xLSTM: Extended Long Short-Term Memory

Maximilian Beck ' 2 Korbinian Poppel “' > Markus Spanring! Andreas Auer
Johannes Brandstetter ' >3 Sepp Hochreiter

Michael Kopp Giinter Klambauer !

Abstract

In the 1990s, the constant error carousel and gat-
ing were introduced as the central ideas of the
Long Short-Term Memory (LSTM). Since then,
LSTMs have stood the test of time and contributed
to numerous deep learning success stories, in par-
ticular they constituted the first Large Language
Models (LLMs). However, the advent of the
Transformer technology with parallelizable self-
attention at its core marked the dawn of a new era,
outpacing LSTMs at scale. We now raise a simple
question: How far do we get in language model-
ing when scaling LSTMs to billions of parame-
ters, leveraging the latest techniques from mod-
ern LLMs, but mitigating known limitations of
LSTMs? Firstly, we introduce exponential gating
with appropriate normalization and stabilization
techniques. Secondly, we modify the LSTM mem-
ory structure, obtaining: (i) sSLSTM with a scalar
memory, a scalar update, and new memory mix-
ing, (i) mLSTM that is fully parallelizable with a
matrix memory and a covariance update rule. Inte-
grating these LSTM extensions into residual block
backbones yields xXLSTM blocks that are then
residually stacked into XLSTM architectures. Ex-
ponential gating and modified memory structures
boost xXLSTM capabilities to perform favorably
when compared to state-of-the-art Transformers
and State Space Models, both in performance and
scaling.

1. Introduction

The Long Short-Term Memory (LSTM) ideas (Hochreiter,
1991; Hochreiter & Schmidhuber, 1997b;a), i.e., the con-

"Equal contribution 'ELLIS Unit Linz and LIT AI Lab, Insti-
tute for Machine Learning, Johannes Kepler University, Linz, Aus-
tria 2NXAI Lab, Linz, Austria °NXAI GmbH, Linz, Austria. Cor-
respondence to: Maximilian Beck <beck@ml.jku.at>, Korbinian
Poppel <poeppel @ml.jku.at>.

Proceedings of the 41°% International Conference on Machine
Learning, Vienna, Austria. PMLR 235, 2024. Copyright 2024 by
the author(s).

12" Oleksandra Prudnikova

123

stant error carousel and gating, were introduced to over-
come the vanishing gradient problem of recurrent neu-
ral networks (Hochreiter, 1991; Hochreiter et al., 2000):

e = B 1 + oz, e = o Y(e).

The constant error carousel is the additive update of the
cell state c;_1 (green) by cell inputs z; and moderated by
sigmoid gates (blue). The input gate i; and the forget gate
f; control this update, while the output gate o, controls the
output of the memory cell, i.e. the hidden state h;. The cell
state is normalized or squashed by v and then output gating
gives the hidden state.

LSTMs have been successfully applied to various domains
(Hochreiter et al., 2001; 2007; Schmidhuber, 2015), and pre-
vailed over text generation until the dawn of Transformers
in 2017 (Vaswani et al., 2017).

Despite their tremendous successes, LSTMs have three main
limitations: (i) Inability to revise storage decisions. We
exemplify this limitation via the Nearest Neighbor Search
problem (see also Appendix D): With a reference vector
given, a sequence must be scanned sequentially for the
most similar vector in order to provide its attached value
at sequence end. The left panel of Figure 1 shows the
mean squared error at this task. LSTM struggles to revise
a stored value when a more similar vector is found, while
our new xLSTM remediates this limitation by exponential
gating. (ii) Limited storage capacities, i.e., information
must be compressed into scalar cell states. We exemplify
this limitation via Rare Token Prediction.

In the right panel of Figure 1, the perplexity of token predic-
tion on Wikitext-103 (Merity et al., 2017) is given for parti-
tions of different token frequency. LSTM performs worse
on rare tokens because of its limited storage capacities. Our
new XLSTM solves this problem by a matrix memory. (iii)
Lack of parallelizability due to memory mixing, i.e., the
hidden-hidden connections between hidden states from one
time step to the next, which enforce sequential processing.

These limitations of LSTM have paved the way for the emer-
gence of Transformers (Vaswani et al., 2017) in language
modeling. What performances can we achieve in language
modeling when overcoming these limitations and scaling
LSTMs to the size of current Large Language Models?

: LSTM 600
0.15 M xLSTM

I Transformer

LSTM
I xSTM
I Transformer

200

60
20
MSE PPL <10® 10%10" >10* all

Figure 1: LSTM limitations. Left: Nearest Neighbor Search
problem in terms of mean squared error (MSE). Given a
reference vector, a sequence is scanned sequentially for
the most similar vector with the objective to return its at-
tached value at sequence end. LSTM struggles to revise
a stored value when a more similar vector is found. Our
new XLSTM overcomes this limitation by exponential gat-
ing. Right: Rare Token Prediction. The perplexity (PPL)
of token prediction on Wikitext-103, in partitions of token
frequency. LSTM performs worse on predicting rare tokens
because of its limited storage capacities, whereas our new
xLSTM solves this problem via a matrix memory.

2. Extended Long Short-Term Memory

To overcome the LSTM limitations, Extended Long Short-
Term Memory (XLSTM) introduces two main modifications
to the original LSTM. Those modifications — exponential
gating and novel memory structures — enrich the LSTM
family by two members: (i) the new sLSTM with a scalar
memory, a scalar update, and memory mixing, and (ii) the
new mLSTM with a matrix memory and a covariance (outer
product) update rule, which is fully parallelizable. Both
SLSTM and mLSTM enhance the LSTM through exponen-
tial gating. To enable parallelization, the mLSTM abandons
memory mixing, i.e., the hidden-hidden recurrent connec-
tions. Both mLSTM and sLSTM can be extended to multi-
ple memory cells, where SLSTM features memory mixing
across cells. Further, the SLSTM can have multiple heads
without memory mixing across the heads, but only memory
mixing across cells within each head. This introduction of
heads for SLSTM together with exponential gating estab-
lishes a new way of memory mixing. For mLSTM multiple
heads and cells are equivalent.

Integrating these new LSTM variants into residual block
modules results in xXLSTM blocks . Residually stacking
those XLSTM blocks in architectures provides xXLSTM archi-
tectures. See Appendix Figure 4 for the xXLSTM architecture
with its components.

sLSTM To empower LSTMs with the ability to revise stor-
age decisions, we introduce exponential gates (red) together
with normalization and stabilization. For normalization, we
introduce a normalizer state that sums up the product of

input gate times all future forget gates.

¢ = f g1 + it oz)

ne = fp m—1 4+ it (2)

hi = o hy = o ct [/ ng 3)

z = (%))

i, = exp (i) 5)

f = o(f) OR exp (T,) ©6)

o = o(0) , @)

{ie,5, 7,00} = w]ip, 0 @ + Titso) i1 + Diifo)
(3)

We transfer the original LSTM gating techniques, i.e.,
input- and/or hidden-dependent gating plus bias term,
to the new architectures. Exponential activation func-
tions can lead to large values that cause overflows.
Therefore, we stabilize gates with an additional state
m; (Milakov & Gimelshein, 2018), see Equations (46) —
(48) in the appendix.

SLSTM can have multiple memory cells like the original
LSTM (see Appendix B.2). Multiple memory cells enable
memory mixing via recurrent connections R, R;, R¢, R,
from hidden state vector h to memory cell input z and the
gates i, f, o, respectively. A new aspect in memory mixing
is the effect of exponential gating. The new sLSTM can
have multiple heads with memory mixing within each head
but not across heads. The introduction of heads for sSLSTM
together with exponential gating establishes a new way of
memory mixing.

mLSTM To enhance storage capacities of LSTMs, we
increase the LSTM memory cell from a scalar ¢ € R to
a matrix C € R?*9, Hence, retrieval is performed via a
matrix multiplication. At time ¢, we want to store a pair of
vectors, the key k; € R? and the value v; € R¢ (we use the
Transformer terminology). Later at time ¢ + 7, the value v,
should be retrieved by a query vector q;,, € R?. This is
the setting of Bidirectional Associative Memories (BAMs)
(Kohonen, 1972; Anderson, 1972; Nakano, 1972; Anderson
et al., 1977). The covariance update rule (Sejnowski, 1977;
Dayan & Willshaw, 1991) for storing a key-value pair is
C, = Ciq + v ktT . We assume a layer-norm before
projecting inputs to keys and values, therefore they have
zero mean. The covariance update rule is optimal (Dayan &
Willshaw, 1991) for a maximal separability of retrieved bi-
nary vectors, which is equivalent to a maximal signal/noise
ratio. Higher separability is possible when limiting retrieval

to pairwise interactions and conceding quadratic complex-
ity like attention (Krotov & Hopfield, 2016; 2017; Ram-
sauer et al., 2021). The covariance update rule is equivalent
to Fast Weight Programmers (Schmidhuber, 1992; Schlag
etal., 2021), which have later been equipped with a constant
decay rate multiplied to C}_ and a constant learning rate
multiplied to 'vtktT (Baet al., 2016a). In this spirit, we inte-
grate the covariance update rule into the LSTM framework,
where the forget gate corresponds to decay rate and the input
gate to the learning rate, while the output gate scales the
retrieved vector.

For this matrix memory, the normalizer state is the weighted
sum of key vectors, where each key vector is weighted
by the input gate and all future forget gates. Again, the
normalizer state keeps record of the strength of the gates.
Since the dot product between query and normalizer state
can be close to zero, we use the absolute value of this dot
product and lower bound it by a threshold (typically 1.0) as
done previously (Sun et al., 2023). The mLSTM forward
pass is:

Ct = ft Ct—l + it (0 k;r (9)
ng, = f; ng1 + i Ky (10)
- - C: a
hy = o, ©® hy, hy =
max{’ntT q: ,1}

(11
{qtaktavt} = W{q,k,v} Ty + b{q,k,v} (12)
iy = exp (It) , = w @+ b
(13)
ft = O'(ft) OR exp (%t)v ft = w;r Ty + bf
(14)
0oy = O'(f)t) s 6,5 = Womt -+ bo
(15)

mLSTM can have multiple memory cells like the original
LSTM. For mLSTM, multiple heads and multiple cells are
equivalent as there is no memory mixing. In order to sta-
bilize the exponential gates of mLSTM, we use the same
stabilization techniques as for SLSTM (see Equation 46).
As the mLSTM has no memory mixing, this recurrence can
be reformulated in a parallel version (see Appendix B.3).

XxLSTM Architecture An xLSTM block should non-
linearly summarize the past in a high-dimensional space
to better separate different histories or contexts. Separating
histories is the prerequisite to correctly predict the next se-
quence element such as the next token. We resort to Cover’s
Theorem (Cover, 1965), which states that in a higher dimen-
sional space non-linearly embedded patterns can more likely

be linearly separated than in the original space. We consider
two residual block architectures: (i) A residual block with
post up-projection (like Transformers), which non-linearly
summarizes the past in the original space, then linearly maps
into a high-dimensional space, applies a non-linear activa-
tion function, and linearly maps back to the original space;
see Appendix Figure 5 for details. (ii) A residual block with
pre up-projection (like State Space Models), which linearly
maps to a high-dimensional space, non-linearly summarizes
the past in the high-dimensional space and then linearly
maps back to the original space. See Appendix Figure 6 for
more details. For an XLSTM block containing an sLSTM,
we mostly use the post up-projection block. For an xXLSTM
block containing an mLSTM, we use the pre up-projection
block since the memory capacity becomes larger in the high-
dimensional space.

An xLLSTM architecture is constructed by residually stack-
ing building blocks (Srivastava et al., 2015; He et al., 2016).
We rely on the commonly used pre-LayerNorm (Ba et al.,
2016b) residual backbones as used in contemporary Large
Language Models. See also Appendix Figure 4.

3. Experiments

Here, we compare XLSTM to RWKV-4 (Peng et al., 2023),
Llama (Touvron et al., 2023b) and Mamba (Gu & Dao,
2024) after being trained on 300B tokens from SlimPa-
jama (Soboleva et al., 2023) on downstream tasks, and as-
sess their scaling behavior analogous to Kaplan et al. (2020)
and Brown et al. (2020). In Appendix Sections D.1 and D.2,
we test specific capabilities on synthetic tasks and com-
pare the performance and against more baseline models
on a reduced 15B token subset of SlimPajama, namely
RWKV-5, RWKV-6 (Peng et al., 2024a), HGRN2 (Qin
et al., 2024), Retention (Sun et al., 2023), H3 (Fu et al.,
2023), Hyena (Poli et al., 2023). On this dataset, we
also perform ablations towards a vanilla LSTM, see Ap-
pendix Section D.2. For all experiments, we use the nota-
tion XLSTM[a:b] for the ratio a/b of mLSTM-based versus
sLSTM-based xXLSTM blocks. For example, xXLSTM[7:1]
means that out of eight blocks, seven are mLSTM-based
blocks and one is an SLSTM-based block.

xLSTM as Large Language Model We train the models
for next token prediction for 300B tokens from SlimPajama,
the same number of tokens as used in e.g., Mamba (Gu &
Dao, 2023) and Griffin (De et al., 2024). We select RWKV-4
as RNN representative since for RWKV-5, RWKV-6 and
HGRN?2 a reasonable training precision setting (Appendix
Section D.2) has been found only after the training start of
the 300B token experiments (Peng et al., 2024b). We train
different model sizes (125M, 350M, 760M, 1.3B), test all
models for length extrapolation capabilities and investigate

2

3 Llama

g —— Mamba
o —— RWKV-4
c 107 4

2 —— xLSTM[7:1]
2 —— xLSTM[1L:0]
=

0 2048 4096 8192
Token Position

16384

Figure 2: Sequence extrapolation in language modeling.
Large models (1.3B) of xLSTM, RWKV-4, Llama, and
Mamba compared on the validation set after training on
300B tokens from SlimPajama. Models are trained with
context length 2048 (gray) and tested for context lengths
up to 16384. In contrast to other methods, xLSTM models
remain at low perplexities for longer contexts.

their scaling law behavior. In Appendix Section D.3, we
evaluate their performance on downstream tasks and on 571
text domains of the PALOMA benchmark.

Sequence Length Extrapolation. We test the sequence
length extrapolation for 1.3B-sized, large models of xXLSTM,
RWKV-4, Llama, and Mamba. All models are trained on
context length 2048, and then tested for context lengths
up to 16384. See Figure 2 for the results. In contrast to
other methods, xLSTM models maintain low perplexities
for longer contexts.

Validation Perplexity and Downstream Tasks. For
all model sizes, we evaluate the performance of XLSTM,
RWKV-4, Llama, and Mamba models on the SlimPajama
validation set for next token prediction and on downstream
tasks that measure common sense reasoning. The third col-
umn of Appendix Table 7 lists the validation set perplexities
of different methods. Both xLSTM[1:0] and xLSTM[7:1]
are the best models for all model sizes with respect to the
validation set perplexity. The other columns of Appendix
Table 7 provide the performance on downstream tasks. In
the vast majority of tasks and across all model sizes XLSTM
is the best method — only on the ARC task Mamba is in
some cases the best method. For details see Appendix D.3.

Performance on PALOMA Language Tasks. For a more
detailed understanding, we test the next token prediction
performance of XLSTM, RWKV-4, Llama, and Mamba
models on PALOMA language tasks (Magnusson et al.,
2023). We measure the performance by the perplexity
on 571 text domains, ranging from nytimes.com to r/de-
pression on Reddit. Appendix Table 8 shows token pre-
diction perplexity grouped into language modeling (first

Llama
Mamba
RWKV-4
xLSTM([7:1]
xLSTM[1:0]

SRER

Validation Perplexity
©
N

300B Tokens

T T T T

0.2 0.4 1.0 1.4
Number of Parameters x10°

Figure 3: Scaling laws. Next token prediction perplexity
of xXLSTM, RWKV-4, Llama, and Mamba. The models —
with sizes 125M, 350M, 760M, and 1.3B parameters — are
trained on 300B tokens from SlimPajama. The scaling laws
indicate that for larger models xLSTM will perform well
too.

seven columns) and fine-grained domain benchmarks (last
5 columns). xLSTM[1:0] has in 568 out of 571 (99.5%)
text domains a lower perplexity than Mamba, in 486 out
of 571 (85.1%) a lower perplexity than Llama, in 570 out
of 571 (99.8%) a lower perplexity than RWKV-4, see Ap-
pendix D.3.

Scaling Laws. Finally, we assess the power-law scaling
behavior, which allows to extrapolate the performance to
larger model sizes (Kaplan et al., 2020; Brown et al., 2020).
Figure 3 presents the scaling behavior. All models share a
similar scaling behavior but with different offsets. RWKV-4
performs worst, followed by Llama and Mamba. xLSTM
is better than Mamba with a similar margin to Mamba as
Mamba has to Llama. The scaling behavior indicates that for
larger models xXLSTM will continue to perform favourable
compared to Transformers and State-Space models.

4. Conclusion

We have partly answered our simple question: How far
do we get in language modeling when scaling LSTM to
billions of parameters? So far, we can answer: “At least
as far as current technologies like Transformers or State
Space Models”. We have enhanced LSTM to xXLSTM by
exponential gating with memory mixing and a new memory
structure. XLSTM models perform favorably on language
modeling compared to state-of-the-art methods like Trans-
formers and State Space Models. Scaling laws indicate that
larger xXLSTM models will be serious competitors to cur-
rent LL.Ms that are built with the Transformer technology.
xLSTM has the potential to considerably impact other fields
like Reinforcement Learning, Time Series Prediction, or the
modeling of physical systems.

Broader Impacts

Our work introduces novel LSTM architectures that per-
form favorably compared to Transformers or State Space
Models on language modeling. As our novel LSTM models
are inherently recurrent and demonstrably extrapolate well
to large contexts, they have the potential for near constant
scaling at inference. This compares to linear scaling in the
context length for Transformer architectures, representing a
vast potential in energy and emission savings when deploy-
ing such models to real world applications. Thus, in an ever
more connected, data-rich world with ubiquitous compute,
our work has the potential to increase general accessibility
of state-of-the-art machine learning models whilst making
them more environmentally sustainable.

However, any novel machine learning technique that has
the potential to impact real world applications can be used
for harm, not just for good. Our models with their benefi-
cial inference economics and their ability to extrapolate to
large contexts at no overhead could be used, for example,
to generate and spread disinformation on a grander scale.
Moreover, savings in energy and emissions afforded by de-
ploying our novel XLSTM models might be outweighed
by an increase in demand for such models, leading to an
overall increase in energy consumption and environmentally
harmful emissions. Whilst our work focuses on new, more
efficient Language Model architectures, it does not directly
address the issues of fairness and bias of such models.

References

Achiam, J., Adler, S., Agarwal, S., et al. GPT-4 technical
report. ArXiv, 2303.08774, 2023.

Anderson, J., Silverstein, J., Ritz, S., and Jones, R. Dis-
tinctive features, categorical perception, and probability
learning: Some applications of a neural model. Psy-
chological Review, 84:413-451, 1977. doi: 10.1037/
0033-295X.84.5.413.

Anderson, J. A. A simple neural network generating an
interactive memory. Mathematical Biosciences, 14, 1972.
doi: 10.1016/0025-5564(72)90075-2.

Arora, S., Eyuboglu, S., Timalsina, A., Johnson, 1., Poli,
M., Zou, J., Rudra, A., and Ré, C. Zoology: Measuring
and improving recall in efficient language models. ArXiv,
2312.04927, 2023.

Ba, J., Hinton, G. E., Mnih, V., Leibo, J. Z., and Ionescu,
C. Using fast weights to attend to the recent past. In
Lee, D. D., Sugiyama, M., Luxburg, U. V., Guyon, L., and
Garnett, R. (eds.), Advances in Neural Information Pro-
cessing Systems 29, pp. 4331-4339. Curran Associates,
Inc., 2016a.

Ba, J., Kiros, J. R., and Hinton, G. Layer normalization.
ArXiv, 1607.06450, 2016b.

Bisk, Y., Zellers, R., LeBras, R., Gao, J., and Choi, Y.
Piqga: Reasoning about physical commonsense in natural
language. In AAAI Conference on Artificial Intelligence,
volume 34, pp. 7432-7439, 2020.

Blodgett, S. L., Green, L., and O’Connor, B. Demographic
dialectal variation in social media: A case study of
African-American English. In Conference on Empiri-
cal Methods in Natural Language Processing, pp. 1119-
1130, 2016. doi: 10.18653/v1/D16-1120.

Brown, T., Mann, B., Ryder, N., et al. Language models
are few-shot learners. In Larochelle, H., Ranzato, M.,
Hadsell, R., Balcan, M., and Lin, H. (eds.), Advances in
Neural Information Processing Systems, volume 33, pp.
1877-1901. Curran Associates, Inc., 2020.

Choromanski, K. M., Likhosherstov, V., Dohan, D., Song,
X., Gane, A., Sarlos, T., Hawkins, P., Davis, J. Q., Mo-
hiuddin, A., Kaiser, L., Belanger, D. B., Colwell, L. J.,
and Weller, A. Rethinking attention with performers.
In 9th International Conference on Learning Represen-
tations (ICLR). OpenReview.net, 2021. URL https:
//openreview.net/forum?id=Ua6zuk OWRH.

Chowdhery, A., Narang, S., Devlin, J., et al. PaLM: scaling
language modeling with pathways. ArXiv, 2204.02311,
2022.

Chronopoulou, A., Peters, M., and Dodge, J. Efficient
hierarchical domain adaptation for pretrained language
models. In Conference of the North American Chapter of
the Association for Computational Linguistics, pp. 1336~
1351, 2022. doi: 10.18653/v1/2022.naacl-main.96.

Clark, P., Cowhey, L., Etzioni, O., Khot, T., Sabharwal, A.,
Schoenick, C., and Tafjord, O. Think you have solved
question answering? Try ARC, the AI2 reasoning chal-
lenge. ArXiv, 1803.05457, 2018.

Cover, T. M. Geometrical and statistical properties of sys-
tems of linear inequalities with applications in pattern
recognition. Electronic Computers, IEEE Transactions
on, EC-14(3):326-334, 1965.

Dao, T. Flashattention-2: Faster attention with better par-
allelism and work partitioning. In International Confer-
ence on Learning Representations (ICLR), volume 12,
2024. URL https://openreview.net/forum?
id=mZn2Xyh9Ec.

Dao, T., Fu, D. Y., Ermon, S., Rudra, A., and Ré, C. Flashat-
tention: Fast and memory-efficient exact attention with
IO0-awareness. In Oh, A. H., Agarwal, A., Belgrave,

https://openreview.net/forum?id=Ua6zuk0WRH
https://openreview.net/forum?id=Ua6zuk0WRH
https://openreview.net/forum?id=mZn2Xyh9Ec
https://openreview.net/forum?id=mZn2Xyh9Ec

D., and Cho, K. (eds.), Advances in Neural Informa-
tion Processing Systems (NeurIPS), 2022. URL https:
//openreview.net/forum?id=H4DgfPSibmx.

Dayan, P. and Willshaw, D. J. Optimising synaptic learning
rules in linear associative memories. Biological Cyber-
netics, 65, 1991. doi: 10.1007/bf00206223.

De, S., Smith, S. L., Fernando, A., Botev, A., Cristian-
Muraru, G., Gu, A., Haroun, R., Berrada, L., Chen, Y.,
Srinivasan, S., Desjardins, G., Doucet, A., Budden, D.,
Teh, Y. W., Pascanu, R., DeFreitas, N., and Gulcehre, C.
Griffin: Mixing gated linear recurrences with local atten-
tion for efficient language models. ArXiv, 2402.19427,
2024.

Delétang, G., Ruoss, A., Grau-Moya, J., Genewein, T., Wen-
liang, L. K., Catt, E., Cundy, C., Hutter, M., Legg, S., Ve-
ness, J., and Ortega, P. A. Neural networks and the Chom-
sky hierarchy. In International Conference on Learning
Representations (ICLR), volume 11, 2023. URL https:
//openreview.net/forum?id=WbxHAzkeQcn.

Du, N., Huang, Y., Dai, A. M., et al. GLaM: efficient scal-
ing of language models with mixture-of-experts. ArXiv,
2112.06905, 2021.

Fu, D. Y., Dao, T., Saab, K. K., Thomas, A. W., Rudra,
A., and Re, C. Hungry hungry hippos: Towards lan-
guage modeling with state space models. In The Eleventh
International Conference on Learning Representations,
2023. URL https://openreview.net/forum?
1d=COZDy0OWYGg.

Gao, L., Biderman, S., Black, S., Golding, L., Hoppe, T.,
Foster, C., Phang, J., He, H., Thite, A., Nabeshima, N.,
Presser, S., and Leahy, C. The Pile: An 800gb dataset of
diverse text for language modeling. ArXiv, 2101.00027,
2021.

Gers, F. A., Schmidhuber, J., and Cummins, F. Learning to
forget: Continual prediction with LSTM. Neural Com-
pututation, 12(10):2451-2471, 2000.

Google, G. T. Gemini: A family of highly capable multi-
modal models. ArXiv, 2312.11805, 2023.

Greenbaum, S. and Nelson, G. The international corpus
of English (ICE) project. World Englishes, 15(1):3-15,
1996.

Greff, K., Srivastava, R. K., Koutnik, J., Steunebrink, B. R.,
and Schmidhuber, J. LSTM: A search space odyssey.
ArXiv, 1503.04069, 2015.

Gu, A. and Dao, T. Mamba: Linear-time sequence modeling
with selective state spaces. ArXiv, 2312.00752, 2023.

Gu, A. and Dao, T. Mamba: Linear-time sequence
modeling with selective state spaces. In Interna-
tional Conference on Learning Representations (ICLR),
2024. URL https://openreview.net/forum?
id=AL1£q0507H.

Gu, A., Goel, K., and Ré, C. Efficiently modeling long se-
quences with structured state spaces. ArXiv, 2111.00396,
2021.

Gupta, A., Gu, A., and Berant, J. Diagonal state spaces are
as effective as structured state spaces. ArXiv, 2203.14343,
2022.

He, K., Zhang, X., Ren, S., and Sun, J. Deep residual learn-
ing for image recognition. In Proceedings of the IEEE
Conference on Computer Vision and Pattern Recognition
(CVPR), pp. 770-778, 2016.

Hochreiter, S. Untersuchungen zu dynamischen neuronalen
Netzen. Master’s thesis, Technische Universitit Miinchen,
1991.

Hochreiter, S. and Schmidhuber, J. Long short-term memory.
Neural Computation, 9(8):1735-1780, 1997a.

Hochreiter, S. and Schmidhuber, J. LSTM can solve hard
long time lag problems. In Mozer, M. C., Jordan, M. L.,
and Petsche, T. (eds.), Advances in Neural Information
Processing Systems (NeurlPS), volume 9, pp. 473—479.
MIT Press, Cambridge MA, 1997b.

Hochreiter, S., Bengio, Y., Frasconi, P., and Schmidhuber, J.
Gradient flow in recurrent nets: the difficulty of learning
long-term dependencies. In Kolen, J. and Kremer, S.
(eds.), A Field Guide to Dynamical Recurrent Networks.
IEEE, 2000.

Hochreiter, S., Younger, A. S., and Conwell, P. R. Learning
to learn using gradient descent. In Dorffner, G., Bischof,
H., and Hornik, K. (eds.), Proc. Int. Conf. on Artificial
Neural Networks (ICANN 2001), pp. 87-94. Springer,
2001.

Hochreiter, S., Heusel, M., and Obermayer, K. Fast model-
based protein homology detection without alignment.
Bioinformatics, 23(14):1728-1736, 2007.

Train-
ArXiv,

Hoffmann, J., Borgeaud, S., Mensch, A., et al.
ing compute-optimal large language models.
2203.15556, 2022.

Kaplan, J., McCandlish, S., Henighan, T., Brown, T. B.,
Chess, B., Child, R., Gray, S., Radford, A., Wu, J., and
Amodei, D. Scaling laws for neural language models.
ArXiv, 2001.08361, 2020.

https://openreview.net/forum?id=H4DqfPSibmx
https://openreview.net/forum?id=H4DqfPSibmx
https://openreview.net/forum?id=WbxHAzkeQcn
https://openreview.net/forum?id=WbxHAzkeQcn
https://openreview.net/forum?id=COZDy0WYGg
https://openreview.net/forum?id=COZDy0WYGg
https://openreview.net/forum?id=AL1fq05o7H
https://openreview.net/forum?id=AL1fq05o7H

Katharopoulos, A., Vyas, A., Pappas, N., and Fleuret, F.
Transformers are RNNs: Fast autoregressive transform-
ers with linear attention. In III, E. H. D. and Singh, A.
(eds.), International Conference on Machine Learning
(ICML), volume 119 of Proceedings of Machine Learning
Research, pp. 5156-5165. PMLR, 2020.

Katsch, T. GateLoop: Fully data-controlled linear recur-
rence for sequence modeling. ArXiv, 2311.01927, 2023.

Kocetkov, D., Li, R., BenAllal, L., Li, J., Mou, C., nozFer-
randis, C. M., Jernite, Y., Mitchell, M., Hughes, S., Wolf,
T., Bahdanau, D., vonWerra, L., and deVries, H. The
Stack: 3 TB of permissively licensed source code. ArXiv,
2211.15533, 2022.

Kohonen, T. Correlation matrix memories. /IEEE Transac-
tions on Computers, C-21(4), 1972. doi: 10.1109/tc.1972.
5008975.

Krizhevsky, A. Learning multiple layers of features from
tiny images. Master’s thesis, Deptartment of Computer
Science, University of Toronto, 2009.

Krotov, D. and Hopfield, J. J. Dense associative memory
for pattern recognition. In Lee, D. D., Sugiyama, M.,
Luxburg, U. V., Guyon, 1., and Garnett, R. (eds.), Ad-
vances in Neural Information Processing Systems, pp.
1172-1180. Curran Associates, Inc., 2016.

Krotov, D. and Hopfield, J. J. Dense associative memory is
robust to adversarial inputs. ArXiv, 1701.00939, 2017.

Li, Y, Cai, T., Zhang, Y., Chen, D., and Dey, D. What makes
convolutional models great on long sequence modeling?
ArXiv, 2210.09298, 2022.

Liang, P., Bommasani, R., Lee, T., et al. Holistic evaluation
of language models. Annals of the New York Academy of
Sciences, 1525:140-146, 2023.

Lin, J., Men, R., Yang, A., Zhou, C., Ding, M., Zhang, Y.,
Wang, P., Wang, A., Jiang, L., Jia, X., Zhang, J., Zhang,
J., Zou, X., Li, Z., Deng, X., Liu, J., Xue, J., Zhou, H.,
Ma, J., j. Yu, Li, Y., Lin, W., Zhou, J., Tang, J., and
Yang, H. M6: A Chinese multimodal pretrainer. ArXiv,
2103.00823, 2021.

Linsley, D., Kim, J., Veerabadran, V., Windolf, C., and
Serre, T. Learning long-range spatial dependencies with
horizontal gated recurrent units. Advances in Neural
Information Processing Systems (NeurIPS), 31, 2018.

Loshchilov, I. and Hutter, F. Decoupled weight decay
regularization. In International Conference on Learn-
ing Representations (ICLR), 2019. URL https://
openreview.net/forum?id=Bkg6RiCqY7.

Ma, X., Zhou, C., Kong, X., He, J., Gui, L., Neubig, G.,
May, J., and Zettlemoyer, L. Mega: Moving average
equipped gated attention. ArXiv, 2209.10655, 2022.

Maas, A. L., Daly, R. E., Pham, P. T., Huang, D., Ng, A. Y,
and Potts, C. Learning word vectors for sentiment analy-
sis. In Annual Meeting of the Association for Computa-
tional Linguistics, volume 49, pp. 142-150, 2011.

Magnusson, 1., Bhagia, A., Hofmann, V., et al. Paloma:
A benchmark for evaluating language model fit. ArXiv,
2312.10523, 2023.

Mehta, H., Gupta, A., Cutkosky, A., and Neyshabur, B.
Long range language modeling via gated state spaces.
ArXiv, 2206.13947, 2022.

Merity, S., Xiong, C., Bradbury, J., and Socher, R. Pointer
sentinel mixture models. In International Conference on
Learning Representations (ICRL), 2017. URL https:
//openreview.net/forum?id=Byj72udxe.

Merrill, W. and Sabharwal, A. The parallelism tradeoff:
Limitations of log-precision transformers. Transactions
of the Association for Computational Linguistics, 11:531-
545, 2023. doi: 10.1162/tacl_a_00562.

Merrill, W., Petty, J., and Sabharwal, A. The illusion of
state in state-space models. ArXiv, 2404.08819, 2024.

Milakov, M. and Gimelshein, N. Online normalizer calcula-
tion for softmax. ArXiv, 1805.02867, 2018.

Nakano, K. Associatron — a model of associative memory.
IEEE Transactions on Systems, Man, and Cybernetics,
SMC-2(3):380-388, 1972. doi: 10.1109/TSMC.1972.
4309133.

Olsson, C., Elhage, N., Nanda, N, et al. In-context learning
and induction heads. ArXiv, 2209.11895, 2022.

Orvieto, A., Smith, S. L., Gu, A., Fernando, A., Gulcehre,
C., Pascanu, R., and De, S. Resurrecting recurrent neural
networks for long sequences. In Proceedings of the 40th

International Conference on Machine Learning (ICML).
JMLR.org, 2023. doi: 10.5555/3618408.3619518.

Papasavva, A., Zannettou, S., DeCristofaro, E., Stringhini,
G., and Blackburn, J. Raiders of the lost KeK: 3.5 years
of augmented 4chan posts from the politically incorrect
board. In International AAAI Conference on Web and
Social Media (ICWSM), volume 14, pp. 885-894, 2020.

Paperno, D., Kruszewski, G., Lazaridou, A., Pham, N.-Q.,
Bernardi, R., Pezzelle, S., Baroni, M., G. Boleda, G., and
Ferndndez, R. The LAMBADA dataset: Word prediction
requiring a broad discourse context. In Annual Meeting of

the Association for Computational Linguistics, volume 1,
pp. 1525-1534, 2016.

https://openreview.net/forum?id=Bkg6RiCqY7
https://openreview.net/forum?id=Bkg6RiCqY7
https://openreview.net/forum?id=Byj72udxe
https://openreview.net/forum?id=Byj72udxe

Penedo, G., Malartic, Q., Hesslow, D., Cojocaru, R., Cap-
pelli, A., Alobeidli, H., Pannier, B., Almazrouei, E., and
Launay, J. The RefinedWeb dataset for Falcon LLM:
Outperforming curated corpora with web data, and web
data only. ArXiv, 2306.01116, 2023.

Peng, B., Alcaide, E., Anthony, Q., et al. RWKV: Reinvent-
ing RNNs for the transformer era. ArXiv, 2305.13048,
2023.

Peng, B., Goldstein, D., Anthony, Q., Albalak, A., Alcaide,
E., Biderman, S., Cheah, E., Du, X., Ferdinan, T., Hou, H.,
Kazienko, P., GV, K. K., Kocon, J., Koptyra, B., Krishna,
S., McClelland, R. J., Muennighoff, N., Obeid, F., Saito,
A., Song, G., Tu, H., WoZniak, S., Zhang, R., Zhao, B.,
Zhao, Q., Zhou, P., Zhu, J., and Zhu, R.-J. Eagle and
Finch: RWKYV with matrix-valued states and dynamic
recurrence. ArXiv, 2404.05892, 2024a.

Peng, B., Goldstein, D., Anthony, Q., et al. Eagle and
Finch: RWKYV with matrix-valued states and dynamic
recurrence. ArXiv, 2404.05892, 2024b.

Poli, M., Massaroli, S., Nguyen, E., Fu, D. Y., Dao, T,
Baccus, S., Bengio, Y., Ermon, S., and Ré, C. Hyena
hierarchy: Towards larger convolutional language models.
In Proceedings of the 40th International Conference on
Machine Learning (ICML). JMLR.org, 2023. doi: 10.
5555/3618408.3619572.

Poli, M., Thomas, A. W., Nguyen, E., Ponnusamy, P., Deis-
eroth, B., Kersting, K., Suzuki, T., Hie, B., Ermon, S., Ré,
C., Zhang, C., and Massaroli, S. Mechanistic design and
scaling of hybrid architectures. ArXiv, 2403.17844, 2024.

Qin, Z., Yang, S., and Zhong, Y. Hierarchically gated recur-
rent neural network for sequence modeling. In Advances
in Neural Information Processing Systems (NeurIPS), vol-
ume 37, 2023. URL https://openreview.net/
forum?id=P1TCHxJwLB.

Qin, Z., Yang, S., Sun, W,, Shen, X., Li, D., Sun, W., and
Zhong, Y. HGRN2: Gated linear RNNs with state expan-
sion. ArXiv, 2404.07904, 2024.

Radev, D. R., Muthukrishnan, P., and Qazvinian, V. The
ACL anthology network corpus. In Workshop on Text
and Citation Analysis for Scholarly Digital Libraries
(NLPIR4DL), pp. 54-61. Association for Computational
Linguistics, 2009.

Radford, A., Wu, J., Child, R., Luan, D., Amodei, D.,
and Sutskever, I. Language models are unsupervised
multitask learners. https://openai.com/index/
better-language-models, 2019.

Rae, J. W., Borgeaud, S., Cai, T., et al. Scaling language
models: Methods, analysis & insights from training Go-
pher. ArXiv, 2112.11446, 2021.

Raffel, C., Shazeer, N., Roberts, A., Lee, K., Narang, S.,
Matena, M., Zhou, Y., Li, W., and Liu, P. J. Exploring
the limits of transfer learning with a unified text-to-text
transformer. ArXiv, 1910.10683, 2019.

Ramsauer, H., Schifl, B., Lehner, J., Seidl, P., Widrich,
M., Gruber, L., Holzleitner, M., Pavlovi¢, M., Sandve,
G. K., Greiff, V., Kreil, D., Kopp, M., Klambauer, G.,
Brandstetter, J., and Hochreiter, S. Hopfield networks is
all you need. In International Conference on Learning
Representations (ICLR). OpenReview, 2021.

Reid, M., Zhong, V., Gururangan, S., and Zettlemoyer, L.
M2D2: A massively multi-domain language modeling
dataset. In Conference on Empirical Methods in Natural
Language Processing, pp. 964-975, 2022.

Reid, M., Savinov, N., Teplyashin, D., et al. Gemini 1.5:
Unlocking multimodal understanding across millions of
tokens of context. ArXiv, 2403.05530, 2024.

Ribeiro, M. H., Blackburn, J., Bradlyn, B., DeCristofaro, E.,
Stringhini, G., Long, S., Greenberg, S., and Zannettou,
S. The evolution of the manosphere across the web. In
Proceedings of the international AAAI conference on web
and social media, volume 15, pp. 196-207, 2021.

Sakaguchi, K., Bras, R. L., Bhagavatula, C., and Choi, Y.
Winogrande: An adversarial winograd schema challenge
at scale. Communications of the ACM, 64(9):99-106,
2021.

Scao, T. L., Fan, A., Akiki, C., et al. BLOOM: A 176B-
parameter open-access multilingual language model.
ArXiv, 2211.05100, 2022.

Schlag, L., Irie, K., and Schmidhuber, J. Linear transformers
are secretly fast weight programmers. In Meila, M. and
Zhang, T. (eds.), Proceedings of the 38th International
Conference on Machine Learning (ICML), volume 139
of Proceedings of Machine Learning Research, pp. 9355—
9366. PMLR, 2021.

Schmidhuber, J. Learning to control fast-weight memories:
An alternative to recurrent nets. Neural Computation, 4
(1):131-139, 1992.

Schmidhuber, J. Deep learning in neural networks: An
overview. Neural Networks, 61:85-117, 2015. doi: 10.
1016/j.neunet.2014.09.003.

Schulman, J., Zoph, B., Kim, C., Hilton, J., et al.
ChatGPT: Optimizing language models for dialogue.
https://openai.com/blog/chatgpt/, 2022. OpenAl Re-
search.

Sejnowski, T. J. Storing covariance with nonlinearly in-
teracting neurons. Journal of Mathematical Biology, 4,
1977. doi: 10.1007/BF00275079.

https://openreview.net/forum?id=P1TCHxJwLB
https://openreview.net/forum?id=P1TCHxJwLB
https://openai.com/index/better-language-models
https://openai.com/index/better-language-models

Shoeybi, M., Patwary, M., Puri, R., LeGresley, P., Casper,
J., and Catanzaro, B. Megatron-LM: Training multi-
billion parameter language models using model paral-
lelism. ArXiv, 1909.08053, 2019.

Smith, J. T. H., Warrington, A., and Linderman, S. W. Sim-
plified state space layers for sequence modeling. ArXiv,
2208.04933, 2022.

Soboleva, D., Al-Khateeb, F., Myers, R., Steeves, J. R.,
Hestness, J., and Dey, N. SlimPajama: A 627B
token cleaned and deduplicated version of Red-
Pajama. https://www.cerebras.net/blog/

TogetherComputer. Redpajama: an open dataset for training
large language models, 2023. URL https://github.
com/togethercomputer/RedPajama—Data.

Touvron, H., Lavril, T., Izacard, G., Martinet, X., Lachaux,
M.-A., Lacroix, T., Roziere, B., Goyal, N., Hambro, E.,
Azhar, F., Rodriguez, A., Joulin, A., Grave, E., and Lam-
ple, G. Llama: Open and efficient foundation language
models. ArXiv, 2302.1397, 2023a.

Touvron, H., Lavril, T., Izacard, G., Martinet, X., Lachaux,
M.-A., Lacroix, T., RoziA re, B., Goyal, N., Hambro,
E., Azhar, F., Rodriguez, A., Joulin, A., Grave, E., and

slimpajama-a-627b-token-cleaned-and-dedup lli%gp&lg,dgvé‘m%'nQ%efL@éi(ﬁﬁg%igﬂltafoundation lan-

2023. URL https://huggingface.co/
datasets/cerebras/SlimPajama—627B.

Soldaini, L., Kinney, R., Bhagia, A., et al. Dolma: an
open corpus of three trillion tokens for language model
pretraining research. ArXiv, 2306.01116, 2023.

Soltan, S., Ananthakrishnan, S., FitzGerald, J., Gupta, R.,
Hamza, W., Khan, H., Peris, C., Rawls, S., Rosenbaum,
A., Rumshisky, A., Prakash, C. S., Sridhar, M., Triefen-
bach, F., Verma, A., Tur, G., and Natarajan, P. AlexaTM
20B: Few-shot learning using a large-scale multilingual
Seq2Seq model. ArXiv, 2208.01448, 2022.

Srivastava, R. K., Greff, K., and Schmidhuber, J. Training
very deep networks. In Cortes, C., Lawrence, N., Lee, D.,
Sugiyama, M., and Garnett, R. (eds.), Advances in Neural
Information Processing Systems (NeurIPS), volume 28.
Curran Associates, Inc., 2015.

Sun, Y., Dong, L., Huang, S., Ma, S., Xia, Y., Xue, J., Wang,
J., and Wei, F. Retentive network: A successor to trans-
former for large language models. ArXiv, 2307.08621,
2023.

Sutawika, L., Gao, L., Schoelkopf, H., et al. EleutherAl/Im-
evaluation-harness: Major refactor, 2023.

Tay, Y., Bahri, D., Metzler, D., Juan, D.-C., Zhao, Z., and
Zheng, C. Synthesizer: Rethinking self-attention in trans-
former models. ArXiv, 2005.00743, 2020.

Tay, Y., Dehghani, M., Abnar, S., Shen, Y., Bahri, D., Pham,
P, Rao, J., Yang, L., Ruder, S., and Metzler, D. Long
range arena: A benchmark for efficient transformers. In
International Conference on Learning Representations
(ICRL), 2021. URL https://openreview.net/
forum?id=gVyeW-grC2k.

Thoppilan, R., deFreitas, D., Hall, J., et al. LaMDA: Lan-
guage models for dialog applications. ArXiv, 2201.08239,
2022.

guage models. https://arxiv.org/abs/2302.
13971, 2023b.

Vadas, D. and Curran, J. R. Parsing noun phrases in the
Penn Treebank. Computational Linguistics, 37(4):753—
809, 2011.

Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones,
L., Gomez, A. N., Kaiser, L., and Polosukhin, I. Attention
is all you need. In Advances in Neural Information Pro-
cessing Systems (NeurIPS), volume 30, pp. 5998—-6008.
Curran Associates, Inc., 2017.

Wang, J., Yan, J. N., Gu, A., and Rush, A. M. Pretraining
without attention. ArXiv, 2212.10544, 2022.

Wang, S., Li, B. Z., Khabsa, M., Fang, H., and Ma, H.
Linformer: Self-attention with linear complexity. ArXiv,
2006.04768, 2020.

Wang, S., Sun, Y., Xiang, Y., et al. ERNIE 3.0 Titan: Explor-
ing larger-scale knowledge enhanced pre-training for lan-
guage understanding and generation. ArXiv, 2112.12731,
2021.

Wu, Y. and He, K. Group normalization. In Proceedings of
the European conference on computer vision (ECCV), pp.

3-19, 2018.

Xue, L., Constant, N., Roberts, A., Kale, M., Al-Rfou, R.,
Siddhant, A., Barua, A., and Raffel, C. mT5: A massively
multilingual pre-trained text-to-text transformer. In Con-
ference of the North American Chapter of the Association
for Computational Linguistics, pp. 483-498, 2021. doi:
10.18653/v1/2021.naacl-main.41.

Yang, S. and Zhang, Y. FLA: A Triton-based library for
hardware-efficient implementations of linear attention
mechanism, 2024. URL https://github.com/
sustcsonglin/flash-linear—attention.

Yang, S., Wang, B., Shen, Y., Panda, R., and Kim, Y. Gated
linear attention transformers with hardware-efficient train-
ing. ArXiv, 2312.06635, 2023.

https://www.cerebras.net/blog/slimpajama-a-627b-token-cleaned-and-deduplicated-version-of-redpajama
https://www.cerebras.net/blog/slimpajama-a-627b-token-cleaned-and-deduplicated-version-of-redpajama
https://huggingface.co/datasets/cerebras/SlimPajama-627B
https://huggingface.co/datasets/cerebras/SlimPajama-627B
https://openreview.net/forum?id=qVyeW-grC2k
https://openreview.net/forum?id=qVyeW-grC2k
https://github.com/togethercomputer/RedPajama-Data
https://github.com/togethercomputer/RedPajama-Data
https://arxiv.org/abs/2302.13971
https://arxiv.org/abs/2302.13971
https://github.com/sustcsonglin/flash-linear-attention
https://github.com/sustcsonglin/flash-linear-attention

Zannettou, S., Bradlyn, B., DeCristofaro, E., Kwak, H.,
Sirivianos, M., Stringini, G., and Blackburn, J. What
is Gab: A bastion of free speech or an alt-right echo
chamber. In The Web Conference, pp. 1007-1014, 2018.
doi: 10.1145/3184558.3191531.

Zellers, R., Holtzman, A., Bisk, Y., Farhadi, A., and Choi, Y.
HellaSwag: Can a machine really finish your sentence?
In Annual Meeting of the Association for Computational
Linguistics, pp. 4791-4800, 2019.

Zeng, A., Liu, X., Du, Z., et al. GLM-130B: An open
bilingual pre-trained model. ArXiv, 2210.02414, 2022.

Zhang, S., Roller, S., Goyal, N., Artetxe, M., Chen, M.,
Chen, S., Dewan, C., Diab, M., Li, X., Lin, X. V., Mi-
haylov, T., Ott, M., Shleifer, S., Shuster, K., Simig, D.,
Koura, P. S., Sridhar, A., Wang, T., and Zettlemoyer,
L. OPT: Open pre-trained transformer language models.
ArXiv, 2205.01068, 2022.

10

A. Related Work

Linear Attention. Several methods have been suggested to overcome the quadratic complexity in terms of context length
of the Transformer and make attention linear in the context length. The Synthesizer learns synthetic attention weights
without token—token interactions (Tay et al., 2020). Linformer realizes self-attention by a low-rank matrix and even linearly
approximates it (Wang et al., 2020). Linear Transformer linearizes the attention mechanism (Katharopoulos et al., 2020).
Performer linearly approximates the attention softmax by positive orthogonal random features approach (Choromanski et al.,
2021). Attention has been replaced by fast long convolutions in the Structured Global Convolution (SGConv) (Li et al.,
2022) and the Hyena Hierarchy (Poli et al., 2023).

State Space Models. Recently, State Space Models (SSMs) became very popular since they are linear in the context
length and show promising performance compared to Transformers. One of the first proposed models was Structured State
Space sequence model (S4) (Gu et al., 2021), followed by Diagonal State Space (DSS) model (Gupta et al., 2022), Gated
State Space (GSS) models (Mehta et al., 2022), S5 model (Smith et al., 2022), Bidirectional Gated SSM (BiGS) (Wang
et al., 2022), H3 model (Fu et al., 2023), and Mamba (Gu & Dao, 2023).

Recurrent Neural Networks. Recurrent Neural Networks (RNNs) have been suggested to replace Transformer and
attention due to their linearity in the context length. RNNs with Deep Linear Recurrent Units (LRUs) showed promising
results for language modeling (Orvieto et al., 2023; De et al., 2024), as did Hierarchically Gated Linear RNN (HGRN) (Qin
et al., 2023) and HGRN2 (Qin et al., 2024). A well-known RNN approach to large language modeling is RWKV (Peng
et al., 2023; 2024b), showcasing competitive performance to Transformers.

Gating. One of the key ideas of LSTM is gating, which was rediscovered and reinterpreted in many recent approaches.
Gating was used in HGRN (Qin et al., 2023), HGRN2 (Qin et al., 2024), Gated Linear Attention (GLA) (Yang et al., 2023),
Gated State Space (GSS) models (Mehta et al., 2022), Bidirectional Gated SSM (BiGS) (Wang et al., 2022), Moving Average
Equipped Gated Attention (MEGA) (Ma et al., 2022), RWKV (Peng et al., 2023), and Mamba (Gu & Dao, 2023).

Covariance Update Rule. To enhance storage capacities, we equipped the mLSTM cell with a matrix memory with
a covariance update rule. Other methods which build on such an update mechanism are Fast Weight Programmers
(Schmidhuber, 1992; Schlag et al., 2021), RWKV-5 and RWKV-6 (Peng et al., 2024b), Retention (Sun et al., 2023), Linear
Transformer (Katharopoulos et al., 2020), and HGRN2 (Qin et al., 2024).

Most Related. Conceptually the closest models to xXLSTM are Retention (Sun et al., 2023), RWKV (Peng et al., 2023;
2024b), and HGRN?2 (Qin et al., 2024). These models share the concepts matrix memory and/or gating. However, in contrast
to the new sLSTM, these approaches do not allow memory mixing. Memory mixing enables to solve state tracking problems,
and therefore LSTMs are more expressive than State Space Models (SSMs) and Transformers (Merrill et al., 2024; Delétang
et al., 2023). State tracking is required to evaluate code or to track entities in a long narrative.

Residually Stacking Architectures. Like almost all contemporary large deep learning models, xLSTM architectures
are constructed by residually stacking building blocks (Srivastava et al., 2015; He et al., 2016). This construction enabled
deep convolutional networks (He et al., 2016) and Transformers (Vaswani et al., 2017). Transformers are the ultimate force
behind Large Language Models (LLMs) like GPT-3 (Brown et al., 2020), ChatGPT (Schulman et al., 2022), GPT-4 (Achiam
et al., 2023), Megatron-LM (Shoeybi et al., 2019), Gopher (Rae et al., 2021), ERNIE 3.0 Titan (Wang et al., 2021), GLaM
(Du et al., 2021), Chinese M6 (Lin et al., 2021), mutilingual AlexaTM 20B (Soltan et al., 2022), OPT (Zhang et al., 2022),
Chinchilla (Hoffmann et al., 2022), BLOOM (Scao et al., 2022), GLM-130B (Zeng et al., 2022), LaMDA (Thoppilan et al.,
2022), PaLM (Chowdhery et al., 2022), Llama (Touvron et al., 2023a), Gemini (Google, 2023; Reid et al., 2024).

11

B. Extended Long Short-Term Memory

LSTM Memory Cells XLSTM Blocks XLSTM
N\ \
Memory Cells SLSTM
-+ Constant Error Carousel + Exponential Gating
- Sigmoid Gating —» + New Memory Mixing
- Recurrent Inference] |

- Recurrent Training

e = fre1 + ir 2

he = o 9(ct)
mMLSTM
. . L
+ Exponential Gating L))
=» + Matrix Memory
+ Parallel Training A A
+ Covariance Update Rule
\ v

Figure 4: The extended LSTM (XLSTM) family. From left to right: 1. The original LSTM memory cell with constant
error carousel and gating. 2. New sLSTM and mLSTM memory cells that introduce exponential gating. SLSTM offers a
new memory mixing technique. mLSTM is fully parallelizable with a novel matrix memory cell state and new covariance
update rule. 3. mLSTM and sLSTM in residual blocks yield xXLLSTM blocks. 4. Stacked XLSTM blocks give an xXLSTM
architecture.

B.1. Review of the Long Short-Term Memory

The original LSTM idea (Hochreiter, 1991; Hochreiter & Schmidhuber, 1997b;a) introduced the scalar memory cell as a
central processing and storage unit that avoids vanishing gradients (Hochreiter, 1991; Hochreiter et al., 2000) through the
constant error carousel (cell state update). The memory cell contains three gates: input, output, and forget gate. The latter
was introduced by Gers et al. (2000). The LSTM memory cell update rules at time step ¢ are:

e = Iy 1 + I z cell state (16)
hy = o4 Bt, fzt = (ct) hidden state a7
2 = (%), % = w] @ + rhey + b, cell input (18)
i = U(L) , I = 'wiT x;, + rihi_1 + b input gate (19)
fi =0 }) , f, = 'wa x; + rehe_1 + bt forget gate (20)
o = o(04) , 0 = wI Ty + 1o hi—1 + bo output gate (21

The weight vectors w., w;, wy, and w, correspond to the input weight vectors between inputs x; and cell input, input gate,
forget gate, and output gate, respectively. The weights r, rj, ¢, and 7, correspond to the recurrent weights between hidden
state h;_1 and cell input, input gate, forget gate, and output gate, respectively. b, b;, bt, and b, are the corresponding bias
terms. ¢ and v are the cell input and hidden state activation functions (typically tanh). 1 is used to normalize or squash the
cell state, which would be unbounded otherwise. All gate activation functions are sigmoid, i.e., o (z) = 1/(1 + exp(—=x)).
In later formulations, multiple memory cells were combined in a vector, which allows the usage of recurrent weight matrices
to mix the cell outputs of memory cells (Greff et al., 2015) Ablation studies showed that all components of the memory cell
are crucial (Greff et al., 2015).

12

The vanilla LSTM memory cell update rules (Greff et al., 2015) at time step ¢ extend the scalar cell state formulation to a

vector of cell states:

¢ = f O + i O 2z

hy = oy ®hy, ﬁt:w<ct)

zi = ¢(z), Zy = Woxy + R:hyq + b2
i = o (i), i, = Wiz, + Rihy + b
f; = U<~t> ; f = Weay + Rehioq + by
0 = o (5;) & = Woz; + Rohy 1 + bo

cell state
hidden state
cell input
input gate
forget gate

output gate

(22)
(23)
(24)
(25)
(26)

27

The matrices W, W;, W¢, and W, correspond to the input weights between inputs x; and cell input, input gate, forget
gate, and output gate, respectively. The matrices R, R;, R, and R, correspond to the recurrent weights between hidden
state h;_1 and cell input, input gate, forget gate, and output gate, respectively. b, b;, be, and b, are the corresponding bias
vectors. ¢ and v are the cell input and hidden state activation functions (typically tanh). v is used to normalize or squash

the cell state, which would be unbounded otherwise.

B.2. sLSTM

Similar to the LSTM in Section B.1, also the SLSTM can be vectorized to multiple cells:

¢ = £ 0 + i O 2

ng = f; © ny1 + i

ht:0t®i~zt, ﬁt:ct(ant_l

zr = (), zZ = Wy, + R hyy + b,
i; = exp (It) , i, = Wizi + Rihi_y + b
f, — exp (t) ORa(f't) : f, — Wra, + Rehiy + by
o = 0(6) & = Woa + Rohiy + bo

cell state
normalizer state
hidden state
cell input

input gate
forget gate

output gate

(28)
(29)
(30)
€1y
(32)
(33)

(34)

Here, the cell input activation function ¢ is tanh, the hidden state activation function is the identity. ¢ helps stabilizing the

recurrence.

Considering external gradient contribution 5,"‘1": from subsequent layers and recurrent gradient contribution 6,13; from gradients
from future states flowing over the cell interaction matrix R, we obtain the recursive backward pass of sSLSTM, where &,

indicates gradients with respect to parameter / internal variable a:

13

6n, = 05" + OfF (35)

oy = £ @0, + 010N Obp, , (36)
by, = 1 O0n, — 010 ¢ 1 On; 2 OO, (37)
0, = O 100, + f{On 100, (38)
&, = 1,02 Od, + iy O dn, (39)
0z, = 1t © ¢ (2¢) © e, (40)
05, = 0,0 ¢c; On; O Op, 41)
b = DL Wl (42)
ge{f.i,z,0}
0=) Ry, (43)
ge{f.izo0}
5}—zg = thégt) g € {i,f,z,0} (44)
t
6§Vg = th‘%—w g € {i,f,z,0} (45)
t

with the derivatives of the respective gate activation function i}, = exp’(i;) = exp(i;) = iz, 0}, = 0/ (y), and f/ = o’ (f,) or
f]/ = f; depending on the forget gate activation. ¢’(z) is the derivative of the cell input activation function ¢(z).

The matrices R, R;, Rf, R, are block-diagonal which is analogous to multiple heads in the mLSTM. This way, the
parameters reduce to d? /(Np), where Ny, is the number of heads, limiting the cell interactions to individual heads. This
parameter efficient formulation of cell interactions together with the exponential gating is called the new memory mixing.
Finally, to stabilize the backward pass, we clip the magnitude of 6,13; to 10, as a means to prohibit exploding gradients for
long context lengths.

sLSTM Stabilized Version. The stabilized version of SLSTM introduces a new stabilizer state m , applied as:

my = max (log(fr)+ my—1 ,log(i)) stabilizer state (46)
ig = exp (log (it) — my) = exp (it — my) stabil. input gate @7
fl = exp (1og (f,) + - mt) stabil. forget gate (48)

We show that replacing f; by f; and i; by i} in the forward pass does neither change the output of the whole network nor the
derivatives of the loss with respect to the parameters.

The stabilization state m has no gradient, and hence does not influence the other gradients. We re-define cgs) and n,ES) as

stabilized cell and normalizer states:

e cgs) exp (my) (49)

ng = ngs) exp (my) (50)

14

Inserting Equation 46 into Equation 1 yields:

B =) ple) = (51)
B exp <log () + mi—1 — my) cﬁ“"_)l + exp (log (ig) — My) Z 5
- exp (log (fr) + me—1 — my) ngs_)l + exp (log (iy) — my) 2
_exp (log (£) + my—) c§?1 + exp (log (it)) 2 3
N exp (log (fe) + me—1) n§“"_)1 + exp (log (i¢))
_exp (log (f)) ct—1 + exp (log (it?) 2t (54)

exp (log (f)) ne—1 + exp (log (i¢))

_ oA <y (55)

fing—1 +1iy

Therefore, since the loss solely depends on h;, there’s no dependency on m;, and consequently, no gradient exists for
this stabilization state. Note that m, can be chosen arbitrarily. We choose m; = max (log (f;) + m;_1,log (i;)), which
stabilizes the exponential function. One can even find m;, such that the normalizer state n; can be eliminated, but this
version was experimentally found to be numerically unstable in the backward pass.

B.3. mLSTM

Throughout this section, 1 € R7 denotes a column vector of ones and 1T € R**7 a row vector of ones, where 7 is the
dimension of this vector space.

Recurrent mLSTM Backward Pass. The recurrent formulation of the mLLSTM cell in Equation 9 yields the following
backward pass recurrence, where 9, indicates gradients with respect to parameter or internal variable a and (52": denotes
gradients from subsequent layers:

6] =0, 0 53 (56)
5 £,0 a-1di, (57)
t—1 = t + —
c© e max{|n:_1qt_1|,1}
T T
q,_1C, o
Oy = fibn, — —————= 0 (] @) @i (58)
max{‘nt_lqt_ll, 1}
b, = itk) 0%, (59)
o, =it (v, dc, +6,1,) (60)
C;§5; q,; C/ 5;
5q = t Thf, _ t ~t %h, 2Q(n;r(h> n, (61)
max{‘nt q: ,1} max{|n:qt’,1}
6mt = Z Wg—r(sgt (62)
9€{q,k,v}
dw, = D x:dg, . g € {q,k,v} (63)
t
8o, = D dg. s g€ {a.k,v} (64)
t
0, = (1T (Cr1 ©8c) 1+ 17 (i1 ©6,,)) 7 () (65)
5, = (17 ((vek]) @6c,) 1 +17 (ke ® 6n,)) exp (iz) (66)
66t :iLtQO'/ (ét)Q(Sht (67)

15

and Q2 (z) =0 (2 — 1) — O (—z — 1), O (2) being the Heaviside step function. -y (z) is either o’ (z) or exp (z), depending
on the forget gate activation.

Parallel mLSTM Forward Pass. The mLSTM recurrence in Equations (9-15) can be reformulated in a parallel form,
which is used to speed up training. After training we can still use the recurrent formulation for fast text generation.

Instead of processing each input x; € R? at time step ¢ sequentially, the parallel version processes all timesteps of a full
sequence X € R7* at once, where T is the sequence length and d is the head dimension. We present the forward pass of
the mLSTM for a single head and drop the head dimension for simplicity.

Let f € R be the forget gate pre-activations and i e R7 be the input gate pre-activations for a full sequence. We construct
the forget gate activation matrix F € R7*7 by
0 forv < j
F,j = 1 fori=j | (68)
[Tiejia o (fk) fori > j

and the input gate pre-activation matrix I € R7*7 by

~ 0 foric i
=4 (69)
ij fori>j

By applying the elementwise exponential input gate activation function naively, we obtain the unstabilized gate activation
matrix D € RT*T as

D =F ©exp(I). (70)

In order to avoid overflow due to the exponential function we apply the same stabilization as in the recurrent SLSTM, see
Equation 46. In the parallel formulation of the mLSTM we get a numerically stable gate activation matrix D’ € RT*7 by
taking the logarithm of D element-wise and subtracting the row-wise maximum value of D from each element:

D =logD = log (F ® exp(i)) =logF +1 71)
D’ = exp(D — max D) (72)

Given the queries, keys and values Q, K,V € RT*4 for a full sequence we can compute all hidden pre-activation states
H < R7*4 in parallel for the un-stabilized version by

~ c ~ K’
H=CV, with C= = , andC:LQD. (73)
max{[>_;_, Cil, 1} vd
Note that we extract the % factor for K explicitly here and further on. For the stabilized version this yields
. 61/ . KT
H=CV, with C= T ——, and C’:Q oD, (74)
max{| Y"1, C!,|,exp(— max D)} Vd

where for both versions the hidden pre-activation states H are identical.

With the output gate pre-activations O € R7*4 we can compute the hidden states H € RT*? for all timesteps by applying
the output gate in parallel for each timestep element-wise:

H=0(0)oH. (75)

This gives the parallel forward pass of the mLSTM for a full input sequence X € R7*<,

16

Parallel mLSTM Backward Pass. We present the backward pass of the mLSTM for the stabilized version only. For
completeness we summarize the forward pass in the stabilized version before we present the backward pass.

Given the forget gate matrix F € RT*7T the logarithm of the forget gate matrix F = log F € RT*7 and the input gate
matrix I € RT*T as introduced above, together with the queries, keys and values Q, K,V € RT*4 we can write the
forward pass of the mLSTM in the stabilized version as:

D=F~+I (76)
m = max f)u , row-wise maximum)
j
D' = exp(f) -m 1T) (78)
~ QKT I
C = oD 79
Nz (79)
T ~ ~
b= Z c,=C1, row-wise sum (80)
j=1
n = max{|b|,exp(—m)} (81)
c=C0o (n_1 1T) (32)
H=CV (83)

With this forward pass we can compute the gradients §, for all intermediate and input variables to the mLSTM forward pass
in the backward pass. We denote the gradient with respect to variable a as d,,.

Given the output gradient 5 € R7*4 we can compute the backward pass for the intermediate gradients as:

56 =V (84)
bn=-(C'0 (n?17) @dc) 1 (85)
_— ((é’ ® 50) 1) on2 (86)

1 if —
dp = sign (n) © 6, © { if |b] > exp(—m) (87)

0 otherwise
b c=Mm"11") edc, column-wise broadcast (88)
58 p=1 5; , column-wise broadcast (89)
b¢ =g c+0¢ B (90)
QK'

0p = —— Odx, 91
D Nz oD
op = exp(D —m) ®6p =D’ ® dp (92)

We do not compute the gradients for m as they cancel out (see the proof in the recurrent SLSTM).

With these intermediate gradients the gradients for the logarithmic forget gate matrix o € RTXT the input gate matrix

61 € RT*T and the queries, keys and values dg, 0k, dy € RT*? are given by
0F = 0p (93)
5 = 6 (94)
K
0g = (D/ O] (55/) ﬁ (95)
’ TQ
0 = (D © (55/) ﬁ (96)
sv =C'ég (97)

17

Having computed the gradients for the logarithmic forget gate matrix dz, we can compute the gradients for the forget gate

.. T
pre-activations 6z = [51;1,(5%2, e 6;T] e RT.

Recall the logarithmic forget gate matrix F = log F' is computed by

—00 fori <y
_ 0 fori =
Fi-:lo Fz: 7 = i = . .. 98
J & X Zk=j+1loga(fk) =D hejiifr fori>j ©8)
—
::?k
With the substitution f = log o(f‘) we compute the gradients for the logarithmic forget gate activations dp =
[(5&, (5?27 ceey (SfT] i € RT as
k=1 T
O, = Z ((Sf)ij) (99)
j=1i=k
&, =o(—f) - o5, (100)
where the last equation makes use of the following:
d -1
1 logo()) = = (1 +exp(=z)) " - exp(—z) - (1)
_ exp(—z) _ 1 (101)
1+exp(—z) 1+exp(x)
=o(—x)
Finally, we compute the input gate pre-activations’ gradients ; = [5;1 3075 e 5;5} " € RT as the column-wise sum over the
rows of the input gate matrix dy:
T
&, = (00 (102)
i=k

This completes the backward pass of the parallel mLSTM for a full input sequence X € RT>¢,

18

B.4. Detailed Block Structure

\
| =

Figure 5: Schematic representation of an sSLSTM Block — post up-projection: Embedded in a pre-LayerNorm residual
structure, the input is optionally passed through a causal convolution of window size 4 that includes a Swish activation for
input and forget gates. Then, for all input, forget and output gates i, f, o, and the cell update z the input is fed through a
block-diagonal linear layer with four diagonal blocks or “heads”. These diagonal blocks coincide with the recurrent gate
pre-activations from the last hidden state, which corresponds to an sSLSTM with four heads depicted with the circular arrows.
The resulting hidden state goes through a GroupNorm layer (Wu & He, 2018) — a head-wise LayerNorm for each of the four
heads. Finally, the output is up- and down-projected using a gated MLP, with GeLU activation function and projection factor
4/3 to match parameters.

19

Swish

Figure 6: Schematic representation of an mLSTM block — pre up-projection: Embedded in a pre-LayerNorm residual
structure, the input is up-projected first with projection factor 2, once for an externalized output gate and once as input
for the mLSTM cells. The mLSTM cell input is dimension-wise causally convoluted (kernel size 4), before entering a
learnable skip connection. We obtain input ¢ and & via block-diagonal projection matrices of block size 4. The values v are
fed directly, skipping the convolution part. After the mLSTM sequence mixing, outputs are normalized via GroupNorm (Wu
& He, 2018) — a head-wise layer norm for each of the four heads. Finally, the learnable skip input is added and the result is
gated component-wise with the external output gate. The output is down-projected.

20

B.5. Memory and Speed Considerations

Contrary to Transformers, XLSTM networks have a linear computation and a constant memory complexity with respect to the
sequence length. Since the xXLSTM memory is compressive, it is well suited for industrial applications and implementations
on the edge. The memory of mLSTM does not require parameters, but is computationally expensive through its d x d matrix
memory and d x d update. We trade off memory capacity against computational complexity. Nevertheless, the computations
can be done in parallel on GPUs, therefore these computations have only a minor effect on the wall clock time.

While mLSTM is parallelizable analog to FlashAttention (Dao et al., 2022; Dao, 2024) or GLA (Yang et al., 2023),
sLSTM is not parallelizable due to the memory mixing (hidden-hidden connections). However, we developed a fast CUDA
implementation with GPU memory optimizations to the register level which is typically less than two times slower than
mLSTM.

C. Limitations

(i) In contrast to mLSTM, memory mixing of the SLSTM prohibits parallelizable operations, and thus prevents a fast parallel
implementation. However, we developed a fast CUDA kernel for sSLSTM, which is currently less than two times slower
than the parallel mLSTM implementation. (ii) The mLSTM CUDA kernels are not optimized, and therefore the current
implementation is about four times slower than FlashAttention or the scan used in Mamba. Faster CUDA kernels could be
obtained in the vein of FlashAttention. (iii) The matrix memory of mLSTM has high computation complexity since d x d
matrices must be processed. Still, the memory update and retrieval is parameter-free, i.e., parallelizable when using standard
matrix operations. Thus, the wall clock time overhead due to the complex memory is minor. (iv) The forget gate initialization
must be chosen carefully. (v) Since the matrix memory is sequence length independent, increasing the sequence length
might overload the memory for longer context sizes. Still, this does not appear to be a limitation for contexts up to 16k, see
Section 3. (vi) Due to the expensive computational load for LLM experiments, we did neither fully optimize the architecture
nor the hyperparameters, especially for larger XLSTM architectures. We anticipate that an extensive optimization process is
needed for XLSTM to reach its full potential.

21

D. Experiments

Training Setup. For all experiments, we use Python' 3.11 with PyTorch 2.2.0°, and CUDA 12.1°. We developed and
trained all our models and baselines over the course of three months on a cluster with 128 nodes of eight NVIDIA A100
GPUs each. More than 95% of this compute were used for the Language Modeling experiments in sections D.2 and 3.

Nearest Neighbor Search Task. For this auxiliary task, we use randomly sampled feature vectors of dimension 2 and unit
norm. The attached value is a uniformly distributed random number from [0, 1], leading to inputs vectors of dimension 3.
The first feature vector serves as search key, with the first value being ignored. Then the model has to predict the value of
the nearest neighbor so far in the sequence. We train on 8192 sequences of context length up to 64 (uniformly sampled) and
validate on 8192 different samples. All models have two blocks and embedding dimension 128. We use a dropout of 0.1,
10% linear warm-up steps and cosine decay to le-7 for 100k total training steps. We sweep over learning rates le-4, le-3,
le-2, 1e-1 and 5 seeds each. The reported values in Figure 1 are mean values for the best learning rate and 99% confidence
intervals. Note that LSTM requires very high learning rates, whereas Transformers (Llama) perform best at the smallest
learning rate. The xLSTM[O0:1] reaches similar performance across all learning rates.

Wikitext-103 Rare Token Prediction. For this exemplary experiment on rare token prediction, we trained 125M-sized
models on Wikitext-103 (Merity et al., 2017). All models have an embedding dimension of 768 in a post up-projection
structure of 12 residual blocks. The Transformer model (Llama) uses Multi-Head Attention, for what is called LSTM the
Multi-Head Attention is replaced by an LSTM and the xLSTM[1:0] contains mLSTM layers with matrix memory. Models
were trained with maximum learning rate le-3, 4k steps linear warm-up and cosine decay for in total 50k steps, using a batch
size of 256 and context length of 512. We use the validation perplexity as a stopping criterion and evaluate on the test set.

D.1. Synthetic Tasks and Long Range Arena

Firstly, we test the effectiveness of xXLSTM’s new exponential gating with memory mixing on formal languages (Delétang
et al., 2023). Then, we assess the effectiveness of xXLSTM’s new matrix memory on the Multi-Query Associative Recall
task (Arora et al., 2023). Finally, xXLSTM’s performance at processing long sequences in the Long Range Arena is
evaluated (Tay et al., 2021).

D.1.1. TEST OF XLSTM’S EXPONENTIAL GATING WITH MEMORY MIXING.

We test XLSTM’s new exponential gating with memory mixing, which should enable it to solve state tracking problems (Mer-
rill et al., 2024; Merrill & Sabharwal, 2023).

We implement and extend the formal language tasks from Delétang et al. (2023) to enable multi-length training for length
extrapolation. Formal languages provide a framework to probe the generalization capabilities of models. They allow to
specifically test different expressivity levels, e.g. along the Chomsky hierarchy. Typical language model architectures do
not necessarily fit perfectly in these hierarchies (Delétang et al., 2023) — nevertheless these languages allow to illustrate
differences in generalization expressivity between different architectures.

Experiment Setup. The different formal language tasks in the experiment (see individual tasks description below)
encompass different levels of the Chomsky hierarchy as well as additional counting and memory-focused tasks. We use
different lengths per sample, which allows us to validate in a length extrapolation setting. We train on a varying task length
up to 40. The evaluation is done for task lengths between 40 and 256 as we are only interested in the “task generalization
capabilities of the models.

In all experiments, we use two blocks (or layers for the pure LSTM) for all models. We compare Llama, Mamba, Retention,
Hyena, RWKV-4, RWKV-5, RWKV-6, LSTM, xLSTM[0:1], xLSTM[1:0] and xXLSTM[1:1]. The sLSTM block is used
without a convolution and with normal weight initialization. LSTM (Block) refers to an architecture where a vanilla LSTM
is used instead of self-attention inside a Transformer block.

All models are trained with 3 different learning rates (le-2, le-3, le-4), each with two seeds. Batch size is 256 — cosine

"https://python.org
https://pytorch.org
*https://docs.nvidia.com/cuda/archive/12.1.0/

22

https://python.org
https://pytorch.org
https://docs.nvidia.com/cuda/archive/12.1.0/

Deterministic

Context Sensitive Context Free Regular
Mod Mod
Missing | an . Solve . - Majorit
> rithmetic) . Arithmetic . . Jority
Bucket Sort Duplicate | (w Brackets) Equation | Cycle Nav Even Pairs (w0 Brackets) Parity Majority Count
Llama 0.08 0.02 0.02 0.04 0.03 0.03 0.37 0.13
+ 0.02 + 0.0 + 0.0 + 0.0 + 0.01 + + 0.0 +0.01 + 0.01 + 0.0
0.69 0.15 0.04 0.05 0.86 1.0 0.05 0.13 0.69 0.45
Mamba + 0.0 + 0.01 + 0.02 + 0.02 + 0.02 + 0.01 +0.03
ian 0.13 0.03 0.03 0.03 0.05 0.04 0.05 0.36 0.12
Retent|0n +0.01 + 0.0 + 0.0 + 0.0 4+ 0.01 - + 0.0 + 0.01 + 0.0 + 0.01
Hyena| 03 0.06 0.05 0.02 0.06 0.04 0.04 0.36 0.18
+ 0.02 + 0.02 + 0.0 + 0.0 + 0.01 + 0.07 + 0.0 + 0.0 + 0.01 + 0.02
0.21 0.06 0.07 0.13 1.0 0.07 0.06 0.63 0.13
RWKV_4 - +0.01 + 0.0 + 0.0 + 0.0 + 0.0 + 0.0 + 0.0

| 0.15 0.08 0.08 0.26 0.15 0.06 0.73 0.34
RWKV-5 =001 +0.0 £0.0 +0.05 - +0.02 =003 +0.03
0.96 0.23 0.09 0.09 0.31 0.16

RWKV-6 +0.0 +0.06 +0.01 +0.02 +0.14 £0.0

1.0

£0.0 !

1.0 0.22 0.76 0.24
LSTM i) 0.15 0.76 0.97 1.0 0) 0.58 0.27

(B|ock) + +0.0 £00 +0.03 +00 + £00 +0.02 £00

1.0

+

1.0

£0.0

1.0

+

1.0

£0.0

to
°
°8

1
N

s NG 2 A R o
SOEl o G OB B 1o | 1o [1o | 1o | o
U 0 DGR 0 | 0 e o
«svi SO o2 o o NEEEEEEEENENCONETEN S

Figure 7: Results given by scaled accuracy of different models at solving formal language tasks. Tasks are grouped by the
Chomsky hierarchy.

annealing (min Ir: 1e-5) with 10% warm-up steps is applied. We use AdamW (Loshchilov & Hutter, 2019) and a weight
decay of 0.1 for training. In each experiment we train for 100k steps — the samples are generated randomly, however, all
models are trained and evaluated on the same samples.

The accuracy of the tested methods is evaluated on those tokens relevant to the task. The accuracy is scaled between 0
(random) and 1 (perfect).

Results. The main results of this experiment are shown in Figure 7. Models such as Transformers or State Space Models
without memory mixing (no state tracking) cannot solve, e.g. regular grammars like the parity task. This result is in
agreement with findings that Transformers and State Space models are fundamentally less powerful than RNNs (Merrill
et al., 2024; Merrill & Sabharwal, 2023; Delétang et al., 2023). Figure 8 showcase supplementary results of the formal
language task. It details tasks where no model attained a minimum scaled accuracy of 0.3. Although no model achieves
proper extrapolation of the task to a larger context length, xLSTM performs best among the evaluated models.

Individual Task Description. The majority of tasks are based on Delétang et al. (2023). We provide the vocabulary size
|V'| and the random accuracy $;.qnq (for accuracy scaling), used in the evaluation. As we evaluate different task lengths each
task has a padding token which is used to pad the sequence to the given context length. In Listing 1 there is an example for
each task.

* Bucket Sort Given a string of tokens of a sorted alphabet, compute the sorted string.
|V| =11 Srand — |V|+1

¢ Cycle Nav Given a string of “movement tokens” (+1, —1, STAY) compute the end position of the agent with start
position 0. The position must be computed modulo the maximum position.
|V| =9 Swand = M%‘l

* Even Pairs Given a binary string of @ and b tokens, compute whether the number of ab and ba is even. This task can
be solved by checking if the first and last token of the string are equal.

23

Context Deterministic
Sensitive Context Free
Reverse Stack

Odds First | String Manipulation Repetition Set
0.07 0.06 0.11 0.08 0.04

Llama - £00 £00 +0.01 £00 £00
; 0.03 0.11 0.03 0.02 0.02
Retent|0n] + 0.0 + 0.0 + 0.0 + 0.0 + 0.0

0.08 0.12 0.2 0.1 0.1
RWKV_4] + 0.0 + 0.01 + 0.0 + 0.0 + 0.02
0.04 0.15 0.07 0.07 0.03

Hyena- £00 £00 £00 £00 £00
0.08 0.09 0.16 0.16 0.13
RWKV-5- +0.01 +0.01 £00 £00 +001
0.13 0.11 0.23 0.15 0.19
RWKV-6 - +0.01 +00 +0.01 +0.01 +0.01
. 0.09 0.14 0.13 0.09 0.17
XLSTM[OI]] + 0.01 + 0.03 + 0.01 + 0.01 + 0.01
0.08 0.13 0.21 0.15 0.12

Mamba] + 0.01 + 0.02 + 0.0 + 0.01 + 0.0
LSTM .08 0.17 0.25 0.15 0.18
(B|0Ck) +0.01 £0.02 £0.02 +0.01 +0.01
. 0.09 0.14 0.13 0.09 0.17
xLSTM[0:1] - +0.01 +0.03 +0.01 +001 +001
. 0.15 0.22 0.25 0.28 0.17
XLSTM[]"O] | +0.03 +0.02 +0.03 +£00 +0.01
. 0.08 0.2 0.17 0.09 0.15
XLSTM[ll]] + 0.0 + 0.01 + 0.0 + 0.0 + 0.03

Figure 8: Additional results given by scaled accuracy of different models at solving formal language tasks. Tasks are
grouped by the Chomsky hierarchy.

24

V| =3 Sna = 0.5

Majority Given a string of tokens, compute the token that occurred most often in the sequence.

|V| = 64 Srand = \V|1—1

Majority Count Given a string of tokens of an ordered alphabet. Compute the count of the token that occurred most
often in the sequence. If the count exceeds the vocab size, the highest vocab token should be outputted.
|V| = 64 Srand — M%l

Missing Duplicate Given a string of tokens. The string is repeated but one of the tokens is masked in the repetition.
Output the token that is masked.
|V| = 11 Srand — M%Q

Mod Arithmetic (w/o Brackets) Calculate the result — modulo the max number — of the arithmetic operations in the
context. The maximum number is the vocabulary size minus the number of special tokens (+,-,*,=, [PAD]).
|V| =10 Srand — ‘VI%S

Mod Arithmetic (w Brackets) Calculate the result — modulo the maximum number — of the arithmetic operations in
the context. The maximum number is vocabulary size minus the number of special tokens (+,-,*,=,(,), [PAD]).
|V| = 12 Srand — Wl%,?

QOdds First An string of tokens ¢, to, t3, ...t, is given. Output all tokens with and odd index (¢4, t3, ...) then the token
with an even index (t2, t4,..) . Apart from that keep the ordering of the initial string.
|V| =12 Srand — ‘Vl%2

Parity Given a binary string of a and b tokens, compute if the number of ‘s is even. If the number is even output a
otherwise b. This is equivalent to sequentially calculating the half-adder sum.
[V|=3 Stana =0.5

Repetition Given a string of tokens — repeat it.
|V| =12 Srand — ‘Vl%2

Reverse String Given a string of tokens — repeat it in reverse order.
V=12 Spua = \W%?

Stack Manipulation An initial stack content is given, followed by a sequence of push and pop operations. Compute
the stack content after the operations
|V| =11 Sppa = ﬁ

2

Set Given a string of tokens, compute the ordered set of the tokens. Keep the ordering so that tokens that occurred first
are also outputted first.

1
|V| = 128 Srand — m

Solve Equation Given is an equation with the operators {+,-,*,=,(,)}, number, and an unknown variable x. Compute
the value of the variable modulo the max number. The maximum number is vocabulary size minus the number of
special tokens (+,-,%,=,(,), [PAD], [ACT)).

|V| =14 Spnd = ‘Vl%g

25

Bucket Sort

Sequence: 1 486111 46 8
Cycle Nav

Sequence: STAY +1 -1 +1 STAY +1 +1 +1 -1 P3
Even Pairs

Sequence: abbaababaa
Majority

Sequence: 1 764381721
Majority Count

Sequence: 1 764481722
Missing Duplicate

Sequence: 4 8 6 254862 [MIS] 5
Mod Arithmetic (w/o Braces)

Sequence: 0 -4 + 0 - 2 =4 [PAD]
Mod Arithmetic (w Braces)

Sequence: (((2) -2) - (-4-2)) =2
Odds First

Sequence: 2 732 6 9 [ACT] 2 3 6 7 2 9
Parity:

Sequence: abbaabab
Repetition

Sequence: 2 4 8 6 2 [ACT] 2 4 8 6 2
Reverse String

Sequence: 2 4 8 6 2 [ACT] 2 6 8 4 2
Stack Manipulation

Sequence: ST1 ST1 ST3 POP POP PS3 PS3 [ACT] ST1 ST3 ST3
Set

Sequence: 8 6 6 3545 3 [ACT] 8 6 3 5 4
Solve Equation:

Sequence: (((2+0) +-x) - (1)) =2 [ACT] 2

Listing 1: Examples of the formal language tasks. Red tokens are evaluated for loss and accuracy metrics, but are padded
for the input. The tokens are illustrated in a way that allows easy semantic interpretation for the given task — hence, some
tokens are represented by multiple characters.

D.1.2. TEST OF XLSTM’S MEMORY CAPACITIES ON ASSOCIATIVE RECALL TASKS.

In these experiments, we test XLSTM’s new matrix memory in terms of the memory capacity on the Multi-Query Associative
Recall task (Arora et al., 2023). Figure 10 illustrates the basic task setup. To enhance the difficulty of the original task, we
increase the number of key-value pairs up to 256 and enlarge the context length up to 2048, obtaining extended tests for
the memory capacities of different models. We compare 2-block architectures of different models (see Experiment Setup).
The models are evaluated by the accuracy at recalling the pairs. Since Transformers (e.g. Llama) have a memory that is
exponential in the coding dimension (Ramsauer et al., 2021), they constitute the gold standard at this task. Results for the
hardest evaluated task settings are shown in Figure 9. xXLSTM[1:1] performs best among all non-Transformer models, also
for small models. Interestingly, the SLSTM block does not diminish the memory capacity but rather leverages it, which
becomes evident at the most difficult task with 256 key-value pairs.

26

—@— Llama =®— Mamba —®— RWKV-5 —@— RWKV-6 —@— xLSTM[1:0] —@— xLSTM[1:1]
KV Pairs = 48 KV Pairs = 96 KV Pairs = 256

1.00 o o ® «—°

0.75

Accuracy
o
;i(

=
o
&

0.00
32 64 128 256 512 32 64 128 256 512 32 64 128 256 512

Model Dim Model Dim Model Dim
Figure 9: Test of memory capacities of different models at the Multi-Query Associative Recall task with context length
2048. Each panel is dedicated to a different number of key-value pairs. The z-axis displays the model size and the y-axis
the validation accuracy.

Why Multi-Query Associative Recall for Memory Tests of LLLM Architectures. Associative Recall (AR), the ability
to retrieve a specific value (information) associated with a given key (information), constitutes a key capability for LLM
to perform well (Poli et al., 2024; Arora et al., 2023; Olsson et al., 2022). Especially its quality of in-context learning
seems to be strongly connected to this capability (Olsson et al., 2022). Arora et al. (2023) attribute performance gaps
between early non-Transformer and Transformer language models specifically to performance gaps in associative recall.
They argue that prior AR evaluations fall short of capturing these differences and propose MQAR, which can show the
AR performance differences that translate to performance differences in language modeling performance. Hence, MQAR
is especially suitable to analyze the memory capacity of LLM. Transformer (e.g. Llama) models can be seen as the gold
standard for this task as their memory is exponential in the coding dimension (Ramsauer et al., 2021).

Experiment Setup. There are two relevant variables that determine different experimental setups. (1) Context Length
(CL): Length of the sequence of one sample — this influences the distances between the key-value definition and the recall.
(2) Number Key-Value Pairs (KV): Influences how many key-value pairs the model needs to keep track of. The vocabulary
size is always 8192.

In all experiments, we use two blocks (or layers for the pure LSTM) for all models. LSTM (Block) model refers to an
architecture where a vanilla LSTM is used instead of self-attention inside a Transformer block.

For each task setup, we train each model with 4 different learning rates (batch size > 24: {l1e-2, 2.15e-3, 4.6e-4, 1e-4},
batch size 24: {le-3, 2.2e-4, 5e-5, 1e-5}). The batch size (BS) changes depending on the context length (CL) (CL=64/128:
BS=512; CL=256: BS=256; CL=756: BS=128; CL=1024: BS=96; CL=2048: BS=24). We vary the embedding dimension
(Model Dim) between different experiments — different numbers of heads are used accordingly. For each experiment, we
generate 100,000 training samples (validation: 3,000 samples) and train for 64 epochs. We apply cosine annealing (min
Ir: 1e-4 and 1e-5) with 10% warm-up steps. We use AdamW (Loshchilov & Hutter, 2019) and a weight decay of 0.1 for
training.

We conduct three different experiments:

* MQAR-Experiment 1 evaluates, in the same fashion as Arora et al. (2023), a variety of models (Llama, Mamba,
Mamba (noWT) - i.e. without weight tying, Retention, Hyena, H3, RWKV-4, RWKV-5, RWKV-6, LSTM, LSTM
(Block), xLSTM][0:1], xLSTM[1:0] and xLSTM[1:1]) on increasing task difficulty by increasing the context length and
number of key-value pairs simultaneously. We benchmark three parameter settings: CL,KV={(64,4),(128,8),(256,16)}.

* MQAR-Experiment 2 increases the task difficulty notably and goes beyond previous evaluations on this task. We
individually scale the context length (CL={756, 1024, 2048}) and the key-value pairs (KV={48, 96, 256}) and evaluate
all combinations. This experiment especially probes the memory capacity because the number of key-value pairs
is high. To reduce the computational burden we only evaluate models that perform flawlessly in Experiment 1 —
additionally we evaluate Transformer only in the hardest setting (CL=2048) as sanity check, because no performance
decrease is expected.

27

* MQAR-Experiment 3 analyzes whether the AR capability learned on a certain context length extrapolates to bigger
context lengths. For each KV setting of Experiment 2, we use the models (we select the 3 biggest model dimensions)
trained on CL=2048 and evaluate bigger context lengths (CL={4096, 6144, 8§192}).

Extended Results. The result of Experiment 1 can be found in Figure 11. In accordance to the results of Arora et al.
(2023). H3, Hyena, RWKV-4 fail to solve the task with a smaller model dimension. In contrast, xLSTM[1:1], xLSTM[1:0],
Mamba, RWKV-5 and RWKV-6 are able to solve these settings for all model dimensions. The comparison of XLSTM[0:1]
with both original LSTM variants indicates that the exponential gating mechanism improves the AR capabilities of the
model. However, both fall short because of the reduced memory capacity compared to xLSTM[1:1] and xLSTM[1:0].

The results of Experiment 2 are presented in Figure 12. Scaling the context length has a low impact on the performance of the
models. However, while XLSTM[1:1] and XLSTM[1:0] show no clear decay, both RWKYV variants slightly, but consistently
lose performance with increasing context lengths. The varying number of key-value pairs, which mainly probes the memory
capacity of the non-Transformer models, has a more notable impact across all models. RWKV-5 seems to outperform
RWKV-6. The latter fails to learn the task at all in some KV=256 settings. Overall XLSTM[1:1] is the best-performing
non-Transformer model — suggesting that it provides enhanced memory capacity, also in long contexts.

Figure 13 shows the extrapolation results from Experiment 3. For xLSTM[1:1], xLSTM[1:0], and Mamba the model
performance does not change in the extrapolation setting. The RWKYV models (especially RWKVS5) degrade slightly with
increasing context length. XLSTM][1:1] performs best, as it maintains its superior performance of Experiment 2.

Target | NN N N I N N NI (I I B I
o T HTETE H N H]

KV=4/CL=18

Figure 10: Illustration of the MQAR task. Color pairs represent key-value pairs (keys have darker shade). The first part
of the sequence defines the key-value pairs for the respective sample. After that, the keys appear randomly according to a
power law distribution . Grey tokens in the input sequence represent a zero token. The “target” sequence contains the value
after the respective key appearance — the rest of the tokens are ignored for the accuracy and loss calculation. The model
must predict the value tokens given the respective key.

“The keys are distributed on the “evaluation part” of the sequence given a power-law distribution. This is motivated by similar
structures in natural language text.

28

—@— Llama —@— RWKV-4 —@— Retention —8— xLSTM[0:1] —®— LSTM (Block)

—®— Mamba —8— RWKV-5 Hyena —0— xLSTM[L:0] LSTM
Mamaba (noWT) =@ RWKV-6 —@— H3 —0— xLSTM[1:1]
Context Length = 64 Context Length = 128 Context Length = 256

1.0 ¢—0—0—0—0 O0—0—0—© o © 4 L 4 —0

0.8
3
E %06
£ £
52 04
'_

0.2

0.0

1.0 @ L 4 L 4 o— 4 4

(x)LSTM-Family
Accuracy

1.0 g—@ o o * o——0 o o o

0.8
0.6
0.4
0.2
0.0
———¢ ® °

0.8
83306
ES
=204
0.2
0.0
1.0 & L L 4 o 00— L L L '7—. L L @
0.8
> 2 0.6
“c
23
&< 04
0.2
0.0
1.0 W
0.8
0 2 0.6
25
© <04
0.2 /
0.0 o
32 64 128 256 512 32 64 128 256 512 32 64 128 256 512
Model Dim Model Dim Model Dim

Figure 11: Result of MQAR-Experiment 1. The columns show different task settings (context length and key-value pairs).
The rows group related models for better clarity. The x-axis gives the model size and the y-axis the validation accuracy.

29

—@— Lllama —®— Mamba —@— RWKV-5 —@— RWKV-6 —@— xLSTM[1:0] —@— xLSTM[L:]]
Key-Value Pairs = 48 Key-Value Pairs = 96 Key-Value Pairs = 256

1.0 L ® ©
0.8
0.6
0.4
0.2
0.0
1.0 4 ® ©
0.8
0.6
0.4
0.2

0.0

1.0 —"
0.8
0.6
0.4
0.2
0.0

32 64 128 256 512 32 64 128 256 512 32 64 128 256 512
Model Dim Model Dim Model Dim

Context Length = 756
Accuracy

Context Length = 1024
Accuracy

Context Length = 2048
Accuracy

Figure 12: Result of MQAR-Experiment 2. The columns and rows correspond to different numbers of key-value pairs and
the context length respectivly. The z-axis gives the model size and the y-axis the validation accuracy.

30

—6— Mamba —®— RWKV-5 —@— RWKV-6 —@— xLSTM[1:0] —@— xLSTM[L]
Key-Value Pairs = 48 Key-Value Pairs = 96 Key-Value Pairs = 256

100 g=—— o) o

4 " 4
o

0.75

0.25

Context Length = 4096
Accuracy
o
ot
o

0.00
100 g=—

0.75

0.25

Context Length = 6144
Accuracy
o
o
=)

0.00
1.00 g—

0.75

0.50

0.25

Context Length = 8192
Accuracy

0.00
128 256 512 128 256 512 128 256 512
Model Dim Model Dim Model Dim

Figure 13: Result of MQAR-Experiment 3 (Extrapolation). All evaluated models were trained on context length 2048 and
the number of key-value pairs given by the columns of the plot. The rows show the different context lengths used in the
evaluation. The z-axis gives the model size and the y-axis the validation accuracy.

31

Table 1: Long Range Arena model hyperparameters. These are the model hyperparameters used in each of the Long Range
Arena tasks. For each model we used the best learning rate and the better of the two learning rate schedulers.

Embedding Batch Training

Task #Blocks Dim Size Steps
Retrieval 6 128 64 100k
ListOps 8 128 32 80k
Pathfinder 6 192 64 500k
G-Image 6 512 64 180k
RGB-Image 6 512 64 180k

D.1.3. TEST OF XLSTM’S LONG RANGE CAPABILITIES ON THE LONG RANGE ARENA.

We assess the performance of XLSTM across tasks in the Long Range Arena benchmark (Tay et al., 2021), examining its
ability to effectively handle longer context lengths and diverse data types.

Our experiments on Long Range Arena benchmark are composed of five tasks:

¢ Retrieval: The task is to predict if two documents have a citation link. The dataset of text documents is derived from
the ACL Anthology Network (Radev et al., 2009).

 ListOps: This is a set of modular arithmetic tasks including brackets and lists of numbers, using the operations MIN,
MAX, MEDIAN and SUMMOD (modular sum). A particular example is: [MAX 4 3 [MIN 2 3] 1 0 [MEDIAN
1589, 2]] =5

* Image: This task is based on a version of the CIFAR dataset (Krizhevsky, 2009), where images are transformed to
a sequence of pixels and this sequence has to be classified into the usual CIFAR classes. We test both a gray-scale
(G-Image) and RGB (RGB-Image) version of this dataset, as Orvieto et al. (2023) uses colored images contrary to the
standard setup.

¢ Pathfinder: The input for this task is a 32x32 gray-scale image, given as pixel sequence, with two dots and several
curved lines on it. The task is to predict if the two dots are connected by any of the lines (Linsley et al., 2018).

We omit the Text classification task (Maas et al., 2011), as the language modeling experiments already test this kind of data,
and the Pathfinder-X version of Pathfinder.

Experiment Setup. The architectures that are tested in this experiment comprise Llama, Mamba, LSTM, RWKV-4, and
xLSTM. LSTM (Block) refers to an architecture where a vanilla LSTM is used inside a post up-projection block (like
Transformer with attention replaced by LSTM). For xLSTM we choose the best performing of xLSTM[0:1] or xLSTM[1:0]
on the validation set, specifically the former for the Image tasks and the latter for all other ones.

We use the hyperparameter settings of the S5 model (Smith et al., 2022) and Linear Recurrent Unit model (Orvieto et al.,
2023), with additional hyperparamter search on learning rates and schedulers for all models. We use two different schedulers:
Linear Warm-up Cosine Annealing and Linear Warm-up Cosine Annealing with Restarts. Both learning rate schedulers
were evaluated with learning rates of le-3, 6e-4 and 1e-4. For the second scheduler, the number of restarts (R) is set to 3.
The model hyperparameters for each dataset are displayed in Table 1.

Results. Table 2 shows the result of experiments on the Long Range Arena benchmark. XLSTM demonstrates consistent

strong performance on all of the tasks, suggesting that the proposed architecture is remarkably efficient in handling different
aspects of long context problems.

32

Table 2: Long Range Arena test accuracy. Bold highlights the best performing model, underlined the second best. X denotes
models that fail to outperform random baselines. XLSTM is the best of xXLSTM[1:0], xLSTM]0:1] based on validation
dataset accuracy.

Retrieval ~ ListOps Pathfinder G-Image RGB-Image Ranking

acc T acc T acc T acc T acc T acc T

Random Baseline 0.500 0.100 0.500 0.100 0.100

Llama 0.845 0.379 0.887 0.541 0.629 5.2
Mamba 0.902 0.325 0.992 0.689 0.765 2.2
RWKV-4 0.898 0.389 0.914 0.691 0.757 3.0
LSTM X 0.275 X 0.675 0.718 54
LSTM (Block) 0.880 0.495 X 0.690 0.756 34
xLSTM 0.906 0411 0.919 0.695 0.761 1.6

D.2. Method Comparison and Ablation Study on SlimPajama (15B)

To address the main question of our paper, i.e. what can our new LSTM variants achieve when scaled up in language
modelling, we train XLSTMs, Transformers, State Space Models, and other methods on 15B tokens from SlimPajama in
the same auto-regressive setting. We compare the trained models on the validation set and perform ablation studies for the
xLSTMs.

Comparing xXLSTM to Other Methods. We train models on 15B tokens from SlimPajama (Soboleva et al., 2023), and
evaluate their perplexity on the validation set. We compare the following methods: xLSTM, GPT-3 (Transformer) (Brown
et al., 2020), Llama (Transformer) (Touvron et al., 2023a), H3 (SSM) (Fu et al., 2023), Mamba (SSM) (Gu & Dao, 2023),
RWKV-4 (RNN) (Peng et al., 2023), RWKV-5 (RNN) (Peng et al., 2024b), RWKV-6 (RNN) (Peng et al., 2024b), GLA
(linear Transformer) (Yang et al., 2023), HGRN2 (RNN) (Qin et al., 2024). RetNet (linear Transformer) (Sun et al., 2023),
Hyena (linear Transformer) (Poli et al., 2023), xLSTM[1:0], and xLSTM[7:1]. The models were trained with mixed
precision, for RWKV-5, RWKV-6, GLA, HGRN2, the mixed-precision training did not utilize the PyTorch automated mixed
precision (see Section D.2).

We categorize the methods into (a) Transformers, (b) State Space Models (SSMs), and (c) Recurrent Neural Networks
(RNN5s) together with linear Transformers, i.e., linear methods that substitute the Transformer’s attention mechanism. The
models match a GPT-3 model with 350M parameters in size, i.e. embedding dim 1024 and 24 residual blocks. Only GPT-3
uses shared weights for token and output embeddings, therefore has fewer parameters.

Table 3: Method comparison on next token prediction when trained on 15B tokens from SlimPajama. Best validation
perplexities within model classes, i.e., linear Transformers, RNNs, Transformers, SSMs, and XLSTMs are underlined and
overall best is in bold. For each model class, the best performing methods are used in Section 3 for LLM training. XLSTMs
with new memory (XLSTM[1:0] and xXLSTM[7:1]) perform best.

#Params SlimPajama #Params SlimPajama
Model M (15B) ppl | Model M (15B) ppl |
Hyena 435 17.59 GPT-3 356 14.26
RWKV-4 430 15.62 Llama 407 14.25
RWKV-5 456 14.25
RWKV-6 442 15.03 - s B
RetNet 431 16.23 —
GLA 412 16.15 xLSTM[1:0] 409 13.43
HGRN?2 411 14.32 xLSTM[7:1] 408 13.48

33

The results in Table 3 show that XLSTM outperforms all existing methods in validation perplexity, for details see Section D.2.
Figure 14 shows the scaling behaviour at 15B training tokens, indicating that xLSTM will also perform favorably for larger
models. For the scaling part, we take the best performing methods of this experiment. Note that the 2.7B sized models are
strongly under-trained for their size, assuming scaling laws similar to Kaplan et al. (2020).

Ablation Studies. Table 3 and Figure 14 demonstrate that XLSTM achieves excellent results at language modeling when
being trained on 15B tokens from SlimPajama. To ablate the changes from LSTM to xXLSTM, we morph a vanilla LSTM
architecture step-by-step into an XLSTM architecture. Firstly, we integrate LSTM layers into pre-LayerNorm residual
backbones. Secondly, we extend this to a post up-projection block. Finally, we add exponential gating and matrix memory.
The results are shown in Table 6 (top). The ablation studies attribute the strong performance improvement to both the
exponential gating and the matrix memory. Additionally, due to the importance of gating in RNNs and State Space Models,
we ablate different gating mechanisms. In Table 6 (bottom), we conclude that having each gate learnable and influenced by
the input has an incrementally positive effect. Additional studies on the individual backbone components are discussed in
Section D.2.

General Training Procedure. We tokenize our datasets using the HuggingFace GPT-2 tokenizer (Radford et al., 2019;
Brown et al., 2020)° and use this tokenizer for all models in this paper. In general, we try to follow Brown et al. (2020)
for the general training setup, i.e. we choose context length 2048 and batch sizes 256 or 512 for our models. We use the
AdamW (Loshchilov & Hutter, 2019) optimizer with beta parameters (31, £2)=(0.9, 0.95) and an epsilon parameter of le-5,
and gradient clipping at gradient norm 1. As learning rate scheduler we use a linear warm-up with 750 steps and cosine
decay to 10% of the peak learning rate. We apply a weight decay of 0.1 to all our models and always exclude the token
embedding matrix from weight decay. If not specified otherwise, we do not tie the weights of the token embedding and the
language model head. Except for gates we do not use biases in our models, e.g. in other linear layers. We do not apply
weight decay to biases and LayerNorm weights. For parallelization, we use PyTorch FSDP in SHARD_ GRAD_ OP mode with
mixed precision in bf loat 16, where applicable. For small models we use NO_SHARD. We keep the weights in f1oat 32
and reduce the gradients across GPUs in f1oat32. We use torch.compile to speed up models where applicable,
except for Transformer models as their training curves did not match the non-compiled versions. For XLSTM[7:1], we use
positions [3, 5, 7, 40, 42, 44] for sSLSTM-based blocks, except for the 125M size, where we use [3, 20] (this is actually a
[11:1] ratio). We do not use any positional encoding for our XLSTM models.

Details on Comparison to Other Methods. For the model comparison on 15B training tokens of SlimPajama we
train all models with context length 2048 and batch size 256. We use a peak learning rate of le-3 for all models for
comparability. The learning rate decays over 30k training steps. The models are compared after one epoch at training
step 28170. As model implementations we use the original repositories’ code for Mamba (Gu & Dao, 2023) ¢, RWKV-5,
RWKV-6 (Peng et al., 2024b)”. For RWKV-4 we use a cleaned and validated re-implementation based on the original
repo and kernels (Peng et al., 2023). In our RWKV-4 implementation we enable weight decay on all parameters except
biases, the token embedding weight and all LayerNorm weights. For HGRN (Qin et al., 2023), GLA (Yang et al., 2023),
HGRN2 (Qin et al., 2024) we use the a re-implementation by the authors of GLA (Yang et al., 2023; Yang & Zhang,
2024)8. For GPT-3 and Llama-like Transformers, we use our own implementations based on PyTorch. Note that for all
xLSTMs, Transformers, Mamba and RWKV-4, we use Mixed Precision training with bf 1oat 16 and weights in f1loat 32
precision. Following the general training procedure we use torch.compile for all models, except for models using the
flash-linear—attention (Yang & Zhang, 2024) library because of compilation problems and Transformers as for
those training curves deviated.

As RWKV-6 performs worse than RWKV-5, we also train a model with peak learning rate 4e-4, as reported in the original
repository for 350M parameter models °. This model reaches a perplexity of 16.38, worse than the 15.03 for the standard
peak learning rate le-3 as reported in Table 3. Similarly, we tested the repository learning rates for other model sizes and all
performed worse than the ones we also use for xXLSTM (see Table 4).

Shttps://huggingface.co/docs/transformers/en/model_doc/gpt?2

®https://github.com/state-spaces/mamba

"https://github.com/BlinkDL/RWKV-LM/

Shttps://github.com/sustcsonglin/flash-linear-attention

9https ://github.com/BlinkDL/RWKV-LM/blob/64b7fedc66fcf7da37019630268075b0558f6dc5/
RWKV-v5/train.py#L44

34

https://huggingface.co/docs/transformers/en/model_doc/gpt2
https://github.com/state-spaces/mamba
https://github.com/BlinkDL/RWKV-LM/
https://github.com/sustcsonglin/flash-linear-attention
https://github.com/BlinkDL/RWKV-LM/blob/64b7fe4c66fcf7da37019630268075b0558f6dc5/RWKV-v5/train.py#L44
https://github.com/BlinkDL/RWKV-LM/blob/64b7fe4c66fcf7da37019630268075b0558f6dc5/RWKV-v5/train.py#L44

Table 4: Peak learning rates and model dimensions for scaling law plots.

Model EmbeddingDim #Blocks #Heads/HeadDim #Pa;/ilms PE’? 15<BI:)R Pé%lzllg;{
RWKV-5 768 12 - 1765 3e-3 -
< RWKV6 768 12 - 1736 3e-3 -
% HGRN2 768 12 - 1622 3e-3 -
—~ RWKV-4 768 12 - 1694 3e-3 6e-4
Llama 768 12 12/64 1622 3e-3 3e-3
Mamba 768 24 - 1678 3e-3 3e-3
xLSTM 768 24 4/384 163.8 3e-3 1.5e-3
RKWV-5 1024 24 - 4557 le-3 -
< RWKV-6 1024 24 - 4416 le-3 -
2 HGRN2 1024 24 - 4114 le-3 -
€ RWKV-4 1024 24 - 4305 le-3 de-4
Llama 1024 24 16/64 4066 1.5e-3 1.5e-3
Mamba 1024 48 - 4231 15e3 1.5e-3
xLSTM 1024 48 4/512 4093 le3 7.5e-4
RWKV-5 1536 24 - 9478 9e-4 -
< RWKV-6 1536 24 - 9077 9e-4 -
2 HGRN2 1536 24 - 8342 9e-4 -
=~ RWKV-4 1536 24 - 891.0 2e-3 2.5e-4
Llama 1536 24 16/96 834.1 1.25e-3 1.25¢-3
Mamba 1536 48 - 8705 1.25¢3 1.25¢-3
xLSTM 1536 48 47768 840.4 9e-4 6.25e-4
RWKV-5 2048 24 - 1616.0 9e-4 -
RWKV-6 2048 24 - 15375 9e-4 -
% HGRN2 2048 24 - 14394 9e-4 -
~ RWKV-4 2048 24 - 15152 le-3 2e-4
Llama 2048 24 32/64 14204 le-3 le-3
Mamba 2048 48 - 1475.3 le-3 le-3
xLSTM 2048 48 471024 14226 9e-4 5e-4
RWKV-5 2048 24 - 31947 8e-4 -
RWKV-6 2048 24 - 30219 8e-4 -
2 HGRN2 2048 24 - 27954 8e-4 -
' RWKV-4 2560 32 - 2984.8 Se-4 -
Llama 2560 32 32/80 2779.5 8e-4 -
Mamba 2560 64 - 28972 Se-4 -
xLSTM 2560 64 471280 2788.3 Se-4 -

35

Details on Training Precision for Baselines. For models from flash-linear-attention and RWKV-5/6 models
we found that PyTorch automatic mixed precision training did not work, but casting the model weights to £ Loat 32 initially
with FSDP parameter precision bf 1oat 16 led to a working configuration. In this setting models perform better than in full
bfloat16 training, where the weights are casted to bf Loat 16 initially as well. Full f1oat 32 did not work because of
the custom kernels.

197 —e— |lama
18
Mamba

s, 171
2 16 - —e— RWKV-4 ' .
;g_ —eo— xLSTM[7:1] Figure 14: Method comparison on next
5 151 LLSTMIL:0] token prediction when trained on 15B
Ay ’ tokens from SlimPajama. Performance
_5 measure in validation perplexity for the
E 137 best methods of each model class (see
= 121 Table 3) are reported. The performance
> degradation of xXLSTM[7:1] at 2.7B is

114 15B Tokens due to initially slower training conver-

gence that leads to an especially un-
10 T i T — T T " T dertrained model. XLSTM is the best
0.2 0.4 10 14 2.7 method at all sizes.
Number of Parameters x10?

General Details on Ablation Studies. We follow our general training procedure and train all models with context length
2048, batch size 256 and peak learning rate 1e-3. We report perplexity values on the validation set.

Additional Ablation Study on Matrix Memory. As default block configuration we use the mLSTM in the pre up-
projection block (see Figure 6) and the SLSTM in the post up-projection block (see Figure 5). In this experiment we study
the combination of mLLSTM with different block variants using the xXLSTM[1:0] architecture. We compare the mLSTM in a
post up-projection block (see Figure 5) with ReLU? activation function and non-gated feed-forward network to mLSTM in
a pre up-projection block with and without a dimension-wise causal convolution. Table 5 shows that the matrix memory
benefits from the pre up-projection block structure, and that the convolution within this block is important.

Table 5: Matrix Memory variants. We study different configurations for the matrix memory. Matrix memory in the pre
up-projection block performs best and gives XLSTM[1:0]. Notably, it seems that the dimension-wise causal convolution
within the pre up-projection block is important.

Embedding #Params SlimPajama

Model Details #Blocks Dim M (15B) ppl |
Post Up-Projection Block (ReLU2) 24 1024 430.4 13.90
xLSTM[1:0] Pre Up-Projection Block, No Convolution 48 1024 408.8 15.41
Pre Up-Projection Block, With Convolution 48 1024 409.3 13.43

Details on new xXLSTM Components Ablation Study. In Table 6 (top), we show our modifications to the vanilla LSTM
that transform the vanilla LSTM into the XLSTM. We start with a large default PyTorch LSTM with 24 layers and 1536
hidden size. Due to a lack of skip-connections and LayerNorms, vanilla LSTMs of this size are not trainable. We then
add skip-connections and pre-LayerNorms before each LSTM layer corresponding to a residual architecture. This enables
training for LSTMs at this scale. Replacing every second LSTM layer by a non-gated feed-forward network with GeLU
activation function (similar to Vaswani et al.), which corresponds to the post up-projection backbone (see Figure 5), further
boosts performance. Adding Exponential Gating to this architecture yields the SLSTM as depicted in Figure 5, with another
large performance improvement. Finally, adding the best Matrix Memory variant found in Table 5 by replacing some SLSTM
blocks with the mLSTM (see Figure 6) gives xXLSTM[7:1] with the best performance.

36

Details on Gating Technique Ablation Study. In Table 6 (bottom), we investigate the effect of trainable and input-
dependent gates for mLSTM. The results show that, in contrast to other methods (Katharopoulos et al., 2020; Sun et al.,
2023; Qin et al., 2023; Katsch, 2023; Yang et al., 2023; Qin et al., 2024; Peng et al., 2024b), having the gates both learnable
and input dependent gives the best results.

Details on Scaling Experiments. We follow our general training procedure (see paragraph above) and train all models,
including the 1.3B and 2.7B model sizes, with context length 2048 and batch size 256. We use the peak learning rates from
Table 4. For Llama and Mamba we use the learning rates reported by Gu & Dao (2023).

Table 6: Ablation studies. Top: Ablation studies on the new xXLSTM components, contributing the strong performance
improvement of XLSTM over vanilla LSTM to both the exponential gating and the matrix memory. Bottom: Ablation
studies on different gating techniques. We consider an XLSTM[1:0] with sigmoid forget gate and exponential input gate.
Bias initialization oo means that the forget gate is set to one, [3, 6] indicates that values are taken equidistant in the respective
interval, and A/ (0, 0.1) that values are randomly chosen from a Gaussian with mean 0 and std 0.1. PPL denotes validation
perplexity. The first two lines correspond to models similar to linearized attention, line four to Retention, line five to
RWKV-5, and line six to RWKV-6. Dependencies of the gates on the input lead to better performance.

Exponential ~ Matrix ~ #Params SlimPajama

Model Modification Gating Memory M (15B) ppl |,
Vanilla Multi-Layer LSTM X X 607.8 2417.86
LSTM Adding Resnet Backbone X X 506.1 35.46
Adding Up-Projection Backbone X X 505.9 26.01
xLSTM[0:1] Adding Exponential Gating v X 427.3 17.70
xLSTM[7:1] Adding Matrix Memory v v 408.4 13.48

Ablation studies on different gating techniques.

Forget Gate Input Gate) .

Learnable Gates i i SlimPajama

Input Learpable qus Input Learpable Blz}s (15B) ppl |

Dependent Bias Init Dependent Bias Init

No Gates X X +00 X X 0 NaN
No Gates X X [3, 6] X X 0 13.95
Forget Gate v v 3, 6] X X 0 13.58
Input Gate X X [3, 6] v v N(0,0.1) 13.69
Forget Gate Bias X v 3, 6] X X 0 13.76
Forget + Input Gate Bias X v 3, 6] X v N(0,0.1) 13.73
Forget Gate + Input Gate Bias v v 3, 6] X v N(0,0.1) 13.55
Forget Gate + Input Gate v v 3, 6] v v N(0,0.1) 13.43

37

D.3. xLLSTM Large Language Models — SlimPajama300B

General Training Procedure. We use the same general training procedure as in Section D.2 with peak learning rates from
Table 4. For Llama and Mamba we use the learning rates reported by Gu & Dao (2023). All models are trained with context
length 2048. The 125M, 350M and 760M models are trained with batch size 256 for 600k training steps, whereas the 1.3B
models are trained with batch size 512 for 300k training steps. We keep the same learning rate scheduler across all models.

Details on Downstream Evaluation. We use the LM Evaluation Harness from EleutherAl (Sutawika et al., 2023) for
evaluating the following tasks that measure common sense reasoning: LAMBADA (OpenAl version in LM Evaluation
Harness) (Paperno et al., 2016), HellaSwag (Zellers et al., 2019), PIQA (Bisk et al., 2020), ARC-challenge, ARC-easy (Clark
et al., 2018), WinoGrande (Sakaguchi et al., 2021). This selection of downstream tasks is also used in previous work by Gu
& Dao (2023).

Following Gu & Dao (2023), we report accuracy for LAMBADA, WinoGrande, PIQA, and ARC-easy, and accuracy nor-
malized by sequence length for HellaSwag and ARC-challenge. We evaluate all models in full f1oat32, fullbfloatl6
and bfloat 16 Mixed Precision with weights in f1oat 32. For each model we select the best value respectively.

Table 7: Validation set perplexity and downstream tasks. Comparison of XLSTM, RWKV-4, Llama, and Mamba on the
validation set at next token prediction and on downstream tasks after training on 300B tokens from SlimPajama. Model sizes
are 125M, 350M, 760M, and 1.3B. The first column shows the methods and the second the actual number of parameters.
The third column lists the validation set perplexities, while the remaining columns show the performance on downstream
tasks. Best model per model size is depicted bold and the second best is underlined. In the vast majority of tasks and across
all model sizes XLSTM is the best method — only on the ARC task Mamba is in some cases the best method. xLSTM[1:0]
and xXLSTM[7:1] are the two best models with respect to validation set perplexity.

Model #Params SlimPajama LAMBADA LAMBADA HellaSwag PIQA ARC-E ARC-C WinoGrande Average

M (300B) ppl | ppll acc T acc T acc T acc T acc T acc T acc T
RWKV-4 169.4 16.66 54.72 23.77 34.03 66.00 4794 24.06 50.91 41.12
s Llama 162.2 15.89 39.21 31.54 34.09 65.45 45.33 23.63 50.67 41.78
e Mamba 167.8 15.08 27.76 34.14 3647 66.76 48.86 24.40 51.14 43.63
— xLSTM[1:0] 163.8 14.63 25.98 36.52 36.74 65.61 47.81 24.83 51.85 43.89
xLSTM[7:1] 163.7 14.60 26.59 36.08 36.75 66.87 48.32 25.26 51.70 44.16
RWKV-4 430.5 12.62 21.57 36.62 4247 69.42 54.46 2543 51.22 46.60
s Llama 406.6 12.19 15.73 44.19 4445 69.15 52.23 26.28 53.59 48.32
2 Mamba 423.1 11.64 12.83 46.24 47.55 69.70 5547 27.56 54.30 50.14
@ xLSTM[1:0] 409.3 11.31 11.49 49.33 48.06 69.59 55.72 26.62 54.38 50.62
xLSTM[7:1] 408.4 11.37 12.11 47.74 47.89 71.16 56.61 27.82 53.28 50.75
RWKV-4 891.0 10.55 10.98 47.43 5229 72.69 58.84 28.84 55.41 52.58
s Llama 834.1 10.60 9.90 51.41 52.16 70.95 56.48 28.75 56.67 52.74
2 Mamba 870.5 10.24 9.24 50.84 53.97 71.16 60.44 29.78 56.99 53.86
= xLSTM[1:0] 840.4 9.86 8.09 54.78 55.72 72.69 62.75 32.59 58.17 56.12
xLSTM[7:1] 839.7 991 8.07 55.27 56.12 7274 61.36 29.61 56.43 55.26
RWKV-4 1515.2 9.83 9.84 49.78 56.20 7470 61.83 30.63 55.56 54.78
o Llama 1420.4 9.44 7.23 57.44 57.81 173.12 62.79 31.74 59.04 56.99
o Mamba 1475.3 9.14 7.41 55.64 6045 7443 66.12 33.70 60.14 58.41
~ xLSTM[1:0] 1422.6 8.89 6.86 57.83 60.91 74.59 64.31 32.59 60.62 58.48
xLSTM[7:1] 1420.1 9.00 7.04 56.69 60.26 7492 65.11 32.34 59.27 58.10

Details on PALOMA. We use 16 out of the 18 data sources of the PALOMA dataset (Magnusson et al., 2023). We use
C4 (Raffel et al., 2019), MC4-EN (Xue et al., 2021), Wikitext-103 (Merity et al., 2017), PennTreebank (Vadas & Curran,
2011), RedPajama (TogetherComputer, 2023), Falcon Refinedweb (Refined Web) (Penedo et al., 2023), Dolma v1.5 (Soldaini
et al., 2023), M2D2 S20RC, M2D2 Wikipedia (Reid et al., 2022), C4-100-Domains (C4 Domains) (Chronopoulou et al.,
2022), Dolma-100-Subreddits (Dolma Subreddits) (Soldaini et al., 2023), Dolma-100-Programming Languages (Dolma
Coding) (Soldaini et al., 2023; Kocetkov et al., 2022), TwitterAAE (Blodgett et al., 2016; Liang et al., 2023), Manosphere
Corpus (Ribeiro et al., 2021), GAB Corpus (Zannettou et al., 2018), 4CHAN Corpus (Papasavva et al., 2020). We leave
out ThePile (Gao et al., 2021) and ICE (Greenbaum & Nelson, 1996) as they are not part of Paloma’s Huggingface dataset

38

repository'’. A detailed description of these datasets can be found in Magnusson et al. (2023, Table 2). All models are
evaluated in bf 1oat 16 Mixed Precision. Results are shown in Table 8.

Results on the data sources TwitterAAE, Manosphere, GAB and 4CHAN are reported in Table 9 and for each individual
dataset the results are given in Section E.

In order to evaluate the perplexity values on each data source, we split the text documents into sequences of length 2048,
which corresponds to the pre-training context length of all models. For documents longer than 2048 tokens we split each
document into non-overlapping input sequences. In this case for the last input sequence, we follow the LM Evaluation
Harness and fill up the full 2048 token context window with previous tokens, but compute the perplexity only on the
remaining tokens.

We compute the token perplexities per data source in Table 8 as the exponential of the negative loglikelihoods per domain
weighted by the number of tokens per domain in that data source as it is defined in Magnusson et al. (2023, Equation 1)

Table 8: Performance on PALOMA Language Modeling Tasks. Comparison of XLSTM, RWKV-4, Llama, and Mamba by
the perplexity of next token prediction on the PALOMA language benchmark after training on 300B tokens from SlimPajama.
Model sizes are 125M, 250M, 760M, and 1.3B. The second column shows the actual number of parameters. The 571 text
domains are grouped into language modeling (next seven columns) and fine-grained domain benchmarks (further 5 columns).
The last column shows the average perplexity across all of these tasks. Best model per model size is given in bold and the
second best is underlined. xLSTM yields the best performance.

Model #Params c4 MC4 Wikitext Penn Red Refined Dolma M2D2 M_2D2_ C4_ Dolma' Dolma Average
M EN 103 Treebank Pajama Web S20RC Wikipedia Domains Subreddits Coding
RWKV-4 1694 2625 2233 29.18 38.45 8.99 3247 17.04 23.86 21.42 22.68 37.08 5.12 23.74
s Llama 162.2 2464 17.23 23.16 31.56 8.26 29.15 15.10 19.71 20.41 21.45 36.73 3.61 20.92
Iq Mamba 167.8 23.12 17.04 22.49 30.63 7.96 27.73 14.60 19.38 19.36 20.14 34.32 3.77 20.05
— xLSTM[1:0] 163.8 2254 1632 21.98 3047 780 27.21 1435 19.02 19.04 19.65 3415 364 19.68
xLSTM[7:1] 163.7 2239 16.13 21.47 30.01 7.75 26.91 14.13 18.6 18.84 19.52 339 3.59 19.44
RWKV-4 430.5 19.55 15.82 19.64 27.58 6.97 24.28 12.94 17.59 15.96 16.98 29.40 3.90 17.55
s Llama 406.6 18.38 13.28 16.41 21.82 6.56 22.09 11.76 15.05 15.25 15.99 28.30 3.12 15.67
3 Mamba 423.1 17.33 13.05 16.11 22.24 6.34 21.04 11.42 14.83 14.53 15.16 27.02 3.20 15.19
« xLSTM[1:0] 409.3 17.01 12.55 1517 22.51 6.20 20.66 11.16 14.44 14.27 14.85 26.70 3.08 14.88
xLSTM[7:1] 408.4 1698 12.68 1543 21.86 6.23 2070 11.22 14.62 14.30 14.85 26.61 3.11 14.88
RWKV-4 891.0 15.51 12.76 14.84 21.39 5.91 19.28 10.70 14.27 13.04 13.68 2422 3.32 14.08
s Llama 834.1 15.75 11.59 13.47 18.33 5.82 19.04 10.33 13.00 13.05 13.76 24.80 2.90 13.49
Q Mamba 870.5 15.08 11.54 13.47 19.34 5.69 18.43 10.15 13.05 12.62 13.25 23.94 2.99 13.30
= xLSTM[1:0] 840.4 14.60 11.03 12.61 17.74 5.52 17.87 9.85 12.50 12.20 12.81 23.46 2.87 12.76
XxLSTM[7:1] ~ 839.7 1472 11.11 12.68 17.61 555 1801 987 1259 1225 12.89 2343 288 12.80
RWKV-4 15152 1451 12.04 13.73 19.37 5.62 18.25 10.11 13.46 12.10 12.87 22.85 3.25 13.18
Llama 14204 1393 10.44 11.74 15.92 5.29 17.03 9.35 11.61 11.53 12.24 22.63 2.74 12.04
a_ Mamba 14753 13.35 10.40 11.76 16.65 5.21 16.50 9.17 11.73 11.18 11.83 21.43 2.83 11.84
~ xLSTM[1:0] 1422.6 13.13 10.09 11.41 15.92 5.10 16.25 9.01 1143 10.95 11.60 21.29 2.73 11.58
xLSTM[7:1] 1420.1 13.31 10.21 11.32 16.00 5.16 16.48 9.11 11.61 11.10 11.76 21.50 2.75 11.69

1Ohttps ://huggingface.co/datasets/allenai/paloma

39

https://huggingface.co/datasets/allenai/paloma

Table 9: Perplexity values per domain.

#Params

Twitter

Model M AAE Manosphere 4CHAN ~ GAB
RWKV-4 169.4 265.80 39.31 18.48 53.89
s Llama 1622 27793 32.98 14.03 56.45
'3 Mamba 167.8 258.17 32.14 14.01 51.58
— xLSTM[1:0] 163.8 244.53 31.45 13.27 51.00
xLSTM[7:1] 163.7 248.51 30.90 1345 50.25
RWKV-4 430.5 216.17 30.25 13.82 42.25
= Llama 406.6 231.09 25.90 11.49 43.04
S Mamba 423.1 202.88 25.24 11.60 40.78
@ xLSTM[1:0] 409.3 200.61 24.58 11.20 39.83
xLSTM[7:1] 4084 206.25 24.73 11.31 39.86
RWKV-4 891.0 195.27 24.66 12.00 35.73
s Llama 834.1 205.50 22.69 1040 37.68
S Mamba 7932 18274 22.58 10.47 36.25
=™ xLSTM[1:0] 8404 179.74 21.66 10.11 35.33
xLSTM[7:1] 839.7 180.19 21.78 1022 34.89
RWKV-4 15152 174.87 23.51 11.34 33.18
Llama 14204 192.52 20.67 9.67 34.84
E% Mamba 14753 171.38 20.37 9.80 32.01
T xLSTM[1:0] 1422.6 166.16 19.94 9.64 31.90
xLSTM[7:1] 1420.1 171.36 20.28 9.64 32.17

40

E. Detailed Results on PALOMA Language Model Evaluation

We report the perplexity values on each of the 571 subdomains of PALOMA in Table 10. Note that the aggregated perplexity
values in Table 8 are not macro averages of the values shown in Table 10.

Table 10: PPL Evaluations: For the 1.3B sized models trained on 300B SlimPajama tokens, these are the detailed evaluation
results on the respective validation datasets.

Dataset Llama Mamba RWKV-4 xLSTM[7:1] xLSTM[1:0]
#Params (M) 1420 1475 1515 1420 1423
4chan_meta_sep_val-00000000 9.58 9.72 11.37 9.53 9.55
4chan_meta_sep_val-00000001 9.95 10.06 11.57 9.91 9.88
4chan_meta_sep_val-00000002 9.42 9.53 11.00 9.40 9.38
4chan_meta_sep_val-00000003 9.78 9.93 11.48 9.77 9.77
c4_100dom_val_100_www.ign.com 16.22 15.75 17.10 15.67 15.43
c4_100dom_val_10_www.eventbrite.com 12.72 12.33 13.33 12.30 12.12
c4_100dom_val_11_link.springer.com 8.66 8.54 9.31 8.42 8.33
c4_100dom_val_12_www.chicagotribune.com 12.09 11.60 12.49 11.55 11.37
c4_100dom_val_13_www.foxnews.com 9.59 9.21 9.83 9.16 9.08
c4_100dom_val_14_www.aljazeera.com 10.97 10.61 11.31 10.50 10.40
c4_100dom_val_15_www.dailymail.co.uk 12.42 11.97 12.87 11.85 11.69
c4_100dom_val_16_www.ncbi.nlm.nih.gov 7.39 7.31 7.98 7.11 7.07
c4_100dom_val_17_www.express.co.uk 11.57 11.04 11.84 10.99 10.79
c4_100dom_val_18_en.m.wikipedia.org 9.28 8.95 9.52 8.89 8.80
c4_100dom_val_19_www.cnet.com 12.61 12.23 13.12 12.09 11.97
c4_100dom_val_1_www.nytimes.com 13.13 12.66 14.04 12.68 12.44
c4_100dom_val_20_www.telegraph.co.uk 13.71 13.10 14.28 13.06 12.88
c4_100dom_val_21_www.theatlantic.com 14.70 14.17 15.54 14.17 13.97
c4_100dom_val_22_forums.macrumors.com 17.77 17.34 19.15 17.22 16.95
c4_100dom_val_23_www.oreilly.com 13.36 12.99 14.31 13.02 12.88
c4_100dom_val_24_www.washingtonpost.com 12.06 11.58 12.98 11.64 11.41
c4_100dom_val_25_www.zdnet.com 13.22 12.86 13.80 12.78 12.61
c4_100dom_val_26_www.foxbusiness.com 9.32 9.03 9.58 8.92 8.81
c4_100dom_val_27_www.reuters.com 10.67 10.13 11.16 10.13 9.97
c4_100dom_val_28_www.ibtimes.co.uk 11.36 11.01 11.71 10.89 10.76
c4_100dom_val_29_www.rt.com 13.59 12.96 14.24 12.98 12.74
c4_100dom_val_2_en.wikipedia.org 10.75 10.45 11.32 10.32 10.19
c4_100dom_val_30_www.prweb.com 11.18 10.88 11.92 10.83 10.65
c4_100dom_val_31_www.deviantart.com 21.78 21.05 22.78 21.00 20.69
c4_100dom_val_32_www.si.com 11.49 11.00 11.92 10.90 10.76
c4_100dom_val_33_www.bbc.com 9.35 8.91 9.41 8.80 8.70
c4_100dom_val_34_github.com 11.57 11.49 12.94 11.40 11.28
c4_100dom_val_35_nypost.com 14.31 13.41 15.29 13.62 13.31
c4_100dom_val_36_itunes.apple.com 16.49 15.88 17.15 15.98 15.69
c4_100dom_val_37_www.instructables.com 16.75 16.33 17.73 16.28 15.97
c4_100dom_val_38_www.youtube.com 8.42 8.24 8.83 8.22 8.07
c4_100dom_val_39_www.booking.com 8.84 8.49 8.83 8.41 8.32
c4_100dom_val_40_www.etsy.com 11.93 11.66 12.66 11.52 11.43
c4_100dom_val_41_www.marketwired.com 7.66 7.47 7.88 7.33 7.27
c4_100dom_val_42_sites.google.com 14.23 13.81 1491 13.68 13.51
c4_100dom_val_43_www.baltimoresun.com 11.57 11.16 11.96 11.09 10.95
c4_100dom_val_44_www.agreatertown.com 13.56 12.94 13.57 12.77 12.64
c4_100dom_val_45_www.npr.org 10.59 10.30 11.14 10.19 10.12
c4_100dom_val_46_www.fool.com 11.03 10.63 11.35 10.56 10.42

41

Dataset
c4_100dom_val_47_www.tripadvisor.com
c¢4_100dom_val_48_www.bbc.co.uk
c4_100dom_val_49_lists.w3.org
c4_100dom_val_4_www.latimes.com
c4_100dom_val_50_mashable.com
c4_100dom_val_51_disneyparksmomspanel.dis
c4_100dom_val_52_www.cnbc.com
c4_100dom_val_53_answers.sap.com
c¢4_100dom_val_54_homestars.com
c4_100dom_val_55_www.hindustantimes.com
c4_100dom_val_56_www.reference.com
c4_100dom_val_57_www.city-data.com
c4_100dom_val_58_medium.com
c4_100dom_val_59_app-wiringdiagram...
c4_100dom_val_5_www.theguardian.com
c4_100dom_val_60_www.csmonitor.com
c4_100dom_val_61_www.adweek.com
c4_100dom_val_62_docs.microsoft.com
c4_100dom_val_63_www.yahoo.com
c4_100dom_val_64_www.thesun.co.uk
c4_100dom_val_65_www.nydailynews.com
c4_100dom_val_66_www.dailystar.co.uk
c4_100dom_val_67_fineartamerica.com
c4_100dom_val_68_www.kickstarter.com
c4_100dom_val_69_uk.reuters.com
c4_100dom_val_6_www.huffpost.com
c4_100dom_val_70_www.insiderpages.com
c4_100dom_val_71_www.inquisitr.com
c4_100dom_val_72_lists.debian.org
c4_100dom_val_73_www.straitstimes.com
c4_100dom_val_74_www.cbsnews.com
c4_100dom_val_75_simple.wikipedia.org
c4_100dom_val_76_deadline.com
c4_100dom_val_77_www.androidheadlines.con
c4_100dom_val_78_www.wired.com
c¢4_100dom_val_79_www.bustle.com

c4_100dom_val_7_patents.google.com _

c4_100dom_val_80_premium.wpmudev.org
c4_100dom_val_81_www.librarything.com
c4_100dom_val_82_mail-archives.apache.org
c4_100dom_val_83_scholars.duke.edu
c4_100dom_val_84_www.glassdoor.com
c4_100dom_val_85_www.pcworld.com
c4_100dom_val_86_www.shutterstock.com
c4_100dom_val_87_myemail.constantcontact.cc
c4_100dom_val_88_www.eventbrite.co.uk
c4_100dom_val_89_www.fastcompany.com
c4_100dom_val_8_www.businessinsider.com
c4_100dom_val_90_www.firstpost.com
c4_100dom_val_91_www.entrepreneur.com
c¢4_100dom_val_92_www.breitbart.com
c¢4_100dom_val_93_techcrunch.com

Llama
15.80
12.55
18.75
11.88
12.44
11.99
10.65
23.59
14.13
12.13
11.57
18.38
15.50

9.74

14.78
15.35
14.55
7.69

9.29

12.18
12.15
10.65
12.06
13.85
9.54

13.45
13.24
12.12
18.18
11.51
10.29
8.25

14.75
11.11
14.42
12.79

16.86
14.36
5.67
8.72
16.64
12.34
8.70
14.59
14.47
14.24
10.97
11.71
13.10
13.47
14.20

42

Mamba
15.26
12.10
18.24
11.46
11.95
11.29
10.32
23.09
13.70
11.60
11.04
17.94
15.09

9.10

14.09
14.85
13.95
7.79

8.88

11.66
11.60
10.17
11.58
13.58
9.13

13.03
12.84
11.58
17.81
11.06
9.91

7.85

13.83
10.74
13.88
12.33
7.84

16.63
13.98
5.61

8.43

15.97
11.95
8.89

14.24
13.99
13.75
10.69
11.24
12.68
12.67
13.68

RWKV-4 xLSTM[7:1] xLSTM[1:0]

16.26
13.02
19.89
12.40
12.85
11.98
10.99
25.71
14.51
12.74
11.75
19.61
16.58
9.68
15.47
15.92
15.58
8.86
9.71
12.74
12.61
11.03
12.29
15.38
9.90
13.96
13.55
12.86
19.62
11.91
10.60
8.37
15.48
11.43
15.14
13.19
9.33
18.13
15.42
6.17
9.03
16.99
12.95
10.75
15.32
14.89
15.52
11.35
12.08
13.65
14.29
15.18

15.10
12.00
18.05
11.39
11.90
11.16
10.24
22.99
13.65
11.60
10.92
17.73
15.18
8.88
14.08
14.75
14.09
7.68
8.89
11.59
11.56
10.09
11.46
13.55
9.07
12.99
12.77
11.71
17.67
10.94
9.82
7.78
13.92
10.72
13.87
12.25
7.72
16.50
13.91
5.56
8.32
16.00
11.90
8.62
14.18
13.98
13.82
10.52
11.12
12.72
12.84
13.82

Dataset
c¢4_100dom_val_94_www.nme.com
c¢4_100dom_val_95_www.ndtv.com

c4_100dom_val_96_finance.yahoo.com
c4_100dom_val_97_archives.lib.state.ma.us
c4_100dom_val_98_www.gsmarena.com
c4_100dom_val_99_www.lonelyplanet.com

c4_100dom_val_9_www.forbes.com
c4_en_val-00000000
c4_en_val-00000001
c4_en_val-00000002
c4_en_val-00000003
c4_en_val-00000004
c4_en_val-00000005
dolma-v1_5_val_books
dolma-v1_5_val_common-crawl
dolma-v1_5_val_pes2o0
dolma-v1_5_val_reddit_uniform
dolma-v1_5_val_stack_uniform
dolma-v1_5_val_wiki
dolma_100_proglang_val_00_text

dolma_100_proglang_val_01_markdown

dolma_100_proglang_val_02_c
dolma_100_proglang_val_03_php
dolma_100_proglang_val_04_java
dolma_100_proglang_val_05_c++
dolma_100_proglang_val_06_python

dolma_100_proglang_val_07_javascript

dolma_100_proglang_val_08_html
dolma_100_proglang_val_09_c#
dolma_100_proglang_val_10_yaml
dolma_100_proglang_val_11_go

dolma_100_proglang_val_12_typescript

dolma_100_proglang_val_13_xml
dolma_100_proglang_val_14_css

dolma_100_proglang_val_15_jupyter-nb

dolma_100_proglang_val_16_rust

dolma_100_proglang_val_17_unity3d-asset
dolma_100_proglang_val_18_gettext-catalog

dolma_100_proglang_val_19_ruby
dolma_100_proglang_val_20_vue
dolma_100_proglang_val_21_sql
dolma_100_proglang_val_22_swift
dolma_100_proglang_val_23_kotlin
dolma_100_proglang_val_24_scala
dolma_100_proglang_val_25_scss
dolma_100_proglang_val_26_tex
dolma_100_proglang_val_27_dart
dolma_100_proglang_val_28_kicad
dolma_100_proglang_val 29 _shell
dolma_100_proglang_val_30_smali
dolma_100_proglang_val_31_lua

dolma_100_proglang_val_32_restructuredtext

Llama
14.12
10.66
9.96
6.53
23.21
11.33
13.72
14.34
14.86
15.29
12.95
12.56
12.77
13.00
16.86
9.42
23.04
2.30
10.86

3.16

—_—
O 3
AN W

223

2.17

2.25

241
1.95

2.18

1.86

[\
[}
(o)}

1.79

3.71
1.38
5.65
4.01

43

Mamba
13.28
10.26
9.55
6.12
22.15
10.92
13.31
13.70
14.28
14.71
12.28
12.13
12.35
12.44
16.37
9.56
21.97
2.33
10.48
6.30
3.16
1.91
1.75
1.99
2.25
2.39
2.59
1.94
2.28
3.01
1.78
2.20
2.50
2.25
1.60
2.01
4.17
2.87
2.44
1.95
2.23
1.88
2.07
2.28
2.27
421
1.82
2.79
3.74
1.39
6.01
4.05

RWKV-4 xLSTM[7:1] xLSTM][1:0]

15.06
10.90
10.22
7.09
24.52
12.28
14.63
14.87
15.51
15.95
13.32
13.27
13.26
13.64
18.00
11.25
23.84
2.53
11.25
6.94
3.56
2.23
1.83
2.18
2.53
2.62
2.83
2.13
2.45
3.71
1.97
2.41
2.78
2.34
1.75
2.23
4.56
3.53
2.70
2.10
2.46
2.04
2.29
2.64
2.38
4.97
2.01
3.86
4.31
1.45
7.18
4.66

13.43
10.10
9.43
6.27
22.10
10.84
13.34
13.67
14.21
14.71
12.23
12.05
12.32
12.44
16.35
9.41
22.05
2.30
10.41
5.67
3.15
1.86
1.73

5.69

221
2.36

1.58 1.58

4.10 4.05

2.68

N
3

Dataset

dolma_100_proglang_val_33_perl
dolma_100_proglang_val_34_diff
dolma_100_proglang_val_35_ini
dolma_100_proglang_val_36_jsx
dolma_100_proglang_val_37_haskell
dolma_100_proglang_val_38_gnuplot
dolma_100_proglang_val_39_postscript
dolma_100_proglang_val_40_groff
dolma_100_proglang_val_41_turtle
dolma_100_proglang_val_42_fortran
dolma_100_proglang_val_43_makefile
dolma_100_proglang_val_44_mathematica
dolma_100_proglang_val_45_pascal
dolma_100_proglang_val_46_common-lisp
dolma_100_proglang_val_47_gas
dolma_100_proglang_val_48_vhdl
dolma_100_proglang_val_49_julia
dolma_100_proglang_val_50_edn
dolma_100_proglang_val_51_visual-basic
dolma_100_proglang_val_52_powershell
dolma_100_proglang_val_53_g-code
dolma_100_proglang_val_54_ocaml
dolma_100_proglang_val_55_java-server-p
dolma_100_proglang_val_56_solidity
dolma_100_proglang_val_57_graphviz-dot
dolma_100_proglang_val_58_less
dolma_100_proglang_val_59_twig
dolma_100_proglang_val_60_asciidoc
dolma_100_proglang_val_61_groovy
dolma_100_proglang_val_62_llvm
dolma_100_proglang_val_63_hcl
dolma_100_proglang_val_64_html+erb
dolma_100_proglang_val_65_erlang
dolma_100_proglang_val_66_elixir
dolma_100_proglang_val_67_eagle
dolma_100_proglang_val_68_arduino
dolma_100_proglang_val_69_coffeescript
dolma_100_proglang_val_70_toml
dolma_100_proglang_val_71_cuda
dolma_100_proglang_val_72_nix
dolma_100_proglang_val_73_smalltalk
dolma_100_proglang_val_74_cmake
dolma_100_proglang_val_75_actionscript
dolma_100_proglang_val_76_glsl
dolma_100_proglang_val_77_systemverilog
dolma_100_proglang_val_78_haxe
dolma_100_proglang_val_79_f#
dolma_100_proglang_val_80_max
dolma_100_proglang_val_81_objective-c++
dolma_100_proglang_val_82_standard-ml
dolma_100_proglang_val_83_dockerfile
dolma_100_proglang_val_84_emacs-lisp

Llama

1.83

19.09

2.93

2.42
4.08

2.10

2.24
1.81

2.52
2.10

3.37

2.80
7.76

1.87

2.40

2.18

4.08
3.83

Mamba
2.62
2.95
4.16
1.84
3.07
2.88

19.52
6.32
2.45
2.39
3.01
11.34

4.81

2.71

2.73

4.06

3.36

2.10

2.49

4.16

2.66

3.29

2.11

4.41

2.48

2.26

1.81

5.50

2.15

2.40

2.56

2.09

2.98

2.99

6.90

3.40

2.85

7.62

2.21

9.61
1.86
2.54
242
2.66
2.81
3.02
1.62
2.19
4.05
4.17
3.83

RWKV-4 xLSTM[7:1] xLSTM[1:0]

3.01
3.43
4.90
1.95
3.73
3.36
19.56
7.45
3.17
2.83
3.51
13.24
5.49
3.32
3.59
4.69
4.05
2.67
272
4.50
3.29
4.22
231
5.28
3.54
2.33
1.91
6.84
2.41
3.25
2.96
2.23
3.87
3.58
10.75
3.81
3.27
8.44
2.56
9.03
12.60
2.02
2.88
2.72
3.17
3.20
353
1.80
2.40
4.79
4.37
4.44

2.59
2.89
4.05 3.98
1.83
3.02
2.81 2.77
18661864
6.22 6.21
239 235
235 1231
286 282
10.49 10.71
427

2.62
2.57

3.30

2.04 2.03
“
2.44 2.37
3.19 3.13

2.32

5.64 5.76

2.77 2.76

2.93

1.61 1.61

2.17

3.81 3.77
4.05

3.80

Dataset Llama Mamba RWKV-4 xLSTM[7:1] xLSTM[1:0]

dolma_100_proglang_val_85_scheme 2.86 3.40 2.84
dolma_100_proglang_val_86_clojure - 3.30 4.00 3.26
dolma_100_proglang_val_87_handlebars 1.79 1.79 1.88 1.78
dolma_100_proglang_val_88_smarty 2.30 2.35 2.58
dolma_100_proglang_val_89_logos 2.58 2.98 2.46 2.44
dolma_100_proglang_val_90_stata 5.08 6.85 4.85 4.81
dolma_100_proglang_val_91_yacc 2.48 2.87
dolma_100_proglang_val_92_nimrod 2.87 3.63 2.81
dolma_100_proglang_val_93_tcl 3.16 3.95 3.07
dolma_100_proglang_val_94_viml 5.76 7.21
dolma_100_proglang_val_95_asp 1.79 1.79 1.90
dolma_100_proglang_val_96_protocol-buffer 1.38
dolma_100_proglang_val_97_r 3.66
dolma_100_proglang_val_98_cython 2.69
dolma_100_proglang_val_99_mediawiki 2.48 2.12 J
dolma_100_subreddits_val_00_AskReddit 20.25 19.29 20.38 19.28
dolma_100_subreddits_val_01_politics 22.08 20.70 22.07 20.83
dolma_100_subreddits_val_02_AmltheAsshole 2249 | 21.30 22.89 21.60
dolma_100_subreddits_val_03_worldnews 22.57 21.43 22.77 21.50
dolma_100_subreddits_val_04_relationships 18.64 17.80 18.89 17.86
dolma_100_subreddits_val_05_relationship_adv ~ 19.40 18.53 19.68 18.63
dolma_100_subreddits_val_06_news 22.49 21.25 22.51 21.49
dolma_100_subreddits_val_07_leagueoflegends 34.45 32.41 35.13 32.46
dolma_100_subreddits_val_08_todayilearned 22.53 21.30 22.68 21.28
dolma_100_subreddits_val_09_TwoXChromoso 20.20 19.16 20.25 19.20
dolma_100_subreddits_val_10_personalfinance ~ 18.62 _ 18.82 17.73
dolma_100_subreddits_val_11_changemyview 20.02 19.10 20.50 19.17
dolma_100_subreddits_val_12_unpopularopinio ~ 23.39 22.16 23.63 22.32
dolma_100_subreddits_val_13_movies 21.62 20.52 21.79 20.64
dolma_100_subreddits_val_14_Games 22.26 21.15 22.52 21.18
dolma_100_subreddits_val_15_nba 23.28 21.93 23.60 22.10
dolma_100_subreddits_val_16_pics 21.84 20.56 21.82 20.64
dolma_100_subreddits_val_17_gaming 24.45 23.13 24.61 23.15
dolma_100_subreddits_val_18_soccer 23.38 22.12 23.61 22.19
dolma_100_subreddits_val_19_nfl 19.86 18.76 20.17 18.81
dolma_100_subreddits_val_20_explainlikeimfiv. ~ 18.35 17.21 18.59 17.32
dolma_100_subreddits_val_21_conspiracy 23.86 _ 24.09 22.67
dolma_100_subreddits_val_22_atheism 21.23 20.18 21.43 20.23
dolma_100_subreddits_val_23_AskMen 20.00 19.04 20.11 19.10
dolma_100_subreddits_val_24_videos 22.26 21.24 22.51 21.29
dolma_100_subreddits_val_25_sex 21.13 20.13 21.30 20.09
dolma_100_subreddits_val_26_raisedbynarcissi: 22.07 21.08 22.48 21.20
dolma_100_subreddits_val_27_NoStupidQuestic 19.66 18.59 19.87 18.68
dolma_100_subreddits_val_28_ DestinyTheGam 3527 33.58 36.13 33.78
dolma_100_subreddits_val_29_anime 23.21 22.04 23.46 22.12
dolma_100_subreddits_val_30_DnD 28.22 26.71 28.78 26.72
dolma_100_subreddits_val_31_ukpolitics 22.35 21.19 22.80 21.31
dolma_100_subreddits_val_32_funny 20.78 19.45 20.70 19.40
dolma_100_subreddits_val_33_europe 21.76 20.59 22.10 20.72
dolma_100_subreddits_val_34_canada 22.44 21.21 22.44 21.30
dolma_100_subreddits_val_35_Christianity 17.88 17.02 18.10 17.04
dolma_100_subreddits_val_36_SquaredCircle 25.87 2431 25.83 24.34

45

Dataset Llama Mamba RWKV-4 xLSTM][7:1] xLSTM[1:0]

dolma_100_subreddits_val_37_AskWomen 17.72 16.81 17.77 16.85 16.72
dolma_100_subreddits_val_38_legaladvice 18.66 17.75 18.92 17.74 17.64
dolma_100_subreddits_val_39_JUSTNOMIL 24.25 23.16 24.86 23.32 23.02
dolma_100_subreddits_val_40_technology 23.39 22.09 23.52 22.21 21.95
dolma_100_subreddits_val_41_IAmA 19.83 18.83 19.86 18.71 18.56
dolma_100_subreddits_val_42_wow 31.26 29.25 31.44 29.39 28.82
dolma_100_subreddits_val_43_Parenting 20.15 19.11 20.43 19.30 19.06
dolma_100_subreddits_val_44_exmormon 23.12 21.90 23.44 21.99 21.84
dolma_100_subreddits_val_45_AdviceAnimals 22.14 20.96 22.14 20.98 20.79
dolma_100_subreddits_val_46_childfree 21.87 20.85 22.13 20.89 20.72
dolma_100_subreddits_val_47_unitedkingdom 2327 22.00 23.40 22.00 21.85
dolma_100_subreddits_val_48_ffxiv 32.53 30.79 33.33 31.01 30.62
dolma_100_subreddits_val_49_dndnext 29.67 28.03 30.53 28.26 27.63
dolma_100_subreddits_val_50_ADHD 20.75 19.83 21.14 19.95 19.78
dolma_100_subreddits_val_51_loseit 19.36 18.39 19.49 18.52 18.33
dolma_100_subreddits_val_52_asoiaf 25.28 23.99 25.63 23.94 23.69
dolma_100_subreddits_val_53_BabyBumps 20.96 19.82 21.11 19.92 19.76
dolma_100_subreddits_val_54_Advice 19.17 18.29 19.35 18.38 18.19
dolma_100_subreddits_val_55_australia 23.97 22.51 24.06 22.61 22.40
dolma_100_subreddits_val_56_CFB 20.45 19.41 20.92 19.49 19.23
dolma_100_subreddits_val_57_offmychest 19.63 18.79 19.77 18.93 18.77
dolma_100_subreddits_val_58_PublicFreakout 25.96 24.49 26.02 24.65 24.39
dolma_100_subreddits_val_59_TrueOffMyChes 21.53 20.63 21.70 20.73 20.54
dolma_100_subreddits_val_60_science 20.44 19.46 20.64 19.51 19.38
dolma_100_subreddits_val_61_magicTCG 28.82 26.79 28.94 26.69 26.38
dolma_100_subreddits_val_62_asktransgender 20.72 19.86 21.07 19.83 19.62
dolma_100_subreddits_val_63_DotA2 34.35 32.38 34.74 32.57 32.16
dolma_100_subreddits_val_64_neoliberal 21.74 20.59 22.26 20.64 20.45
dolma_100_subreddits_val_65_whowouldwin 29.18 27.81 30.08 27.63 27.30
dolma_100_subreddits_val_66_depression 18.28 17.52 18.31 17.50 17.41
dolma_100_subreddits_val_67_WTF 22.30 21.18 22.38 21.17 20.99
dolma_100_subreddits_val_68_pathofexile 40.48 38.59 41.43 38.75 38.43
dolma_100_subreddits_val_69_PoliticalDiscussi 20.01 18.92 20.16 18.97 18.82
dolma_100_subreddits_val_70_Libertarian 22.97 21.77 23.15 21.87 21.75
dolma_100_subreddits_val_71_PurplePillDebatc 24.94 23.66 25.44 23.85 23.55
dolma_100_subreddits_val_72_Fitness 21.57 20.35 21.48 20.34 20.11
dolma_100_subreddits_val_73_books 21.12 20.02 21.31 20.09 19.82
dolma_100_subreddits_val_74_dogs 20.13 19.12 20.32 19.20 18.92
dolma_100_subreddits_val_75_pcmasterrace 23.73 22.49 24.02 22.56 2221
dolma_100_subreddits_val_76_teenagers 18.37 16.35 16.44 15.56 17.02
dolma_100_subreddits_val_77_stopdrinking 21.08 20.02 21.19 20.17 19.98
dolma_100_subreddits_val_78_Overwatch 30.47 28.77 31.13 29.13 28.57
dolma_100_subreddits_val_79_television 23.97 22.63 24.05 22.75 22.49
dolma_100_subreddits_val_80_buildapc 21.55 20.22 21.78 20.29 19.98
dolma_100_subreddits_val_81_askscience 17.25 16.39 17.52 16.34 16.11
dolma_100_subreddits_val_82_programming 23.66 22.61 24.04 22.55 22.24
dolma_100_subreddits_val_83_Guildwars2 32.98 31.17 33.58 31.39 30.91
dolma_100_subreddits_val_84_cars 22.57 21.41 22.73 21.38 21.15
dolma_100_subreddits_val_85_formulal 23.85 22.65 24.09 22.71 22.49
dolma_100_subreddits_val_86_sysadmin 24.23 22.90 24.41 22.96 22.64
dolma_100_subreddits_val_87_hockey 21.46 20.26 21.74 20.37 20.20
dolma_100_subreddits_val_88_india 24.15 22.92 24.42 23.08 22.68

46

Dataset Llama Mamba RWKV-4 xLSTM[7:1] xLSTM[1:0]

dolma_100_subreddits_val_89_SubredditDrama 19.14 18.26 19.63 18.29
dolma_100_subreddits_val_90_DMAcademy 27.77 26.31 28.38 26.41
dolma_100_subreddits_val_91_dating_advice 20.18 19.27 20.42 19.40
dolma_100_subreddits_val_92_Catholicism 19.11 18.22 19.41 18.17
dolma_100_subreddits_val_93_Drugs 24.50 23.29 24.74 23.32
dolma_100_subreddits_val_94_trees 23.56 22.38 23.83 22.41
dolma_100_subreddits_val_95_boardgames 22.69 21.48 23.13 21.61
dolma_100_subreddits_val_96_Conservative 2279 | 2153 | 22.97 2168 | 2153
dolma_100_subreddits_val_97_Futurology 23.55 22.36 23.77 22.37
dolma_100_subreddits_val_98_beyondthebump 21.07 19.89 21.22 20.08
dolma_100_subreddits_val_99_weddingplannin; 20.11 19.01 20.33 19.19
falcon-refinedweb_val-00000000 15.92 15.46 17.14 15.37
falcon-refinedweb_val-00000001 18.49 17.91 19.89 17.90
falcon-refinedweb_val-00000002 18.45 17.90 19.69 1791 | 17.68
falcon-refinedweb_val-00000003 16.75 16.23 17.92 16.16
falcon-refinedweb_val-00000004 16.26 15.66 17.32 15.73
falcon-refinedweb_val-00000005 15.41 14.96 16.56 14.92
gab_val-00000000 33.19 30.55 31.57 30.73
gab_val-00000001 35.64 32.76 33.96 32.80
gab_val-00000002 34.38 32.75 31.80
gab_val-00000003 34.86 - 33.26 32.20
gab_val-00000004 36.20 33.35 34.58 33.42
gab_val-00000005 33.46 30.82 31.88 31.06
gab_val-00000006 3576 | 3271 3426 33.04
gab_val-00000007 35.54 32.60 33.76 32.78
gab_val-00000008 35.11 32.03 33.23 32.25
gab_val-00000009 3413 | 3134 3236 31.50
m2d2_s2orc_unsplit_val_Art 20.07 19.80 21.88 19.78
m2d2_s2orc_unsplit_val_Philosophy 14.80 14.82 16.77 14.69
m2d2_s2orc_unsplit_val_astro-ph 11.70 11.70 13.18 11.52
m2d2_s2orc_unsplit_val_astro-ph.CO 11.47 11.49 12.90 11.37
m2d2_s2orc_unsplit_val_astro-ph.EP 12.76 12.73 14.28 12.60
m2d2_s2orc_unsplit_val_astro-ph.GA 11.70 11.70 13.18 11.52
m2d2_s2orc_unsplit_val_astro-ph.HE 11.85 11.77 13.29 11.62
m2d2_s2orc_unsplit_val_astro-ph.IM 15.36 15.33 17.16 15.21
m2d2_s2orc_unsplit_val_astro-ph.SR 13.08 13.08 14.89 12.86
m2d2_s2orc_unsplit_val_astro-ph_I1 15.36 15.33 17.16 15.21
m2d2_s2orc_unsplit_val_atom-ph 12.74 12.84 14.44 12.75
m2d2_s2orc_unsplit_val_chem-ph 13.20 13.29 15.22 13.14
m2d2_s2orc_unsplit_val_cond-mat 11.67 11.78 13.37 11.67
m2d2_s2orc_unsplit_val_cond-mat.dis-nn 12.54 12.67 14.28 12.58
m2d2_s2orc_unsplit_val_cond-mat.mes-hall 11.24 11.50 13.19 11.30
m2d2_s2orc_unsplit_val_cond-mat.mtrl-sci 12.19 12.33 14.09 12.18 -
m2d2_s2orc_unsplit_val_cond-mat.other 11.87 11.96 13.55 11.83
m2d2_s2orc_unsplit_val_cond-mat.quant-gas 11.67 11.78 13.37 11.67
m2d2_s2orc_unsplit_val_cond-mat.soft 12.18 12.23 13.93 12.18
m2d2_s2orc_unsplit_val_cond-mat.stat-mech 12.03 12.14 13.60 12.08
m2d2_s2orc_unsplit_val_cond-mat.str-el 10.39 10.50 11.98 10.41
m2d2_s2orc_unsplit_val_cond-mat.supr-con 11.57 11.66 13.13 11.53
m2d2_s2orc_unsplit_val_cond-mat_11 12.54 12.67 14.28 12.58
m2d2_s2orc_unsplit_val_cs.Al L7t 1209 14.20 12.01 11.79
m2d2_s2orc_unsplit_val_cs.AR 13.09 13.36 15.30 13.18 _

47

Dataset
m2d2_s2orc_unsplit_val_cs.CC
m2d2_s2orc_unsplit_val_cs.CE
m2d2_s2orc_unsplit_val_cs.CG
m2d2_s2orc_unsplit_val_cs.CL
m2d2_s2orc_unsplit_val_cs.CR
m2d2_s2orc_unsplit_val_cs.CV
m2d2_s2orc_unsplit_val_cs.CY
m2d2_s2orc_unsplit_val_cs.DB
m2d2_s2orc_unsplit_val_cs.DC
m2d2_s2orc_unsplit_val_cs.DL
m2d2_s2orc_unsplit_val_cs.DM
m2d2_s2orc_unsplit_val_cs.DS
m2d2_s2orc_unsplit_val_cs.ET
m2d2_s2orc_unsplit_val_cs.FL
m2d2_s2orc_unsplit_val_cs.GL
m2d2_s2orc_unsplit_val_cs.GR
m2d2_s2orc_unsplit_val_cs.GT
m2d2_s2orc_unsplit_val_cs.HC
m2d2_s2orc_unsplit_val_cs.IR
m2d2_s2orc_unsplit_val_cs.LG
m2d2_s2orc_unsplit_val_cs.LO
m2d2_s2orc_unsplit_val_cs.MA
m2d2_s2orc_unsplit_val_cs.MM
m2d2_s2orc_unsplit_val_cs.MS
m2d2_s2orc_unsplit_val_cs.NA
m2d2_s2orc_unsplit_val_cs.NE
m2d2_s2orc_unsplit_val_cs.NI
m2d2_s2orc_unsplit_val_cs.OH
m2d2_s2orc_unsplit_val_cs.OS
m2d2_s2orc_unsplit_val_cs.PF
m2d2_s2orc_unsplit_val_cs.PL
m2d2_s2orc_unsplit_val_cs.RO
m2d2_s2orc_unsplit_val_cs.SC
m2d2_s2orc_unsplit_val_cs.SD
m2d2_s2orc_unsplit_val_cs.SE
m2d2_s2orc_unsplit_val_cs.SI
m2d2_s2orc_unsplit_val_cs.SY
m2d2_s2orc_unsplit_val_cs_l1

m2d2_s2orc_unsplit_val_econ.EM

m2d2_s2orc_unsplit_val_econ.TH
m2d2_s2orc_unsplit_val_econ_I1
m2d2_s2orc_unsplit_val_eess.AS
m2d2_s2orc_unsplit_val_eess.IV
m2d2_s2orc_unsplit_val_eess.SP
m2d2_s2orc_unsplit_val_eess_I1
m2d2_s2orc_unsplit_val_gr-qc
m2d2_s2orc_unsplit_val_hep-ex
m2d2_s2orc_unsplit_val_hep-lat
m2d2_s2orc_unsplit_val_hep-ph
m2d2_s2orc_unsplit_val_hep-th
m2d2_s2orc_unsplit_val_math.AC

m2d2_s2orc_unsplit_val_math.AG

Llama

13.21

14.66

12.68
16.01

14.67

14.80

16.51
13.45

16.76
13.30
10.39

13.12
13.98

13.76
10.00
15.24

12.60

13.04

13.27
17.72

11.62

12.05
13.77
11.29
13.77
12.84
10.47
13.13
11.67
11.46

48

Mamba
8.81
13.31
8.68
14.75
14.86
12.78
15.93
12.35
14.02
14.83
8.38
9.99
14.95
9.84
16.43
13.60
9.59
16.93
13.46
10.52
10.23
11.65
13.40
14.14
10.80
14.00
10.22
15.43
14.93
12.82
15.74
13.19
11.42
13.42
13.47
12.25
11.79
8.68
11.76
10.16
10.16
12.14
13.89
11.45
13.89
12.99
10.37
13.10
11.81
11.49
7.37
9.27

RWKV-4 xLSTM[7:1] xLSTM[1:0]

10.46
15.01
10.12
16.96
16.72
14.38
17.52
14.66
16.20
17.05
9.84

11.76
17.00
11.64
18.18
15.53
11.34
19.08
15.26
12.14
12.50
14.10
15.29
16.27
12.52
16.10
11.61
17.62
17.35
14.71
18.58
14.95
13.33
15.26
15.46
14.03
13.51
10.12
13.73
11.99
11.99
13.88
15.71
12.94
15.71
14.68
11.61
14.57
13.38
12.71
8.71

11.05

8.70

13.18
8.59

14.70
14.74
12.66
15.84
12.27
13.79
14.75
8.27

9.88

14.89
9.74

16.38
13.54
9.49

16.84
13.31
10.44
10.03
11.41
13.25
14.11
10.71
13.89
10.04
15.34
14.80
12.70
15.65
13.12
11.30
13.36
13.40
12.19
11.63
8.59

11.68
9.99

9.99

12.09
13.76
11.28
13.76
12.84
10.13
13.02
11.66
11.40
7.26

9.16

8.54

8.47

12.03

0
~
3

o0
o)

9.88

Dataset
m2d2_s2orc_unsplit_val_math.AP
m2d2_s2orc_unsplit_val_math. AT
m2d2_s2orc_unsplit_val_math.CA
m2d2_s2orc_unsplit_val_math.CO
m2d2_s2orc_unsplit_val_math.CT
m2d2_s2orc_unsplit_val_math.CV
m2d2_s2orc_unsplit_val_math.DG
m2d2_s2orc_unsplit_val_math.DS
m2d2_s2orc_unsplit_val_math.FA
m2d2_s2orc_unsplit_val_math.GM
m2d2_s2orc_unsplit_val_math.GN
m2d2_s2orc_unsplit_val_math.GR
m2d2_s2orc_unsplit_val_math.GT
m2d2_s2orc_unsplit_val_math.HO
m2d2_s2orc_unsplit_val_math.KT
m2d2_s2orc_unsplit_val_math.LO
m2d2_s2orc_unsplit_val_math. MG
m2d2_s2orc_unsplit_val_math.NA
m2d2_s2orc_unsplit_val_math.NT
m2d2_s2orc_unsplit_val_math.OA
m2d2_s2orc_unsplit_val_math.OC
m2d2_s2orc_unsplit_val_math.PR
m2d2_s2orc_unsplit_val_math.QA
m2d2_s2orc_unsplit_val_math.RA
m2d2_s2orc_unsplit_val_math.RT
m2d2_s2orc_unsplit_val_math.SG
m2d2_s2orc_unsplit_val_math.SP
m2d2_s2orc_unsplit_val_math_lI1
m2d2_s2orc_unsplit_val_nlin.AO
m2d2_s2orc_unsplit_val_nlin.CD
m2d2_s2orc_unsplit_val_nlin.CG
m2d2_s2orc_unsplit_val_nlin.PS
m2d2_s2orc_unsplit_val_nlin.SI
m2d2_s2orc_unsplit_val_nlin_11
m2d2_s2orc_unsplit_val_nucl-ex
m2d2_s2orc_unsplit_val_nucl-th
m2d2_s2orc_unsplit_val_physics.acc-ph
m2d2_s2orc_unsplit_val_physics.ao-ph
m2d2_s2orc_unsplit_val_physics.app-ph
m2d2_s2orc_unsplit_val_physics.atm-clus
m2d2_s2orc_unsplit_val_physics.atom-ph
m2d2_s2orc_unsplit_val_physics.bio-ph
m2d2_s2orc_unsplit_val_physics.chem-ph
m2d2_s2orc_unsplit_val_physics.class-ph
m2d2_s2orc_unsplit_val_physics.comp-ph
m2d2_s2orc_unsplit_val_physics.data-an
m2d2_s2orc_unsplit_val_physics.ed-ph
m2d2_s2orc_unsplit_val_physics.flu-dyn
m2d2_s2orc_unsplit_val_physics.gen-ph
m2d2_s2orc_unsplit_val_physics.geo-ph
m2d2_s2orc_unsplit_val_physics.hist-ph
m2d2_s2orc_unsplit_val_physics.ins-det

Llama

14.52

11.82
12.73

11.29

13.02
11.65
13.75
13.92
13.70
13.00
12.74
13.30
13.20
11.01
11.23
13.18
12.21
11.81
14.15
14.75
15.57
14.01

Mamba
9.53
8.77
9.49
7.33
10.20
8.07
8.18
8.12
7.96
8.15
6.56
7.66
7.71
14.70
7.80
10.41
8.53
10.05
8.51
7.55
10.01
9.20
8.40
7.44
8.71
8.88
9.65
8.07
12.01
12.91
12.75
11.44
9.81
12.75
12.94
11.78
14.01
14.04
13.81
13.13
12.84
13.42
13.29
11.27
11.37
13.33
12.33
11.99
14.39
14.86
15.43
14.16

RWKV-4 xLSTM[7:1] xLSTM[1:0]

10.90
10.16
11.01
8.69
12.04
9.36
9.50
9.61
9.35
9.57
7.82
9.00
9.27
16.52
9.14
12.53
9.99
11.66
9.92
9.07
11.62
10.58
9.93
8.75
10.33
10.36
11.27
9.36
13.77
14.88
14.88
12.86
11.28
14.88
14.61
13.43
16.17
15.91
15.54
15.11
14.44
15.26
15.22
12.85
12.88
14.97
13.88
13.73
16.76
16.81
16.97
16.14

9.41
8.72
9.36
7.21
10.12
7.99
8.08
8.08
7.88
8.07
6.45
7.51
7.62
14.51
7.70
10.13
8.42
9.95
8.43
7.47
9.85
9.04
8.28
7.39
8.65
8.76
9.52
7.99
11.90
12.87
12.61
11.39
9.64
12.61
12.85
11.68
13.74
13.89
13.62
13.00
12.75
13.32
13.14
11.12
11.26
13.25
12.18
11.81
14.18
14.71
15.40
14.07

9.30
7.08
9.91
7.87

7.96
7.81
7.93
6.38

10.03

8.31
7.32

8.99
8.16
7.27
8.49

9.51

Dataset Llama Mamba RWKV-4 xLSTM][7:1] xLSTM[1:0]

m2d2_s2orc_unsplit_val_physics.med-ph 14.34 14.46 16.50 14.29 14.09
m2d2_s2orc_unsplit_val_physics.optics 12.74 12.94 14.64 12.80 12.54
m2d2_s2orc_unsplit_val_physics.plasm-ph 13.65 13.81 15.77 13.69 13.44
m2d2_s2orc_unsplit_val_physics.pop-ph 13.80 13.67 15.17 13.60 13.41
m2d2_s2orc_unsplit_val_physics.soc-ph 12.79 12.97 14.80 12.83 12.66
m2d2_s2orc_unsplit_val_physics.space-ph 13.00 13.09 14.77 12.94 12.76
m2d2_s2orc_unsplit_val_physics_I1 15.57 15.43 16.97 15.40 15.18
m2d2_s2orc_unsplit_val_plasm-ph 13.65 13.81 15.77 13.69 13.44
m2d2_s2orc_unsplit_val_g-bio 13.69 13.87 15.75 13.75 13.50
m2d2_s2orc_unsplit_val_g-bio.BM 13.28 13.52 15.72 13.41 13.19
m2d2_s2orc_unsplit_val_g-bio.CB 12.06 12.34 14.21 12.19 11.97
m2d2_s2orc_unsplit_val_g-bio.GN 13.21 11.40 12.74 11.32 11.16
m2d2_s2orc_unsplit_val_g-bio.MN 11.96 11.95 13.36 11.90 11.70
m2d2_s2orc_unsplit_val_g-bio.NC 13.69 13.87 15.75 13.75 13.50
m2d2_s2orc_unsplit_val_g-bio.OT 14.90 14.94 17.16 14.92 14.73
m2d2_s2orc_unsplit_val_g-bio.PE 12.57 12.71 14.62 12.69 12.41
m2d2_s2orc_unsplit_val_g-bio.QM 12.49 12.69 14.44 12.56 12.40
m2d2_s2orc_unsplit_val_g-bio.SC 13.68 13.85 15.60 13.75 13.53
m2d2_s2orc_unsplit_val_g-bio.TO 13.49 13.53 15.32 13.48 13.33
m2d2_s2orc_unsplit_val_g-bio_I1 13.69 13.87 15.75 13.75 13.50
m2d2_s2orc_unsplit_val_g-fin.CP 11.37 11.61 13.36 11.41 11.28
m2d2_s2orc_unsplit_val_g-fin.EC 11.72 11.89 13.77 11.77 11.63
m?2d2_s2orc_unsplit_val_qg-fin.GN 13.79 13.91 15.73 13.83 13.61
m2d2_s2orc_unsplit_val_g-fin. MF 9.91 10.21 11.92 10.04 9.90
m2d2_s2orc_unsplit_val_g-fin.PM 11.00 11.31 13.14 11.14 10.94
m2d2_s2orc_unsplit_val_g-fin.PR 15.87 9.25 10.37 9.20 9.03
m2d2_s2orc_unsplit_val_g-fin. RM 11.35 11.49 13.08 11.41 11.22
m2d2_s2orc_unsplit_val_g-fin.ST 12.43 12.46 14.18 12.43 12.26
m2d2_s2orc_unsplit_val_g-fin.TR 12.79 13.14 15.32 12.89 12.74
m2d2_s2orc_unsplit_val_g-fin_11 13.79 13.91 15.73 13.83 13.61
m?2d2_s2orc_unsplit_val_quant-ph 11.18 11.44 13.18 11.32 11.11
m2d2_s2orc_unsplit_val_stat. AP 13.37 13.56 15.52 13.42 13.15
m2d2_s2orc_unsplit_val_stat.CO 13.07 12.56 14.42 12.46 12.24
m2d2_s2orc_unsplit_val_stat. ME 11.09 11.26 12.91 11.11 10.87
m2d2_s2orc_unsplit_val_stat. ML 11.13 11.39 13.29 11.23 11.06
m?2d2_s2orc_unsplit_val_stat.OT 11.31 11.55 13.28 11.45 11.24
m2d2_s2orc_unsplit_val_stat_11 13.07 12.56 14.42 12.46 12.24
m2d2_s2orc_unsplit_val_supr-con 11.57 11.66 13.13 11.53 11.30
m2d2_wikipedia_unsplit_val_Culture_and_the_ 12.30 11.90 12.82 11.78 11.66
m2d2_wikipedia_unsplit_val_Culture_and_the_ 12.13 11.74 12.82 11.63 11.48
m2d2_wikipedia_unsplit_val_Culture_and_the_ 14.06 13.86 15.17 13.79 13.57
m2d2_wikipedia_unsplit_val_Culture_and_the_ 12.16 11.80 12.74 11.79 11.55
m2d2_wikipedia_unsplit_val_Culture_and_the_ 11.75 11.25 12.03 11.17 11.03
m2d2_wikipedia_unsplit_val_Culture_and_the_ 10.01 9.63 10.36 9.58 9.54
m2d2_wikipedia_unsplit_val_Culture_and_the_ 12.13 11.85 12.83 11.73 11.58
m2d2_wikipedia_unsplit_val_Culture_and_the_ 12.36 12.09 13.05 11.99 11.87
m2d2_wikipedia_unsplit_val_General_referece ~ 11.80 11.46 12.43 11.46 11.30
m2d2_wikipedia_unsplit_val_General_referece_ 10.52 10.20 10.96 10.12 9.99
m2d2_wikipedia_unsplit_val_General_referece_ 11.80 11.46 12.43 11.46 11.30
m2d2_wikipedia_unsplit_val_Health_and_fitnes 10.75 10.47 11.14 10.37 10.30
m2d2_wikipedia_unsplit_val_Health_and_fitnes 9.64 9.29 9.95 9.27 9.16
m2d2_wikipedia_unsplit_val_Health_and_fitnes 10.10 9.80 10.43 9.71 9.56

50

Dataset Llama
m2d2_wikipedia_unsplit_val_Health_and_fitnes 9.14
m2d2_wikipedia_unsplit_val_Health_and_fitnes 891
m2d2_wikipedia_unsplit_val_Health_and_fitnes 10.75
m2d2_wikipedia_unsplit_val_Health_and_fitnes 12.91
m2d2_wikipedia_unsplit_val_History_and_even 13.65
m2d2_wikipedia_unsplit_val_History_and_even 11.77
m2d2_wikipedia_unsplit_val_History_and_even 12.78
m2d2_wikipedia_unsplit_val_History_and_even 12.36
m2d2_wikipedia_unsplit_val_Human_activites 12.43
m2d2_wikipedia_unsplit_val_Human_activites_ 12.43
m2d2_wikipedia_unsplit_val_Human_activites_ 12.47
m2d2_wikipedia_unsplit_val_Mathematics_and. 12.90
m2d2_wikipedia_unsplit_val_Mathematics_and. 8.24
m2d2_wikipedia_unsplit_val_Mathematics_and. ~ 13.21
m2d2_wikipedia_unsplit_val_Mathematics_and. 12.90
m2d2_wikipedia_unsplit_val_Natural_and_phys 9.19
m2d2_wikipedia_unsplit_val_Natural_and_phys 10.97
m2d2_wikipedia_unsplit_val_Natural_and_phys 11.69
m2d2_wikipedia_unsplit_val_Natural_and_phys 10.43
m2d2_wikipedia_unsplit_val_Natural_and_phys 11.48
m2d2_wikipedia_unsplit_val_Philosophy_and_t 11.83
m2d2_wikipedia_unsplit_val_Philosophy_and_t 12.00
m2d2_wikipedia_unsplit_val_Philosophy_and_t 10.94
m2d2_wikipedia_unsplit_val_Religion_and_bel: 12.81
m2d2_wikipedia_unsplit_val_Religion_and_bel: 11.11
m2d2_wikipedia_unsplit_val_Religion_and_beli 11.46
m2d2_wikipedia_unsplit_val_Religion_and_bel; 12.38
m2d2_wikipedia_unsplit_val_Society_and_socic 10.53
m2d2_wikipedia_unsplit_val_Society_and_socic 10.47
m2d2_wikipedia_unsplit_val_Society_and_soci: 12.48
m2d2_wikipedia_unsplit_val_Technology_and_. 8.51
m2d2_wikipedia_unsplit_val_Technology_and_. 12.45
m2d2_wikipedia_unsplit_val_Technology_and_. 13.62
m2d2_wikipedia_unsplit_val_Technology_and_. 13.00
m2d2_wikipedia_unsplit_val_Technology_and_. 14.34
manosphere_meta_sep_val_avfm 19.42
manosphere_meta_sep_val_incels _
manosphere_meta_sep_val_mgtow 24.83
manosphere_meta_sep_val_pua_forum 24.22
manosphere_meta_sep_val_red_pill_talk 34.59
manosphere_meta_sep_val_reddit 20.63
manosphere_meta_sep_val_rooshv 22 .46
manosphere_meta_sep_val_the_attraction 20.85
mc4_val-00000000 8.35
mc4_val-00000001 12.17
mc4_val-00000002 9.96
mc4_val-00000003 11.38
mc4_val-00000004 11.96
pio_l s
redpajama_val_arxiv 5.15
redpajama_val_books 12.91
redpajama_val_c4 13.01

51

Mamba
8.83
8.68

10.47
12.49
13.29
11.44
12.41
11.88
12.03
12.03
12.05
12.51
8.26
12.87
12.51
8.22
10.70
11.36
10.11
11.09
11.72
11.61
10.61
12.45
10.80
11.06
12.03
10.24
10.16
12.13
8.18
12.07
13.23
12.72
13.90
19.27
12.18
24.27
23.85
33.90
19.78
22.17
20.57
8.41
11.97
10.06
11.29
11.64
16.65
5.28
12.71
12.51

RWKV-4 xLSTM[7:1] xLSTM[1:0]

9.59
9.40
11.14
13.61
14.48
12.36
13.46
12.87
12.98
12.98
13.12
13.79
9.37
13.90
13.79
8.81
11.53
12.28
10.95
11.93
13.04
12.66
11.34
13.44
11.66
11.86
12.94
11.03
10.95
13.02
8.66
13.00
14.56
13.87
15.20
21.88
21.40
27.50
26.52
37.26
21.10
24.78
23.17
10.02
13.58
11.96
12.77
13.03
19.37
5.78
13.60
13.55

8.63
8.61
10.37
12.42
13.20
11.36
12.37
11.79
11.95
11.95
12.00
12.48
8.28
12.85
12.48

Dataset
redpajama_val_commoncrawl
redpajama_val_github
redpajama_val_stackexchange
redpajama_val_wikipedia
twitterAAE_HELM_ fixed_val_AA
twitterAAE_HELM_ fixed_val_white
wikitext_103_val

Llama
10.90
1.66
3.73
4.64
346.98
118.62
11.74

52

Mamba
10.56
1.66
3.72
4.38
302.79
107.34
11.76

RWKV-4 xLSTM[7:1] xLSTM[1:0]
11.70 10.52

1.75 1.65

4.03 3.68

4.68 4.35
310.30 301.65
109.13 107.65

1373 1132 1141

