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Abstract

In safety-critical applications, practitioners are
reluctant to trust neural networks when no in-
terpretable explanations are available. Many
attempts to provide such explanations revolve
around pixel-based attributions or use previously
known concepts. In this paper we aim to pro-
vide explanations by provably identifying high-
level, previously unknown ground-truth concepts.
To this end, we propose a probabilistic modeling
framework to derive (C)oncept (L)earning and
(P)rediction (CLAP) — a VAE-based classifier that
uses visually interpretable concepts as predictors
for a simple classifier. Assuming a generative
model for the ground-truth concepts, we prove
that CLAP is able to identify them while attain-
ing optimal classification accuracy. Our exper-
iments on synthetic datasets verify that CLAP
identifies distinct ground-truth concepts on syn-
thetic datasets and yields promising results on the
medical Chest X-Ray dataset.

1. Introduction

Suppose a hospital aims to deploy a model that classifies
diseases Y from medical images X and informs the doctor
about relevant predictive features. There may be multiple
diseases such as lung atelectasis and lung infiltration and
multiple interpretable ground-truth features (or concepts)
Z., such as lung or heart shape, that are relevant for pre-
dicting each disease. Ideally, in addition to identifying
and utilizing these interpretable features, the model should
perform prediction in an interpretable manner itself. The
domain expert can then check whether the model is reason-
able and also potentially make new scientific discoveries —
i.e. discover new factors relevant for prediction.
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Thus, in this paper, we seek an interpretable predictive
model that uses the ground-truth features for prediction.
But what makes a predictive model interpretable from a
practical perspective? Even though the definite answer de-
pends on the application domain, practitioners often agree
on the following desiderata: first of all, the model should
be simple — e.g. additive in the predictive features with
a small number of relevant features. Simplicity allows us
to interpret the relevance of each variable (Rudin, 2018),
and ensure that the interpretation is robust to small changes
to the input (Alvarez-Melis & Jaakkola, 2018a;b). Further-
more, the model ideally assigns global and local importance
to the features used for prediction (Reyes et al., 2020; Stiglic
et al., 2020); in the context of medical imaging for example,
the former corresponds to the population-level importance,
the latter to the patient-level one.

While there have been many works on interpretable predic-
tions, none of them provide a prediction model that identifies
and uses these previously unknown ground-truth features
(see relate works for more discussion). This paper tries to
go bottom-up, starting from a generative model to derive
a procedure based on variational inference that satisfies all
the desiderata. Our proposed framework i) mathematically
formalizes concept learning and ii) provably identifies the
ground-truth concepts and provides an accurate and simple
prediction model using these discovered concepts.

More concretely, we view the recovery of the ground-truth
concepts as a latent variable estimation problem. We start
by assuming an explicit graphical model for the joint distri-
bution of (X, Z,Y). Here, the latent variables Z include all
ground-truth latent features, as well as others irrelevant for
prediction. Together, the latent variables Z generate the raw
observation X. The task of concept learning can then be
mathematically thought of as obtaining identifiability and
performing inference on the latent factors. Using a VAE-
based architecture, we enable both visualization (and thus
facilitate human interpretation) of the learned concepts, as
well as prediction based on these.

In summary, we make the following contributions:

1. We present a framework to model ground-truth latent
features Z. (Sec. 2), and derive C(oncept) (L)earning
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and (P)rediction (in short CLAP), an inherently inter-
pretable prediction framework based on variational
autoencoders (Sec. 3)

2. We prove that CLAP enables identification of the
ground-truth concepts underlying the data and learns a
simple optimal prediction model based on these. Im-
portantly, our framework does not require knowing the
number of latent features (Sec. 4)

3. We validate CLAP on various multi-task prediction
scenarios on synthetic (MPI3D, Shapes3D and Small-
Norbs) datasets that yield encouraging results on
domain-specific application of the framework on real
data (Sec. 5)

We believe that our theoretical framework is a useful step for
formalizing interpretable predictions. In particular, in set-
tings where it’s reasonable to assume that the ground-truth
features are themselves interpretable by a domain expert,
CLAP provably provides an end-to-end interpretable predic-
tion model. Even when the assumption does not hold, we
can still guarantee that CLAP finds a simple and accurate
prediction model using ground-truth features.

1.1. Related work

In this section, we compare existing interpretable predic-
tion methods with CLAP in detail, with a concise summary
provided in Table 1. Previous methods proposed in the con-
text of explainable/interpretable Al can be broadly divided
into two categories: (i) providing post-hoc explanations for
black-box prediction models and (ii) designing models that
explicitly incorporate transparency into the model design,
where the explanation is learned during training.

Post-hoc methods The majority of work on interpretability
so far has focused on (i), providing post-hoc explanations
for a given prediction model. These include pixel attribu-
tion methods (Bach et al., 2015; Selvaraju et al., 2017; Si-
monyan et al., 2014), counterfactual explanations (Antoran
et al., 2021; Chang et al., 2019), explanations based on
pre-defined concepts (Kazhdan et al., 2020; Rezende et al.,
2014; Yeh et al., 2020), and recently developed StyleGANs
(Lang et al., 2021; Wu et al., 2021). Post-hoc methods
have a number of shortcomings given our desired objectives:
First, it is unclear whether post-hoc explanations indeed
reflect the black-box model’s true “reasoning” (Kumar et al.,
2020; Rudin, 2018). Even if an expert deems the output
of the explanation model as unreasonable, one is unable to
determine whether the explanation method or the original
model is at fault. Furthermore, by construction, post-hoc
methods cannot come with statistical inference guarantees
and ensure that the learned concepts align with the ground-
truth features. Finally, post-hoc methods are typically used
to explain complex classifiers; as a result, they are unable to

provide meaningful global and local importance of features
for prediction.

VAE-based methods for inherently interpretable predic-
tion Our procedure CLAP is an inherently interpretable
prediction model and similar in spirit to VAE-based predic-
tion techniques. On a high level, existing procedures either
are unable to identify the ground-truth latent features or
require additional labels. Therefore, they are not applicable
in the traditional supervised learning setting considered in
this paper (where only X, Y are available). Further, none
of the existing methods provide simultaneous guarantees
for learning the underlying concept and obtaining optimal
predictions using these learned features. We provide more
specific comparisons next.

First of all, unsupervised VAEs (Kingma et al., 2014) can
easily be used for prediction tasks by training a classifier on
the latent features. A massive literature proposes various
structural adjustments to improve disentanglement (Burgess
et al., 2018; Chen et al., 2018; Higgins et al., 2017; Kim
& Mnih, 2019; Kumar et al., 2017). However, (Locatello
et al., 2019) empirically and theoretically demonstrate that
these methods generally do not successfully identify the
ground-truth latent features. Recently proposed VAE meth-
ods address the issue of non-identifiability by assuming
access to additional data and improve identifiability. How-
ever, they either require the label as direct input (Joy et al.,
2021), or labels for auxiliary variables that contain infor-
mation about the ground-truth latent factors (Khemakhem
et al., 2020; Mita et al., 2021) or the ground-truth factors
themselves (Locatello et al., 2019). None of these scenarios
are applicable to the traditional supervised learning setting
in our paper.

Other works With respect to model architecture, our
method is similar to Self-Explaining Neural Networks
(SENN) (Alvarez-Melis & Jaakkola, 2018b) which decom-
poses a complex prediction model into learning interpretable
concepts (using an autoencoder) and a simple (linear) pre-
dictor. More broadly, methods based on contrastive learning
or multi-view data (e.g. (Gresele et al., 2019; Hyvirinen
et al., 2019; Locatello et al., 2020; Shu et al., 2020; von
Kiigelgen et al., 2021)) can identify underlying latent fea-
tures, albeit with access to pairs of images that share similar
sources. Furthermore, the focus of these methods is on
representation learning rather than interpretable predictions.

2. Modeling interpretable and predictive
concepts

We present a probabilistic graphical model that statistically
relates the ground-truth latent features Z,. to the labels and
observed variables; our proposed method later uses this
model to learn the latent concepts as well as a simple clas-
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Table 1: Comparison of CLAP with post-hoc explanation methods and other inherently interpretable techniques. Here, the symbol v'*
highlights that for learning visually distinct features, existing predictive VAEs require strong knowledge of the latent variables or auxiliary

variables (in addition to labels).

Post-hoc explanations

Inherently interpretable

. pixel attribution+  pre-defined existing VAEs/
Properties counterfactuals concepts StyleGANs autoencoders CLAP
Learning visually distinct features X X v e v
Global importance of predictive features X v X X v
Guarantees: concept learning+prediction X X X X v

sifier based on these features. We remark that, although
the methodology in this paper is presented under a specific
generative model, the framework is general and flexible to
other modeling choices.

Let X be raw observations and Y € ) be the associated
label vector taking a finite collection of values. In general, X
is comprised of style factors Z, that should not be relevant
for prediction, and high-level core factors Z. that are the
desired ground-truth concepts. For example, in the context
of medical imaging, Y are various disease labels such as
the presence of lung atelectasis and lung infiltration. Core
factors Z. that one can see in the X-ray image X, such as
heart and lung shapes, are typically direct consequences of
a patient contracting the disease. Style factors Zs such as
physiological characteristics of the subject or specialities of
the scanner are also factors that appear in the image but are
not related to the disease.

A natural model for settings such as the one above is to
assume an anti-causal model as in Fig. 1(a), where Z. is
a child of Y, and combines with Zg to produce the raw
observation X. We assume Z. to be independent condition-
ally on Y, as in the X-ray example, they may often vary
independently (across patients) given a disease label. We
instead allow arbitrary dependencies within Z; and Y.

Aggregating style and core factors in the vector Z =
(Z.,Zs), we impose the following structural equation model
on the graph in Fig. 1(a):

X =f*(Z)+¢e wheree L Z,Y and forally € ) :

= ~ 'U/Z 'Z O . * di
ZIY=y~N (( *> , ( o o ; D, diagonal
(1)

for some continuous one-to-one function f*, vectors juy, p1*,
and positive-definite matrices D7, G*. The model (1)
encodes the conditional independence relationships in
Fig. 1(a): the covariance of the distribution Z.|Y is di-
agonal; the mean and covariance corresponding to Z, are
not a function of y and the noise ¢ is independent of Y so
that X I Y|Z.andZ; 1L Y.

3. CLAP: interpretable predictions using
ground-truth concepts

Given data of X and Y arising from the graphical model
in Fig. 1(a), our objective is to identify the ground-truth
concepts and learn a simple classifier that uses these to
accurately predict Y. Additionally, to facilitate human inter-
pretability, we aim to enable experts in the loop to visually
interpret the learned concepts. For concreteness, we special-
ize our exposition to images, although our framework can
in principle be used on other types of data.

Our proposed framework is based on variational autoen-
coders (VAEs) (Kingma et al., 2014; Rezende et al., 2014).
VAE:s offer a number of favorable properties for our objec-
tives. First, they can be derived in a principled manner from
the underlying data generating mechanism. Second, the
encoder/decoder pair in VAEs provide an effective approach
to visualize and thus interpret the learned latent features via
latent traversals (see Sec. 3.4 for more details).

In that light, a natural first approach that might come to
mind would be to train a VAE that uses the estimated latent
features for prediction. In Sec. 3.1 we derive such a model,
and show why, in its vanilla version, it can perform predic-
tion but cannot identify the ground-truth core concepts. In
Sec. 3.2, we overcome these challenges by introducing a
novel VAE architecture CLAP shown in Fig. 1(b). Our pro-
posed method combines the predictive VAE structure from
earlier with a second VAE which helps with identifying the
underlying ground-truth concepts.

3.1. Vanilla predictive VAE and its shortcomings

A natural first attempt at learning a predictive VAE proce-
dure is to maximize the following ELBO of the log-evidence

orex, ¥: (X[Z)py(Y|Zc)por (Z)
Dy Dy c)Por
logp(X,Y) > E,,, log
( ) aep (Z]X) 400 (Z]X)

=: L, (97,07, f,9: X, Y). 2

The objective £, corresponds to the VAE architecture in
the red box in Fig. 1(b). Here, ¢ is the approximate poste-
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Figure 1: The graphical model in (a) describes how the desired high-level core latent features Z. are related to the remaining variables
Y, X, Z,. The VAE architecture in (b) is derived by lower-bounding the evidence values p(X,Y') and p(X|Y') and incorporating the
generative assumptions from (a) (see main text). We utilize two separate encoders, correspondent to the £; and £, terms of objective
(3), and impose sharing of the decoder. The two encoders define two different sets of latents Z = (Z., Zs ), which are separately passed
through f to get the relative reconstructions. The two resulting objectives £, and L.; are then summed in the full objective Lczap. A
simple classifier based on Z_ is trained as part of the model inside L.

rior with encoder parameters ¢P, 1 parameterizes a simple
classifier, f is the decoder’s parameters, and 67 the prior
distribution’s parameters. Specifically, from the data gen-
erating mechanism (1), the prior pg»(Z) is a density of a
Gaussian mixture distribution with |Y | (number of labels)
components, where the covariance corresponding to the
core features for each mixture component is diagonal. The
ELBO (2) is derived in a standard fashion using Jensen’s
inequality log p(X,Y) > Eyzx v) log ZXXIZNE) g
, q(Z|X,Y)
leveraging the assumed generative model (1).

The model learned by maximizing the objective £, natu-
rally yields a classifier p,;(Y|Z.) based on core features
extracted from the encoder g4» (Z|X), which should approx-
imate the ground-truth ones. Since the encoder does not
rely on Y as an input, we can readily use it for end-to-end
classification during test time. In fact, under a regularity
condition, we show in Supp. Mat. Sec. A.2.1 that this
architecture is optimal for prediction. However, it does not
guarantee that the estimated core features Z. correspond to
the ground-truth factors Z.. In fact, they can be arbitrary
linear transformations of Z. without sacrificing prediction
performance (Locatello et al., 2019) (see ablation studies
in Sec. 4), thus not satisfying our desired properties. In
addition, as the dimensionality of the core features Z, is
typically unknown, a conservative choice for the number
of latent features (over-parameterized setting) may wrongly
include style features or redundant core features in the pre-
diction model (see ablation study in Sec. 4). In the next
section, we propose our framework CLAP that mitigates the
aforementioned issues: it learns a prediction model using the
ground-truth core concepts (even in the over-parameterized

setting), without sacrificing classification accuracy.
3.2. CLAP to overcome shortcomings

To overcome the aforementioned challenges, we augment
the objective £, with two additional terms to arrive at our
proposed objective function for CLAP:

Lerap =Ly + Lo — Anp. (3)
On a high level, the additional component L.; ensures iden-
tifiability of the ground-truth concepts Z. (concept learning)
and the regularization term \,, p helps to identify a minimal
number of ground-truth concepts in an over-parameterized
latent space. In the following, we formalize each term.

Concept-learning component £ While the objective
L, is designed to maximize the full likelihood of image
data X and target labels Y, the term L. maximizes the
likelihood of X conditioned on Y. The fact that the la-
bels act as additional input data in this likelihood objec-
tive, plays a central role in provably obtaining identifia-
bility. Furthermore, the conditional independence of Z.
given Y can be more naturally captured when Y is con-
sidered as an input. Similarly to above, for any poste-
rior ¢, we can lower-bound the conditional log-evidence
as logp(X[Y) > Eyzx,v)log % , and in-
corporate the generative assumptions in (1) to obtain the
final ELBO objective:

py(X|Z)peet (Z]Y)
qpe (Z|1X,Y)
= La(¢, 0%, f;X,Y). 4)

The component of CLAP corresponding to L, is highlighted
in blue in Fig. 1(b). Here, ¢ are the parameters of the

log p(X[Y) = E ., (zx,v) log
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Figure 2: We present how the prediction model obtained by training CLAP can be used and interpreted at test time. Supplying a test
images z to the component £,, of CLAP, we learn core features Z.. These features are visualized using latent traversals and interpreted
by a human, who assigns them to high-level concepts. Furthermore, the estimated linear classifier predicts a label and provides global
(population wise) and local (instance wise) importance for the interpreted concepts.

encoder, and f those of the decoder. Appealing to the data
generating mechanism (1), we can further factorize the prior
in the form pye (Z|Y) = p(Z.|Y)p(Zs). Here, p(Z.|Y) is
a Gaussian density function with diagonal covariance and
different parameters for different Y while we model the
prior p(Zs) as a standard Gaussian distribution without loss
of generality. We aggregate all these parameters in .

In general, maximizing the ELBO or even the true log-
evidence would not allow for of identification the true con-
cepts. However, a simple heterogeneity assumption can
alleviate this issue, formally stated in Supp. Mat. Sec. A.1.

Assumption 1 (Concept learning, informal). The functions
f, [* satisty a regularity condition and the distribution of
core features change ‘enough’ when conditioned on differ-
ent realizations of Y.

Lemma 1 (Maximizing L identifies the ground-truth con-
cepts). Suppose the data is generated according to the model
in (1) with no noise, i.e. ¢ = 0 and Assumption | holds.
Suppose L.; is maximized in the infinite data limit with
the correct number of latent features included in the model.
Then, the posterior samples Z. obtained from the encoder
e are equal to the ground-truth features Z. up to permu-
tation and scaling.

We prove this lemma in Supp. Mat. Sec. A.2.2, and also
extend to the noisy setting in Supp. Mat. Sec. A.4. Theo-
retical results for identifibiality were previously established
in (Khemakhem et al., 2020). We note that our guarantees
differ substantially and refer to Supp. Mat. Sec. B for more
details. Despite the concept-learning capabilities, a model
trained only on L.; cannot be used for prediction since it
requires the labels as input to the encoder gy (Z|X,Y).

Therefore, we combine the objectives £, and L; by uti-
lizing the same decoder f in (2) and (4), as represented in

Fig. 1(b). This coupling via a shared decoder is crucial, as
it forces the £,, architecture to also perform concept learn-
ing: During joint training, the two encoders of L.; and L,
learn approximately the same latent space (we show in The-
orem 1 that the latent spaces align in the infinite data limit).
ISince L provably identifies the ground-truth features in
the latent space, it then follows that the estimated core fea-
tures obtained by the encoder of £, closely align with Z..
Thus, after training the combined objective £, + L, the
trained VAE architecture corresponding to £, provides an
interpretable prediction model: an input image is mapped to
accurate ground-truth core features, which are then used on
top of a simple classifier to predict the target label Y. We
refer the reader to Sec. 3.4 for more discussion on how the
trained CLAP is used at test time.

Sparsity penalty p to account for overparameterized
latent space We add a regularization term A, p(f, ) to im-
pose simultaneous group sparsity on the prediction weights
and decoder weights — this ensures that if an estimated core
feature feature is predictive, it has non-negligible effect in
the reconstruction of the image and vice versa. In particular,
let k., ks be the conservative choice on the dimensionality
of the core and style features in our VAE model, respec-
tively. Further, let & = k. + k; be the total number of
latent variables. We consider the following parameteriza-
tion for the decoder f = f' o B, B € R¥** and classifier
Y =100, C € RFeXFe where [Y| is the number of labels
to be predicted and f’, v’ are one-to-one and continuous.
Then, the sparsity inducing penalty p(f,) in the combined

"Informally speaking, the reason for this is that the latent fea-
tures in each architecture reconstruct the image via the same de-
coder. Since the common decoder defines a generative model , the
posteriors (i.e. the different encoders) need to be similar as well.
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objective function (3) takes the form:

i =31 (c)

i=1

k

i=ke+1

&)

where the indicator function I[-] counts the number of latent
features effectively utilizes by the model. Note that the
nonzero columns of C' correspond to core features in the
model with predictive power, and the nonzero columns of
B correspond to core and style features that are used for
reconstruction with the decoder f. For practical consider-
ations, we consider the following convex surrogate in our

experiments: p(f, 1) = 3.7, (B B,
3.3. Theoretical guarantees for CLAP

In Sec. 3.2, we described how after the training of CLAP,
the component corresponding to £, can be used as an inter-
pretable prediction model. We next provide guarantees that
this prediction model is optimal in terms of accuracy and is
based on high-level features that align with the ground-truth
concepts. In the sequel, we denote k., ks to be the number
of core and style features chosen in the VAE architecture
and k7, k7 to be the dimensions of the corresponding true
features of the generative model in Fig. 1(a). Further, we
US€ qjp5 G O denote the encoders obtained by maximiz-

ing the objective in (3) in the infinite data limit and let 7
be the posterior samples obtained from ¢ 4o for input X?.

Finally, we denote the trained classifier as 1[) = 1[)’ o C’ and
the core features Z. are specified as the vector of elements
of Z corresponding to nonzero columns of C.

Our main theorem additionally requires an assumption about
a simple classifier being optimal:

Assumption 2 (optimal classifier). The Bayes optimal clas-
sifier for predicting 'Y using Z. belongs to the set of simple
classifiers used in CLAP.

Theorem 1 (CLAP learns an optimal prediction model us-
ing interpretable ground-truth features). Consider the same
setup as Lemma 1. Suppose k. > k%, ks > k%, and that
Assumptions 1 and 2 hold. Then, the posterior samples Z
obtained from the encoder ¢, are identical to the posterior
samples obtained from the encoder ¢ et~ Furthermore, the

core features Z, are 1) optimally predictive: Y |Z, & Y |X,

and 2) aligned with the ground truth: Z. is equal to Z up
to scaling and permutation.

The proof of Theorem 1 is presented in Supp. Mat. Sec. A.3.
Our guarantees in Theorem 1 ensure that the prediction
model obtained by CLAP is optimal. Furthermore, the core
features Z, align with the ground-truth concepts. Finally,
the number of predictive factors equals to the number of
ground-truth concepts; that is, our model obtains the mini-
mal set of predictive features.

3.4. Using CLAP’s output for interpretation

We now discuss how CLAP’s trained model can be used

> O} + Z I {HBTZH2 > 0} ,to produce an end-to-end interpretable prediction model
2 .

pipeline, which we represent in Fig. 2.

At inference time, the part of CLAP’s model corresponding
to £, is utilized, since it does not require a label as an input
(Fig. 2 left). As we describe in detail next, the learned con-
cepts are visualized using latent traversals; to conclude the
pipeline, a human expert visually inspects these traversals
and assigns a meaning to the relative latent variables.

Interpretations via latent traversals Generally, the visual
explanations provided by the model need to be evaluated
by a human expert (see Sec. 1). As is customary for VAE
models, we provide such visualizations via latent traver-
sals. Specifically, let  be an input image. The core con-
cepts associated to x are obtained via the posterior mean
i(x) = E%p(zc‘z) [Z]. The semantics of Z, are then dis-
covered by performing latent traversals. In these, we change
one component of fi(z) at a time, while keeping the others
fixed, and observe the reconstructions obtained through the
decoder f . Owing to the concept-learning capabilities of
CLAP, the traversals on the core latent features will produce
distinct changes in the reconstructed images corresponding
to the different discovered ground-truth concepts, which
will allow the human expert to assign them with a semantic
meaning. This procedure is represented in the top-right of
Fig. 2. There, for example, upon visual inspection, the first
latent is assigned the meaning of ”Shape” from the expert,
the second ”Color”, and so on.

Interpretable predictions using learned concepts We note
here that in our experiments, we found a linear classifier
to be well-performing across all datasets. For this reason,
the following description assumes ¥ to simply be the lin-
ear weights of the corresponding linear classifier py, (Y|Z.).
For each concept, we provide both a global and local rel-
evance for prediction, as depicted in the bottom right of
Fig. 2. The global relevance represents the importance of
a concept for prediction at a population level (i.e. across
images) and is thus directly encoded in the entries of 1& The
local relevance is instead image-specific, and is observed in
the summands of the linear combination (fi(z),)). These
two measures allow the practitioner to transparently assess
the decision process of the model, as they assign a prediction
weight to human interpretable features.

4. Experimental results

We next present experiments on synthetic data to corrobo-
rate our theoretical results, and evaluate the ability of CLAP
to learn an accurate prediction model using the ground-truth
features. Since in most real-world datasets, ground-truth
factors are unknown but necessary to verify whether CLAP
can work in practice, we resort to three standard “disentan-
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Figure 3: a) CLAP traversals on (in order) the MPI3D, Shapes3D and SmallNORB datasets, and b) SENN prototypes on (in order) the

MPI3D and Shapes3D datasets.

glement” datasets MPI3D (Gondal et al., 2019), Shapes3D
(Burgess & Kim, 2018) and SmalINORB (LeCun et al.,
2004). These datasets consist of collections of objects gen-
erated synthetically according to some ground-truth factors
of variation. The images are a priori unlabeled; thus, we
select some of the ground-truth factors, which represent the
concepts Z. to be discovered, and generate artificial binary
labels Y. The ground-truth factors Z. are object shape, size
and color for MPI3D, object color and size for Shapes3D
and object type and lighting for SmalINORB (see Supp. Mat.
Sec. D). For all the experiments and baselines in Sec. 4, de-
tails on training and architectures employed are deferred to
Supp. Mat. Sec. C. In general, for all methods, we used
neural network architectures comparable in complexity to
those utilized in (Joy et al., 2021; Qiao et al., 2019).

As explained in Sec. 3.4, we proceed with the evaluation
of CLAP by first generating latent traversals. The goal is to
determine whether the discovered concepts have a one-to-
one correspondence with the ground-truth Z, that we used
to generate the data. In Fig. 3(a), every row corresponds
to the traversal for one latent feature. As can be observed,
the estimated core features indeed represent the ground-
truth ones; this means that the model identifies the ground-
truth concepts underlying the data generating mechanism.
Importantly, we remark that the concept names assigned
to the single rows (e.g. ”Size”, ”"Shape”) are obtained by
visual inspection; the model doesn’t have direct access to
them, but only to the images X and labels Y.

Finally, the discovered Z. are also fully predictive, as
CLAP achieves classification accuracy above 0.99 on all
the datasets. We include additional traversals in Supp. Mat.
Sec. D.1; there, we also show that, due to the sparsity reg-
ularization penalty p(f, ), the model accurately assigns

negligible global and local weights (i.e. no predictive value)
to the remaining latent features included in the model. This
is in contrast to the concepts shown in Fig. 3(a) that have
non-negligible global and local weights. In other words,
in line with our theory, estimated core features that have
prediction power align with the ground-truth concepts.

Comparison with baselines We compare the outputs of
CLAP with those of SENN (Alvarez-Melis & Jaakkola,
2018b) and CCVAE (Joy et al., 2021), two prediction mod-
els in the existing literature that are closest to CLAP. To
explain its predictions and visualize the learned concepts,
SENN uses prototypes — a set of training images that “best
represent” every latent variable. In Fig. 3(b), we depict the
prototypes relative to some of these features. Similarly to
CLAP, human inspection is needed to describe the concepts
that such latents encode. However, the task here is substan-
tially more difficult: for any of the latents, we can observe
many different changes, e.g in the first row objects of dif-
ferent colors and shapes are observed, and from different
camera angles. This indicates that not only SENN is not
able to identify the ground-truth Z., thus hindering inter-
pretability, but also mixes them with non-predictive style
features Zs. We also apply CCVAE on synthetic data and
observe that its learned latent features do not align with the
ground-truth ones; due to space constraints, we show these
results in Supp. Mat. Sec. F.

Ablation studies In order to demonstrate the importance of
each of our design choices, we also perform various ablation
studies on the MPI3D dataset, presented in Supp. Mat. E.
Firstly, we show that if the sparsity penalty A\, p(f, ) is
removed from the learning objective, the resulting model
utilizes separately some latent variables for visualization,
and some others for prediction. On the other hand, with the
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Figure 4: Output of CLAP and traversals of CCVAE for the Chest X-ray dataset. In (a), we present the weights for both the atelectasis
and lung infiltration disease predictions, as well as the human interpretations of the discovered concepts. For better visual comparison, we
only show the images obtained at the extremes of the latent traversals. Moreover, we highlight the changes that occur during the traversals.
We include magnified figures with full traversals in Supp. Mat. Sec. G, as well as a glossary on how to read the results.

use of A, p(f, 1), CLAP ensures correspondence between
features utilized for prediction and visualization. Further-
more, we show latent traversals for a model trained only on
L,. As explained in Sec. 3.1, the learned features are fully
predictive, but do not correspond to the ground-truth one.
In fact, it can be observed that various ground-truth features
change jointly within one single traversal. Further, we em-
pirically confirm that the concept-learning capabilities of
CLAP rely on the labels Y being informative enough, as
highlighted by the assumptions in Sec. 3.2. Practically, this
means that multiple labels help with more accurate recovery
of the ground-truth Z.; we show that the concept learning
capabilities of CLAP indeed decrease on a dataset where
only one label is available.

5. Future Outlook

So far, we have evaluated CLAP in synthetic scenarios where
we know the ground-truth data generating mechanism and
the core factors are easy to recognize for a layperson. For
many scientific scenarios such as the example in the intro-
duction, evaluating whether learned concepts correspond
to the ”ground-truth” can only be done by domain experts.
Nevertheless, we provide the outputs of CLAP for some
challenging real datasets to highlight some of its favorable
properties compared to other competing methods.

In this section, we present results on the Chest X-ray dataset,
and defer additional experiments on the PlantVillage dataset
(Hughes et al., 2015) to Supp. Mat. Sec. H. The Chest
X-ray dataset (Wang et al., 2017) consists of radiography
images; each image has 14 associated binary disease labels.
We emphasize that only the disease labels may be used to
learn the underlying concepts and no additional supervision
is available. As explained in Sec. 1.1, many inherently
interpretable models cannot be applied successfully in this
setting, since they generally assume further information
on the ground-truth factors. Due to the negative results for
SENN in Sec. 4, we only compare our method with CCVAE.

Both CLAP and CCVAE attain similar classification accura-
cies of 0.903 and 0.898, respectively. In Fig. 4, we compare
the traversals obtained by both methods. First we observe
that CLAP manages to learn concepts that are localized in
the X-Ray image, corresponding to separate properties, such
as "Heart shape” and ”Lung shape”. Instead, in both the
traversals presented for CCVAE, characteristics that can be
associated to both the heart and lung shapes vary together.
Thus, while CCVAE finds similar concepts for prediction,
they do not appear as separate components of Z.. Hence it
is harder for a human expert to uniquely label the learned
concepts and, consequently, interpret the model’s output.

Another desirable characteristic of CLAP is that the global
and local weights reflect the importance of the concepts in
predicting different diseases. For example, compared to at-
electasis, the concept ”lung shape” has higher weight (both
global and local) in determining the presence of lung infil-
tration. Since lung infiltration is a condition related to dense
substances in the lungs, the concept “lung shape” learned by
CLAP is natural and indicative. Further, we remark that the
discovered concepts manifest through very nuanced traver-
sals. This is sensible, as it is to be expected that real life
examples come with subtle and less pronounced features
than synthetic and commonly used datasets. In conclusion,
these experiments show the advancement and potential of
CLAP compared to existing methods for providing real-life
interpretable predictions.

There are a number of exciting future directions that can
further improve CLAP for broader and more effective use in
real-world scenarios. For example, the visualizations of the
VAE are not optimally sharp compared to the status quo for
GANSs. Hence, it would be interesting to explore whether
one can obtain provable concept learning when the VAE is
replaced by a GAN structure. Further, in many scientific
applications, the number of available images can be quite
small. An interesting avenue for future research could be to
develop solutions for the small data regime.
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A. Proof of Theoretical results

For simplicity, we first prove guarantees for CLAP in the setting where the number of latent variables is specified correctly.
Subsequently, we will extend the analysis to the setting where the number of latent variables is miss-specified (i.e. chosen
conservatively).

Throughout, we use the following notation. Let Px be the distribution of X, Py be the probability distribution of, Px y be
the joint probability distribution of and (X,Y), and Px|y be the probability distribution of X|Y, all with respect to the
data generating model. Associated with the probability distributions Px and Px |y are the density functions with we denote
by p*(X) and p*(X[]Y)

A.1. Formal description of our assumptions

Let f’ be the function from the decomposition f = f’ - B introduced in relation to the sparsity regularization term (B is the
identity matrix when the number of latents is correctly specified). Assumption 1 then is formally described as follows:

Assumption 1 (Concept learning, formal).

Assumption 1.1.  The functions f’, f* are one-to-one and continuous

Assumption 1.2. There exists (y,7) € Y s.t. D;(D;)*1 has distinct diagonal entries not equal to one.

The first component of Assumptions 1 is rather mild and ensures that the functions mapping from the latent space to the
input space are injective. The second component of Assumption 1 states that variations in the label Y should impact the
variance of all the core latent features (hence the exclusion of value “one”) and in a distinct manner. This type of assumption
is similar in spirit to requiring “heterogeneous interventions” in causal structural learning. Specifically, in the context of
our anti-causal graphical model 1(a), the labels y € ) can be viewed as an “environment” variable where an environment
dictates the distribution of the core latent features. A change in an environment can then be viewed as interventions on the
core latent features. Thus, in this perspective, the second component of Assumption 1 requires the impact of the interventions
to be on all of the core features and to be sufficiently heterogeneous. Furthermore, we note that the second component of
Assumption 1 requires that changes to the label lead to simultaneous changes to all of the core features. This assumption can
be relaxed so that not all of the core features must vary at once with a change in the label, as long as each feature varies for
some change to the label. Mathematically, the assumption can be relaxed to the following: for every i, j € [k¢],7 # j, there
exists y,§ € Y such that [D; D3 '], ; # [Dy Dy~ '] and [Dy D5~ 5 # 1, [Dy Dy~ 1.5 # 1.

We now state Assumption 2 formally. Specifically, letting S be the set of simple classifiers in the training, we require:

Assumption 2 (optimal prediction, formal). The Bayes optimal classifier for predicting Y using Z. belongs to the set of
simple classifiers S used in CLAP, i.e.

Ellogp" (Y|Z0)] = max Ellog p, (Y |2.)]

A.2. Analysis with known number of latent features
A.2.1. MAXIMIZING L, ACHIEVES OPTIMAL PREDICTION

As described in Section 3.1, maximizing the objective £,, achieves optimal prediction. We formalize this below.
Lemma 2 (Maximizing £, achieves optimal prediction). Suppose the data is generated according to the model in (1) with no
noise, i.e. € = 0 and Assumptions 1.1 and 2 hold. Suppose £ is maximized in the infinite data limit with the correct number

of latent features included in the model. Then, the posterior samples Z. obtained from the encoder 44, are optimallly
dist

prediction: Y|Z. < Y|X.

Proof of Lemma 2. We analyze the following estimator in the infinite data limit:

jrgam?i EX,YNPx,Y[ﬁp(¢p79pv fvl/);XaY)]' (6)
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The optimization program (6) can be equivalently expressed as:

argmax - Exr lE%me) logp;(X|Z)] - KL (q¢p(ZIX),peP(Z)) 1

reconstruction loss

(7N
Eq¢p(2|x) [logp¢(YZC)]] .

+ Ex v Px v

classification term
Here, Z is an approximation for the true latent variables Z with p f(x\Z) =4 £(Z) Consider maximizing the reconstruction

loss in (7). In this setting, the VAE model searches for an approximation f (Z) Y X where the parameters of the VAE
model (e.g. posterior ¢P, prior 6P, f) are optimized to yield the best approximation of X. In other words, VAE training
approximates the following optimization:

argmax Ex.py [logpser(X)], (8)
1,67

where the likelihood py ¢» (X) is defined with respect to the dlStrlbuthIl X & f(Z) with Z being a Gaussian mixture
distribution with parameters 67. Optimality for (8) is achieved if X & * X, ie. ps.or(X) = p*(X). In particular, by definition

1
<PD 0 > Z and the family

PD 0
0 N

this is achieved for f = f* since X = ot f*(Z). Similarly, since X = o [ fro (PD 0 )

of Gaussian mixture distributions is invariant to linear transformations, we can further conclude that f = f* o <
for any permutation matrix P and diagonal matrix D is also an optimum of (8).

Since it is hard to maximize over py¢ g» directly, the VAE training approach uses a surrogate for the density p via the ELBO
approximation. Specifically, recall that the ELBO is a lower bound for the log-likelihood:

log (v (X)) = E,, g1 log p(XI2)] ~ KL (a6 (Z1X),p0»(2)) . ©
Equality holds if the approximate posterior matches the true posterior, that is in the noiseless case, for any x € X’
q¢p(Z\X:a:) pr(Z|X=JJ) :61‘*1(1)- (10)

Here, we have appealed to one-to-one property of the function f by Assumption 1.1 and that the number of latents is specified
correctly. Hence, with the choice of the posterior in (10), and setting X o X, the maximization over f, 8P of (8) and the
reconstruction loss in (7) are equivalent.

We finally need to verify that ¢ in (10) leads to an optimal prediction in the classification term in (7). This follows by noting
that Y|f~1(X) = & Y| X according to the graphical model in Figure 1(a), from the optimum (10) for g4», and Assumption

2. O
A.2.2. PROOF OF LEMMA 1: MAXIMIZING L., IDENTIFIES THE TRUE CONCEPTS

We analyze the following estimator in the infinite data limit

argmax Z PY (Y = y)EX"‘PX\Y=y [‘CC1(¢CI7 061, fa X’ Y)}
¢cl’9cl’f yey

= argmax Z Py (Y = y)Exw»xw

gm: Ege (Z|X,Y = y)[logpy(X|Z)] (11
%0%.f yey

— KL (Q¢Cl(Z|X’Y = y),pch(Z‘Y = y)) ‘| )
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where equality follows from the definition of £.,. Here, Z is an approximation for the underlying latent variables Z

with Z]Y =y ~ N (uy, (Doy g)), for some vector /1, and (diagonal) matrix D, € R¥<*ke and a general matrix

G € RF=**s altogether accumulated in the parameter 6. Finally, we have that p(X|Z) = § 1)

The proof of Lemma 1 relies on the following lemmas, which we state below and prove later.

Lemma 3. Let a,b € N, Suppose QD = DQ for orthogonal matrix Q € R(@+%)*(a+0) and diagonal matrices D, D where

in the first a coordinates, D has unequal diagonal entries with no entry equal to one. Suppose that the last b entries of D, D

are equal to 1. Then, () takes the following form: Q) = <P Q) where P € R®*® is a permutation matrix and Q € RVxb

0 @

is an orthogonal matrix.
Lemma 4. The following two statements are equivalent:

1. the parameters (¢<, f, {ty, Dy, é}yey) are optimizers of (11).

Dy Q)) : ¢ = parameters of Z|X,Y =y.

2. forally € Y, X & f(Z); ZleyNN(ﬂy,(O &

With Lemmas 3 and 4 at hand, we are ready to prove Lemma 1.

Proof of Lemma 1. Lemma 4 states that in the noiseless case ¢ = 0, we have X oot *(Z) o f(Z) for Z|Y =y ~

N (ﬂy, (lgy g) ) . We now show that the set of all possible solutions for f , denoted by H, is restricted to maps of the

form f* o (POD g) for permutation and diagonal matrices of dimension k. X k. and general ks X ks matrix G.

Remember in the noiseless case X := f*(Z). We then have the following equality:

H= {continuous, one-to-one f | fTHX)[Y =y ~N (uy, (Doy (0;’>) ; Dy diagonal for all y € y}

(i){f* o g for a continuous, one-to-one g | g~ (Z)|Y =y ~ N (uy, (Doy g)) ; Dy diagonal for all y € y},

where for every y € YV, D, € RFexke and G € RF=*k: Here the relation @ follows from f* being one-to-one and

continuous from Assumption 1.1 as well as X et f*(Z). We further have

H@{f* o M for invertible matrix M | M~ (Z)|[Y =y ~ N (,uy, (%y g)) ; D, diagonal for all y € y}

© 0\ /2 D 0\"2 (12)
& {f* oM } M= ( Oy G*) Q, ( Oy G) ; Dy, diagonal, @, orthogonal for all y € y}.

. b . .. .
The relation @ follows from the fact that the set of one-to-one continuous operators that preserve Gaussianity are linear; the

*
relation © follows from Z|Y =y ~ N (u;, (Dy é)*)) and the following calculations:

0
-1 D; 0 -T _ Dy 0
M ( 0 G* M= 0 G
—1/2 —1/2
Dy 0 -1 D; 0 -T Dy 0 —
@(0 G) M (0 o | M i —1d (13)
—1/2 « 1/2
N (DO Y g) M1 (lz]y C?*) is an orthogonal matrix.
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Consider the pair y, § satisfying Assumption 1.2. Then, since M doesn’t depend on y, we have that:

1/2 —-1/2 " 1/2 —-1/2
D 0 D, 0 _(D: 0 (Dy ©

Define the quantities:

. (Dp~tDy 0N o ((Dy)'Dy 0
A'( o 1) AT 0 Id) -

Then the relation (14) reduces to the following condition:

(A*)~1/2Q, AY? is an orthogonal matrix. (15)
The relation (15) leads to the conclusion:
QA =A"Q,. (16)
Since by Assumption 1.2, the first k. diagonal elements of A* are distinct, A, A* satisfy the assumptions of Lemma 3. This
implies that @, = (187’ Qy) for some permutation matrices P, and orthogonal matrices @), and hence

H = {f* oM | M = (POD 2") ;D e RFEeXke diagonal, P € RFeXke permutation matrix, G € REsxks }7

which concludes the proof. O

Proof of Lemma 3. For convenience, we first decompose the matrices () = ( @1 le) where Q; € R¥<*¥e and similarly

Q21 Q2
for D, D. We first show that Q5 = 0. The relation QD = D(Q implies that for any pair of indices (i, j) either [Q] ij =0or
[Qij #0 & [D]i; = [D);;. Consideri € {1,2,...,k.}and j € {k.+ 1,k +2,..., k. + ks }. By the above relation and
the assumption that the first k. entries of D are not equal to one and the last & entries of D are equal to one, we conclude
that [Q];; = 0. Thus, we have established that Q15 = 0. Further, because QQ " = I, we have that Q21 = 0.

It remains to show that (), is diagonal. First note that since ( is orthogonal, the matrix J; must be orthogonal. The equality
QD = D@ now implies that Q)1 D1 = D1Q);. In particular, )1 D, QlT = Dy, thatis QlDlQlT is an eigen-decomposition of
a diagonal matrix with distinct eigenvalues. By the uniqueness of eigen-decompositions, ()1 must therefore be a permutation
matrix. O

Proof of Lemma 4. Consider maximizing the reconstruction loss in (11). In this setting, the VAE model searches for an

A~ dis
approximation f(Z) ~ X where the parameters of the VAE model (e.g. posterior ¢, prior ¢!, f) are optimized to yield
the best approximation of X. In other words, VAE training approximates the following optimization:

argmax z Py(Y = y)EXN]P’x‘y=y log s pet (X|Y =y)], (17)
f Gcl Uey
where the likelihood p gi (X) is defined with respect to the distribution X o f(Z) with Z|Y = y being a Gaussian

19[

distribution with parameters 0. Optimality for (17) is achieved if X = X, i.e. p 700 (XY = y) = p*(X]Y = y). Since
it is hard to maximize over py g« directly, the VAE training approach uses a surrogate for the density p via the ELBO
approximation. Specifically, recall that the ELBO is a lower bound for the log-likelihood:

log (" (XY =y)) 2 B, , zx) llog ps(X|Z)] — KL (%d(ZIX,Y =), pea (Z]Y = y)) :

Equality holds if the approximate posterior matches the true posterior, that is in the noiseless case, for any x € X:
q¢cz(Z\X:x,Y:y):pf(Z|X:a:,Y:y):5f4 (z)- (18)

where we have appealed to f being one-to-one from Assumption 1.1.. Hence, with the choice of the posterior in (18), and

setting X & > X, the maximization over f, 0 of (17) and the reconstruction loss in (11) are equivalent. O]
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A.3. Proof of Theorem 1: miss-specified number of latent variables

In this section, we analyze the regularized estimator:

oo B wEx,Y[cmﬂ 07, [, X, Y)] + Bx v [La (67,607, F; X, Y)] = Auplf, 90).- (19)

For our analysis, we define a few quantities. Let fZ .., be one-to-one extension of f* to a domain R* where for any v € R*:

Id,, 0 0 O
* * _ px Uik, * 0 0 0 0 kxk
fowena 0 B*(v) = f (”kc+1:1}c+ks) where B* = 0 0 Idy O € R*"7%,
0 0 0 O

Here, Id .y denotes an identify matrix with its size specified in the subscript. Finally, we let Zexena € R¥ be a random variable
that is identical to Z (true core and style features) in certain coordinates, and a standard Gaussian in other coordinates.
Specifically:

Id,, 0 0 O o 0 Id,;c_kc 0 0 . .
(O 0 Id,. O) Zxiend = 2 (0 0 0 Idfcs—ks Ziexiend 18 standard Gaussian.

s

In the infinite data limit with the regularization parameter \,, tending to zero with larger sample size, the optimal parameters
of (19) are solutions to :

argmin — p(f, 1)
Fitb,0,07 e 01

subject-to £, b, 7,07, ¢ 0 € argmax  Ex y[Lo(¢P, 07, f,1 X, Y)] (20)
f7¢7¢1’,9p,¢cl’9cz

+ EX,Y[£C1(¢pa 6177 f7 ’(/}; Xa Y)}

The proof of the corollary requires a few lemmas which we provide next and prove later.

Lemma 5. We have the following equivalence for a set of parameters f, 1), ¢P, 67, ¢!, 9°L:

fa ’l/}a ¢p’ 91)7 d)da GCl S ; w?;rgelnax’ gt EX,YNIPx,Y [‘Cp(qspv 917’ fv 71)7 X,Y)] + EX,YNIP’x,Y [Ccl(¢p7 917’ fa ’l/}v XvY)]
b,P 0P pel gel

=

fa ¢p7 9]07 QbCl, ecl S argmax EXNPX
¢p79p7¢cl,0cl’f

Ey o I (K12 - KL 10 50 0 )|

T Ex,yopxy | B,

E, ,axylogpr(X|Z)] - KL (qd,d (Z|X,Y), pye (Z|Y)) ]

T/), (bp € argmax EX,YNPX,Y
P, PP

]Engp (Z\X) [logpw (Y|Zc)}‘|
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Lemma 6. We have the following implication for the parameters ¢?, 6P, ¢!, <, f:

(bI),QP’ ¢6l>96l7 f c paigmlaxl EXNIP’X [Eq¢p(Z|X) [logpf(X\Z)} — KL (Q¢p(Z|X),p9p (Z)) ‘|
P07, ,0, f

+ Ex,y~Px v

E, ..zxv)llogs (X|Z)] - KL (%d (ZIX,Y), ppet (Z\Y)) ]

Y, € argmax Ex,y~px v lEqw(ZIX) [logpw(Y|Zc)]]

= foreveryycyY f=foB def( )WhereZY:yNN<My’ (l())y g)) and

D, € RFexFe G e RE*ks ¢, (Z|X) = p(Z|X), 440 (ZIX, Y =y) = p(Z|X,Y =y).

Lemma 7. Consider the following optimization problem:

k
(fépthopt): argmin Z (1B.;ll2 > 0)

f’one-to-one, B

. dis =
subject-to  there exists a random vector Z € RF with X & f o B(Z)

ZY =y~N (My, (%y g)) forally € Y

Then, the following statements hold:

1. Any feasible B has k (nonzero) linearly independent columns.

2. Any optimal B, has exactly £ columns that are nonzero and linearly independent.

PD 0 0 0\" ; i |
0 0 H O Oor Ssome 1ag0na

¢ and non-singular matrix H € RFs*Fs

3. Letting Boptreduced be those nonzero columns, then, fépt 0 Boptreduced = foxtend © (

ch xXke ch Xk

matrix D € , permutation matrix P €

4. Letting Zreduced be the latent features corresponding to nonzero columns in B,

~ D= 'p~'1p*p~Tp-1 0
Zreduced|Y =Yy N (Hy, ( Oy HIG*HT>> for all (VRS V.

Proof of Theorem 1. Throughout the proof, we take f = f’ o B and ) = )’ o C. We consider the following reformulation
of the minimal value of the optimization (20):

[V .= min ¢
subject-to  p(f, ) <t

f7 W ¢pa opa djda od S argmaxl . EX,YN]P’X,Y [['p ((bpa 6?7 f7 ¢5 X’ Y)]
fob,¢P,07,¢ct 0¢

+ ]EX,YNIP’x,y [‘ccl (¢p’ 0p7 f7 % Xa Y)];

where we denote the set of feasible parameters (¢, f, 1), #7, 0P, ¢, 0<!) of the optimization problem above by S™). Our
objective is to show that any optimal encoder produces core features that are permutation and scaling of the true core features.
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To that end, we consider the following optimization problem:
1® .= min ¢t

subject-to  p(f,v) <t

£ P, 07,6 0% € argmax  Expy
f,0P,07, ¢!, 0!

E,..zx) logpf(X|Z)] — KL (q¢p(Z\X),pep(Z)) ]
+Ex Y Py [E @) 10807 (X|Z)] = KL (g0 (21X, Y), pet (2]Y)) ]

1)[)) ¢p € arglgpax IEX,YN]P’X,Y lEQ¢p (Z|X) [logpdl (Y|Z)]‘| )

where the set of feasible parameters (¢, f, ¥, P, 67, ¢!, 6<) are denoted by S (2). By Lemma 5, we have that S?) = S(1)
so that 1) = [(1), We then relax the constraint set as follows:

1®) .= min ¢t

k
subject-to ZH(”B:J‘HQ >0)<t

i=1

£ P, 07,6 0% € argmax  Expy
f,0P,07 ¢!, 0!

E,..zx) logpf(X|Z)] — KL (q¢p(Z\X),peP(Z)) ]
+Ex Y pxy [E @) 10827 (X|Z)] = KL (g0 (21X, Y), ppet (2]Y)) ]

1)1)) pr € argrgpax IEX,YN]P’X,Y lEQ¢p (Z|X) [10gp1/1 (Y|Z)]‘| )

where the set of feasible parameters (¢, f, ), ¢7, 07, ¢, 0<') are denoted by S). Evidently, S©®) D §?) D SM) and thus

1D > 72 >0 Let Ségl) be the optimal set of parameters in S©*). Appealing to Lemma 6 and Lemma 7, the set S(Est)
given by:

Sésl) = {(t, fo1h, @P, 0P, ¢ 0°) | t = k, there exists a random vector Z € RF and matrices P D, H s.t.

T
dis 5 PD 0 0 O i
X = fl o BZ f/ O Dreduced = f;(tend ( 0 0 H 0> where Biequced € RFxk
6°! parameters of the Gaussian random vector Z|Y = y where: 21
- D_lp_lD*P_TD_l 0
Zreduced|Y =y~ N (,uya ( Oy Hlg*H T

07 parameters of the distribution of Z , gg»(Z|X) = Gpel (Z|X,Y) = p(Z|X)

Y € argmax Ex vpx v

E%)P (Z\X) [logpw (Y|Zc)]‘| } .

Here, P is a k. X k. permutation matrix, D is a k. X k. diagonal matrix, and H is a k; X ks non-singular matrix. Furthermore,

Breduced 18 the k nonzero columns of B and Zegyceq are the components of Z corresponding to the nonzero columns of B.
dist

Take any optimal set of parameters in (21). Noting that X = fX . B* Zextend, it is straightforward to check that the first k.
components Zeqyced|X are a permutation and linear scaling of Z., and thus the posterior samples are optimally predictive.
As such, one possibility for an optimal predictor is 1) = 1)’ o C where C has the same nonzero columns as B in (21). Notice

that the resulting set of parameters is feasible in the set S") and yield the objective value ¢ = k. In other words, we have
shown that [() = [(2) = [(3) =k,
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Now let S(E;l) be the optimal set of parameters associated with /(!). By Lemmas 5, 6 and 7, any optimal B should have at
least k nonzero linearly independent columns. Thus, to attain the lower bound ! (1) = k, the optimal B should indeed only
have k nonzero columns. This observation implies that the constraint Zle I(]| B.,;]l2 > 0) < ¢ can be added to feasibility
set S() without changing the optimal value. Thus, we have concluded that S(E;t) C S(S;?. Since any parameters in (21) lead
to the posterior samples (Idkc 0) Zreduced|X that are a permutation and linear scaling of the samples of Z., we have the

desired result. ]

We now prove the Lemmas 5,6, and 7 that were used in the proof of the corollary.

Proof of Lemma 5. The direction < follows in a straightforward manner. For the direction —, we introduce some notation.
Define:

h(fa (bpv 9p7 (bdv 901) = ]EXNIP’X

E,., @x)logps(X|Z)] - KL (qw(Z\X)mep(Z)) 1

+ Ex y~Px v Eq(pcl(Z\X,Y)[lngf(X@)] — KL <q¢"l(Z|X»Y)7pecl(Z|Y)> 1

9(d", ) == Ex yorx v []Ew(zm log py(Y|Z)]

Note that ]EX,YN]P’x,y [ﬁp(¢p7 917’ fu 1/); X7 Y)] + EX,YNIP)X’Y [Ecl(¢p7 9177 fu 1/1; X7 Y)] = h(f7 (bp, 9p7 (bd? ed) + g((bpu 77[])
Thus, we have the following inequality:

o ¢z}%%}§;ri gel ]EX,YNIP’XVY [Lp(¢pa gp, fa 11[}5 X7 Y)] =+ EX,YNIP’XA( [£c1(¢p7 0;07 f7 1/}a X7 Y)]

< max o A(f, 67,07, ¢, 0%) + maxg(¢”, ).
¢p76p7¢cl7gcl7f w,(bp

(22)

Consider the parameters in (21). Notice that they optimize each term in the right hand side of the inequality above and are
feasible in the optimization problem in left hand side of the inequality. Thus, the inequality in (22) is actually an equality.
Let top be the optimal value of either side of the equality.

Suppose for a proof of contradiction that the direction — is not valid. In other words, consider a set of maximizers
(fopt> Yopts (bffpt, prt, gfn, egf,t) for the left hand side of the equation above that are not maximal in either term in the right
hand side. Then: -

topt = h(foptv ¢€pt? egpn (C)ptv o(c)pt) + g(¢gpta wopt)

< max  h(f, 4", 0", ¢%, 07) + max g(¢”, ).
#P,07 ¢ 0% f ), ¢P

This however contradicts the fact that the inequality (22) is an equality. O

Proof of Lemma 6. We have the following inequality:

argmax Ex.py

E, 0 logps(X|Z)] - KL (q(z,p(Z\X)mep(Z))
F,6P 0P, pel gel q¢

+ EX,YNPX,Y

E, . zx.v) 1082 (XIZ)] = KL (a4 (21X, Y), et (2]Y)) ]

< argmax Ex.py
oPOP, f

E,. @30[108 25 (XI2)] ~ KL (450 (Z/%), por (Z) ) ]

Term 1

+ argmax Ex v~py v
¢t 0% f

E, ..y logps(X|Z)] - KL <q¢cz(Z|X,Y), pgd(Zw)) ] .

Term 2
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Notice that the different terms in the equation above have the common parameters f. Thus, the inequality in the equation
above is an equality if there exists an f that is optimal for each of the terms in the relation above. Furthermore, from proof of
dist

Lemma 2, Term 1 is optimized when X = f(Z) for Z being a mixture Gaussian and g4» (Z|X) = p(Z|X). From Lemma
4, Term 2 is maximized when X ot f(Z) for Z|Y = y being a Gaussian distribution with appropriate covariance matrix.

Consider the parameters in (21); they satisfy the properties above for the same decoder.

It remains to check that there exists a set of parameters in the right hand implication of Lemma 6 that are optimally predictive.
This follows from taking the parameters (21) and noting that that the posterior samples Z|X are optimally predictive. [

Proof of Lemma 7. By definition, any feasible f = f’ o B satisfies:

X E 0 B(Z) andZ|Y =y ~N<My, (Dy 0)) where D, € RF*Fe and G € RF*Fe,

0 G

Proof of 1. Applying (%) " to both sides of the relation X £ f” o BZ and noting that f’ can be expressed as

! __ % 1 1 .
f'' = flena © 9 for a continuous and one-to-one function g, we have:

dist s
B*Ziexienda = g o BZ.
Since Z|Y = y and Z|Y = y are Gaussian and g is a continuous and one-to-one function, g must be a linear map; we

denote g by the matrix N € RF*E Tt is straightforward then to argue that B must have k£ = k. + k; total number of
linearly independent columns; these linearly independent columns are nonzero by definition. We have proven the first item
in Lemma 7.

Proof of 2. Gathering all the facts so far, we have that for any feasible f = f’ o B:

dist

= fred©N 3 B*Zeyena = NBZ ; rank(B) = k. + k. (23)

Furthermore, by the objective of (20), we have that an optimal B must have exactly k = k. + k total number of linearly
independent nonzero columns (i.e. k of the k latent features have some visualization power). We have thus concluded the
second item in the lemma.

Proof of 3. Let Brequced € R¥*¥ be the non-zero columns of B, so that BZ = Bieduced Zreduced Where Zirequcea € R¥ and

foreveryy € V:
= D, O
Zreduced|Y =y~ N (Mya ( Oy G)) .

Here, D, is a diagonal matrix. Without loss of generality, we assume that every diagonal entry in D, has some variation
across y € ); otherwise, we can concatenate the components that do not vary to the general matrix G. The dimension of
D, and G corresponds to the number of core and style features that are selected by the nonzero columns of B. Note that so
far, we have only established that the dimensions of D, and G sum up to k. In what follows we show that the numbers of
estimated core and style features equal to k., k.

IC})’% 8 Ic?k 8 N Breduced- By relation (23), Z &

of Z is non-degenerate, M is a non-singular matrix. Therefore, for every y € ) we have

_ D, 0
M 1Z|Y:y~J\f<uy,<0y G))

Following a similar analysis as in the proof of Lemma 1, we conclude that for every y € ), there exists an orthogonal matrix

Qy such that
N 1/2 ~1/2
Dy 0 D, 0
M:(Oy G*> Qy(oy G) . (24)

Let M be the k x k matrix M := ( M Zreduced. Since the distribution
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Choosing y,y € ) that satisfy Assumption 1.2, relation (24) implies that

A*_l/QQyAl/2 is an orthogonal matrix. (25)
* . AJI( * _ y*x[)*]—1 * _ Ay 0 _ -1 _
Here, A* := 0 A where A7 = D;[Dz]~" and A5 = Id and A = 0 A, ) where A; = Dy D" and A = Id.
2 : 2

Relation (25) implies that:

QuA =A"Q,.
Notice that the singular values of (), A are equal to the singular values of A, since product by orthogonal matrices preserves
the singular values. Similarly, singular values of A*(Q), are equal to the singular values of A*. Thus, A* and A have the
same singular values. In other words, since A* has k; singular values equal to one and k. singular values not equal to one

(by Assumption 1.2), A; must have exactly k. diagonal elements not equal to one. This allows us to conclude that the
dimensions of D, are greater than or equal to k..

From the analysis above, we can partition the matrix A as follows: <14(1)1 I(()1> where A; is a diagonal matrix of dimension

k. x k. with all distinct entries. Appealing to Lemma 3, we then conclude that ), = (lg [3) for a permutation matrix

P € RFe*ke diagonal matrix D € R¥<**< and a non-singular matrix H € R"s**s Combining this with the expression of
M (24) and the fact that the dimensions of D, are greater than or equal to k., we conclude that M takes the form:

PD 0
v= ("0 0

. .. . . 0 Id; 0 0
Finally, combining the relation above with (23) and the fact that ( ke—ke

0 0 0 Id,;&_h) NB = 0 yields the third

item of the lemma.
Proof of 4. The final component of the lemma also follows from the relation Z Y Zreduced. O

A.4. Analysis of L in the noisy setting

In this section, our objective is to show that the density gy e (Z|X,Y) matches the density p*(PDZ.|X,Y) for some
ke % k. permutation matrix and k. x k. diagonal matrix. Throughout the following discussion, p*(-) represents the ground
truth density corresponding to a specified random variable.

In addition to Assumptions 1, analysis of the noisy setting requires the following mild assumption:

Assumption 3 : the Fourier transform of the density of € is non-negative everywhere.
It is straightforward to extend the characterization in Lemma 4 to the noisy case and conclude that X ot f(Z)+e oot f(Z)+e€
where Z\Y =y~N <uy, <D0y g) > Here, D, is a k. x k. diagonal matrix and G'is a ks X kg matrix. Since Z 1 €,

Z 1 ¢, we have that:

Flp(f(Z) + o] = Flp()lF (£ (Z))]

Flp(f(Z) + )] = Flp(e)l Flp(f(2))],

where F ] represents the Fourier transform and p(-) represents the density function with respect to a random variable.

Since p(f*(Z) + €) = p(f(Z) + €), appealing to Assumption 2, we have that F[p(f*(Z))] = F[p(f(Z))], or equivalently,

PD 0
0 N

f(Z) st *(Z). We then have from the chain of equalities in (A.2.2) that f = f* o (

PD 0
0 N

) . Combining this with

the fact that f(Z) & ¢ *(Z), we conclude that Z s < ) Z. Notice that:

(i)fpf($|26a Zs)p(20|y)p(25)ais @fpf ($|2c? st)p(éc\y)p*(zs)azs
p*(zly) p*(zly)

p(zele,y) = / P(Ze, Zal, )02 .o
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The equality W follows from Z. 1 Z, and the equality @ follows from the change of variables Nz, < Z,.

Now we examine the posterior density of PDZ.|X,Y. Appealing to the same line of reasoning as (26), we have that:

(ol y):/p*(z ool y)02 (@ J P*(@]ze, 26)P" (ze|y)p* (25)02s ¢v) [ P* (2| D~ P~ e 20)p" (2e|y)p* (25) 02
’ A p*(zly) p*(z]y)

(:C)fpf (z|ze; Nzg) p* (2e|ly)p™ (25) 02 ( i fpf x|2e; Nzg) p(Ze|y)p* (25)0zs
p*(zly) p*(zly)

)

27
where p*(z|z., 2 ) 1s the density of the dlStI'lbuthl’l X\PDZC7 Z, and p*(z.|y) is the density of the distribution PDZ.|Y.

Here, the equahty @ follows from PDZ, 1 Z, 2 follows from the density X|(PDZ.,Z,) = p*(X|(D~1P~1Z; Zy)),

and © follows from the relationship between f and f*. Finally, @ follows from the equality p*(z.|y) = p(Z.|y) since

PDZ, & 7 Z. (due to the relation between Z, Z and that they are both Gaussian random variables after conditioning on a

label). Comparing (26) and (27), we have the desired result.

B. Comparisons with (Khemakhem et al., 2020)

Previously, (Khemakhem et al., 2020) proved that supervision enables identifiability of the latent features. The only similarity
of our results with this work can be found in Lemma 1, although our guarantees distinguish core and style features and
allow for more relaxed assumptions. In particular, while the target label can take two distinct values for Assumption 2 to be
satisfied, the assumption in (Khemakhem et al., 2020) — when specialized to the Gaussian prior — requires that the target
label takes at least 2k distinct values where k is the number of the latent features. On all the remaining theoretical and
methodological aspects, our setting differs substantially from (Khemakhem et al., 2020). Importantly, while our method can
be employed for interpretable predictions, their proposed I-VAE is simply not applicable in our setting, as it requires labels
as inputs and thus cannot perform prediction. Furthermore, our methodology and theoretical guarantees (see Theorem 1)
covers the case of overparameterized latent spaces, i.e. the case in which the model allows for mode latent features than the
ground truth ones. This is another practically relevant novelty, as in general the number of ground truth features is unknown.

C. Implementation details
C.1. Datasets and pre-processing

For all the datasets, pixels are transformed to have values between 0 and 1 and the image size of 64x64 is kept. We randomly
fix train and test set with sizes respectively of 60% and 40% for MPI3D, 90% and 10% for shapes3D, SmalINORB and
Plantvillage datasets. For the ChestXRay dataset, we use the pre-defined train test splits.

C.2. Hyperparameter selection

Hyperparameter selection been performed via visual inspection of the traversals on the training set. This is a correct
validation of the algorithm, since no test data has been utilized for model selection. Furthermore, it reflects the procedure
that we propose in the paper, where model selection is carried out with a human expert. All the traversals and results we
report are then obtained on the test set as usual.

C.3. Hyper-parameters and training configuration

Most hyper-parameters and training configurations are kept fixed across datasets. An overview of hyper-parameter settings
is shown in Table 2. We set a fixed dimension of (Z., Z,) = (10, 20). Notice that, similar to the real-life setting where the
exact dimension of the true underlying latent features is unknown we allow the latent dimension of core and style latent
features to be higher than theoretically needed for all the synthetic datasets.

We set the following values of (prediction term weight, group sparsity regularization) for the experiments: (50, 0.05) for
MPI3D; (10, 0.0001) for Shapes3D; (50, 0.01) for SmalNORB; (200, 0.01) for PlantVillage; (200, 0.05) for ChestXRay.
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Table 2: Hyperparameter settings for all datasets.

Hyperparameter Value

Core latent space dimension 10
Style latent space dimension 20

Batch size 132

Optimizer ADAM

Learning rate Se-4

Decoder type Bernoulli

Prediction loss binary cross entropy
Training steps 150, 000

C.4. CLAP model architecture

The architecture of CLAP consists of five main modules that share weights where appropriate. The five modules are: the
encoder, decoder and predictor in the prediction VAE, and the encoder and decoder in the concept-learning VAE.

Predictor The predictor in the prediction VAE is a simple linear predictor mapping from core latent features to the labels
where each label has a separate linear predictor.

Decoders The decoders in both the prediction VAE and the concept-learning VAE share weights with an architecture as
depicted on the right in Table 3.

Encoders The encoder in the prediction VAE consists of a backbone with architecture as depicted on the left in Table 3 and
two parallel fully connected layers. The output of the backbone is fed into the two separate fully connected layers where
one is learning the posterior distribution of core latent features and one is learning the posterior distribution of style latent
features.

The encoder in the concept-learning VAE shares all weights that are associated with style latent features with the encoder of
the prediction VAE. In particular, the weights of the backbone and fully connected layer that output the posterior distribution
of style latent features are shared across both. No weights are shared for that part of the concept-learning VAE associated
with core latent features. Thus, a separate backbone and fully connected layer are used to learn the posterior distribution
of core latent features in the concept-learning VAE. The label y is incorporated in the concept-learning VAE by feeding it
jointly with the output of the backbone to the fully connected layer that outputs the posterior distribution of the core latent
features.

C.5. SENN and CCVAE model architecture

For SENN, we employ the same architecture as for CLAP. In particular, we utilize the encoder backbone presented in
Table 3, and map the encoding obtained from the backbone to the core and style features via two parallel linear layers. The
decoder utilized is the same. Furthermore, SENN employs an additional mapping from the input X to the prediction weights
utilized on top of the core features. This mapping is given by a neural network with structure Conv (32, 4, 2, 0),
MaxPool (2, 2), RelU, Conv (32, 4, 2, 0), MaxPool (2, 2), ReLU.Tomap tothe prediction weights,
we flatten and then utilize two linear layers with output dimension 288 and 128 and activations ReLU and Tanh respectively.

For CCVAE, we employ the publicly available architecture from the authors at https://github.com/thwjoy/ccvae. We note
that the encoder-decoder pair is roughly equivalent to that utilized for CLAP.


https://github.com/thwjoy/ccvae
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Table 3: Encoder backbone and decoder architecture. Abbreviations: c denotes the channel size of the input image, l?:c the
dimension of core latent factors, and k, the dimension of style latent factors. Layer parameters: For fully connected layers
the first parameter denotes input dimension, and the second parameter output dimension. For LeakyReLLU the parameter
denotes its negative slope. For dropout layers the parameter denotes the probability that a whole channel is dropped out
(2D dropout). For convolutional and transposed convolutional layers the parameters can be interpreted as follows: output
channel size, kernel size, stride, padding.

Encoder backbone Decoder

Input size: 64x64xc Input size: 30 = ko + ks

Output size: 256 Output size: 64x64xc
Layer Parameters Layer Parameters
Conv 64,3,2,1 FC 30, 512

LeakyReLU 0.01 ReLU

Dropout 0.1 FC 512, 1024
Conv 64,3,2,1 ConvTranspose 64,3,2,0
LeakyReLU 0.01 ReLU
Dropout 0.1 ConvTranspose 64,3,2,1
Conv 64,3,2,1 RelLU
LeakyReLU 0.01 ConvTranspose 64,3,2, 1
Dropout 0.1 ReLU
Conv 64,3,2,1 ConvTranspose c,4,2,2
LeakyReLU 0.01
Dropout 0.1
Flatten

FC 1024, 256
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D. Details on synthetic datasets
D.1. MPI3D traversals and details

The MPI3D dataset is an artificial dataset of images where the ground truth factors of variation are object color, shape and
size, as well height of the camera, background color, horizontal and vertical axes of the camera. In Figure 5, we present
some example images from the dataset.

We create synthetic labels according to the following rules: for the first label, y = 1 if color in {white, green, brown, olive}
and shape in {cone, cube, cylinder, sphere} and size in {small}, and y = 0 otherwise; for the second label, y = 1 if color in
{green, red, blue} and size in {large}, and y = 0 otherwise; for the third label, y = 1 if shape in {cone, pyramid}, and
y = 0 otherwise; for the final label, y = 1 if shape in {cylinder, hexagonal, pyramid}, and y = 0 otherwise.

We present additional MPI3D traversals of CLAP for Z. (first row) and Z, (second row) in Figure 6.

Figure 5: Some example images from the MPI3D dataset.

—30(x) H(x) +30(x) —30(x) H(x) +30(x) —30(x) H(x) +30(x)

—30(x) H(x) +30(x) —30(x) H(x) +30(x) —30(x) H(x) +30(x)

Figure 6: CLAP traversals of Z. (first row) and Z¢ on MPI3D dataset.
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D.2. Shapes3D

The Shapes3D dataset is composed of synthetic images of different 3D objects. The ground truth factors of variations are
floor hue, background wall hue, orientation, and the object’s hue, scale, and shape. In Figure 7, we present some example
images from the dataset.
We rescale all the factors of variation, which are already discrete, to take integer values starting from 0. In particular, hue
and scale of the object have values in [0, 9] and are used to create the synthetic labels. We create synthetic labels according
to the following rules: for the first label, y = 1 if scale < 5 and hue > 3, y = 0 otherwise; for the second label, y = 1 if
scale > 3 and hue > 3, y = 0 otherwise; for the second label, y = 1 if scale < 4 and hue > 2, y = 0 otherwise; for the final
label, y = 1 if scale > 5, y = 0 otherwise.

We present CLAP traversals on the Shapes3D dataset for Z, (first row) and Z (second row) in Figure 8.

A

Figure 7: Some example images from the Shapes3D dataset.

—30(x) H(x) +30(x) —30(x) H(x) +30(x) —30(x) H(x) +30(x)

Figure 8: CLAP traversals of Z. (first row) and Z s on the Shapes3D dataset.
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D.3. SmalINORB

The SmalINORB dataset is a dataset of black and white images. In Figure 9, we present some example images from the
dataset.

The ground truth factors of variation are the object (9 classes), elevation of the camera (0 to 8), azimuth (even values from 0
to 34) and lightning condition (0 to 5). We create synthetic labels according to the following rules: for the first label, y = 1
if object type > 5 and lightning > 3, and y = 0 otherwise; for the second label, y = 1 if object type > 5 and lightning < 3,
and y = 0 otherwise; for the third label, y = 1 if object type < 5 and lightning > 3, and y = 0 otherwise; for the final label,
y = 1 if lightning < 3, and y = 0 otherwise.

We present CLAP traversals on the SmalNORB dataset for Z. (first row) and Z (second row) in Figure 10.

Figure 9: Some example images from the Shapes3D dataset.
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Figure 10: CLAP traversals of Z, (first row) and Z, on the SmalINORB dataset.



CLAP Interpretable Predictions

E. Ablation studies
E.1. No Group Sparsity

In Figure 11 we present traversals for CLAP trained without group sparsity, i.e. p,,(f, %) = 0.
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Figure 11: No-group-sparsity CLAP traversals of Z. on the MPI3D dataset.

E.2. Prediction-Only Model

In Figure 12 we present traversals for CLAP trained only on the prediction part of the loss in Eq. 3.

—30(x) H(x) +30(x)

—30(x) H(x) +30(x)

Figure 12: Prediction-only CLAP traversals of Z. on the MPI3D dataset.

E.3. MPI3D with One Label Only

In Figure 13 we present traversals for CLAP trained on the MPI3D dataset where only the first label is made available for

supervision.
- -
(x) —3oa(x) p(x) +30(x)

—30a(x) H(x) +30(x) —30(x) H(x) +30(x

Figure 13: Prediction-only CLAP traversals of Z. on the MPI3D dataset with only one label.
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CLAP Interpretable Predictions

F. CCVAE on Shapes3D
In Figure 14 we show the traversals of CCVAE on the Shapes3D dataset.

Figure 14: CCVAE traversals of Z. on the Shapes3D dataset.



CLAP Interpretable Predictions

G. ChestXRay traversals

We include the complete CLAP traversals on the ChestXRay dataset in Figure 15.

B Local Weights Global Weights ~ Atele. Infil.
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Figure 15: Complete CLAP traversals, corresponding to those shown in Figure 4(a).

We present additional ChestXRay traversals of CLAP for Z, (first row) and Z (second row) in Figure 16.
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Figure 16: CLAP traversals of Z, (first row) and Z, on the ChestXRay dataset.



CLAP Interpretable Predictions

G.1. Glossary and Reading of ChestXray

In Figure 17 we show the main thorax parts used for the analysis of the CLAP traversals. We also remark that left and right
are intended from the patient’s viewpoint, which is reversed with respect to that of the reader.

(a) Heart. (b) Lungs. (c) Liver and stomach.

Figure 17: ChestXRay annotations.



CLAP Interpretable Predictions

1650 H. PlantVillage traversals

1651
1550 In Figure 18 we present traversals of CLAP for Z, (first row) and Z (second row) on the PlantVillage dataset (Hughes et al.,

153 2015). The dataset includes various plants’ leaves, we utilize the 10 binary labels (9 diseases plus healthy or not) of the
|45, tomato leaves. We include a magnified figure with human interpretations in Figure 19.
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1677 Figure 18: CLAP traversals of Z, (first row) and Z, on the PlantVillage dataset.
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1701 Figure 19: Traversals and human intepretations of CLAP on the PlantVillage dataset. We include prediction weights for the
1702 Bacterial Spot and Yellow Leaf diseases.
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