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Abstract

For causal discovery in the presence of latent con-
founders, constraints beyond conditional independ-
ences exist that can enable causal discovery al-
gorithms to distinguish more pairs of graphs. Such
constraints are not well-understood yet. In the set-
ting of linear structural equation models without
bows, we study algebraic constraints and argue
that these provide the most fine-grained resolution
achievable. We propose efficient algorithms that de-
cide whether two graphs impose the same algebraic
constraints, or whether the constraints imposed by
one graph are a subset of those imposed by another
graph.

1 INTRODUCTION

Causal discovery is the problem of learning a causal graph
from data. This is a difficult problem for many reasons,
including the danger of drawing wrong conclusions due to
noisy data, the superexponential size of the search space, and
the fact that some graphs are just indistinguishable based on
data alone.

A further complication is that in many situations, we cannot
safely assume causal sufficiency: the assumption that we
have measurements of all variables that are relevant for
explaining the statistical relations we see in the data. A
latent confounder is a variable that is not observed, but is a
cause of two or more observed variables. If we fail to take
the possible existence of latent confounders into account, we
would wrongly try to explain the statistical relation between
the observed variables in terms of causal relations between
them, when in fact there might not be such relations.

For a graph without latent variables, its statistical model can
be fully described by a list of (conditional) independences
that must hold between the variables. Thus, looking for

such independences in the data will allow us to differentiate
between any pair of graphs that we could theoretically dis-
tinguish. For types of graphs that allow latent variables, this
is no longer enough, as new constraints such as the Verma
constraint [[Robins| (1986, |[Verma and Pearl, [ 1991]] may be
imposed on the statistical model. Taking such constraints
into account could help us distinguish between more graphs.

In this paper, we study algebraic constraints arising in linear
structural equation models for a class of graphs known as
bow-free acyclic path diagrams. In particular, we are inter-
ested in the following question: given two bow-free graphs,
are they distinguishable based on algebraic constraints? Two
graphs that are indistinguishable in this way are called al-
gebraically equivalent [Van Ommen and Mooijl 2017].

An algorithm that answers this question efficiently would
have many applications. For example, in a score-based
causal discovery search, it could be used to avoid the ex-
pensive operation of scoring a graph that is equivalent to
one we have already seen. Also, when evaluating the per-
formance of a causal discovery method on simulated data,
we often face the problem that the algorithm might output a
single graph as representative of an equivalence class, and
to assess this output, we need to know if the output graph
is algebraically equivalent to the graph from which the data
were simulated. The algorithms we propose can be used for
these purposes.

The rest of this paper is structured as follows. After dis-
cussing related work in Section [I.1] and preliminaries in
Section 2| we will define efficient algorithms in Section
These algorithms can decide whether a given graph imposes
a given algebraic constraint; whether one graph imposes
all the algebraic constraints that another one imposes; and
whether two graphs are algebraically equivalent. In Sec-
tion [4] we discuss other equivalence relations that could
be used for causal discovery, and argue that for bow-free

'An implementation of these algorithms can be found
at https://github.com/UtrechtUniversity/
aelsem_decide.
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acyclic path diagrams, algebraic equivalence might be the
most appropriate. We also prove some necessary and suffi-
cient conditions for algebraic equivalence in Section[d.1.1]
Finally, SectionE]describes some small experiments, and a
discussion and conclusion are in Sections [6]and [7

1.1 RELATED WORK

Claassen and Bucur|[2022] present an algorithm that decides
Markov equivalence, i.e. the more coarse-grained notion that
only takes conditional independences into account. This
algorithm is very fast (O(n)) for sparse graphs. For general
graphs, it is O(n?), which is similar to our algorithms.

For algebraic equivalence, no efficient algorithms exist yet.
Nowzohour et al| [2017] test ‘empirical equivalence’ by
computing the maximum likelihood scores of two graphs
and calling them equivalent if these scores are within some
tolerance. Scoring a graph is an expensive operation re-
quiring iterative optimization algorithms even for linear
structural equation models [Drton et al., 2009], and the res-
ult is not reliable due to numerical inaccuracy and because
the likelihood may have spurious local maxima [Drton and
Richardson, [2004]]. We include an experimental comparison
to this method in Section

None of these methods can be used to decide whether one
model contains another, in the sense that all algebraic con-
straints imposed by one are also imposed by the other. Our
Algorithm 2] in Section [3.Z]can answer this question for two
bow-free acyclic path diagrams, which may be useful in its
own right.

Our algorithms may also be applicable to discrete and non-
parametric models. The relevant notion of equivalence in
this case is nested Markov equivalence, a refinement of
Markov equivalence. We present a partial result on this in
Section[d.2]

2 PRELIMINARIES

Graphical models are useful for modelling the statistical
relations between a set of variables, and more specifically
also for modelling causal relations [Pearl, |2000]. The most
basic class of graphs used for this purpose is that of directed
acyclic graphs (DAGs). A DAG G consists of a set of nodes
V and a set of directed edges ¥ which do not form directed
cycles v — ... — v. Interpreted causally, the presence of
a directed path v — ... — w in G indicates that random
variable X, is a cause of X,,: an external intervention on
X, is expected to lead to a change in the distribution of X,,.

Directed mixed graphs (DMGs) have been used to model
the presence of latent confounders without including them
explicitly as extra variables in the model, first by [Wright
[1921]]. These graphs have bidirected edges in addition to

directed ones. A bidirected edge v <> w indicates the ex-
istence of a latent variable that is a cause of both X, and
Xw. A DMG with no directed cycles is called an acyclic
DMG (ADMG). An ADMG is called a bow-free acyclic path
diagram (BAP) if it also does not contain a bow, which is the
co-occurrence of a directed edge v — w and a bidirected
edge v <+ w between a single pair of nodes. In other words,
BAPs are simple ADMG:s, i.e. they have no multiple edges.

A linear structural equation model (LSEM) is a model on a
set of real-valued random variables { X, | v € V'} by means
of a DMG G, describing their joint distribution via

X, = AOv + Z vaXw + €y-

wepag (v)

Here, pac(v) denotes the set of parents of v in the graph
G: those vertices w that have a directed edge to v. The €’s
are noise terms, which have Var(e,) = wy,, and for v # w
must have Cov(e,, €,,) = 0 unless there is a bidirected edge
between v and w; then Cov(e,, €,y) = Wyyw. The A’s and
w’s are parameters of the model. Dropping the intercepts
Ao. because they have no influence on ¥ = Cov(X), the
parameters can be represented as matrices A and €2, which
may have nonzero entries only in the following places: A,
is allowed to be nonzero if there is a directed edge from
v to w in G, and €),,, can be nonzero if v = w or there
is a bidirected edge between v and w. Being a covariance
matrix, {2 must be symmetric and positive definite. We will
only consider graphs without directed cycles in this paper;
for such graphs, (I — A) is always invertible.

The noise terms ¢, are often assumed to be Gaussian, but
this assumption is not necessary for the theory developed
in this paper because we will look at the data only through
the covariance matrix Y. This does mean that if the data is
not Gaussian, we ignore information present in higher-order
moments. This information is potentially valuable: Wang
and Drton! [2023]] show that if the distributions are suffi-
ciently non-Gaussian, all BAPs can be distinguished from
each other using higher-order moments. These moments
can be captured in tensors and analyzed algebraically; see
e.g. [Améndola et al., [2023]].

For parameters A, (2, we can compute ¥ = Cov(X) as
S=o(AQ) =T -NTUI-NT, (M)

where ~7 denotes the transposed inverse; see e.g. [Foygel
et al., 2012]. Now we can define the model M(G) of a
graph as

M(G) = {o(A, Q) | A and Q compatible with G'}.

The parameterization map ¢ can also be understood graph-
ically using the concept of a trek, which is a path without
colliders (i.e. two consecutive edges along a trek do not both
have an arrowhead into the node between them on the path).



Equivalently, a trek consists of any number of directed edges
traversed in the backward direction, then optionally a bid-
irected edge, then any number of directed edges traversed
in the forward direction. The trek rule is

o= > (I Mewr II M) @

treks T T—YET T—YET
between v and w
where w; = wyy if T <> y € 7; otherwise w; = w.. where
¢ is the unique node in 7 with no incoming edges.

Similar to treks, a half-trek from v to w is either a directed
path from v to w, or a bidirected edge v <> = followed
by a directed path from x to w. We write w € htr(v) if w
is reachable by a half-trek from v. The half-trek criterion
(HTC) of [Foygel et al.|[2012] will play a role in our theory.
A graph satisfying this criterion is called HTC-identifiable.
All BAPs are HTC-identifiable; many ADMGs and some
DMGs are HTC-identifiable as well. |[Foygel et al.| present
an algorithm that, given an HTC-identifiable graph G and
aY € M(G), will almost always find parameters A and
for G such that ¥ = ¢(A, Q).

We are motivated by the problem of causal discovery: we
want to use data sampled from X to learn which graph is
behind the data-generating process. In practice, we often
are unable to distinguish between several graphs that can ex-
plain the data equally well because they are distributionally

equivalent: M(G) = M(G").

As X is defined by polynomials, also M(G) can be de-
scribed as the set of all positive definite X that satisfy
some polynomial equalities (f;(X) = 0) and inequalities
(9:(2) > 0) (or M(G) may be the union of finitely many
such sets). Such objects are studied in algebraic geometry
[Cox et al.,|2015]]. A useful simplification is to drop all in-
equality constraints, thus allowing some X that were not in
M(G). The result is called the algebraic model and writ-
ten M(G). We will see in Section that for BAPs, the
difference between M(G) and M(G) is very small. The
retained polynomial equalities are also called algebraic con-
straints. If a model satisfies algebraic constraints f; and fo,
we see it also satisfies f; + fo and g - f1, where g can be
any polynomial. A set of polynomials that is closed under
these operations is called an ideal, and the smallest ideal
containing some set of polynomials fi, ..., fx is said to
be generated by that set. Two graphs G and G’ are called
algebraically equivalent if M(G) = M(G’) [Van Ommen
and Mooij, [2017]].

We list some examples of algebraic constraints to illustrate
their generality:

Vanishing correlation The polynomial is simply o,,. For
multivariate Gaussians, o,,,, = 0 is equivalent to mar-
ginal independence.

Vanishing partial correlation The partial correlation
Puw-s between v and w controlling for S is zero iff

the numerator |¥1,1us, {w}us| in its definition is zero.
This determinant is a polynomial in 3. For multivariate
Gaussians, this polynomial vanishes iff v and w are
conditionally independent given S.

Vanishing minor constraints Generalizing the above, Sul{
livant et al.| [2010]] consider constraints of the form
|~ 4 p| for arbitrary minors of ¥, and give a graph-
ical characterization for such constraints in terms
of t-separation, which generalizes the well-known d-
separation.

Graphically representable constraints [Van Ommen and
Drton| [2022] show that many constraints arising in
LSEMs can be expressed as determinants of matrices
constructed from X, with each entry in this matrix
being either o,,, or 0. These matrices may be larger
than n X n, the size of . The zero/nonzero pattern of
the matrix can be thought of as the adjacency matrix
of a bipartite graph. These ‘graphical representations’
give these constraints their name.

2.1 THE GRAPHICALLY REPRESENTED IDEAL

For a given graph GG, we would like to have a set of algebraic
constraints that together generate the ideal of M(G). This
task can be done by methods from algebraic geometry [|Cox
et al.| 20135]], but these are very slow, possibly taking hours
even for graphs with 4 or 5 nodes. [Van Ommen and Drton
[2022] outline a procedure that, given an HTC-identifiable
graph, outputs a list of graphical representations of con-
straints. For a BAP with n vertices and m edges, this is a
list of (’21) — m constraints, i.e. one per pair of nonadjacent
nodes. We will call the ideal generated by these constraints
the graphically represented ideal. These ideals do not al-
ways describe the algebraic model perfectly: they may have
spurious components which allow the existence of sets of
>2’s that satisfy the graphically represented constraints, yet
are not in the algebraic model. If no such spurious ¥’s are
positive definite, the ideal is called PD-primary; if the spuri-
ous X’s do not include the identity matrix, the ideal is called
I-primary. For general graphs, the graphically represented
ideal may fail to be PD- or I-primary. We illustrate this by
Examples [T] and [2] below, where we see spurious X’s for
two graphs. Additional discussion of these examples can be
found in Appendix [A]

Example 1. The graph in Figure [I[a) is a BAP and its
graphically represented ideal is I-primary. It is not PD-
primary: the ideal permits

1 3/4 29 0 0

3/4 1 3/4 0 0
©=12/9 34 1 0 0|,

0o 0 0 1 1/2

0 o0 o0 1/2 1

which is positive definite but clearly not in the model, as it
has o4. # 0 while node e is isolated.
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Figure 1: (a) A BAP for which the graphically represented
ideal is /-primary but not PD-primary; (b) an ADMG for
which the graphically represented ideal is not I-primary;
(c) a BAP whose model may be mistakenly classified as a
submodel of (b)’s model due to the latter’s spurious com-
ponents.

Example 2. Consider the graph in Figure[I(b). This graph
is not a BAP, but is HTC-identifiable so that a graphically
represented ideal can be found. In this case, such an ideal
will be neither PD- nor /-primary. The set of points that
satisfy the graphically represented constraints contains the
set {X | 64c = 04q = 0}, even though most X’s in this set
are not actually in the model and are thus spurious. Note that
this set is precisely the model of the graph in Figure [Tc).
So we see that in this case, the set of points that satisfy the
graphically represented constraints is now so much larger
than the model that it contains another model; in fact, one
of the same dimensionality.

Van Ommen and Drton! [2022]] show that for ancestral
graphs [Richardson and Spirtes), 2002, the graphically rep-
resented ideal is PD-primary, and for BAPs, it is /-primary.

2.2 [-PRIMARY IDEALS ENABLE MODEL
INCLUSION TESTING

We see in Example2]that the spurious component of a non-I-
primary ideal for model M (G”) may allow a set of ¥’s large
enough to contain another model M(G) in its entirety. This
would pose a problem for our algorithms: to decide whether
M(G) € M(G'), we want to detect if there is a point
in M(G) \ M(G’), but all such points might be ‘hidden’
behind a spurious component. As the following theorem
shows, for I-primary ideals, M(G) \ M(G’) cannot be
completely covered by a spurious component in this way.
More strongly, generic points in M (G) will not be covered
by spurious components.

Theorem 1. Let J be an I-primary ideal for M(G"). Let
M(G) be another graphical model. Then M(G) NV (J) \
M(G’) is of lower dimension than M(G).

V' (J) denotes the set of points 3 that are zeros of all poly-
nomials in the ideal J. Note that V' (.J) \ M(G’) is the set
of points covered by spurious components of .J. See |[Cox
et al. [2015]] for the definition of dimension in this context.
The proof of this theorem is provided in Appendix [B]

Our algorithms are built on this, and on the fact that graph-
ically represented ideals of BAPs are I-primary.

3 ALGORITHMS

In this section, we introduce three algorithms and prove their
correctness and efficiency. Algorithm[T|decides whether a
graph imposes a specified algebraic constraint. Algorithm ]
compares two graphs, and decides whether the algebraic
model of the first is contained in that of the second. Finally,
Algorithm 3| decides whether two graphs are algebraically
equivalent.

The algorithms we will introduce are randomized algorithms.
Specifically, they are Monte Carlo algorithms with one-
sided error: when given an input for which the correct an-
swer is ‘true’, they will always correctly answer ‘true’, but
when given an input for which the correct answer is ‘false’,
there is a small probability that they incorrectly output ‘true’
(i.e. a false positive).

The probability ¢ of an incorrect answer depends on the
input, and for each algorithm we prove an upper bound on
this probability in the theorems below. If a higher degree of
confidence is desired, the algorithm can be run repeatedly,
sampling new, independent random values each time, until
it outputs ‘false’ once or ‘true’ k times. In the former case,
we can be sure of the correctness of the answer; in the latter
case, the probability of error has been reduced to ¢*.

3.1 TESTING A CONSTRAINT

The problem of testing whether a graph imposes a constraint
can be thought of as the analogue to testing a d-separation in
a DAG, generalized from DAGs to ADMGs and from (con-
ditional) independence constraints to algebraic constraints.

Intuitively, to decide whether a graphical model M(G) im-
poses a constraint, we can take a random point ¥ in M(QG)
by choosing random values for the model’s parameters. If
we find a X that does not satisfy the constraint, we con-
clude that the model does not impose this constraint. If X
does satisfy the constraint, we are not sure, but using that a
polynomial that is not identically zero will assume nonzero
values in ‘most’ places, we have evidence that the constraint
is zero, thus satisfied, for all ¥ € M(G). This is the es-
sence of Algorithm|[I] The word ‘most” above can be made
precise in different ways: using the concept of dimension as
in Theorem (] or by bounding the number of zeros in certain
finite regions. The latter is what we use in our proofs.

In order to implement this idea in an algorithm, we have to
make a choice of what parameter values to sample:

* We can sample real-valued numbers (or in practice,
floating-point numbers) and compute with those. This
has the disadvantage that we have to be aware of nu-



merical error in the computations. As such, if we find
that f(X) is not exactly zero but within some tolerance,
we have to return ‘true’, increasing the probability of
error if actually the constraint is not satisfied.

* To avoid numerical issues, we can sample integer val-
ues. The computation of ¥ and then of f(X) takes
the form of a polynomial with possibly large degree.
So if we sample from a large range of integers, the
intermediate results will not fit into a computer word
and arithmetic operations become slower. If we sample
from a small range, again the probability of error in-
creases.

* We can sample and compute with elements of the finite
field IF,, for a sufficiently large prime p, i.e. carrying
out all computations modulo p [von zur Gathen and
Gerhard| [2013]]. A suitable choice is 231 —1: this allows
all arithmetic operations to be implemented efficiently
on any 64-bit computer. Because we only have to return
‘true’ if the computation comes out as exactly 0 modulo
p, the probability of error is extremely small.

Clearly, it is advantageous to work with IF,,. The algorithms
in this section take p as an input. Theorems [2] and [3] will
make precise what values of p are ‘sufficiently large’, and
how confident we can be when we receive a ‘true’ output.
By choosing p large enough, we can ensure the probability
of error is below any desired bound. For example, for the
choice p = 23! — 1 suggested above and ‘small’ inputs
(e.g. graphs of five nodes), all algorithms have a one-sided
probability of error less than 4.61 - 1078,

In IF),, there is no distinction between positive and negative
numbers. As a result, the concept of positive definiteness
is not well-defined, and we do not require such a property
of the ‘covariance’ matrices that appear in our algorithms.
We could not rely on positive definiteness to begin with:
for BAPs, the graphically represented ideal may fail to be
PD-primary as in Example (1| meaning that among ¥ that
satisfy the constraints yet are outside the algebraic model,
also positive definite examples will exist.

Theorem 2. Algorithm[I|has one-sided probability of error
at most (20g + 1) deg(f)/p, where ¢ is the length of the
longest directed path in G and deg(f) is the degree of f.
For a constraint expressed as the determinant of a deg(f) x
deg(f) matrix, it runs in time O(n* 4 deg(f)*), where w
is the matrix multiplication exponentf]

*The straightforward matrix multiplication algorithm is O(n?).
Asymptotically more efficient algorithms exist: Strassen’s al-
gorithm [1969] attains w ~ 2.81, and algorithms based on the
one by |Copppersmith and Winograd| [[1990] attain w ~ 2.37. The
best known lower bound is w > 2. However, due to the large
hidden constants, these algorithms only become practically useful
for large matrices. Strassen’s algorithm is only viable for n in the
hundreds [Huang et al.,|2016]], and Coppersmith—Winograd-like
algorithms are currently not practical at all. So for the matrices

Algorithm 1: Decide whether a graphical model satis-
fies a constraint.
Input: An ADMG G, an algebraic constraint f (a
polynomial in ), and a prime p
Output: If for all ¥ € M(G), f(X) = 0, output
true; otherwise, with large probability
output false

Sample A and €2 for G uniformly at random from Fy;
LetY = (I —A)~TQUI - A1

if f(X)=0:
return true; // Evidence constraint is satisfied
else:

return false;// Constraint definitely not satisfied

Proof. Clearly, the first lines of the algorithm sample a 2
from M(G) C M(G). We see that if f(X) = 0 for all
¥ € M(G), the algorithm always outputs ‘true’.

Now consider the case that M(G) does not satisfy f. The
computation performed by the algorithm is the composition
of two polynomials: g(A, Q) = f(¢(A,Q)). The degree
of g is bounded by the product of the degrees of f and ¢.
Using the trek rule (2), we can bound the degree of ¢ by
(20 + 1), which is an upper bound on the degrees of the
monomials that appear there. This bounds the degree of g
by (2¢¢ + 1) deg(f). As g is not the zero polynomial, we
apply the Schwartz—Zippel lemma [Schwartz| 1980ﬂt0 find
that

Plg(A, ) =0 g # 0] < ~(2lc +1) deg(f).

1
p
The tasks of computing products, inverses, and determinants
of n x n matrices can each be done in time O(n®) [Bunch
and Hopcroft, [1974]]. This shows that for a constraint ex-

pressed as the determinant of a deg(f) x deg(f) matrix,
Algorithm|[I]runs in time O(n* + deg(f)). O

3.2 TESTING MODEL INCLUSION

Algorithmtakes as input two graphs G and G’ (of which
G’ must be a BAP) and decides whether M(G) C M(G'),
i.e., whether all algebraic constraints imposed by M(G’)
are also imposed by M (G). It builds on the techniques used
in Algorithm ] but also requires some new ideas.

First, we need an efficiently computable description of
M(G"). For this purpose, we use the graphically repres-
ented ideal described by [Van Ommen and Drton| [2022]

and discussed in Section [2.1] The graphically represented

considered here, in practice w = 3.

3The lemma is known by that name because a very similar
result was shown independently by [Zippel| [1979]], though we use
the bound of |Schwartz| [[1980] which is stronger in our case.



ideal is based on the ‘rational constraints’ of[Van Ommen
and Mooij| [2017]]. The intuition behind these is that for the
Y that is sampled randomly from the model of G, we will
try to find parameters A’, Q) for G’ that would establish
that ¥ € M(G"). First, A’ is computed using the HTC-
identification algorithm of [Foygel et al.| [2012]. This al-
gorithm will always assign 0’s to elements of A’ that should
be 0, i.e., those that do not correspond to directed edges in
G'. Next, Q' is computed as (I — A’)TS(I — A’). This com-
putation does not check where in Q' it places nonzeros. If
Y € M(G'), then €’ will have its nonzeros only in permiss-
ible places, namely on the diagonal and in places where G’
has bidirected edges. Butif ¥ ¢ M(G’), Q' will typically
have nonzeros in certain other places as well. Computing
the values of these other elements of {2’ amounts to evaluat-
ing each of the rational constraints. The rational constraints
do not describe the model perfectly: as Example [2]demon-
strates, this algorithmic approach could give the wrong an-
swer if we did not restrict G’ to be bow-free.

The graphically represented constraints differ from the ra-
tional constraints in that the graphically represented con-
straints are polynomials in 3, while computing A’ (and thus
Q) from ¥ also requires divisions. Algorithm2]avoids these
divisions by computing polynomial multiples of A" and )’
instead, thereby mimicking the computation of[Van Ommen
and Drton|[2022] exactly. Thus rather than ', Algorithm[2]
computes the matrix V', whose entries are multiples of ',
Because T — A’ plays a more central role in this computation
than A’, it is convenient in Algorithm [2| to work with A,
which equals I — A’ except that each row is multiplied by
some polynomial.

Algorithm 2] further differs from Algorithm|[T]in that it does
not construct the constraints one by one, but evaluates them
jointly as outlined above to avoid redundant computation
between the constraints as well as within single constraints.
This leads to a significant speedup: the graphically repres-
ented constraints can have degrees that are exponential in
the number of nodes of G’, but with this more efficient com-
putation, the algorithm remains polynomial-time. For this
reason, also for the task of testing a constraint f, it may
be preferable to use Algorithm [2]rather than Algorithm [I]
supplying as input G’ a graph that imposes f as its only
algebraic constraint.

Theorem 3. Algorithm|2|has one-sided probability of error

at most

1
=(20g + 1)(1 + ma)i(av + ozw))7
P v,w
nonadjacent in G’
where (¢ is the length of the longest directed path in G and
a, = |pag (v)] + Z Ay

weEpags (v)Nhtrg/ (v)

if solve (v) was called, and a, = 0 otherwise. The
runtime of Algorithm[2]is O(n**1).

Algorithm 2: Decide whether one algebraic model is

contained in another.

Input: An ADMG G, a BAP G, and a prime p

Output: If M(G) C M(G'), output t rue; otherwise,
with large probability output false

Sample A and €2 for G uniformly at random from Fy,;
LetY = (I —A)~TQUI - A)~1;
Let A = I,,;
for v € V with deg (v) <n — 1t
solve (v);
Let Q' = ATSA/;
if O/, = 0 for all {v, w} nonadjacent in G':
return t rue; // Evidence that M(G) C M(G")
else:
return false;  // Definitely M(G) & M(G')
def solve (v):
// Compute and store the correct value for A.}U.
if solve (v) was called previously:
return;
if pag (v) = @
return;
for w € pag, (v) Nhtrg (v):
solve (w);
Define matrix M(?) with a row for each
w € pagy (v) and n columns by
Af’w if w € htrg: (v)
I.,, otherwise
Let AW =M™ 8. s
Letb®) = M® . % ;
Let A;,v = |A(™)|, and for each w € pac, (v),
A = 7|A£f,’ )\ where Aq(j’ ) is obtained from

w,v

M) =

A ) by replacing column w by b(*);

As the a,-terms in the error bound need to be computed
separately for each graph, it may be useful to have a bound
that holds over all graphs, depending only on the number of
vertices n.

Lemma 4. For n > 4, the probability of error in Al-
gorithm[2]is at most

%(2n -1 (22" — 1) .

The proof of these results is given in Appendix

Forn =5, LemmaE]gives the bound 4.61 - 10~% on the er-
ror probability (using p = 23! — 1); with this bound, it may
be acceptable to run the algorithm only once. For n = 25,
the bound is 0.29; then the algorithm will need to be run
repeatedly to reduce the probability of error, or slower arith-
metic may need to be accepted to accommodate a larger



Algorithm 3: Decide whether two BAPs are algebraic-
ally equivalent.

Input: TWOEAPS G @ G’, and a prime p
Output: If M(G) = M(G’), output t rue; otherwise,
with large probability output false

if G and G’ have different skeletons:
return false; // Definitely no equivalence
elif Algorithmreturns true for G, G', and p:
return t rue; // Evidence for equivalence
else:

return false; // Definitely no equivalence

p. Note that without this algorithm, even for n = 4, the
problem of deciding inclusion of algebraic models required
either manual computation with polynomials or extremely
computationally expensive algorithms from algebraic geo-
metry, so this algorithm is an enormous improvement.

3.3 TESTING MODEL EQUIVALENCE

Two graphs G and G’ are called algebraically equivalent if
M(G) = M(G"), which is the case iff M(G) € M(G")
and M(G) 2 M(G’). We can test both inclusions using
Algorithm 2] But we can do a bit better by first checking if
G and G’ have the same skeleton, i.e. if each pair of nodes
that is adjacent in G is also adjacent in G’ and vice versa.
By Corollary [7]in Sectiond.1.1] for BAPs, having the same
skeleton is a necessary condition for algebraic equivalence.
Further, we realize that for BAPs, the dimension of the
model is determined by the number of edges, and that if
two different algebraic models have the same dimension,
then neither can be contained in the other. So to decide
equivalence of two BAPs with the same skeleton, it suffices
to check inclusion in one direction.

We see immediately that Algorithm |3| has the same error
probability and worst-case running time as Algorithm 2]

4 OTHER EQUIVALENCE RELATIONS
ON GRAPHS

In this section, we discuss several different equivalence rela-
tions that have been considered in the literature to compare
observational models M (G) of graphs G. We focus on how
these equivalence relations compare to algebraic equival-
ence on BAPs, and what this means for the applicability of
Algorithms 2 and [3]to the analogous decision problems for
those equivalence notions.
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Figure 2: Two BAPs which are distributionally equivalent up
to closure, but not distributionally equivalent, as M (G’) ex-
cludes some covariance matrices that are present in M(G).

4.1 DISTRIBUTIONAL EQUIVALENCE

The most fine-grained equivalence relation that compares
observational models is distributional equivalence. Graphs
G and G’ are called distributionally equivalent if M(G) =
M(G’). This equivalence notion is considered for instance
by Nowzohour et al.|[2017]].

Two graphs fail to be distributionally equivalent if even a
single ¥ is present in M(G) but missing from M(G’), or
vice versa. /Améndola et al.|[2020] call G and G’ distribu-
tionally equivalent up to closure if cl M(G) = cl M(G"),
where ¢l M(G) denotes the topological closure of M(G)
in Euclidean topology. In other words, ¢l M(G) contains
M(G) and adds all points that are arbitrarily close to a point
already in M(G).

The following theorem and example show how these two
equivalence notions relate to algebraic equivalence for the
case of BAPs.

Theorem 5. For two BAPs G and G, AM(G) C
AM(G) iff M(G) C M(G").

Proof. [Van Ommen and Mooij| [2017]] show that for HTC-
identifiable GG, almost all points in M (G) are also in M (G).
It follows that for BAPs, M(G) = ¢l M(G), which proves
the claim. O

An immediate consequence is that two BAPs are distribu-
tionally equivalent up to closure iff they are algebraically
equivalent.

Example 3. The two graphs in Figure 2|are complete and
hence impose no algebraic constraints. Since they are BAPs,
it follows that they are distributionally equivalent up to
closure. Yet they are not distributionally equivalent: the
positive definite matrix

1 3/4 2/9 1/2
3/4 1 3/4 1/2
2/9 3/4 1 1/2|°
12 1/2 1/2 1

M=

is in M(G) but not in M(G"). This can be seen by follow-
ing the steps of the HTC-identification algorithm [Foygel
et al., 2012]. This algorithm will successively compute A/, ,



Ap. and AL, as solutions to systems of linear equations.
For %, the first two systems have unique solutions, but the
third has no solution. This proves that no parameter val-
ues A/, Q) exist for G’ such that ¢p(A’, Q') = X, so that
M(G") # M(G).|Van Ommen and Mooij [2017, Fig-
ure 2] call a difference between M(G’) and cl M(G’) a
zero-measure constraint and give an example for a graph
that includes a bow; this example demonstrates such con-
straints can also occur among BAPs.

If two graphs G and G’ are distributionally equivalent up
to closure, then in practice it will not be possible to tell the
difference based on finite data without further assumptions:
if 3 maximizes the likelihood in M(G), then X'’s will ex-
ist in M(G") that come arbitrarily close to this likelihood.
Thus we argue that distributional equivalence (without ‘up
to closure’) is too fine-grained for purposes of causal discov-
ery, and distributional equivalence up to closure or coarser
notions are more appropriate. If our definition of model
M(+) is believed to be reasonable in a particular setting
(i.e., if the variables are real-valued, the relations linear,
and higher-order moments can be ignored), then it follows
from Theorem [3|that for causal discovery on BAPs, algeb-
raic equivalence is the finest equivalence notion we could
consider.

4.1.1 Graphical Conditions for Algebraic Equivalence

Nowzohour et al.[[2017] show two necessary and one suf-
ficient graphical conditions for distributional equivalence
of two BAPs. The three criteria we show below are exactly
analogous, but apply to algebraic rather than distributional
equivalence. In these criteria, a collider triple is a triple
(u,v,w) € V3 such that there is an edge between u and v
as well as between v and w, and both edges have an arrow-
head at v. A v-structure is a collider triple where v and w
are nonadjacent.

Theorem 6 (Necessary condition). Letr G and G’ be al-
gebraically equivalent BAPs on vertex set V. Then for all
W C V, the induced subgraphs Gy and GY;, are also
algebraically equivalent.

Proof. The proof of Nowzohour et al.| [2017]]’s Theorem 1
is built on theory from algebraic geometry, and can be seen
to prove our claim without modification. A bit more specific-
ally, the proof only considers the behaviour of the models
near ¥ = I, where M(G) and M(G) coincide. We refer to
Nowzohour et al.| [2017] for the complete proof. O

Corollary 7. Two algebraically equivalent BAPs must have
the same skeleton and v-structures.

Theorem 8 (Sufficient condition). If two BAPs have the
same skeleton and collider triples, they are algebraically
equivalent.

Proof. By|Nowzohour et al.|[2017]’s Theorem 2, two BAPs
that satisfy this condition are distributionally equivalent,

and distributional equivalence implies algebraic equivalence.
O

The conditions of Corollary [7] and Theorem [§] are easy to
check by looking at the graphs and allow us to infer al-
gebraic (non)equivalence of large sets of graphs without
examining them one pair at a time. But they leave room
between them: two BAPs that have the same skeleton and
the same v-structures but different collider triples may or
may not be algebraically equivalent. Establishing a single
graphical criterion that is simultaneously necessary and suf-
ficient for algebraic equivalence is an important open prob-
lem. Of course, for a specific pair of graphs, Algorithm 3|
can be used to decide algebraic equivalence.

4.2 MARKOV AND NESTED MARKOV
EQUIVALENCE

Two ADMGs are Markov equivalent if their models impose
the same set of (conditional) independence constraints (or,
in the context of LSEMs, vanishing (partial) correlation con-
straints). Maximal ancestral graphs (MAGs) |Richardson
and Spirtes} 2002] are a special subclass of ADMGs for
which the set of algebraic constraints and the set of (con-
ditional) independence constraints are in one-to-one cor-
respondence: by Corollary 8.19 of Richardson and Spirtes
[2002], two MAGs G and G’ impose the same set of (con-
ditional) independence constraints iff M(G) = M(G’).
Thus, when given two MAGs, Algorithm E] decides whether
they are Markov equivalent.

We slightly extend the result above to show that also Al-
gorithm [2] can be used to compare Markov models when
given two MAGs:

Theorem 9. For two MAGs G and G', M,,(G) C
M (@) iff M(G) € M(G) iff M(G) € M(G).

Here M,,,(G) denotes the Markov model of G, i.e. the set of
all distributions that satisfy all (conditional) independence
constraints imposed by G.

Proof. N denotes the set of all Gaussian distributions, and
here we will regard M(G) as the set of all Gaussian dis-
tributions in the LSEM model of GG (instead of as the set
of all covariance matrices of those distributions as we do
elsewhere).

First, we claim that M,,,(G) NN C M,,,(G') N N iff
M (G) C M, (G"). The proof is analogous to that of The-
orem 8.13 of [Richardson and Spirtes| [2002]: First, the im-
plication from right to left is obvious. For the other direction,
suppose M., (G)NN C M,,,(G')NN. By Theorem 7.5 of
Richardson and Spirtes, there exists a distribution NV € A/



faithful to M,,(G). This N is also in M,,,(G') N N It
follows that any (conditional) independence imposed by G’
is also imposed by G; i.e., M, (G) C M, (G).

By Theorem 8.14 of Richardson and Spirtes, for a MAG
G, M(G) = M, ,(G) N N.So M(G) € M(G) iff
M (G) NN C M, (G') N N, which by the claim
above is equivalent to M,,,(G) € M,,(G’). Since also

M(G) = M,,,(G) NN, the claim about M follows. [

For any graph, we can define its algebraic model and see
which algebraic constraints it imposes. Some of these con-
straints may correspond to (conditional) independences, but
others may be of the more general kinds listed on page 3]
which are ignored by Markov equivalence. Thus for gen-
eral graphs, Markov equivalence is coarser than algebraic
equivalence, so that using algebraic equivalence in causal
discovery will give us more power to distinguish between
different graphs than the more commonly used Markov
equivalence gives us. This is what motivated us to research
algebraic equivalence in this paper.

Nested Markov equivalence [Shpitser et al., 2014} Richard{
son et al.,|2023] refines ordinary Markov equivalence by con-
sidering not only (conditional) independences in the obser-
vational distribution, but also in kernels. These kernels can
be understood as representing interventional distributions
that can be identified from the observational distribution.
For example, for the graph in Figure [I|a), the distribution
after intervening on X, is identifiable, and in this distribu-
tion, given X, the value of X is independent of that of Xj.
This conditional independence in a kernel translates back
to a constraint on the original observational distribution: a
nested Markov constraint.

Like ordinary Markov equivalence, but unlike algebraic
equivalence and distributional equivalence (up to closure),
nested Markov equivalence does not depend on the ranges
of the random variables or on parametric assumptions such
as linearity. It does have a special role in the context of
discrete variables: as shown by |[Evans| [2018]], the nested
Markov model reflects all equality constraints on the ob-
served distribution. Thus it is to discrete variable models as
the notion of algebraic equivalence studied in this paper is
to LSEMs.

Shpitser et al.|[2018]] define a subclass of BAPs called max-
imal arid graphs (MArGs), as well as a projection operator
that takes any ADMG G to a nested Markov equivalent
MArG G*. In a MArG, each nonadjacency corresponds to a
nested Markov constraint. As such, MArGs play the same
role for nested Markov models as MAGs play for ordinary
Markov models.

In the following theorem, M, (G) denotes the nested
Markov model of G: the set of all distributions that satisfy
all nested Markov constraints imposed by G.

Theorem 10. For two MArGs G and G, if M,,(G)
M, (G') then M(G) C M(G") (and thus M(G)

M(G")).

NN

Proof. As in the proof of Theorem[9] let M (G) denote the
set of all Gaussian distributions in the LSEM model of G. By
Shpitser et al|[2018] Theorem 35], M(G) = M, (G) NN
for any MArG G. So M,,(G) € M, (G') = M(G) =
M, (G)NN C M, (G')NN = M(G). O

In other words, inclusion of one algebraic model in another
is a necessary condition for the corresponding inclusion of
nested Markov models. This means that Algorithms [2]and 3]
can be used to establish that certain pairs of graphs are not
nested Markov equivalent.

We conjecture that also the converse implication holds. We
verified this empirically on all MArGs of up to five nodes, by
fitting algebraically equivalent MArGs on random discrete
data and checking that the attained likelihood scores were
close. We used the maximum likelihood fitting procedure
described by [Evans and Richardson|[2010} 2019, as imple-
mented in Ananke [Lee et al., [2023]]. If this conjecture is
true, it would follow that Algorithms [2] and [3]can also be
used to decide inclusion and equivalence of nested Markov
models, by first applying the maximal arid projection to the
input graphs.

S EXPERIMENTAL RESULTS

To demonstrate the practical usability of our algorithms, we
conducted a small experiment, measuring the running time
and number of errors of Algorithm [2]on graphs of n vertices
and different primes p. As inputs, we used all pairs from
the family of graphs that appear in the proof of Lemma ]
(Appendix [B.3) as the maximizers of the error probability
bound among all graphs of that size. These graphs should
also maximize the running time, as they require solve (v)
to be called on all vertices v. These results are for our Python
implementation; see Appendix [C|for details.

The results are displayed in Table(l| Clearly, larger graphs

Table 1: Average running time, number of false positives
(out of at least 2000 non-inclusion instances), and theoretical
upper bound on the probability of error of Algorithm[2} for
graphs of n vertices that maximize this bound, using prime
p as a modulus.

n P time (ms) #FP error bound
5 23 -1 923 0 4.61-108
25 231 —1 682 0 0.287
25 28325 663 0 6.68 - 1011
25 21271 680 0 3.62-1073°
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Figure 3: An algebraic equivalence class consisting of six BAPs. Graphs (a—c) differ by one edge (highlighted in yellow)
and the same is true for (d—f). But between these two clusters, the difference is at least two edges (highlighted in pink).

increase the computation time, while p seems to have little
impact. For the two bottom rows, we resort to Python’s
big-integer arithmetic, but this does not lead to a perform-
ance penalty here. This suggests that if it is necessary to
reduce the probability of error, it is better to increase p
rather than run the algorithm repeatedly (though this may
be implementation-dependent). Also noteworthy is that the
algorithm never returned a wrong result. For most rows,
this was to be expected as the probability of error is known
to be extremely small in those cases. But for n = 25 and
p = 231 — 1, the bound would have allowed many hundreds
of false positives while none were observed, demonstrat-
ing that the actual probability of error in this case is much
smaller than the bound suggests.

The only other algorithm for deciding algebraic equivalence
with runtime comparable to ours is the empirical equival-
ence test used by Nowzohour et al.| [2017]. To compare
these algorithms, we did an experiment using their code
and recommended settings to score all 543 complete BAPs
on 4 nodes (i.e. BAPs with an edge of some type between
each pair of nodes), using data randomly sampled from the
BAP model with six bidirected edges. These graphs are all
algebraically equivalent, yet the empirical equivalence test
incorrectly concludes that over 80% of pairs are not equival-
ent on average. In contrast, our algorithm provably returns
‘true’ for a pair of algebraically equivalent graphs.

6 DISCUSSION AND FUTURE WORK

The algorithms presented in this paper are the first that
can efficiently reveal the relation between the algebraic
models for any pair of BAPs. Unfortunately, they do not
immediately provide insight into the contents of an algebraic
equivalence class. One might hope that by starting from
some graph G and repeatedly making local changes to it,
checking (with Algorithm [3) each time that the resulting
graph is algebraically equivalent to GG, one will find a list
containing all graphs in G’s algebraic equivalence class. A
natural choice for such a local change operation would be
to replace any edge between v and w with another type of
edge [Nowzohour et al., 2017]]. But as we see in Figure[3]
we may recover only part of an equivalence class this way.

Markov equivalence can be graphically characterized for
DAGs in terms of the skeleton and v-structures [[Verma and
Pearl, |1991]], and for the more general ancestral graphs in
terms of the skeleton and ‘colliders with order’ [Ali et al.,
2009, (Claassen and Bucur, [2022]). For algebraic equivalence,
separate necessary and sufficient graphical conditions exist
(see Section [d.1.1] for BAPs, or [Van Ommen and Mooij,
2017, Theorem 2] for more general graphs), but no char-
acterization that is simultaneously necessary and sufficient
(except in MAGs, where it coincides with Markov equival-
ence). Such a characterization would be a step towards an
analogue of CPDAGs and PAGs, which are graphs that rep-
resent entire equivalence classes. This would solve problems
such as the one seen in Figure [3] and would be the most
suitable format for a causal discovery algorithm’s output.

Other future work is to extend our algorithms beyond BAPs
to more general graphs.

7 CONCLUSION

We have introduced the first efficient algorithms for the
tasks of determining whether a graph imposes a given algeb-
raic constraint, whether the algebraic model of one graph
is a submodel of another, and whether two graphs have the
same algebraic model. We argue that for linear, possibly
Gaussian models, algebraic equivalence is the most appro-
priate equivalence notion that causal discovery algorithms
can use. We conjecture that algebraic equivalence can be re-
lated to nested Markov equivalence, which would also make
our algorithms applicable to the discrete and nonparametric
cases.

Acknowledgements
I want to thank all reviewers, whose careful reading and

valuable suggestions substantially improved the presentation
of this work.

References

R. Ayesha Ali, Thomas S. Richardson, and Peter Spirtes.
Markov equivalence for ancestral graphs. The Annals of



Statistics, 37(5B):2808-2837, 2009.

Carlos Améndola, Philipp Dettling, Mathias Drton, Federica
Onori, and Jun Wu. Structure learning for cyclic linear
causal models. In Jonas Peters and David Sontag, editors,
Proceedings of the 36th Conference on Uncertainty in
Artificial Intelligence (UAI), volume 124 of Proceedings
of Machine Learning Research, pages 999—1008. PMLR,
2020. URLhttps://proceedings.mlr.press/
v124/amendola20a.htmll

Carlos Améndola, Mathias Drton, Alexandros Grosdos,
Roser Homs, and Elina Robeva. Third-order moment
varieties of linear non-Gaussian graphical models. In-
formation and Inference: A Journal of the IMA, 12(3):
1405-1436, 2023.

Walter Baur and Volker Strassen. The complexity of partial
derivatives. Theoretical Computer Science, 22:317-330,
1983.

James R. Bunch and John E. Hopcroft. Triangular factoriza-
tion and inversion by fast matrix multiplication. Mathem-
atics of Computation, 28(125):231-236, 1974.

Tom Claassen and Ioan Gabriel Bucur. Greedy equi-
valence search in the presence of latent confounders.
In James Cussens and Kun Zhang, editors, Proceed-
ings of the Thirty-Eighth Conference on Uncertainty
in Artificial Intelligence, volume 180 of Proceedings
of Machine Learning Research, pages 443-452. PMLR,
2022. URLhttps://proceedings.mlr.press/
v180/claassen22a.html.

Don Copppersmith and Shmuel Winograd. Matrix multiplic-
ation via arithmetic progressions. Journal of Symbolic
Computation, 9:251-280, 1990.

David A. Cox, John Little, and Donal O’Shea. Ideals, Vari-
eties, and Algorithms. Springer, New York, fourth edition,
2015.

Mathias Drton and Thomas S. Richardson. Multimodality
of the likelihood in the bivariate seemingly unrelated
regression model. Biometrika, 91(2):383-392, 2004.

Mathias Drton, Michael Eichler, and Thomas S. Richardson.
Computing maximum likelihood estimates in recursive
linear models with correlated errors. Journal of Machine
Learning Research, 10:2329-2348, 2009.

Robin J. Evans. Margins of discrete Bayesian networks.
The Annals of Statistics, 46(6A):2623-2656, 2018.

Robin J. Evans and Thomas S. Richardson. Maximum like-
lihood fitting of acyclic directed mixed graphs to binary
data. In Proceedings of the 26th Conference on Uncer-
tainty in Artificial Intelligence (UAI 2010), 2010.

Robin J. Evans and Thomas S. Richardson. Smooth, identi-
fiable supermodels of discrete DAG models with latent
variables. Bernoulli, 25(2):848-876, 2019.

Alex Fink, Jenna Rajchgot, and Seth Sullivant. Matrix
Schubert varieties and Gaussian conditional independ-

ence models. Journal of Algebraic Combinatorics, 44:
1009-1046, 2016.

Rina Foygel, Jan Draisma, and Mathias Drton. Half-trek
criterion for generic identifiability of linear structural
equation models. The Annals of Statistics, 40(3):1682—
1713, 2012.

Matt Hostetter. Galois: A performant NumPy extension for
Galois fields, 2020. URL https://github.com/
mhostetter/galois!

Jiangyu Huang, Tyler M. Smith, Greg M. Henry, and
Robert A. van de Geijn. Strassen’s algorithm reloaded. In
Proceedings of the International Conference for High Per-
formance Computing, Networking, Storage and Analysis
(SC16), pages 690-701, 2016.

Jaron J. R. Lee, Rohit Bhattacharya, Razieh Nabi, and Ilya
Shpitser. Ananke: A Python package for causal inference
using graphical models. arXiv:2301.11477,2023.

Christopher Nowzohour, Marloes H. Maathuis, Robin J.
Evans, and Peter Bithlmann. Distributional equivalence
and structure learning for bow-free acyclic path diagrams.
Electronic Journal of Statistics, 11:5342-5374, 2017.

Judea Pearl. Causality: Models, Reasoning, and Inference.
Cambridge University Press, New York, NY, USA, 2000.

Thomas S. Richardson and Peter Spirtes. Ancestral graph
Markov models. The Annals of Statistics, 30(4):962—
1030, 2002.

Thomas S. Richardson, Robin J. Evans, James M. Robins,
and Ilya Shpitser. Nested Markov properties for acyclic
directed mixed graphs. The Annals of Statistics, 51(1):
334-361, 2023.

James Robins. A new approach to causal inference in mortal-
ity studies with a sustained exposure period—application
to control of the healthy worker survivor effect. The
Annals of Statistics, 7:1393—-1512, 1986.

J. T. Schwartz. Fast probabilistic algorithms for verification
of polynomial identities. Journal of the Association for
Computing Machinery, 27(4):701-717, 1980.

Ilya Shpitser, Robin J. Evans, Thomas S. Richardson, and
James M. Robins. Introduction to nested Markov models.
Behaviormetrika, 41(1):3-39, 2014.


https://proceedings.mlr.press/v124/amendola20a.html
https://proceedings.mlr.press/v124/amendola20a.html
https://proceedings.mlr.press/v180/claassen22a.html
https://proceedings.mlr.press/v180/claassen22a.html
https://github.com/mhostetter/galois
https://github.com/mhostetter/galois

Ilya Shpitser, Robin J. Evans, and Thomas S. Richardson.
Acyclic linear SEMs obey the nested Markov property.
In Proceedings of the 34th Annual Conference on Uncer-
tainty in Artificial Intelligence (UAI 2018), 2018.

Volker Strassen. Gaussian elimination is not optimal. Nu-
merische Mathematik, 13:354-356, 19609.

Seth Sullivant, Kelli Talaska, and Jan Draisma. Trek sep-
aration for Gaussian graphical models. The Annals of
Statistics, 38(3):1665-1685, 2010.

Thijs van Ommen and Mathias Drton. Graphical rep-
resentations for algebraic constraints of linear struc-
tural equations models. In Antonio Salmer6én and
Rafael Rumi, editors, Proceedings of the Il1th Inter-
national Conference on Probabilistic Graphical Mod-
els (PGM 2022), volume 186 of Proceedings of Ma-
chine Learning Research, pages 409-420. PMLR,
2022. URL https://proceedings.mlr.press/
v186/ommen22a.htmll

Thijs van Ommen and Joris M. Mooij. Algebraic equival-
ence of linear structural equation models. In Proceedings
of the 33rd Annual Conference on Uncertainty in Artifi-
cial Intelligence (UAI 2017), 2017.

T. S. Verma and Judea Pearl. Equivalence and synthesis of
causal models. In Proceedings of the Sixth Conference on
Uncertainty in Artificial Intelligence (UAI 1991), 1991.

Joachim von zur Gathen and Jiirgen Gerhard. Modern Com-
puter Algebra. Cambridge University Press, third edition,
2013.

Y. Samuel Wang and Mathias Drton. Causal discovery with
unobserved confounding and non-Gaussian data. Journal
of Machine Learning Research, 24:1-61, 2023.

Sewall Wright. Correlation and causation. Journal of Agri-
cultural Research, 20(7):557-585, 1921.

Richard Zippel. Probabilistic algorithms for sparse polyno-
mials. In Edward W. Ng, editor, Symbolic and Algebraic
Computation (EUROSAM 1979), pages 216-226, Berlin,
Heidelberg, 1979. Springer Berlin Heidelberg.


https://proceedings.mlr.press/v186/ommen22a.html
https://proceedings.mlr.press/v186/ommen22a.html

Efficiently Deciding Algebraic Equivalence of Bow-Free Acyclic Path Diagrams
(Supplementary Material)

Thijs van Ommen'

Mnformation and Computing Sciences, Utrecht University, Utrecht, The Netherlands

A MORE DETAILS ABOUT EXAMPLES AND

In this appendix, we provide evidence for the claims made in Examples[I]and [2] and include some further discussion.

Al EXAMPLE

The constraint construction algorithm of Van Ommen and Drtonl [2022]] requires as input a sequence of sets (Y,,),, satisfying
certain properties outlined by [Foygel et al.| [2012]. We use Y,, = pa(v) for all v € V. This choice is valid for all BAPs and
is used throughout this paper when applicable.

The matrix X in the example was found by first using a computer algebra package to compute the primary decomposition of
the graphically represented ideal. This reveals that the ideal has multiple components: the component describing the model
and fifteen spurious components. Most of the spurious components have a principal minor of X as one of their generators,
and thus describe sets of 3’s on the boundary of the positive definite cone. One spurious component does allow X’s inside
the positive definite cone:

Oaa Oab 0 Oaa Oab 0
y|Oba  Obb  Obd|;|0ba Obb Obc > .
Oca Ocb Ocd Oca Ocb Occ

Obd  Obe

<Uae y Obes Oce,
Ocd Occ

For the ¥ given in Example[T] all generators above are 0 — for the first five generators, this can be seen by simply filling in

the zero entries of ¥; for the final generator, the determinant equals 1 — & — <% + & = 0.

The HTC-identification algorithm requires taking the inverse of the 3 x 3 matrix that appears in the final generator. Spurious
components of the graphically represented ideal may arise in places where such an inverse fails to exist, as is the case here.
The matrix resembles a principal minor of ¥, except that one of its entries has been replaced by a zero. If it had been a
principal minor, then the HTC-identification algorithm would have been able to take its inverse for all positive definite 3.
While this ideal is not PD-primary, it does have the weaker property of being /-primary, because the matrix in question is
invertible at ¥ = [.

A2 EXAMPLE

This graph is not a BAP, so the choice Y,, = pa(v) is not valid. To establish that the graph is HTC-identifiable, we can
choose Y, = @, Y, = {a},Y. = {a,b},Yy = {a},Y. = {a,d}. The results below are for the graphical ideal obtained
using this choice of the (Y3,),, as input to the constraint construction algorithm; other choices are possible and lead to similar
results.

As for Example [T} we computed the primary decomposition of the graphical ideal using a computer algebra package. We
find that one of the spurious components is simply (4., 0aq). This component admits the identity matrix, establishing that
this ideal is not I-primary.
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We will write G’ to refer to the graph in Figure b). While the graphically represented ideal fails to describe M(G’)
accurately, an accurate description of the algebraic model can be obtained using the theory of [Fink et al.| [2016]. If a
bidirected edge d < e is added to G’, we obtain a new graph G’ that is algebraically equivalent to G’ [Van Ommen and
Mooij, 2017, Theorem 2]. In the terminology of [Fink et al.|[2016], G'* is a generalized Markov chain, for which they show
that the vanishing minor constraints implied by t-separation correctly generate the ideal of M(G'"), and thus of M(G’).
These generators are (|Xqp cal, | Zab cels | Zab,de|)- However, any graphically represented ideal of G’ has only two generators,
which is a way to understand why the graphically represented ideal has problematic spurious components. This also shows
that we can test whether some M (G) is contained in M (G’) by running Algorithm on G three times: once for each of the
three generators listed above.

B ADDITIONAL PROOFS
B.1 PROOF OF THEOREM

Proof. For each spurious component K in the primary decomposition of J, M(G) NV (K) € M(G), as the identity
matrix I € M(G) but I ¢ V(K). Because M(G) is an irreducible variety [[Cox et al., 2015] and the intersection
M(G) NV(K) is an algebraic variety, the latter, and hence M(G) N V(K), must be of lower dimension than M(G).
M(G)NV(J) is the union of a finite number of such intersections and of the non-spurious part M(G) N M(G"). It follows
that M(G) NV (J) \ M(G) is also of lower dimension than M (G), which is of the same dimension as M(G). O

B.2 PROOF OF THEOREM

Proof. First note that for each pair {v, w} of nonadjacent nodes in G, the value of (,  computed by the algorithm equals
the evaluation of the graphically represented constraint of[Van Ommen and Drton|[2022]] at X. For the (Y},), that are needed
as input to the constraint construction algorithm, we use Y,, = pac. (v) for all v € V' this choice is valid for all BAPs.
Both computations follow the half-trek identification algorithm of [Foygel et al.|[2012]], with one exception: when A. , is
computed, Cramer’s rule is used to show that [A®) |- [T — A].., = [JA®™ |, |AY)], ... |AL)]] for pag: (v) = {wy, ..., wy},
but the |A ()] is not divided out.

If M(G) € M(G'), then any ¥ € M(G) C M(G) will satisfy any algebraic constraint that holds in M(G"). In particular,
it will satisfy €7, ,, = 0 for all {v, w} nonadjacent in G'. The algorithm will always return ‘true’ in this case.

For the case M(G) ¢ M(G’), we will have to account for the possibility that the graphically represented ideal .J may
have spurious components, so that V(J) 2 M(G’). As shown by Van Ommen and Drton| [2022], for acyclic graphs,
¥ € V(J)\ M(G") implies that for some v € V, the polynomial |A(")| evaluates to zero at ¥..|Van Ommen and Drton
further show that if G’ is bow-free, |A(")| evaluates to 1 at ¥ = I = $(0, I) (i.e. the graphically represented ideal is
I-primary). Thus it is not the zero polynomial in terms of (A, Q).

Having ruled out the possibility that 2,,,, o ¢ = 0 for all {v, w} nonadjacent due to M(G) being contained in a spurious
component of V'(.J), we conclude that an 2, o ¢’s being identically zero must imply that M(G) € M(G"). Equivalently,
M(G) ¢ M(G’) implies that for some nonadjacent {v, w}, €, ,, is not the zero polynomial.

Considered as polynomials over ¥, we see by induction that the entries of Mgf,)) in solve (v) have degree at most a,, if
w € htrgs (v) and 0 otherwise; the entries of Ag}) and bg)) have degree at most a,, + 1 if w € htrg/ (v) and 1 otherwise;

and the determinant | A(")| and the entries of A.,, have degree at most a,. Then deg Qo <y + Gy + 1.

Now, similar to the dimension argument of Theorem|[I]but using the Schwartz—Zippel lemma as in the proof of Theorem 2}
the probability of error is bounded by

PIQUA(A, Q) pw = 0| Quu 0 ¢ Z 0] < %(2&: + 1) (ay + ay + 1).

Because we do not know for which {v,w} the constraint is not the zero polynomial, we take the maximum over all
candidates.

Interestingly, if the algorithm encounters an | A (*)| that evaluates to zero but also a nonzero vaw for {v, w} nonadjacent,
then it can and will report ‘false’. Thus this case does not contribute to the error probability.



All operations outside solve () can clearly be performed in O(n*) time. Within solve (), htrgs(v) can be computed by
breadth-first search in O(n?), and A(*) and b(*) can be computed in O(n®). Write k = |pag, (v)|. Computing /~\f7v in the
final line involves the computation of k 4 1 determinants, namely the k& X k minors of a k& x (k + 1) matrix. Like matrix
multiplication, determinants can be computed in time O(n*) [Bunch and Hopcroft, [1974]], and we can use the technique
of Baur and Strassen|[[1983]] to compute all & + 1 minors still in time O(n*) (though in our implementation, we used
an approach based on Gaussian elimination that runs in time O(n?); see Appendix . In the worse case, solve () is
performed n times, making the time complexity of Algorithm O(n**1). O

B.3 PROOF OF LEMMA @

Proof. The hard part is bounding the degree of the algebraic constraint, over all possible BAPs G’. Assume the nodes of G’
are topologically ordered. We want to find numbers a,, such that for any BAP G’, deg |A(")| < a, for all v for which the
algorithm calls solve.

First, a; = 0 since node 1 has no parents, and as = 1 since node 2 may only have node 1 as a parent.

For v > 3, we could have pa(v) = {1,2,...,v — 1}, in which case no half-treks exist from v to any of these parents, and we
would have deg |A(")| = v—1. By including a single bidirected edge between nodes 1 and v taking pa(v) = {2,3,...,v—1},
all such half-treks might exist, so a, = v — 2 + Z;’:—; a;. A direct expression is a,, = 3 - 2°73 — 1 (for v > 3).

There must be a pair of nonadjacent nodes in G’ for it to impose an algebraic constraint. Let s and ¢ be two nonadjacent
nodes, with s < ¢. Then the bound a, is computed as above, but deg |A(t)| will obey a tighter bound, because it must
have fewer adjacencies to earlier nodes than used in the argument above. We want to establish an upper bound a; to this
degree. Assume t > 4. If s # 1, we still want a bidirected edge between nodes 1 and ¢, in which case we would get
ap=1t—-3+ Zf;; a; — as. If s = 1, the bidirected edge would go between nodes 2 and ¢, and aj = ¢t — 3 + Zf;é a; — as.

The bound on the degree of the algebraic constraint is 1 + as + aj}. Since the sequence a;, as, . .. is increasing, this is
maximized when t = n. If n > 4, all choices for s > 2 yield the same value, because a is both subtracted and added; s = 1
yields one less because ao = 1 is subtracted and a; = 0 is added.

For these choices of s and ¢ and for n > 4, the degree bound becomes

n—1 n—1 n—1
1+as+a;l:1+a‘g+n—3+2ai—a‘g:n72+(1+2a,;):2(3'2i7371)+n—1
i=2 i=3 i=3
n—4 3
=3Y 2 —(n-3)+n-1=32"° -1)+2=22"-1. O
i=0 8

C IMPLEMENTATION

The algorithms described in this paper are implemented in Python using the Galois library [Hostetter,2020] for computations
over IF,,. The experiments in Section [5|were performed with Python 3.11, NumPy version 1.26.4, and Galois version 0.3.8,
on a MacBook Pro (2.3 GHz Intel processor).

Algorithmrequires the computation of all n x n minors of an n x (n + 1) matrix, namely the matrix A (") augmented
with the column vector b(*). We use the following implementation to perform this computation in O(n?) time, i.e. the
same complexity as computing a single determinant using Gaussian elimination. First, applying Gaussian elimination to the
augmented matrix allows us to find the determinant of A(*), as well as the minor obtained by omitting the second-to-last
column. Then we imagine we flip the matrix left-to-right, so that the nonzero elements now reside in the top left triangle.
Next we apply Gaussian elimination to the bottom two rows of this flipped matrix; ignoring the third column and using that
the other columns form a permuted triangular matrix, we compute the third minor. Each subsequent minor is computed in
this fashion, with the final minor requiring a Gaussian elimination of the entire flipped matrix. The successive Gaussian
eliminations on the flipped matrix benefit from the fact that the previous iteration already put the matrix in close-to-triangular
form, and that most of the rows they operate on are known to be largely zeros, so that they together require only roughly half
as many operations as the initial Gaussian elimination.



	Introduction
	Related Work

	Preliminaries
	The Graphically Represented Ideal
	I-Primary Ideals Enable Model Inclusion Testing

	Algorithms
	Testing a Constraint
	Testing Model Inclusion
	Testing Model Equivalence

	Other Equivalence Relations on Graphs
	Distributional Equivalence
	Graphical Conditions for Algebraic Equivalence

	Markov and Nested Markov Equivalence

	Experimental Results
	Discussion and Future Work
	Conclusion
	More Details About Examples 1 and 2
	Example 1
	Example 2

	Additional Proofs
	Proof of Theorem 1
	Proof of Theorem 3
	Proof of Lemma 4

	Implementation

