in the Boston Marathon
finished the marathon within 3 hours.

All runners from the University Running Club ranked in the top 1000
in the Boston Marathon.

Some of the runners wearing T-shirts with the bulldog logo are major-
ing in Computer Science.

Tim is a runner and if Tim finishes the Boston Marathon within 3
hours, then he is not both from University Running Club and ranked in
the top 1000 in the Boston Marathon.

Tim is a runner and if Tim majors in computer science, then he is
either wearing a T-shirt with the bulldog logo or is a runner from the
University Running Club.

Conclusion
Tim majors in computer science.

Input

Question

Six-digit integers will be written using each of the digits 1
through 6 exactly once per six-digit integer. How many dif-
ferent positive integers can be written such that all pairs of
consecutive digits of each integer are relatively prime? (Note:
1 is relatively prime to all integers.)

Rationale

... given the limited number of permutations and the straight-
forward nature of checking the pairwise condition—the SL
(Symbolic Language) method is the most effective. ...

Output

Outputs

... While the premises are not overly complex, the relationships between

Selected method: SL (Symbolic Language).

the entities involved are intertwined and require careful consideration.
Given the structured nature of the premises and the need for precise

logical deductions ... Selected method: SL (Symbolic Language). (b) HYBRIDMIND output on MATH.

(a) HYBRIDMIND output on FOLIO.

HYBRIDMIND can mitigate the bias of choosing correct methods. The bias of LLMs is shown
to have negative effects towards generating correct outputs in reasoning tasks (Gupta et al., 2023; Reif
& Schwartz, 2024). We noticed that small-scale models before fine-tuning, tended always to choose
NL as their final solution, and thus, it is important to investigate the output distribution by choices
under both mathematical reasoning and logical reasoning questions. Therefore, we investigated
the frequency of choice to solve problems in the MATH and FOLIO datasets, shown in Table 7.
Considering the case of random choice, the proportion of each choice will be 25% for MATH and 50
% for FOLIO, while the outputs from our method do not follow this proportion, and our model did
not choose the solution randomly but performs rigorous inference. Moreover, base models before
fine-tuning had 100% NL choices in the outputs, where our generated outputs only contained 94.10%
NL choices for MATH and 58.84% NL choices for FOLIO. Considering the high performance of
NL in solving mathematical reasoning problems, the outputs from our method should have a higher
proportion of NL choices while it can also select correct choices for other questions that NL cannot
resolve, and this improvement also happened in our testing results based on the FOLIO dataset. We
also tried to downsample NL in our training data and increase the proportion of SL for both problems
as a preliminary attempt to mitigate existing label bias, but the final performance was reduced by
5.3% in this setting. Therefore, the improvement of HYBRIDMIND can also be interpreted by the
contribution of reducing selection bias compared with other baselines.

Case study Table 5b provides an example from the number theory category, where HYBRIDMIND
selects the correct reasoning path in the problem that NL cannot address. HYBRIDMIND makes

11

361
362
363
364
365

366

367
368
369
370
371
372
373
374
375

376
377
378

380
381
382
383

384
385
386
387
388
389

390
391
392
393
394
395
396
397
398
399

400
401
402
403
404

405

407

highest percentage of improvement in the problems from this category, and HYBRIDMIND will utilize
the shots containing the description of problem statistics (e.g., length) as well as the most effective
solution and then make a final decision. This specific property allows us to handle complicated
metathetical reasoning problems with a stronger meta-selector. We include more examples where NL
reasoning is better and where SL reasoning is better in the appendix.

B.3 Comparing FOLIO with MATH

HYBRIDMIND produces more substantial improvement on FOLIO than on MATH, as manifested
by the smaller p-value. We hypothesize this could be because that FOL formulas are designed to
capture the original FOL reasoning question. In contrast, reasoning with Python code like SL for
MATH follows a procedural approach that more closely resembles natural language (NL) reasoning
than generating FOL formulas for FOLIO. The smaller difference between best-of-2 performance
and the NL or SL approach alone indicates that these two classes are more alike, which ultimately
makes the classifier more difficult to train because distinguishing between more similar classes is
more challenging. For future work, we will explore auto-formalization using Isabelle-form formal
specifications as SL for MATH reasoning (Yang et al., 2024; Zhou et al., 2024a).

Prompting results. In the experiment of zero-shot prompting Llama-3.1-8B-Instruct model, the
model performance falls closer to the average of the four approaches. This suggests that more
advanced models, like 03-mini, are better at selecting the optimal approach based on the problem.
Moreover, prompting the Llama-3.1-8B model to act as a meta-selector cannot surpass NL reasoning
with GPT-40, which shows the limitation of the model’s capacity for selecting the correct strategy
for solving mathematical reasoning problems. On the other hand, prompting advanced models as
a meta selector cannot lead to better performance either, which also demonstrates the constraint of
prompting in this type of question.

Finetuning results. Methods incorporating NL reasoning (NL, NLSymbol, and SymbolNL) out-
perform SL, emphasizing the importance of NL in mathematical reasoning. Overall, HYBRIDMIND
demonstrates higher selection accuracy, effectively identifying the most appropriate approach for
each problem. HYBRIDMIND also surpasses selectors with the same scale or larger scales in different
categories by 0.3% at least and 2.0% at most. Our improvement is statistically significant, as validated
by Wilcoxon Rank Sum test (Virtanen et al., 2020) (p = 0.002) shown in Appendix B.7.

HYBRIDMIND particularly works well in questions belonging to geometry, number theory, pre-
calculus, and prealgebra, and thus it shows the strong capacity of a fine-tuned model for solving
complicated geometric or numerical problems. Questions with these types are discussed to be more
challenging than other categories for general LLMs (Zhang et al., 2024; Ahn et al., 2024) to solve. A
prompt and paired radiational generated by HYBRIDMIND can be found in Table 5b, which matches
well with regular reasoning paths as a meta selector. Moreover, for finetuning experiments, we have
tried different types of meta-selectors, which are summarized in Appendix B.4. The best performer
for MATH is a meta-selector trained based on labels created with four methods. Our final choice also
outperforms STaR with fewer shots. This could be because that training the meta-selector for math
reasoning requires more examples.

Finally, while majority voting performs well on problems with higher accuracy, it struggles with more
challenging problems, such as those in the precalculus category. We note that both majority voting
(MV) # and random choosing cannot surpass our method as well as NL, especially in challenging
problems in the precalculus category. This observation demonstrates the necessity of fine-tuning for
improving LLMs’ mathematical reasoning.

Overall, in this section, we demonstrate that a smaller-scale model can be finetuned as a meta-selector
in selecting the most suitable strategy for a given mathematical reasoning problem, leading to better
performance than state-of-the-art baselines.

*When comparing majority voting, it’s important to consider the trade-off between effectiveness and cost.
Majority voting requires calling the language model to execute each of the four methods, whereas HYBRIDMIND
only necessitates executing a single selected method.

12

408

409
410
411
412
413
414

415
416
417
418
419
420
421
422

423
424
425
426
427
428
429

431

432

433

B.4 Implementation details

Prompting-based HYBRIDMIND. In our experiment, we considered prompting different LLMs
with various instructions to work as a meta selector for generating correct solution based on the given
question. Regarding the format of prompting, we tried two different zero-shot instruction design
and made comparison. We also tried few-shot prompting design, whose number of examples (shots)
in the instruction is at most 2. The shot contains question, answer, and the rationale generated by
GPT-03-mini.

Fine-tuning-based HYBRIDMIND. We also performed experiments to fine-tune Llama 3.1-8B to
perform complicated reasoning tasks. We prepared the training datasets by sampling the choices and
paired one correct choice with one question. The implementation of SFT is based on Llama-factory
and the hyper-parameter setting is same as the example configuration template. The implementation
of STaR is modified from the original code base. STaR utilizes models to generate rationale and then
select the corret samples as well as the generated rationales to perform fine-tuning. To fine-tune our
models, we utilize both NVIDIA H100 GPU and Together Al API. Details of our training codes can
be found in the attached zip file to this submission.

Information of baseline models. In our experiment, we considered prompting closed-source LLMs,
including GPT-40, GPT-3.5-turbo, GPT-03-mini, and fine-tuning open-sourced LLM including Llama
3.1-8b. The prompting experiment is performed with different strategies (NL, SL, SymbolNL,
NLSymbol) for solving the question directly. MV represents performing majority voting based on the
methods’ outputs. We also considered fine-tuning the base model with different strategies, including
making binary choices (NL or SL), or making 4-class choices (NL, SL, SymboINL, NLSymbol). The
fine-tuning process is for making a meta selector.

B.5 Statistics of testing data

Please check Tables 6, 7, and 8.

. Counting & Number & Intermediate &
Category Algebra Probability Geometry Theory Algebra Precalculus Prealgebra Total
Number 1187 474 479 540 903 546 871 5000

Table 6: Number of samples in the testing set by categories for MATH.

MATH FOLIO
Method Freq. Prop. Freq. Prop.
NL 4705 94.10% 133 58.84%
SL 124 2.48% 93 41.16%
SymboINL 163 3.26% - -
NLSymbol 8 0.16% - -

Table 7: The frequency and proportion of selected choices by HYBRIDMIND on MATH and FOLIO
test set. We implemented 4-choice selector for MATH dataset and 2-choice selector for FOLIO.

Category WikiLogic HybLogic Total
Number 111 115 226

Table 8: Number of samples in the testing set by categories for FOLIO.

B.6 Prompts and shots

Below are the prompts and shots used for the four approaches: NL, SL, SymbolNL, and NLSymbol.

13

434

444

454

464

474

494

B.6.1 NL

nl_system_prompt =

You are a helpful assistant who is good at solving math problems. You
should follow the guidelines below:

- Present the final result in LaTeX using a “\boxed{} without any units.

- Utilize the “pi~ symbol, and simplify all fractions and square roots
without converting them to decimal values.

nl_instruction_prompt = "Please_think_step_by._step.."

nl_math_shots= [

'"'"'Question: Kevin Kangaroo begins hopping on a number line at @. He
wants to get to 1, but he can hop only $\frac{1}{3}$ of the distance.
Each hop tires him out so that he continues to hop $\frac{1}{3}$ of
the remaining distance. How far has he hopped after five hops?
Express your answer as a common fraction.

Answer: Let's think step by step

Kevin hops $1/3% of the remaining distance with every hop.

His first hop takes $1/3$% closer.

For his second hop, he has $2/3$% left to travel, so he hops forward $
(2/3)(1/73)%.

For his third hop, he has $(2/3)"2$% left to travel, so he hops forward $
(2/3)"2(1/3)%.

In general, Kevin hops forward $(2/3)"{k-13}(1/3)$ on his kth hop.

We want to find how far he has hopped after five hops.

This is a finite geometric series with first term $1/3$%, common ratio $2
/3%, and five terms.

Thus, Kevin has hopped $\frac{\frac{1}{3}\1left(1-\left(\frac{2}{3}\right)
“5\right)}{1-\frac{2}{33}} = \boxed{\frac{2113}{2433}3}$.

The answer is \frac{2113}{2433}"'"'"',

Question: What is the area of the region defined by the equation $x"2+

y"2 - 7 = 4y-14x+3%$?

Answer: Let's think step by step

We rewrite the equation as $x"2 + 14x + y"2 - 4y = 10$%$ and then complete
the square,

resulting in $(x+7)"2-49 + (y-2)°2-4=10%,

or $(x+7)"2+(y-2)"2=63%.

This is the equation of a circle with center $(-7, 2)$ and radius $\sqgrt
{63}, %

so the area of this region is $\pi r"2 = \boxed{63\pi}$.

The answer is 63\pi'"'

Question: If $x"2+y*2=1%, what is the largest possible value of $|x|+]

yl$?

Answer: Let's think step by step

If (x,y) lies on the circle,

so does $(x,-y),$ $(-x,-y),$ and $(-x,-y),$ (which all give the same
value of $|x| + |y|$),

so we can assume that $x \ge 0% and $y \ge 0.%

Then $|x| + |y|] = x + y.$ Squaring, we get

\[(x + y)®"2 = x"2 + 2xy + y"2 =1 + 2xy.\]

Note that $(x - y)"2 \ge 0.%

Expanding, we get $x"2 - 2xy + y*2 \ge 0,$%$ so $2xy \le x"2 + y*"2 = 1.%

Hence ,\[1 + 2xy \le 2,\Jwhich means $x + y \le \sqrt{23}.$%

Equality occurs when $x =y = \frac{1}{\sqrt{2}},$

so the maximum value of $|x| + |y|$ is $\boxed{\sqrt{2}}.$%

The answer is \sqrt{2} s

14

497

499
500
501
502
503

505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558

560
561

Question: If $f(x)=\frac{ax+b}{cx+d}, abcd\not=0$% and $f(f(x))=x$ for

all x in the domain of f, what is the value of $a+d$?

Answer: Let's think step by step

The condition $f(f(x))$ means that f is the inverse of itself,

so its graph is symmetrical about the line $y = x$.

With a rational function of this form, we will have two asymptotes:

a vertical one at $x=-d/c$ if $cx+d$ does not divide $ax+b$,

and a horizontal one at $y=a/c$,

if we take the limit of $f(x)$ as x goes to $\pm\infty$.

In order for f to be its own inverse, the intersection of the
asymptotes must lie on the line $y=x$

so that it and its asymptotes reflect onto themselves.

This means that $-d/c=a/c$,

and therefore $-d=a$ and $a+d=\boxed{0}$.

The answer is 0''"',

Question: A math teacher requires Noelle to do one homework assignment
for each of the first five homework points she wants to earn; for
each of the next five homework points, she needs to do two homework
assignments; and so on, so that to earn the $n"{\text{th}}$ homework
point, she has to do $n\div5$% (rounded up) homework assignments. For
example, when she has 11 points, it will take $12\div5=2.4\
rightarrow3$ homework assignments to earn her $12°{\text{th}}$ point.
What is the smallest number of homework assignments necessary to
earn a total of 25 homework points?
Answer: Let's think step by step
Noelle only has to do 1 homework assignment to earn her first point,
and the same is true for each of her first five points.
She must then do 2 homework assignments to earn her sixth point, seventh
point, and so on, up to her tenth point.
Continuing, we see that Noelle must do a total of \[T+1+1+T+1+2+2+2+2+2+\
dots+5+5+5+5+5\] homework assignments to earn 25 points.
This sum may be rewritten as $5(1+2+3+4+5)=5(15)=\boxed{75}$.
The answer is 75''",

Question: The quadratic equation $x"2+mx+n=0$ has roots that are twice
those of $x"2+px+m=0,$ and none of $m,$ $n,$ and p is zero. What

is the value of $n/p?$

Answer: Let's think step by step

Let r_1% and r_2 be the roots of $x"2+px+m=0.$

Since the roots of $x"2+mx+n=0$ are $2r_1%$ and $2r_2,$ we have the
following relationships: \[

m=r_1 r_2,\quad n=4r_1 r_2,\quad p=-(r_1+r_2), \quad\text{and}\quad

m=-2(r_1+r_2).

\] So \[

n = 4m, \quad p = \frac{1}{2}m,

\quad\text{and}\quad

\frac{n}{p}=\frac{4m}{\frac{1}{2}Im}=\boxed{8}.

\1]

Alternatively, the roots of \[

\left(\frac{x}{2}\right) 2 + p\left(\frac{x}{2}\right) + m = @

\] are twice those of $x"2 + px + m = 0.$%

Since the first equation is equivalent to $x"2 + 2px + 4m = 0,$

we have \[m = 2p \quad\text{and}\quad n = 4m, \quad\text{so}\quad \frac{n
Hp} = \boxed{83}.\]

The answer is 8''"',

"''Question: Expand $(2z"2 + 5z - 6)(3z"3 - 2z + 1)$.
Answer: Let's think step by step
$$\begin{array}{crrrrrrr}

& & & 3z"3 & & -2z & + 1 & \\

\times & & & & 2z"2 & +5z & -6 \\
\cline{1-7}\rule{0pt}{0.17in}

15

562
563
564
565
566
567
568
569
570
571
572
573
574

576
577
578
579
580

582
583

584

585
586
587
588
589
590
591
592
593

595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623

& & & -18z"3 & & +12z & -6 & \\

& & +15z"4 & & -10z"2 & +5z & & \\

+ & 6z°5 & & -4z"3 & +2z"2 & & & \\
\cline{1-7}\rule{0pt}{0@.17in}

& 6z°5 & +15z°4 & -22z"3 & - 8z"2 &+17z & -6 &
\end{array}$$

The answer is 6z°5+15z"4-22z2"3-8z"2+17z-6""'",

'"''Question: Find the mean of all solutions for x when $x°3 + 3x"2 - 10
x = 0%.

Answer: Let's think step by step

First, we factor the equation as $x(x"2 +3x - 10) = 0%.

So, one solution is $x=0$ and the other two solutions are the solutions
to $x"2 + 3x-10=0%.

We could either factor the quadratic, or note that the sum of the
solutions to this quadratic is $-(3/1)=-3%,

so the mean of the three solutions to the original equation is $-3/3=\
boxed{-13}%.

The answer is -1

] ’
B.6.2 SL

sl_system_prompt =

You are a helpful assistant who is good at sloving math problems and
writing code. You should should follow the guidelines below:

- Utilize the °“pi " symbol and °"Rational *° from Sympy for π and
fractions, and simplify all fractions and square roots without
converting them to decimal values

- You should only write code blocks and the function name should be
solution ™ and the returned value should be the final answer.

sl_instruction_prompt = "Let's_use_python_to_solve_the_math_problem._."

sl_math_shots= [
"''Question: Find the coefficient of $x"3$% when $3(x"2 - x"3+x) +3(x +2x
"3- 3x"2 + 3x"5+x"3) -5(1+x-4x"3 - x"2)$ is simplifie.

*python
from sympy import symbols, simplify

def solution():
"""Find the coefficient of $x"3$ when $3(x"2 - x"3+x) +3(x +2x"3- 3x
"2 + 3x"5+x"3) -5(1+x-4x"3 - x"2)$ is simplified."""
x = symbols('x")
expr = 3%(X* %2 - X**3 + X) + 3*%(X + 2%x**3 - 3kx**2 + 3kx**5 + x*x%x3)
- 5%x(1 + X - 4%x**3 - Xx*%*2)
simplified_expr = simplify(expr)

x3_coefficient = simplified_expr.as_coefficients_dict()[x**3]
result = x3_coefficient
return result

D]
’

Question: The surface area of a sphere with radius r is $4\pi r"2$.
Including the area of its circular base, what is the total surface
area of a hemisphere with radius 6 cm? Express your answer in terms
of π.

16

624

625 " “python

626 import math

627

628 def solution():

629 """The surface area of a sphere with radius r is $4\pi r"2$%.

630 Including the area of its circular base, what is the total

631 surface area of a hemisphere with radius 6 cm? Express your

632 answer in terms of π"""

633 radius = 6

634

635 # Surface area of the hemisphere

636 hemisphere_area = 2 * math.pi * radius**2

637

638 # Area of the circular base

639 base_area = math.pi * radius#*x2

640

641 # Total surface area

642 total_surface_area = hemisphere_area + base_area

643

644 # Formatting the result in LaTeX

645 result = r'{3}\\pi'.format(total_surface_area / math.pi)

646 return result

a7

648

649 '''Question: Monica tosses a fair 6-sided die. If the roll is a prime
650 number , then she wins that amount of dollars (so that, for example,
651 if she rolls 3, then she wins 3 dollars). If the roll is composite,
652 she wins nothing. Otherwise, she loses 3 dollars. What is the

653 expected value of her winnings on one die toss? Express your answer
654 as a dollar value to the nearest cent.

655

656 ~ “python

657 def solution():

658 """Monica tosses a fair 6-sided die. If the roll is a prime number,
659 then she wins that amount of dollars (so that, for example, if
660 she rolls 3, then she wins 3 dollars). If the roll is composite,
661 she wins nothing. Otherwise, she loses 3 dollars. What is the
662 expected value of her winnings on one die toss? Express your
663 answer as a dollar value to the nearest cent.""”

664 # Probabilities of each outcome

665 prime_prob =1 / 6

666 composite_prob =1 / 3

667 otherwise_prob =1 / 6

668

669 # Expected value of each outcome

670 prime_expected_value = (2 * prime_prob) + (3 * prime_prob) + (5 *
671 prime_prob)

672 composite_expected_value = @ * composite_prob

673 otherwise_expected_value = -3 x otherwise_prob

674

675 # Total expected value

676 total_expected_value = prime_expected_value +

677 composite_expected_value + otherwise_expected_value

678

679 # Dollar value to the nearest cent

680 result = "{:.2f}".format(total_expected_value)

681 return result

g2 T

683

684 '''Question: Given $\mathbf{a} = \begin{pmatrix} -7 \\ @ \\ 1 \end{

685 pmatrix}$ and $\mathbf{b} = \begin{pmatrix} 4 \\ 2 \\ -1 \end{pmatrix
686 },$ find $\mathbf{a} - 3 \mathbf{b}.$

687

688 Solution:

17

689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
71
712
713
714
715
716
77
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732

734
735
736
737
738

740
741
742
743
744
745
746
747
748
749
750
751
752
753

““python
import numpy as np

def solution()

"""Given $\mathbf{a} = \begin{pmatrix} -7 \\ @ \\ 1 \end{pmatrix}$
and $\mathbf{b} = \begin{pmatrix} 4 \\ 2 \\ -1 \end{pmatrix},$
find $\mathbf{a} - 3 \mathbf{b}.$"""

a = np.array([-7, o, 11])

b np.array([4, 2, -1])

result = a - 3 b

result = r'\begin{{pmatrix3}} {3} \\ {3} \\ {3} \end{{pmatrix}}'.format(
result[@], result[1], result[2])
return result

S
)

Question: The endpoints of a diameter of circle M are $(-1,-4)$ and

$(-7,6)%. What are the coordinates of the center of circle M?

Express your answer as an ordered pair.

T python

def solution():

"""The endpoints of a diameter of circle M are $(-1,-4)$ and $
(-7,6)%$. Find the coordinates of the center of circle M."""

x1, yl = -1, -4

X2, y2 = -7, 6

Midpoint formula
center_x = (x1 + x2) / 2
center_y = (y1 + y2) / 2

Result as an ordered pair
result = (center_x, center_y)
return result

Question: Find the remainder when $2x"6-x"4+4x"2-7% is divided by $x
"2+4x+3%.

*“python
from sympy import symbols, div

def solution():
"""Find the remainder when $2x"6-x"4+4x"2-7$ is divided by $x"2+4x+3$

nnn

X = symbols('x")

numerator = 2%*x**6 - X**4 + 4xx*x%x2 - 7
denominator = x**2 + 4%x + 3
quotient, remainder = div(numerator, denominator)

return remainder
Ve
’

"''"Question: Find x so that the vectors $\begin{pmatrix} 2 \\ 5 \end{
pmatrix}$ and $\begin{pmatrix} x \\ -3 \end{pmatrix}$ are orthogonal.

T python

from sympy import symbols, Eq, solve

def solution():
"""Find x so that the vectors (2, 5) and (x, -3) are orthogonal.
X = symbols('x")
Dot product of the vectors should be zero for orthogonality
equation = Eq(2xx + 5x(-3), @)
result = solve(equation, x)
return result[0]

nnn

18

754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770

771

772
773
774
775
776
77
778
779

781
782
783
784
785

787
788
789
790
791
792
793
794
795
796
797

799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815

P

*python

from

sympy import symbols, Eq,

def solution():
""PIf x is positive and $x°2 = 729%, what is the value of x?2"""

X = symbols('x")

equation = Eq(xx*2, 729)
solutions = solve(equation,
#

solve

X)

Question: If x is positive and $x"2 = 729%, what is the value of x

Since x is positive, we select the positive solution
result = [sol for sol in solutions if sol > @][0]
return result

'
)

1

B.6.3 Second stage of SymbolNL

symbolnl_instructio_prompt = "Please_think_step_by._step_about_the_
question_based_on_the_provided._.code(it_may._be_wrong)_and_the_executed
output.. "

symbolnl_math_shots = [

Code:

Question:

“python

def solution():
"""How many distinct positive factors does 32 have?"""

n

umber = 32

factors = set()

for i in range(1,

if number % i == 0@:
factors.add (i)
factors.add(number

result = len(factors)
return result

OQutput: 6

Answer :

can follow these steps:

1. Pr

ime Factorization:

/7 1)

How many distinct positive factors does 32 have?

int(number**x0.5) + 1):

To determine the number of distinct positive factors of 32, we

First, we find the prime factorization of 32.

\N(32 = 2°5 \)

2. Number of Factors:
- The formula to find the number of distinct positive factors of a
number based on its prime factorization is to add 1 to each of the
exponents in the factorization and then multiply the results.
For \(32 = 2°5 \), the exponent is 5.
- Adding 1 to the exponent:

3. Conclusion:

- Therefore,

Thus,

the final result is:

\[\boxed{63\1"'"'",

Question:

\(5 +

In parallelogram $ABCD$,

126 \).

the number of distinct positive factors of 32 is 6.

angle B measures $110"\circ$.

What is the number of degrees in the measure of angle C?

Code:

*“python

19

816
817
818
819
820
821
822
823
824
825
826
827
828

830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877

879
880

def solution():
"""In parallelogram $ABCD$, angle B measures $110°\circ$. What is
the number of degrees in the measure of angle C?"""
angle_B = 110

In a parallelogram, opposite angles are equal and adjacent angles
are supplementary
angle_C = 180 - angle_B

return angle_C

Qutput: 70

Answer: In a parallelogram, opposite angles are equal and adjacent angles
are supplementary. Given that angle \(B \) measures \(110"\circ \)
, we need to find the measure of angle \(C \).

Step-by-step reasoning:
1. In a parallelogram, adjacent angles are supplementary. This means that
the sum of the measures of angle \(B \) and angle \(C \) is \(
180"\ circ \).
2. Therefore, we can write the equation: \(\text{angle } B + \text{angle
} C = 180"\circ \).
3. Substituting the given measure of angle \(B \) into the equation: \(
110"\ circ + \text{angle } C = 180"\circ \).
4. Solving for angle \(C \): \(\text{angle } C = 180"\circ - 110"\circ
= 70" \circ \).

Thus, the measure of angle \(C \) is \(\boxed{70} \).''",

'"''"Question: In triangle ABC, we have that E and F are midpoints of
sides \overline{AC} and \overline{AB}, respectively. The area of
$\triangle ABC$ is 24 square units. How many square units are in the
area of $\triangle CEF$?

Code: " “python

from sympy import Rational

def solution():

"""Calculate the area of triangle CEF given that E and F are
midpoints of sides AC and AB respectively, and the area of
triangle ABC is 24 square units."""

Area of triangle ABC

area_ABC = 24

Triangle CEF is a median triangle, which is 1/4 the area of
triangle ABC
area_CEF = Rational (1, 4) * area_ABC

return area_CEF

OQutput: 6

Answer: The problem involves finding the area of triangle CEF where E
and F are midpoints of sides \overline{AC} and \overline{AB}
respectively in triangle ABC. Given that the area of triangle ABC
is 24 square units, we need to determine the area of triangle $CEFS$.

Since E and F are midpoints of their respective sides, line segment $
\overline{EF}$ is parallel to side \overline{BC} and is half its
length. This makes triangle CEF a median triangle of triangle ABC

A median triangle is one-fourth the area of the original triangle
because it is formed by drawing lines from each vertex of the
original triangle to the midpoints of the opposite sides.

Thus, the area of triangle CEF is calculated as:

\[\text{Area of } \triangle CEF = \frac{1}{4} \times \text{Area of } \
triangle ABC = \frac{1}{4} \times 24\]

20

881

883
884
885
886
887
888
889
890
891
892
893

895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918

920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942

Simplifying this, we get:
\[\text{Area of } \triangle CEF = 6\]

Therefore, the area of triangle CEF is \(\boxed{6}\) square units.''"',

Question: What is the greatest two-digit multiple of 13?
Code: " “python
def solution():
"""Find the greatest two-digit multiple of 13.
Start from the greatest two-digit number and go downwards
for number in range(99, 12, -1):

if number % 13 == 0:

return number

nnn

OQutput: 91
Answer: To find the greatest two-digit multiple of 13, we start by
considering the largest two-digit number, which is 99. We need to
find the largest number less than or equal to 99 that is divisible by
13.

We perform the division of 99 by 13 to find the largest integer quotient:

\[\frac{993}{13} \approx 7.615 \]

The integer part of this division is 7, indicating that the largest
multiple of 13 within the two-digit range is \(13 \times 7 \).

Calculating this product:
\[13 \times 7 = 91 \]

Thus, the greatest two-digit multiple of 13 is 91. The Python code
provided confirms this by iterating from 99 downwards and checking
divisibility by 13, stopping at the first number that satisfies this
condition, which is 91.

Therefore, the final answer is:
\[\boxed{91} \1'"'',
]

B.6.4 Second stage of NLSymbol

nlsymbol_instruction_prompt = "Write_a_Python_code_that_translates.a.
natural_language_(NL)_reasoning_path_into_executable_code_to_answer_a
_given_question._The_output_of_the_generated_code_should_be_the_final
_answer_to_the_question._"

nlsymbol_math_shots = [

'"'"'Question: The area of the floor in a square room is 225 square feet.
The homeowners plan to cover the floor with rows of 6-inch by 6-inch
tiles. How many tiles will be in each row?

Reasoning Path: Let's think step by step:

The area of the floor is given as 225 square feet. Since the room is
square, each side of the room is the square root of the area. Thus,
each side of the room is \(\sqrt{225} = 15\) feet.

Each tile is 6 inches by 6 inches, which is equivalent to \(0.5\) feet by
\(@0.5\) feet since there are 12 inches in a foot.

To find out how many tiles fit along one side of the room, we divide the
length of the room by the length of one tile:

\[

\frac{15 \text{ feet}}{0.5 \text{ feet/tile}} = 30 \text{ tiles}

\1]

21

943
944
945
946
947
948
949
950
951
952
953
954
955

957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980

982
983
984
985
986

988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007

Therefore, there will be \(\boxed{30}\) tiles in each row.
Code: " “python
from sympy import sqrt

def solution():
Area of the floor in square feet
area = 225

Since the room is square, calculate the side length of the room
side_length = sqrt(area)

Each tile's side length in feet (6 inches = 0.5 feet)
tile_length 0.5

Calculate the number of tiles in each row
tiles_per_row = side_length / tile_length

return tiles_per_row

Question: When the set of natural numbers is listed in ascending order
, what is the smallest prime number that occurs after a sequence of
five consecutive positive integers all of which are nonprime?
Reasoning Path: Let's think step by step:

To find the smallest prime number that occurs after a sequence of five
consecutive nonprime positive integers, we need to identify such a
sequence first.

1. Start by checking small numbers. The first few nonprime numbers are 4,
6, 8, 9, and 10. However, these do not form a sequence of five
consecutive nonprime numbers.

2. Continue checking further:
-8, 9, 10, 12, 14 are nonprime, but they are not consecutive.
- 24, 25, 26, 27, 28 are nonprime and consecutive.

3. Check the number following 28:
- 29 is the next number, and it is a prime number.

Thus, the smallest prime number that occurs after a sequence of five
consecutive nonprime positive integers (24, 25, 26, 27, 28) is 29.

The answer is \(\boxed{293}\).
Code: " “python
from sympy import isprime

def solution():
Start checking from a reasonable number
n =1
while True:
Check if the next five numbers are all nonprime
if all(not isprime(n + i) for i in range(5)):
Check the number right after the sequence of five nonprimes
if isprime(n + 5):
return n + 5
n += 1

S
’

Question: What is the slope of the line that is tangent to a circle at
point (5,5) if the center of the circle is (3,2)? Express your

answer as a common fraction.

Reasoning Path: Let's think step by step:

22

1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072

The slope of the line connecting the center of the circle at point
\N((3,2)\) to the point on the circle \((5,5)\) is given by the
formula for the slope between two points:

\[m = \frac{y_2 - y_13}{x_2 - x_13} = \frac{5 - 23}{5 - 3} = \frac{33}{2}\]

The line that is tangent to the circle at the point \((5,5)\) will be
perpendicular to the line connecting the center of the circle to this
point. The slope of a line perpendicular to another line with slope
\(m\) is the negative reciprocal of \(m\). Therefore, the slope of
the tangent line is:
\[m_{\text{tangent}} = -\frac{1}{\frac{3}{23}} = -\frac{23}{3}\]

Thus, the slope of the line that is tangent to the circle at point
\N((5,5)\) is \(\boxed{-\frac{23}{33}}1\).

Code: " “python

from sympy import Rational

def solution():
Slope of the line connecting the center of the circle to the point
(5,5)
slope_radius = Rational(5 - 2, 5 - 3)

Slope of the tangent line, which is the negative reciprocal of the
slope of the radius
slope_tangent = -1 / slope_radius

return slope_tangent

Question: What is the greatest integer less than 100 for which the
greatest common factor of that integer and 18 is 3?
Reasoning Path: Let's think step by step

We are looking for the greatest integer less than 100 for which the
greatest common factor (GCF) with 18 is 3.

First, note that 18 can be factored into prime factors as \(18 = 2 \times
3°2\).

For the GCF of a number \(n\) and 18 to be 3, \(n\) must:
1. Be divisible by 3 (to include the factor of 3).
2. Not be divisible by 2 or 9 (to avoid increasing the GCF beyond 3).

We need to find the largest integer less than 100 that meets these
criteria. We look for numbers that are multiples of 3 but not
multiples of 2 or 9.

The largest multiple of 3 under 100 is 99. We check if it is divisible by
2 or 9:

- 99 is not divisible by 2 (since it is odd).

- 99 is divisible by 9 (since \(9 + 9 = 18\), and 18 is divisible by 9).

Since 99 does not work (as it is divisible by 9), we check the next
largest multiple of 3, which is 96.
- 96 is divisible by 2 (even number), so it does not work.

Next, we check 93:

- 93 is not divisible by 2 (odd number).

- 93 is not divisible by 9 (since \(9 + 3 = 12\), and 12 is not divisible
by 9).

Thus, 93 meets the criteria of being divisible by 3 but not by 2 or 9.

Therefore, the greatest integer less than 100 for which the GCF with
18 is 3 is \(\boxed{93}\).

23

1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084

1085

1086

1087

1088

1089

1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114

Code " “python
def solution():
from math import gcd
Start from the largest number less than 100 and check downwards
for n in range(99, 0, -1):
if gcd(n, 18) == 3:
return n

The function will return the greatest integer less than 100 for which
the GCD with 18 is 3

s
’

B.7 Significance test

Method Significance Level
GPT-3.5-Turbo compare prompt (less) i 0.05
GPT-40 compare prompt (less) i 0.05
03-mini prompt (less) 0.257
HYBRIDMIND (more) i 0.05

Table 9: Testing of significance levels of MATH dataset between HYBRIDMIND and NL.

Method Significance Level
GPT-40 compare prompt (less) 0.080
03-mini prompt (less) i 0.05
HYBRIDMIND (more) i 0.05

Table 10: Testing of significance levels of FOLIO dataset between HYBRIDMIND and NL.

B.8 Analysis between SL and NL
Please check Tables11, 12, 13, and 14.

B.9 Meta-Selection prompt

Here is 2-class meta-selection prompt for MATH dataset.

two_class_shots = [

Question: Four standard, six-sided dice are to be rolled. If the
product of their values turns out to be an even number, what is
the probability their sum is odd? Express your answer as a common

fraction.

Response: Below is an evaluation of the two methods for this specific
four-dice probability problem:

Natural LLanguage (Language Only):

Strengths: This method lets you break the problem down step by step.
You can explain your reasoning about conditionals (the even
product and odd sum) and manually handle the combinatorial cases.

This approach can offer insight into why the answer is what it
is.

Weaknesses: It requires careful bookkeeping to avoid mistakes in
counting cases and may become tedious when managing several
conditions simultaneously. There is more risk of a small
oversight that leads to an error in the final probability.

Symbolic Language (Coding Only):

Strengths: By writing a short Python program to iterate over all 64
possible outcomes, you can systematically and accurately count
the desired cases. It is very effective for this problem because

24

Question

For how many integers a satisfying 1 < a < 23 is it

truethata ' =a (mod 24)?

NL

Let’s think step by step. We need to find integers a
such that 1 < @ < 23 and a™' = a (mod 24).
This condition implies that a - @ = 1 (mod 24), or
equivalently, a® = (mod 24). This congruence can
be rewritten as a® — 1 0 (mod 24), which fac-
tors as (a — 1)(a + 1) = 0 (mod 24). Therefore,
(a — 1)(a + 1) must be divisible by 24. The prime fac-
torization of 24 is 2% x 3. Thus, (a — 1)(a + 1) must be
divisible by 2 x 3. Since a — 1 and a + 1 are consecu-
tive integers, one of them is even, and the other is odd.
Therefore, one of them must be divisible by 4, and the
other by 2, to ensure divisibility by 2° = 8. Additionally,
one of a — 1 or @ 4+ 1 must be divisible by 3.

We solve these systems of congruences using the Chinese

Remainder Theorem:
Casel:...... a=17 (mod 24)
Case2: a=7 (mod 24)

Thus, there are two integers a that satisfy the condition:
a = T and a = 17. Therefore, the number of integers a
is 2.

SL

Python

from sympy import symbols, Eq, solve,
mod_inverse

def solution():

count = 0@
for a in range(1, 24):
try:
Calculate the modular inverse of a
modulo 24

a_inv = mod_inverse(a, 24)
Check if the modular inverse is equal
to a
if a_inv == a:
count += 1
except ValueError:
If a modular inverse does not exist,
continue
continue
return count
solution()
Executed Result
8

Table 11: An example where SL outperforms NL. While NL reasoning leads to logical errors in
analysis and overlooks some possible scenarios, resulting in incorrect conclusions, writing Python
code is more elegant and intuitive.

1115 the search space is small enough for exhaustive enumeration,
1116 thereby reducing human error.

1117 Weaknesses: It might seem like overkill for a problem that is

1118 solvable by combinatorial reasoning, and you must be careful to
1119 correctly implement the conditions in code. However, given the
1120 manageable sample space, this method is straightforward and

1121 reliable.

1122

25

Question

How many days in a year have a 3 in the tens digit of the
day of the month?

NL

Let’s think step by step. We need to count the number of
days in a year where the tens digit of the day of the month
is 3. This means we are looking for days numbered 30
through 39 in each month.

1. Identify the months with days 30-39:

- The months with at least 30 days are January, March,
April, May, June, July, August, September, October,
November, and December.

- February has only 28 or 29 days, so it does not have
any days with a tens digit of 3.

2. Count the days for each applicable month:

-For each of the months with at least 30 days, the days
30 and 31 have a tens digit of 3.

- Therefore, each of these months contributes 2 days (30
and 31) to our count.

3. Calculate the total number of such days:

- There are 11 months with at least 30 days.

- Each of these months contributes 2 days.

- Total number of days = 11 x 2 = 22. Thus, the number
of days in a year that have a 3 in the tens digit of the day
of the month is 22.

SL

Python
def solution():
Not all months have 31 days, so we need
to count carefully
Months with 31 days: January, March, May,
July, August, October, December
months_with_31_days = 7
Months with 30 days: April, June,
September, November
months_with_30_days = 4
February has 28 or 29 days, so it never
has a 30th or 31st
Days with a 3 in the tens digit:
- 30th: occurs in every month except
February
- 31st: occurs only in months with 31 days
days_with_3_in_tens_digit =
(months_with_30_days + months_with_31_days) +
months_with_31_days
return days_with_3_in_tens_digit
solution()
Executed Result
18

Table 12: An example where SL outperforms NL. Python code offers a more accurate and structured
approach. While NL reasoning overlooks some edge cases and leads to incorrect conclusions, SL
systematically handles the details and produces the correct result.

1123 For this specific question, because the number of outcomes is small
1124 and the conditions can be programmed explicitly, the program-
1125 aided approach minimizes error risk and offers a quick,

1126 systematic solution.

1127

1128 Selected method: SL (Symbolic Language, Coding Only)

26

Question

Find the product of all positive integer values of ¢ such
that 3z 4+ 7z + ¢ = 0 has two real roots.

NL

To determine the product of all positive integer values of
¢ such that the quadratic equation 322 + 7z + ¢ = 0 has
two real roots, we need to ensure that the discriminant
of the quadratic is positive. The discriminant A of a
quadratic equation az® + bz + ¢ = 0 is given by:

A =b? — dac

Solving this inequality for ¢, we get:

49
4 12 —
9>12¢c = c¢c< 1
Calculating %, we find:
49
— =~ 4.
D 0833

Since ¢ must be a positive integer, the possible values for
care 1,2, 3, and 4. Now, we find the product of these
values:

1x2x3x4=24

Thus, the product of all positive integer values of ¢ such
that the quadratic equation has two real roots is 24.

SL

Python
from sympy import symbols, solve, Rational
def solution():

X, ¢ = symbols(’x c’)

For the quadratic equation to have
two real roots, the discriminant must be
non-negative

Discriminant of 322 +7x+c¢=0 is 72 —
4x3x%xc

discriminant = 7x%*2 - 4%3%c

Solve for c when discriminant is greater
than 0

c_values = solve(discriminant > 0, c)

c must be a positive integer

positive_integer_c_values = [i for i in
range(1, int(c_values[0]) + 1)]

Calculate the product of all positive
integer values of c

product = 1

for value in positive_integer_c_values:

product *= value

return product solution()

Executed Result
TypeError: And’ object is not subscriptable

Table 13: An example where NL outperforms SL. When writing python code to solve the problem,
another key factor is that the language model has learned this symbolic language well. Otherwise, it
may produce incorrect code, even if it understands the right concepts.

1129
1130 "',
1131

27

Question

How many vertical asymptotes does the graph of y =

x—3 9
7250 have?

NL

Let’s think step by step. To find the vertical asymptotes
of the function y = ﬁﬂ%go’ we need to determine
where the denominator is equal to zero, as these are the
points where the function is undefined and may have
vertical asymptotes. First, we set the denominator equal

to zero:

2% 4+ 7z — 30 =0.
Next, we factor the quadratic equation:

2> + 7z — 30 = (z +10)(z — 3) = 0.
Setting each factor equal to zero gives us the solutions:
r+10=0 = «x=-10,

z—3=0 = x=23.
These are the potential vertical asymptotes. However, we
must check if these points are also zeros of the numerator,
which would indicate a hole instead of an asymptote.
The numerator is — 3. Setting it equal to zero gives:

r—3=0 = x=23.

Since x = 3 is a zero of both the numerator and the
denominator, it is a removable discontinuity (a hole)
rather than a vertical asymptote.

Therefore, the only vertical asymptote occurs at z =
—10.

Thus, the graph of y =
tote.

SL

Python
from sympy import symbols, solve
def solution():

x = symbols(’x’)

denominator = x**2 + 7*%x - 30

x—3 :
2747230 has 1 vertical asymp-

Find the roots of the denominator
roots = solve(denominator, x)

The number of vertical asymptotes is the
number of distinct real roots
num_vertical_asymptotes = len(roots)

return num_vertical_asymptotes
solution()
Executed Result
2

Table 14: An example where NL outperforms SL. SL doesn’t consider the case where the numerator
equals zero, which highlights the weakness of SL reasoning when facing certain edge cases or special

conditions.
1132 Question: A piece of cheese is located at $(12,10)$% in a coordinate
1133 plane. A mouse is at $(4,-2)$% and is running wup the line $y=-5
1134 x+18%. At the point (a,b) the mouse starts getting farther
1135 from the cheese rather than closer to it. What is $a + b$?

28

1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200

Response: Below is an evaluation of each approach for this particular
problem:

Natural Language (NL):

Strengths:

- It is especially useful for problems that rely on geometric insight

and visual reasoning. For instance, one can break down the
problem by first finding the point on the line that is closest to
the cheese (using ideas like the perpendicular from the cheese
to the mouse's path) and then compute the coordinates, which
directly leads to a conceptual understanding of why that point
minimizes the distance.

- The natural language breakdown allows the solver to easily explain,

verify, and understand each step in the geometric reasoning
process.

Weaknesses:

- It relies on the solver's ability to carefully reason through each
step without skipping important details. Errors might occur if a
step is overlooked or misinterpreted, but these issues are often
easier to spot and correct when the reasoning is laid out in
natural language.

Symbolic Language (SL):

Strengths:

- A Python program can be very effective for computing an answer if
one sets up the right system (for example, defining the distance
function and finding its minimum via analytic methods or
optimization). It is useful if one has a routine set of tools (
like computational geometry libraries or symbolic manipulators)
that can automate the calculation accurately.

- It minimizes the potential for simple arithmetic mistakes, as the
computer does the heavy lifting once the input is correctly
specified.

Weaknesses:

- Setting up the correct algorithm in code (especially for a geometry

problem that involves minimizing a distance) can be nontrivial.
One must translate the geometric intuition correctly into code,
and a mistake there might lead to an incorrect answer without an
immediately clear explanation.

- The program might properly produce a number but without conveying
the underlying geometric reasoning, which can reduce the
educational value of the solution process for problems like this.

For this specific problem-a geometry problem involving distances and
perpendicular intersections-the Chain-of-Thought method is likely
the more effective approach. It promotes understanding of the
underlying geometric reasoning and highlights the process behind
finding the point where the mouse's distance from the cheese is
minimized.

[

Selected method: NL (Natural Language, Language Only) s

Question: Find the minimum of the function

\[\frac{xy}{x"2 + y"2}\1in the domain $\frac{2}{5} \le x \le \frac
{13{2}$ and $\frac{1}{3} \le y \le \frac{3}{8}.%

Response: Let's review what each approach offers for this problem.

Natural Lauguage (NL) method:

Strengths: It allows step-by-step reasoning, considering the
structure of the algebraic expression and boundary behavior,
which may reveal insights such as where the minimum might occur (
for example, at the endpoints or at a critical point) and can be
done entirely by hand.

Weaknesses: The algebra can become quite messy given the rational
function and the two-dimensional domain. Tracking all possible

29

1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264

cases (including boundary and potential critical points)
increases the risk of error or oversight. The method relies on
human intuition and careful logical decomposition, which can be
challenging under time constraints.

Symbolic Language (SL) method:
Strengths: A Python program can brute-force or use well-tested

optimization routines to accurately sample the function over the
given domain. Because the domain is compact and small in extent,
a numerical search (or even more refined optimization) is
straightforward and likely to yield a correct answer with less
chance of human error.

Weaknesses: One must be careful to cover the entire domain correctly

For

and account for potential issues with numerical precision.
Additionally, writing the optimization code correctly also
requires some programming skill, though for a two-variable
bounded problem this is well within reach.

this specific question-finding the minimum of a rational function
over a small, compact domain-the program-aided approach is more
directly effective. It reduces the intellectual overhead of
dealing with all the subtle boundary and interior cases manually
and tends to be more reliable given the tight constraints.

Selected method: SL (Symbolic Language, Coding Only)

[

(B

Question: Someone observed that $6! = 8 \cdot 9 \cdot 10$. Find the

largest positive integer n for which $n!$ can be expressed as
the product of $n - 3% consecutive positive integers.

Response: For this particular problem the trade-offs are as follows:

Natural Language (NL) Strengths and Weaknesses:
- Strength: A step-by-step reasoning process can provide insight into

the structure of the equation (relating factorials to products of
sequences) and might lead to an elegant, human-readable argument.

Weakness: The reasoning becomes quite intricate because one needs to

relate rapidly growing factorials to a product of a long chain
of consecutive integers. Handling large numbers and justifying
bounds without resorting to heavy computations is tricky and
error-prone for this specific task.

Symbolic Language (SL) Strengths and Weaknesses:
- Strength: A computer program can iterate through candidate values

of n (and compute factorials and products of consecutive integers
) with precision. This method offloads the heavy number crunching

and lets one quickly test many cases, which is especially
valuable given the enormous growth of factorials.

- Weakness: A coding solution requires careful handling of very large

For

numbers (or the use of logarithms/approximations) to avoid
computational inefficiencies or overflow issues. Still, with
modern programming languages and libraries this issue can be
managed.

this specific question, where the answer hinges on a precise
numerical property and where direct computational verification
seems feasible (once the search boundaries are known or estimated
), the Symbolic Language (SL) approach is more effective. It
allows for a systematic exploration of candidates with the
precision that the problem demands without running into lengthy
manual derivations.

Selected method: SL (Symbolic Language, Coding Only)''"',

30

1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329

[

Question: Evaluate $(2-w)(2-w"2)\cdots(2-w"{103})$ where $w=e "{2\pi
i/113.%
Response: Below is an evaluation of both approaches for this problem:

Natural Language (nl, Language Only):
- Strengths: This method allows one to recognize the structure of the
product. In this particular problem the factors are (2 - w'k)
for the nontrivial 11th roots of unity, and one can quickly
connect this to the cyclotomic polynomial formula (x"11 - 1)/(x -
1). This insight leads directly to an exact, elegant solution
without resorting to numerical approximation.

- Weaknesses: Using pure logical reasoning requires a strong
familiarity with algebraic properties of roots of unity and
cyclotomic polynomials. If one's background is less strong in
these areas, there is a risk of overlooking key steps or making
errors in derivation.

Symbolic Language (SL, Coding Only):

- Strengths: A Python program (or similar) can compute the product
numerically, providing a quick verification of the result. It
automatically handles the multiplication of many complex numbers,

which is useful when manual calculation is cumbersome.

- Weaknesses: The numerical approach may introduce floating-point
rounding errors, especially when working with complex
exponentials. It also may hide the underlying structure of the
problem and does not provide the exact algebraic insight that
leads to a neat closed-form answer. Additionally, setting up the
program correctly requires careful implementation of complex
arithmetic.

For this specific question, since the underlying algebraic structure
(via cyclotomic polynomials) offers an elegant, exact answer, the
chain-of-thought method is more effective and insightful.

Selected method: NL (Natural Language, Language Only)

[
’
[

Question: In trapezoid $ABCD$ the lengths of the bases AB and CD

are 8 and 17 respectively. The legs of the trapezoid are extended
beyond A and B to meet at point E. What is the ratio of
the area of triangle EAB to the area of trapezoid $ABCD$?
Express your answer as a common fraction.

Response: For this trapezoid geometry problem, the NL method allows
you to gradually set up the problem by assigning variables,
drawing relationships (such as the similarity of triangles), and
then carefully deriving the necessary formulas. This process can
enhance understanding and make it easier to check each individual

step, especially when dealing with geometric properties and
ratios.

On the other hand, the SL method would involve writing a Python
program to symbolically manipulate or numerically approach the
problem. While Python can be very powerful, setting up the
symbolic algebra needed for a clear derivation of an algebraic
ratio may require additional packages or careful coding. This
approach might risk making the solution less transparent and
could introduce potential programming errors for a problem that
is more elegantly handled through traditional reasoning.

Given that this problem benefits from step-by-step geometric
reasoning and clear algebraic manipulation, the chain-of-thought
method is more effective and straightforward for this specific
question.

Selected method: NL (Natural Language, Language Only)

31

1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394

’

Question: A 4-inch by 6-inch picture is enlarged for framing by

tripling its dimensions. A 2-inch-wide border is then placed
around each side of the enlarged picture, as shown. Thin metal
framing is sold only in increments of one foot. What is the

minimum number of linear feet of framing that must be purchased
to go around the perimeter of the border?

[asy]
draw((0,0)--(14,0)--(14,20)--(0,20)--cycle,linewidth(2));
draw((4,4)--(10,4)--(10,16) --(4,16)--cycle);

label ("border”,(7,17),N);

label ("picture”,(7,8),N);

label ("frame", (14,5) ,E);

draw((17.5,7.5)--(14.5,7.5) ,Arrow);
draw((10.5,7.5)--(13.5,7.5) ,Arrow);

[/asy]
Response: Below is an evaluation of the two methods for this particular
problem, followed by the selected method.

Natural Language (NL) - Language Only:

Strengths:

- It lets the solver reason through each step, clarifying the enlargement

process, how the border is added to both dimensions, and the
conversion from inches to feet.

- The explanation can detail the arithmetic (tripling dimensions, adding
2 inches on each side for the border, computing the new perimeter,
and then converting inches to feet while accounting for the need to
round up) so that every piece of the problem is understood.

- This method can easily communicate the reasoning to others.

Weaknesses:

- If not careful, details might be overlooked or arithmetic errors made.

- The reliance on manual computations (even if done carefully) might lead

to mistakes if any step is not double-checked.

Symbolic Language (SL) - Coding Only:

Strengths:

- A short Python program can accurately perform the arithmetic once the
proper logic is implemented.

- Code can handle unit conversion and rounding (for example, using math.
ceil) without any miscalculation due to human error.

- It is especially useful when the operations are straightforward and
mostly numerical, as in this case.

Weaknesses:

- The problem requires careful interpretation (tripling the dimensions,
adding a border to both sides) which must be encoded correctly; any
misinterpretation could lead to a coding error.

- Writing code for such a simple arithmetic problem might be overkill and

could miss conveying the geometric understanding behind the steps.

- There can also be distraction in the form of programming syntax rather
than focusing on the underlying mathematics.

For THIS SPECIFIC QUESTION, the arithmetic and geometry are simple and
direct. It is crucial to make sure that each conceptual step (
enlargement, addition of borders, perimeter computation, and
conversion unit) is clearly understood and communicated. The chain-of
-thought method naturally lends itself to this clarity without the

32

1395 overhead of translating the problem into code. While coding could

1396 give the answer reliably, it may hide the reasoning steps that are
1397 important to verify each part of the computation.
1398

1399 Selected method: NL (Natural Language, Language Only)

1400 s
1401]

33

	Introduction
	Method
	Experiments
	Experiments on FOLIO
	Experiments on MATH

	Conclusion and Future Work
	Appendix / supplemental material
	Method illustraion
	Related Work
	Example figures
	Method details
	Choice of symbolic language
	Training data generation
	Result details
	Datasets
	Model choice
	NL, SL, NLSymbol and SymbolNL
	Analysis on MATH

	Analysis
	Analysis on FOLIO
	Analysis on MATH
	Comparing FOLIO with MATH
	Implementation details
	Statistics of testing data
	Prompts and shots
	NL
	SL
	Second stage of SymbolNL
	Second stage of NLSymbol

	Significance test
	Analysis between SL and NL
	Meta-Selection prompt

