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Abstract: Dexterous grasping is a fundamental yet challenging skill in robotic
manipulation, requiring precise interaction between robotic hands and objects. In
this paper, we presentD(R,O) Grasp, a novel framework that models the interac-
tion between the robotic hand in its grasping pose and the object, enabling broad
generalization across various robot hands and object geometries. Our model takes
the robot hand’s description and object point cloud as inputs and efficiently pre-
dicts kinematically valid and stable grasps, demonstrating strong adaptability to
diverse robot embodiments and object geometries. Extensive experiments con-
ducted in both simulated and real-world environments validate the effectiveness
of our approach, with significant improvements in success rate, grasp diversity,
and inference speed across multiple robotic hands. Our method achieves an av-
erage success rate of 87.53% in simulation in less than one second, tested across
three different dexterous robotic hands. In real-world experiments using the Leap-
Hand, the method also demonstrates an average success rate of 89%. D(R,O)
Grasp provides a robust solution for dexterous grasping in complex and varied en-
vironments. The code, appendix, and videos are available on our project website
at https://nus-lins-lab.github.io/drograspweb/.
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1 Introduction

Figure 1: We propose our model
that utilizes configuration-invariant pre-
training, predicts D(R,O) represen-
tation, and obtains grasps for cross-
embodiment from point cloud input.

Dexterous grasping is essential for robotic manipula-
tion, but quickly obtaining diverse, high-quality grasps
remains difficult due to robotic hands’ complexity and
high degrees of freedom. We can broadly categorize
data-driven grasp generation methods into two types:
those that utilize robot-centric representations, such as
wrist poses and joint values [1, 2, 3], and those that
rely on object-centric representations, such as contact
points [4, 5, 6] or contact maps [7, 8, 9, 10].

The use of robot-centric representations like joint values
in methods such as UniDexGrasp++ [3] offer fast infer-
ence by mapping observations to control commands but
struggle with low sample efficiency and poor generaliza-
tion across different robot embodiments. Object-centric
methods, such as UniGrasp[4] and GenDexGrasp [7], ef-
fectively capture the geometry and contacts of objects, allowing for generalization across different
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Grasp
Representation Method Type Cross

Embodiment
Inference

Speed
Sample

Efficiency
Partial Object
Point Cloud

Full-hand
Contact

(not only fingertips)

Optional Grasp
Preference Interface

DFC [12] Joint Values Robot-centric ✓ ✗✗ - ✗ ✓ ✗
UniDexGrasp++ [3] Joint Values Robot-centric ✗ ✓✓ ✗ ✓ ✓ ✗

UniGrasp [4] Contact Point Object-centric ✓ ✗ ✓ ✗ ✗ ✗
GeoMatch [5] Contact Point Object-centric ✓ ✗ ✓ ✗ ✓ ✗

GenDexGrasp [7] Contact Map Object-centric ✓ ✗ ✓ ✗ ✓ ✗
ManiFM [8] Contact Map Object-centric ✓ ✗ ✓ ✗ ✗ Contact Region

DRO-Grasp (Ours) D(R,O) Interaction-centric ✓ ✓ ✓ ✓ ✓ Palm Orientation

Table 1: Dexterous grasp method comparison.

shapes and robots. However, these methods often require an additional time-consuming optimiza-
tion step, making them less efficient [11].

To overcome the limitations of both paradigms, we propose D(R,O), a unified representation that
captures the relationship between the robotic hand’s grasp shape and the object. D(R,O) encap-
sulates both the articulated structure of the robot hand and the object’s geometry, enabling direct
inference of kinematically valid and stable grasps that generalize across various shapes and robot
embodiments.

In conclusion, our primary contributions are as follows:

1. We introduce a novel representation, D(R,O) for dexterous grasping tasks. This interaction-
centric formulation facilitates robust generalization across diverse robotic hands and objects.

2. We propose a configuration-invariant pretraining approach with contrastive learning to align
features across different hand configurations, enabling effective grasp generation and cross-
embodiment generalization.

3. We perform extensive experiments in both simulation and real-world settings, validating the
efficacy of our proposed model in grasping novel objects with multiple robotic hands.

2 Method

Method Overview. First, we design an encoder network to learn representations from the point
clouds of both the robot and the object. The robot encoder network is pretrained using our proposed
configuration-invariant pretraining method (Sec. 2.1), which facilitates the learning of efficient robot
embedding. Next, a CVAE model is used to predict the D(R,O) representation, a point-to-point
distance matrix between the robotic hand at its grasp pose and the object, to implicitly present the
grasp pose (Sec. 2.2). From the D(R,O) representation, we derive the 6D pose for each link,
which serves as the optimization target for determining the joint values. This optimization process
is notably straightforward and efficient (Sec. 2.3). Fig. 2 provides an overview of our proposed
method, and further details are provided in Appendix A.

2.1 Configuration-Invariant Pretraining with Contrastive Learning

Learning dexterous grasping requires understanding the spatial relationships between the robot hand
and the object. The goal is to match the hand in specific configurations with the object, but this is
challenging due to the significant variations in local geometric features between open and grasp
configurations. To address this, we introduce configuration-invariant pretraining, enabling the en-
coder network to capture self-articulation alignment across various configurations. This approach
enhances the matching process between the robotic hand and the object.

We apply point-level contrastive learning on the robot hand’s point clouds in both open and closed
configurations to train the encoder network described in Sec. 2.2, ensuring feature consistency at
corresponding points across different joint configurations.

2.2 D(R,O) Prediction

Given the robot point cloud under initial pose PR ∈ RNR×3, and the object point cloud PO ∈
RNO×3, our model aims to predict the point-to-point distance matrix D(R,O) ∈ RNR×NO .
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Figure 2: Overview of D(R,O) framework: We first pretrain the robot encoder with the proposed
configuration-invariant pretraining method. Then, we predict the D(R,O) representation between
the robot and object point cloud. Finally, we extract joint values from the D(R,O) representation.

Point Cloud Feature Extraction We start by extracting point cloud embeddings using a robot
encoder and an object encoder, both sharing the same architecture. The robot encoder is initialized
with pretrained parameters and remains frozen during training. These encoders extract point-wise
features from the robot and object point clouds. To establish correspondences, we employ two
multi-head transformers, integrating the relationships between the robot and object feature sets.

CVAE-based D(R,O) Prediction To achieve cross-embodiment grasp diversity, we employ a
CVAE [13] network to capture variations across different combinations of hand, object, and grasp
configurations. The CVAE encoder processes the robot and object point clouds in the grasp pose,
along with the learned features, to output the latent variable z. This latent variable is then con-
catenated with the extracted point cloud features. We adopt the same kernel function K as Eisner
et al. [14], which is non-negative and symmetric, to predict pairwise distances between the robot
and object point clouds in the grasp pose. By computing distances across all pairs, we construct the
complete D(R,O) representation.

2.3 Grasp Configuration Generation from D(R,O)

Given the predicted D(R,O), we first apply multilateration [15] to compute the robot’s grasp point
cloud based on the object point cloud. Directly solving inverse kinematics to obtain joint values
from a point cloud is a non-trivial task. Next, we calculate the 6D pose of each link using rigid body
registration techniques. Finally, we solve a simplified optimization problem using CVXPY [16] to
determine the corresponding joint values.

3 Experiments

3.1 Evaluation Metric

Success Rate: We evaluate the success of grasping by determining whether the force closure con-
dition is satisfied. To implement this evaluation criterion, we used the Isaac Gym simulator [17].
A simple grasp controller is applied to execute the predicted grasps in the simulation. We consider
the grasp successful if the object’s resultant displacement stays below 2 cm after applying the six
directional forces.

Diversity: Grasp diversity is quantified by calculating the standard deviation of the joint values
(including 6 floating wrist DoF) across all successful grasps.

Figure 3: Visualization of all methods.
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Method Success Rate (%) ↑ Diversity (rad.) ↑ Efficiency (sec.) ↓
Barrett Allegro ShadowHand Avg. Barrett Allegro ShadowHand Barrett Allegro ShadowHand

DFC [12] 86.30 76.21 58.80 73.77 0.532 0.454 0.435 >1800 >1800 >1800
GenDexGrasp [7] 67.00 51.00 54.20 57.40 0.488 0.389 0.318 14.67 25.10 19.34

ManiFM [8] - 42.60 - 42.60 - 0.288 - - 9.07 -
DRO-Grasp (w/o pretrain) 87.20 82.70 46.70 72.20 0.532 0.448 0.429 0.49 0.47 0.98

DRO-Grasp (Ours) 87.30 92.30 83.00 87.53 0.513 0.397 0.441 0.49 0.47 0.98

Table 2: Overall comparison with baselines.

Method Success Rate (%) ↑ Diversity (rad) ↑
Barrett Allegro ShadowHand Barrett Allegro ShadowHand

Single 84.80 88.70 75.80 0.505 0.435 0.425
Multi 87.30 92.30 83.00 0.513 0.397 0.441
Partial 84.70 87.60 81.80 0.511 0.401 0.412

Table 3: Comparison under different conditions. “Single” trains on one hand, “Multi” trains on all
hands, and “Partial” trains and tests on partial point clouds.

Efficiency: The computational time required to achieve a grasp is measured, encompassing both
network inference and the subsequent optimization steps.

3.2 Simulation Performance

We present a detailed comparison of D(R,O) against DFC [12], GenDexGrasp [7], and Man-
iFM [8], as shown in Tab. 2. This evaluation, conducted on 10 previously unseen test objects using
the Barrett, Allegro, and ShadowHand robotic hands, provides a comprehensive overview of distinct
approaches to cross-embodiment grasping.

Our results demonstrate that D(R,O) significantly outperforms all baselines in success rate, high-
lighting the effectiveness of our method. Fig. 3 illustrates grasps generated by our method alongside
typical failure cases from the baselines. For successful grasps, the average displacement remains
under 2 mm, with an average rotation below 1◦, highlighting the firmness of our generated grasps.

The first two rows of Tab. 3 show a slight improvement in success rates when training across multiple
robotic hands rather than a single one, confirming the cross-embodiment generalizability of our
method. Additionally, our method significantly improves grasp generation speed, generating a grasp
within 1 second. This fast computation is crucial for dexterous manipulation tasks.

For further experiments in simulation, please refer to Appendix C.1, C.2, C.3, C.4.

3.3 Real-Robot Experiments

Figure 4: Real-world
experiment setting.

We conducted real-world experiments with a uFactory xArm6 robot,
equipped with the LEAP Hand [18] and the overhead Realsense D435
camera, as illustrated in Fig. 4. Our method achieved an average success
rate of 89% across 10 novel objects, showcasing its effectiveness in dex-
terous grasping and its generalizability to previously unseen objects. More
details are provided in Appendix C.5.

4 Conclusion

This work presents a new method for improving dexterous grasping by introducing the D(R,O)
representation, which captures the essential interaction between robotic hands and objects. Unlike
existing methods that rely heavily on either object or robot-specific representations, our approach
bridges the gap by using a unified framework that generalizes well across different robots and ob-
ject geometries. Additionally, our pretraining approach enhances the model’s capacity to adapt to
different hand configurations, making it suitable for a wide range of robotic systems. Experimen-
tal results confirm that our method delivers notable improvements in success rates, diversity, and
computational efficiency.
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Appendix

A Method Details

A.1 Configuration-Invariant Pretraining

Figure 5: Motivation for configuration-invariant pretraining.

The pertaining process breaks the problem into two simpler components: (1) self-articulation match-
ing, which implicitly determines the joint values for the grasp configuration, and (2) wrist pose
estimation. As shown in Fig. 5, leveraging configuration-invariant pretraining, we train the neural
network to understand the self-articulation alignment across different configurations, thereby facili-
tating the matching process between the robot hand and the object.

Specifically, for each robot hand, we begin by uniformly sampling points on the surface of each
link at the canonical pose, storing the resulting point clouds denoted as {Pℓi}

Nℓ

i=1, where Nℓ is the

number of links. We define a point cloud forward kinematics model, FK
(
q, {Pℓi}

Nℓ

i=1

)
to map joint

configurations to point clouds at new poses. For example, given a close-hand qA and an open-hand
configuration qB, where the wrist pose is the same or nearly identical, we obtain two point clouds
PA,PB ∈ RNR×3, representing these two joint configurations. Here, NR is the number of points
in the robot point cloud, set to 512 in practice.

These point clouds are passed through the encoder network (as described in Sec. 2.2) to produce
point-wise features ϕA,ϕB ∈ RNR×D, where D = 512 is the feature dimension. The model
applies point-level contrastive learning, aligning embeddings of positive pairs—points with the same
index in both clouds—while separating negative pairs, weighted by the Euclidean distance in PB.
This process ensures that the features corresponding to the same positions on the robot hand remain
consistent across different joint configurations. We define the resulting contrastive loss as:

Lp = − 1

Nℓ

∑
i

log

 exp
(〈
ϕA

i ,ϕ
B
i

〉
/τ
)

∑
j ωij exp

(〈
ϕA

i ,ϕ
B
j

〉
/τ
)
 , (1)

ωij =


tanh(λ∥pB

i −pB
j ∥2)

max(tanh(λ∥pB
i −pB

j ∥2))
, if i ̸= j

1, if i = j
, (2)

where ⟨·, ·⟩ denotes the cosine similarity between two vectors, pBi represents the i-th point position
in PB. For the hyperparameters, we set τ = 0.1 and λ = 10 in practice. Note that the learned
features are finger configuration-invariant but dependent on the wrist pose.

A.2 D(R,O) Prediction

Denote an open-hand configuration as qinit, of which the wrist pose can be either user-specified or
randomly generated. Let the robot point cloud under qinit be PR = FK

(
qinit, {Pℓi}

Nℓ

i=1

)
∈ RNR×3,

and the object point cloud be PO ∈ RNO×3, where NO represents the number of points in the
object point cloud, also set to 512 in practice. The objective of our neural network is to predict the
point-to-point distance matrix D(R,O) ∈ RNR×NO .
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Point Cloud Feature Extraction We begin by extracting point cloud embeddings using two en-
coders, fθR(PR) and fθO (P

O), which share the same architecture. Specifically, we use a modified
DGCNN [19] to better capture local structures and integrate global information (see Appendix F.1).
The robot encoder is initialized with pretrained parameters, using the method described in Sec. 2.1,
and remains frozen during training. These encoders extract point-wise features, ϕR and ϕO from
the robot and object point clouds:

ϕR = fθR(PR) ∈ RNR×D, ϕO = fθO (P
O) ∈ RNO×D. (3)

To establish correspondences between the robot and object features, we apply two multi-head cross-
attention transformers [20], gθR(ϕR,ϕO) and gθO (ϕ

O,ϕR). These transformers integrate the rela-
tionships between the two feature sets, embedding correspondence information. This process maps
the robot and object features to two sets of correlated features, ψR and ψO:

ψR = gθR(ϕR,ϕO) + ϕR ∈ RNR×D, ψO = gθO (ϕ
O,ϕR) + ϕO ∈ RNO×D. (4)

CVAE-based D(R,O) Prediction To achieve cross-embodiment grasp diversity, we employ a
Conditional Variational Autoencoder (CVAE) [13] network to capture variations across numerous
combinations of hand, object, and grasp configurations. The CVAE encoder fθG takes the robot
and object point clouds under the grasp pose PG ∈ R(NR+NO)×3, along with the learned features
(ψR,ψO) , resulting in an input shape of (NR + NO) × (3 +D). The encoder outputs the latent
variable z ∈ Rd, set as d = 64 in practice. We concatenate z with extracted features ψR and ψO,

converting the feature to ψ̂
R
i , ψ̂

O
j ∈ RNO×(D+d).

The same kernel function K as Eisner et al. [14] is adopted, which possesses the properties of non-

negativity and symmetry, to predict pair-wise distance rij = K(ψ̂
R
i , ψ̂

O
j ) ∈ R+ under the grasp

pose:

K(ψ̂
R
i , ψ̂

O
j ) = σ

(
1

2
Nθ

(
ψ̂

R
i , ψ̂

O
j

)
+

1

2
Nθ

(
ψ̂

O
j , ψ̂

R
i

))
, (5)

where σ denotes the softplus function, andNθ is an MLP, which takes in the feature of RNO×(2D+2d)

and outputs a positive number. By calculating on all (ψ̂
R
i , ψ̂

O
j ) pairs, we obtain the complete

D(R,O) representation:

D(R,O) =


K(ψ̂

R
1 , ψ̂

O
1 ) · · · K(ψ̂

R
1 , ψ̂

O
NO

)
...

. . .
...

K(ψ̂
R
NR

, ψ̂
O
1 ) · · · K(ψ̂

R
NR

, ψ̂
O
NO

)

 . (6)

A.3 Grasp Configuration Generation from D(R,O)

Given the predicted D(R,O), we discuss how to generate the grasp joint values to grasp the object.
We first calculate the robot grasp point cloud, then estimate each link’s 6D pose based on the joint
clouds. The system calculates the joint values by matching each link’s 6D pose.

Robotic Grasp Pose Point Cloud Generation For a given point pRi , the i-th row of D(R,O)
denotes the distances from this robot grasp point to all points in the object point cloud. Given the
object point cloud, the multilateration method [15] positions the robot point cloud. This positioning
technique determines the location of a point p′Ri by solving the least-squares optimization problem
based on distances from multiple reference points:

p′Ri = argmin
pR
i

NO∑
j=1

(
∥pRi − pOj ∥22 −D(R,O)

2
ij

)2
. (7)

As shown in Zhou [21], this problem has a closed-form solution, and by using the implementa-
tion from Eisner et al. [14], we can directly compute p′Ri . Repeating this process for each row of
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D(R,O) yields the complete predicted robot point cloud PP in the grasp pose. In 3D space, we
can determine a point’s position by measuring its relative distances to just three other points. Our
D(R,O) representation provides NO(= 512) relative distances, enhancing robustness to prediction
errors.

6D Pose Estimation of Links Directly solving inverse kinematics and getting the joint values from
a point cloud is not a trivial task. We first compute the 6D pose of each link in the world frame.
As described in Sec. 2.1, we store the point cloud for each link, {Pℓi}

Nℓ

i=1. Given the predicted
grasp point cloud

{
PP

ℓi

}Nℓ

i=1
, we calculate the 6D pose of each link using rigid body registration

techniques:

T ∗ = (x∗
i ,R

∗
i ) = argmin

(xi,Ri)

∥PP
ℓi −Pℓi(xi,Ri)∥2, (8)

where xi and Ri represent the translation and rotation of the i-th link, respectively.

Joint Configuration Optimization After predicting the 6D pose for each link, our objective is to
optimize the joint values to align the translation of each link with the predicted result. Starting from
an initial value qinit, we iteratively solve the following optimization problem using CVXPY [16]:

min
δq

(
Nℓ∑
i=1

∥∥∥∥xi +
∂xi(q)

∂q
δq − x∗

i

∥∥∥∥
2

)
s.t. q + δq ∈ [qmin, qmax], |δq| ≤ εq. (9)

In each iteration, the system computes the delta joint values δq by minimizing the objective func-
tion and updates the joint values as q ← q + δq. Here, xi represents the current link translation,
[qmin, qmax] denotes the joint limits, and εq = 0.5 is the maximum allowable step size. The opti-
mization process can be efficiently parallelized, typically achieving convergence within one second,
even for a 6+22 DoF ShadowHand.

A.4 Loss Function

The training objectives of the whole network include four parts, including the prediction ofD(R,O)
and T , the suppression of penetration, and the KL divergence of the CVAE latent variable:

L = λDLL1

(
D(R,O),D(R,O)GT

)
+ λT

1

Nℓ

Nℓ∑
i=1

Lℓi

+ λP
∣∣LP(P

T ,PO)
∣∣+ λKLDKL

(
fθG (P

G ,ψR,ψO) ∥ N (0, I)
)
,

(10)

where λD, λT , λP , λKL are hyperparameters for loss weights.The superscript ‘GT’ refers to the
ground truth annotations. N (0, I) is a standard Guassian distribution, and PT is the robot point
cloud under the T ∗ described in A.3. LP computes the sum of the negative values of the signed
distance function (SDF) of PT to PO to penalize any penetration between the robot hand and the
object, and Lℓ computes the difference between two 6D poses:

Lℓi = ∥x∗
i − xGT

i ∥2 + arccos

(
tr(R∗T

i RGT
i )− 1

2

)
. (11)

Notably, the computation from D(R,O) representation to the 6D pose T ∗ shown in Eqn. 8 is en-
tirely matrix-based, ensuring differentiability for loss backpropagation and computational efficiency.

B Dataset Details

We utilized a subset of the MultiDex dataset [7] (See Appendix D.2 for the filtering process). After
filtering, 24,764 valid grasps remained. We adopt three robots from the dataset: Barrett (3-finger),
Allegro (4-finger), and ShadowHand (5-finger). Each grasp defines its associated object, robot, and
grasp configurations. We retain the same training and test dataset splits as in the MultiDex dataset.
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B.1 URDF File Preprocessing

To facilitate optimization, we introduce six virtual joints between the world frame and the robot’s
root link: three prismatic joints representing translation (x, y, z) and three revolute joints represent-
ing rotation (roll, pitch, yaw). These virtual joints are incorporated into the robot’s URDF file and
treated equivalently to other joints to simplify the computation of the Jacobian matrix. Further-
more, virtual links are added to the distal ends of each tip link to address potential errors in the 6D
pose during optimization, ensuring consistent constraints across all links despite reduced rotational
restrictions.

B.2 Robot Point Cloud Sampling

To extract the stored point clouds {Pℓi}
Nℓ

i=1 from the URDF file of a specific robot, we first sample
512 points from the mesh of each link. We then apply the Farthest Point Sampling (FPS) algorithm
to the complete point cloud, selecting 512 points, denoted as NR in our method. These point clouds
are stored separately for each distinct link.

This process guarantees that, for any joint configuration, our point cloud forward kinematics model,
FK
(
q, {Pℓi}

Nℓ

i=1

)
, can map joint configurations to corresponding point clouds at new poses. This

ensures consistent point cloud correspondence across different poses, a key advantage for our pre-
training methodology.

B.3 Object Point Cloud Sampling

Starting with the mesh file of an object, we initially sample 65,536 points. For each training iter-
ation, we randomly select 512 points from this set and apply Gaussian noise N (0, 0.002) for data
augmentation. This strategy improves the model’s generalization across different object shapes.

C Experiment Details

C.1 Diverse Grasp Synthesis

Grasping diversity includes two key aspects: the wrist pose and the finger joint values. Since the
input and grasp rotations in the training data are correspondingly aligned, the model learns to implic-
itly map these rotations. This alignment enables the model, during inference, to generate appropriate
grasps based on the specified input orientation. Fig. 6 illustrates the grasp results for six different
input directions, showing that our model consistently produces feasible grasps, demonstrating the
controllability of our method. Additionally, by sampling the latent variable z ∈ R64 from N (0, I),
our model can generate multiple grasps in the same direction. As shown in Tab. 2, the diversity of
our method is highly competitive.

Figure 6: Diverse and pose-controllable grasp generation. The arrow refers to the input palm orien-
tation. Arrows and hands of the same color represent corresponding input-output pairs.

C.2 Configuration Correspondence Learning

As described in Sec. 2.1, our proposed configuration-invariant pretraining method learns an inherent
alignment across varying robotic hand configurations. We visualize the learned correspondence in
Fig. 7, where each point in the closed-hand pose is colored according to the highest cosine sim-
ilarity with its counterpart in the open-hand pose. The excellent color matching within the same
hand demonstrates that the pretrained encoder successfully captures this alignment. Furthermore,
strong matching across different hands highlights the transferability of features. As shown in Tab. 2,
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removing the pretraining parameters and training the robot encoder directly results in performance
degradation across robotic hands, confirming the effectiveness of the pretrained model.

Figure 7: Visualization of the pretrained point matching.

C.3 Grasping with Partial Object Point Cloud Input

A common challenge in real-world experiments is the noise and incompleteness of point clouds from
depth cameras. Object-centric methods that rely on full object visibility often suffer performance
degradation under such conditions. In contrast, the relative distance feature of D(R,O) allows our
method to infer the robot point cloud even from partial observation. We validated this approach
through experiments. Starting with the mesh of an object, we randomly sample 2 × NO points.
Next, a point is randomly sampled on a unit sphere, and the direction vector r from this point to the
origin is computed. For each point in the point cloud, we calculate the dot product between r and the
corresponding direction vectors di. We then remove half of the points with the smallest dot product
values r · di, leaving a subset of NO points, which forms the partial object point cloud. This process
is used to generate random point clouds during both training and evaluation. This setup simulates the
incomplete data commonly encountered in practice. As shown in Fig. 8 and the third row of Tab. 3,
even with partial point clouds, our model can successfully predict feasible grasps (Q5), indicating
robustness when faced with incomplete input.

Figure 8: Grasp examples with partial object point clouds. Red points show the observed portion.

C.4 Zero-shot Generalization to Novel Hands Experiment

We trained the model separately on each of the three robotic hands and then validated it on the
others without further training. As shown in Tab. 4, the results indicate that when transferring
from high-DOF hands to low-DOF hands in a zero-shot setting, the model retains a certain level
of performance. However, transferring in the opposite direction largely fails. We hypothesize that
this difference arises because high-DOF hands have a much more complex configuration space,
allowing the model to learn a broader range of articulation-invariant matching tasks, which can still
perform well on the simpler articulation-invariant tasks required for low-DOF hands. In contrast,
the configuration space of low-DOF hands is relatively simple, and when trained on these hands, the
model can only master simple articulation-invariant matching tasks.

C.5 Real-World Experiment Details

Dataset Collection, Pretraining and Training For the real-world experiments, we collected the
LEAP Hand dataset and trained a model independently. We initially selected 78 daily objects from
the YCB dataset [22] and ContactDB [23], then applied the DFC-based [12] grasp optimization
method from [24] to generate 1,000 grasps per object, yielding a total of 78,000 grasps. Following

11



Training
Robot

Success Rate (%) ↑
Allegro Barrett ShadowHand

Allegro (88.70) 83.60 1.10
Barrett 42.40 (84.80) 6.90

Shadowhand 56.90 83.70 (75.80)

Table 4: Generalization results to novel hands.

(a) Apple (b) Bag (c) Brush (d) Cookie Box (e) Cube

(f) Cup (g) Dinosaur (h) Duck (i) Tea Box (j) Toilet Cleaner

Figure 9: Real-world grasp demonstrations

a dataset filtering process, we obtained 24,656 grasps across 73 objects. The encoder network was
first pretrained on the original dataset, and the entire model was then trained on the filtered dataset,
as described in Sec. 2.

Real-World Deployment Details We first scanned the objects listed in Tab. 5 using AR Code [25].
After camera intrinsics [26] and extrinsics [27] calibration, we estimated object poses using Founda-
tionPose [28] and sampled point cloud uniformly on their surfaces. In this tabletop grasping setting,
only top-down and side grasps are feasible, as other palm orientations would likely collide with the
table. To address this, the model took as input the sampled object point clouds and a batch of LEAP
Hand point clouds, which corresponded to 32 interpolated hand poses ranging from top-down to
right-side orientations, enabled by our palm orientation control functionality. We randomly selected
one of the top-5 grasps from the generated batch, ranked according to the same grasp energy calcu-
lation used during dataset generation [24]. We then use MPLib [29] for arm motion planning to the
desired end-effector pose. A PD controller is applied for grasp execution.

Experiment Result We tested 10 objects with various shapes, performing 10 grasping attempts for
each object. The experimental results are shown in Tab. 5 and Fig. 9. Our method achieved an
average success rate of 89% across these 10 objects, demonstrating the effectiveness of our method
in dexterous grasping and its generalizability to novel objects.

Apple Bag Brush Cookie Box Cube Cup Dinosaur Duck Tea Box Toilet Cleaner
9/10 10/10 9/10 10/10 9/10 7/10 9/10 8/10 8/10 10/10

Table 5: Real-world experiment results on unseen objects.

D Grasp Controller

To mitigate minor inaccuracies and subtle penetrations commonly found in generative methods, as
well as the limitations of directly predicting a static grasp pose—which overlooks the forces exerted
on contact surfaces—we developed a heuristic grasp controller to better simulate real-world grasping
scenarios. The controller aims to generate a configuration qouter that is farther from the object’s center
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Figure 10: Visualization of the grasp controller’s effect: blue indicates the predicted grasp pose,
orange represents qouter, and pink represents qinner.

of mass and a configuration qinner that is closer to the center of mass, based on the predicted pose.
Fig. 10 illustrates the impact of the grasp controller.

D.1 Evaluation Metric Details

In Isaac Gym, we evaluate the success of a grasp through a two-phase process. First, in the grasp
phase, we use the previously described grasp controller to compute qouter and qinner. We set the robot
joint position to qouter with a position target at qinner. Then we simulate for 1 second, equivalent to
100 simulation steps for the hand to close and grasp. In the second phase, we apply disturbance
forces sequentially along six orthogonal directions, following the method in [7]. These forces are
defined as:

F±xyz = 0.5m/s2 ×mobject (12)
where mobject denotes the mass of the object.

Our approach improves upon [7] by introducing a dynamic grasp phase, transitioning the evaluation
from static to dynamic, and thereby significantly enhancing the rigor of the evaluation metric. In
the original static validation, some grasps could hold objects in unstable positions. By introducing
dynamic validation, these unstable grasps are less likely to succeed, resulting in a more stringent
and accurate assessment of grasp quality. Moreover, static validation is prone to simulation errors,
such as object penetration or robot self-collisions, which can incorrectly classify unstable grasps
as successful. The dynamic method alleviates these issues, providing a more robust and reliable
evaluation of grasp success.

Fig. 11 illustrates several anomalous grasps that, despite appearing to fail, could still be judged as
successful under the static metric. These grasps, either in an unstable state or exhibiting significant
self-penetration, are impractical for real-world applications, highlighting the limitations of static
validation.

Figure 11: Grasp examples filtered out from the dataset that would otherwise be deemed successful
under static metric.

D.2 Dataset Filtering

To address the suboptimal grasp quality, we applied a filtering process to the CMapDataset [7].
Specifically, each grasp in the dataset was evaluated based on the success metrics defined in Ap-
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pendix D.1. We then store the relative 6D pose and joint values of every successful grasp in the
filtered dataset.

E Baseline Description

DFC is an optimization-based approach that searches for feasible grasp configurations through itera-
tive optimization. GenDexGrasp predicts contact heatmaps and uses optimization to determine grasp
poses. ManiFM outputs contact points on the object and associated contact forces or post-contact
motions for robots to achieve the desired manipulation task.

E.1 DFC [12]

Since DFC is a purely optimization-based method, the speed of generating grasps is particularly
slow. Therefore, we evaluate it using the original CMapDataset, which was primarily generated
by the DFC method. As the dataset generation process also minimizes the hand prior energy and
penetration energy described in [7], and some generated grasps may have already been filtered, the
evaluation results are likely better than DFC’s actual performance.

E.2 GenDexGrasp [7]

We used the filtered grasp dataset to train the model, where the contact heatmap was generated using
the aligned distance as described in the paper. The GenDexGrasp model was trained with default
hyperparameters. In Tab. 6, we compared the results of the open-source pretrained model with those
of our trained model, demonstrating that our filtered dataset is of higher quality.

Method Success Rate (%) ↑
Allegro Barrett ShadowHand Avg.

pretrain 51.00 63.80 44.50 53.10
train 51.00 67.00 54.20 57.40

Table 6: GenDexGrasp Result Comparision

E.3 ManiFM [8]

Due to the unavailability of pretrained models for Barrett and ShadowHand, our evaluation was
restricted to the Allegro pretrained model. Considering the fundamental differences between point-
contact and surface-contact grasps, we optimized the controller’s hyperparameters for improved per-
formance of ManiFM. Nevertheless, despite the seemingly high quality of the generated grasps, the
inherent instability of point-contact grasps posed significant challenges in achieving a high success
rate during simulation.

E.4 GeoMatch [5]

Although GeoMatch is a keypoint matching-based method that supports cross-embodiment and
shares similarities with our approach, we faced challenges in reproducing its results due to the ab-
sence of pretrained models and insufficient details regarding the data file formats, which remained
unsolved in its repository’s issues as well. Consequently, it was not included as a baseline for com-
parison.

F Network Architecture

F.1 Point Cloud Encoder

To map robot and object features into a shared feature space, enhancing the network’s ability to
learn correspondences between them, we employed identical architectures for both the robot and
object encoders. Our encoder design is based on the DGCNN [19] architecture, as implemented
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Figure 12: Point cloud encoder architecture.

in [14]. Notably, this implementation omits the original layer-wise re-computation of K-nearest
neighbors (KNN) for graph construction, resulting in a “Static Graph CNN”. In our setup, K is set
to 32, meaning that each point’s receptive field is much smaller than the total number of points in
the cloud (NR = 512). This constraint limits the ability of the per-point feature extraction process
to capture global information, which poses a challenge for the object encoder, as it struggles to learn
comprehensive geometric shape features.

We experimented with the original dynamic graph structure, but it led to a decline in pretraining
performance. We hypothesize that, for configuration-invariant learning objectives, local structural
information in the point cloud is critical, and the network needs to be reinforced to capture this.
The dynamic graph structure tends to learn similar structures across different fingers, which, while
beneficial for segmentation tasks, is less suited to our specific learning goals. The impact of varying
network architectures and feature learning strategies will be further explored in future work.

Consequently, our encoder follows a “Static Graph CNN” architecture with five convolutional layers.
After the last convolution, a global average pooling layer generates a global feature concatenated
with features from all previous layers. This combined output is passed through a final convolutional
layer, projecting into the embedding dimension. The architecture is illustrated in Fig. 12, where the
LeakyReLU activation function uses a negative slope of 0.2.

F.2 Cross-Attention Transformer

We followed the architectural design from [14], utilizing a multi-head attention block with 4 heads.
The implementation details can be found in the code.

F.3 Kernel MLP

We adopted the same hyperparameters design as [14]. Specifically, the MLP consists of two hid-
den layers with feature dimensions of 300 and 100, respectively, along with the ReLU activation
function.

G Matrix Block Computation

To address the high GPU memory demands of using the MLP kernel function to compute D(R,O),
we implemented a matrix block computation strategy to optimize memory usage. After experimen-
tation, we ultimately chose to divide the entire matrix into 4 × 4 blocks for computation, which
reduces memory consumption by approximately 34% while maintaining similar computation time.
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