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Abstract

In safety-critical applications, practitioners are
reluctant to trust neural networks when no in-
terpretable explanations are available. Many
attempts to provide such explanations revolve
around pixel-based attributions or use previously
known concepts. In this paper we aim to pro-
vide explanations by provably identifying high-
level, previously unknown ground-truth concepts.
To this end, we propose a probabilistic modeling
framework to derive (C)oncept (L)earning and
(P)rediction (CLAP) — a VAE-based classifier that
uses visually interpretable concepts as predictors
for a simple classifier. Assuming a generative
model for the ground-truth concepts, we prove
that CLAP is able to identify them while attain-
ing optimal classification accuracy. Our exper-
iments on synthetic datasets verify that CLAP
identifies distinct ground-truth concepts on syn-
thetic datasets and yields promising results on the
medical Chest X-Ray dataset.

1. Introduction

Suppose a hospital aims to deploy a model that classifies
diseases Y from medical images X and informs the doctor
about relevant predictive features. There may be multiple
diseases such as lung atelectasis and lung infiltration and
multiple interpretable ground-truth features (or concepts)
Z., such as lung or heart shape, that are relevant for pre-
dicting each disease. Ideally, in addition to identifying
and utilizing these interpretable features, the model should
perform prediction in an interpretable manner itself. The
domain expert can then check whether the model is reason-
able and also potentially make new scientific discoveries —
i.e. discover new factors relevant for prediction.
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Thus, in this paper, we seek an interpretable predictive
model that uses the ground-truth features for prediction.
But what makes a predictive model interpretable from a
practical perspective? Even though the definite answer de-
pends on the application domain, practitioners often agree
on the following desiderata: first of all, the model should
be simple — e.g. additive in the predictive features with
a small number of relevant features. Simplicity allows us
to interpret the relevance of each variable (Rudin, 2018),
and ensure that the interpretation is robust to small changes
to the input (Alvarez-Melis & Jaakkola, 2018a;b). Further-
more, the model ideally assigns global and local importance
to the features used for prediction (Reyes et al., 2020; Stiglic
et al., 2020); in the context of medical imaging for example,
the former corresponds to the population-level importance,
the latter to the patient-level one.

While there have been many works on interpretable predic-
tions, none of them provide a prediction model that identifies
and uses these previously unknown ground-truth features
(see relate works for more discussion). This paper tries to
go bottom-up, starting from a generative model to derive
a procedure based on variational inference that satisfies all
the desiderata. Our proposed framework i) mathematically
formalizes concept learning and ii) provably identifies the
ground-truth concepts and provides an accurate and simple
prediction model using these discovered concepts.

More concretely, we view the recovery of the ground-truth
concepts as a latent variable estimation problem. We start
by assuming an explicit graphical model for the joint distri-
bution of (X, Z,Y). Here, the latent variables Z include all
ground-truth latent features, as well as others irrelevant for
prediction. Together, the latent variables Z generate the raw
observation X. The task of concept learning can then be
mathematically thought of as obtaining identifiability and
performing inference on the latent factors. Using a VAE-
based architecture, we enable both visualization (and thus
facilitate human interpretation) of the learned concepts, as
well as prediction based on these.

In summary, we make the following contributions:

1. We present a framework to model ground-truth latent
features Z. (Sec. 2), and derive C(oncept) (L)earning
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and (P)rediction (in short CLAP), an inherently inter-
pretable prediction framework based on variational
autoencoders (Sec. 3)

2. We prove that CLAP enables identification of the
ground-truth concepts underlying the data and learns a
simple optimal prediction model based on these. Im-
portantly, our framework does not require knowing the
number of latent features (Sec. 4)

3. We validate CLAP on various multi-task prediction
scenarios on synthetic (MPI3D, Shapes3D and Small-
Norbs) datasets that yield encouraging results on
domain-specific application of the framework on real
data (Sec. 5)

We believe that our theoretical framework is a useful step for
formalizing interpretable predictions. In particular, in set-
tings where it’s reasonable to assume that the ground-truth
features are themselves interpretable by a domain expert,
CLAP provably provides an end-to-end interpretable predic-
tion model. Even when the assumption does not hold, we
can still guarantee that CLAP finds a simple and accurate
prediction model using ground-truth features.

1.1. Related work

In this section, we compare existing interpretable predic-
tion methods with CLAP in detail, with a concise summary
provided in Table 1. Previous methods proposed in the con-
text of explainable/interpretable Al can be broadly divided
into two categories: (i) providing post-hoc explanations for
black-box prediction models and (ii) designing models that
explicitly incorporate transparency into the model design,
where the explanation is learned during training.

Post-hoc methods The majority of work on interpretability
so far has focused on (i), providing post-hoc explanations
for a given prediction model. These include pixel attribu-
tion methods (Bach et al., 2015; Selvaraju et al., 2017; Si-
monyan et al., 2014), counterfactual explanations (Antoran
et al., 2021; Chang et al., 2019), explanations based on
pre-defined concepts (Kazhdan et al., 2020; Rezende et al.,
2014; Yeh et al., 2020), and recently developed StyleGANs
(Lang et al., 2021; Wu et al., 2021). Post-hoc methods
have a number of shortcomings given our desired objectives:
First, it is unclear whether post-hoc explanations indeed
reflect the black-box model’s true “reasoning” (Kumar et al.,
2020; Rudin, 2018). Even if an expert deems the output
of the explanation model as unreasonable, one is unable to
determine whether the explanation method or the original
model is at fault. Furthermore, by construction, post-hoc
methods cannot come with statistical inference guarantees
and ensure that the learned concepts align with the ground-
truth features. Finally, post-hoc methods are typically used
to explain complex classifiers; as a result, they are unable to

provide meaningful global and local importance of features
for prediction.

VAE-based methods for inherently interpretable predic-
tion Our procedure CLAP is an inherently interpretable
prediction model and similar in spirit to VAE-based predic-
tion techniques. On a high level, existing procedures either
are unable to identify the ground-truth latent features or
require additional labels. Therefore, they are not applicable
in the traditional supervised learning setting considered in
this paper (where only X, Y are available). Further, none
of the existing methods provide simultaneous guarantees
for learning the underlying concept and obtaining optimal
predictions using these learned features. We provide more
specific comparisons next.

First of all, unsupervised VAEs (Kingma et al., 2014) can
easily be used for prediction tasks by training a classifier on
the latent features. A massive literature proposes various
structural adjustments to improve disentanglement (Burgess
et al., 2018; Chen et al., 2018; Higgins et al., 2017; Kim
& Mnih, 2019; Kumar et al., 2017). However, (Locatello
et al., 2019) empirically and theoretically demonstrate that
these methods generally do not successfully identify the
ground-truth latent features. Recently proposed VAE meth-
ods address the issue of non-identifiability by assuming
access to additional data and improve identifiability. How-
ever, they either require the label as direct input (Joy et al.,
2021), or labels for auxiliary variables that contain infor-
mation about the ground-truth latent factors (Khemakhem
et al., 2020; Mita et al., 2021) or the ground-truth factors
themselves (Locatello et al., 2019). None of these scenarios
are applicable to the traditional supervised learning setting
in our paper.

Other works With respect to model architecture, our
method is similar to Self-Explaining Neural Networks
(SENN) (Alvarez-Melis & Jaakkola, 2018b) which decom-
poses a complex prediction model into learning interpretable
concepts (using an autoencoder) and a simple (linear) pre-
dictor. More broadly, methods based on contrastive learning
or multi-view data (e.g. (Gresele et al., 2019; Hyvirinen
et al., 2019; Locatello et al., 2020; Shu et al., 2020; von
Kiigelgen et al., 2021)) can identify underlying latent fea-
tures, albeit with access to pairs of images that share similar
sources. Furthermore, the focus of these methods is on
representation learning rather than interpretable predictions.

2. Modeling interpretable and predictive
concepts

We present a probabilistic graphical model that statistically
relates the ground-truth latent features Z,. to the labels and
observed variables; our proposed method later uses this
model to learn the latent concepts as well as a simple clas-
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Table 1:Comparison ofSLAPwith post-hoc explanation methods and other inherently interpretable techniques. Here, theXymbol
highlights that for learning visually distinct features, existing predictive VAEs require strong knowledge of the latent variables or auxiliary
variables (in addition to labels).

Post-hoc explanations Inherently interpretable
: pixel attribution+ pre-de ned existing VAEs/
Properties counterfactuals  concepts StyleGANs autoencoders CLAP
Learning visually distinct features X X? X
Global importance of predictive features X X
Guarantees: concept learning+prediction X

si er based on these features. We remark that, althoug@. CLAP: interpretable predictions using
the methodology in this paper is presented under a speci ¢ ground-truth concepts

generative model, the framework is general and exible to
other modeling choices. Given data oiX andY arising from the graphical model

] . in Fig. 1(a), our objective is to identify the ground-truth
Let X be raw observations and 2 Y be the associated ¢oncepts and learn a simple classi er that uses these to
label vector taking a nite collection of values. Ingeneidl,  accyrately predicy . Additionally, to facilitate human inter-
is comprised obtyle factorsZs, that should not be relevant retapility, we aim to enable experts in the loop to visually
for prediction, and high-levedore factorsZ; that are the  iyterpret the learned concepts. For concreteness, we special-

desired ground-truth concepts. For example, in the contexbe oyr exposition to images, although our framework can
of medical imagingy are various disease labels such as;, principle be used on other types of data.

the presence of lung atelectasis and lung in Itration. Core _ o

factorsZ that one can see in the X-ray ima¥e such as  Our proposed framework is based on variational autoen-
heart and lung shapes, are typically direct consequences 6Pders (VAEs) (Kingma et al., 2014; Rezende et al., 2014).
a patient contracting the disease. Style factysuch as VAES offer a number of favorable properties for our objec-
physiological characteristics of the subject or specialities ofives. First, they can be derived in a principled manner from

the scanner are also factors that appear in the image but afie underlying data generating mechanism. Second, the
not related to the disease. encoder/decoder pair in VAEs provide an effective approach

) ~ tovisualize and thus interpret the learned latent features via
A natural model for settings such as the one above is tQiant traversals (see Sec. 3.4 for more details).

assume am@nti-causalmodel as in Fig. 1(a), whei&. is _ _

a child of Y , and combines witZ to produce the raw [N that light, a natural rst approach that might come to
observationX . We assuméc to be independent condition- mind would be to train a VAE that uses the estimated latent
ally onY, as in the X-ray example, they may often vary features for prediction. In Sec. 3.1 we derive such a model,
independently (across patients) given a disease label. Wad show why, in its vanilla version, it can perform predic-

instead allow arbitrary dependencies witdigandY . tion but cannot identify the ground-truth core concepts. In

] . Sec. 3.2, we overcome these challenges by introducing a
Aggregating style and core factors in the veclbr= pgye| VAE architectur€LAP shown in Fig. 1(b). Our pro-
(Z¢; Zs), we impose the following structural equation model posed method combines the predictive VAE structure from
on the graph in Fig. 1(a): earlier with a second VAE which helps with identifying the

5 underlying ground-truth concepts.
X =f%(Z)+ where ? Z;Y andforally2Y :

N — y . DJ T 3.1. Vanilla predictive VAE and its shortcomings
ZjY=y N PO OV G? ; Dy diagonat p . o 9
@ A natural rst attempt at learning a predictive VAE proce-
dure is to maximize the following ELBO of the log-evidence
. o . 2. 2 of (X;Y): . .
for some continuous one-to-one functibh, vectors v o (XiZ)p (YjzZe)p »(2)

and positive-de nite matrice®;G?. The model(1)  logp(X:;Y) Eq,zjx)log 1 ZX)
encodes the conditional independence relationships in _ o pr n .p
Fig. 1(a): the covariance of the distributiaghjY is di- = Lp( P P XY 2

agonal; the mean and covariance correspondirgytare The obiectiveL d he VAE archi .
not a function ofy and the noise is independent of so e objectivel., corresponds to the architecture in

thatX ? YjZ.andZs? V. the red box in Fig. 1(b). Hergis the approximate poste-
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(a) Generative graphical model (b) VAE architecture ofCLAP

Figure 1:The graphical model in (a) describes how the desired high-level core latent featuaes related to the remaining variables
Y ; X;Zs. The VAE architecture in (b) is derived by lower-bounding the evidence vai¢sY ) andp(XjY ) and incorporating the
generative assumptions from (a) (see main text). We utilize two separate encoders, correspondept emthe, terms of objective
(3), and impose sharing of the decoder. The two encoders de ne two different sets of Aterftg ; Zs), which are separately passed
throughf to get the relative reconstructions. The two resulting objectiveandL ¢ are then summed in the full objectite: ap. A
simple classi er based oA is trained as part of the model insidg.

rior with encoder parameter®, parameterizes a simple setting), without sacri cing classi cation accuracy.
classier, f is the decoder's parameters, arfdthe prior
distribution's parameters. Speci cally, from the data gen-

erating mechanisrtl), the priorp »(Z) is a density of 2 1o gvercome the aforementioned challenges, we augment

Gaussian mixture distribution wiflY j (number of labels)  the objectivel , with two additional terms to arrive at our

components, where the covariance corresponding to thgoposed objective function f@LAP,

core features for each mixture component is diagonal. The Lewap:= Lp+ Ly N 3)

ELBO (2) is derived in a standard fashion using Jensen'€On a high level, the additional componéry ensures iden-

inequalitylogp(X;Y)  Egqzjx:v) log % and tiability of the ground-truth concept& . (concept learniny

leveraging the assumed generative model (1). and the regularization term, helps to identify a minimal
number of ground-truth concepts in an over-parameterized

The model Iearned_ by max_imizing the objectivg natu-  |5tent space. In the following, we formalize each term.
rally yields a classi erp (Y jZ.) based on core features

extracted from the encodgrs (ZjX ), which should approx- Concept-learning componentL. While the objective
imate the ground-truth ones. Since the encoder does nét is designed to maximize the full likelihood of image
rely onY as an input, we can readily use it for end-to-enddataX and target labely , the termL¢ maximizes the
classi cation during test time. In fact, under a regularity likelihood of X conditioned onY . The fact that the la-
condition, we show in Supp. Mat. Sec. A.2.1 that thisbels act as additional input data in this likelihood objec-
architecture is optimal for prediction. Howeverdites not  tive, plays a central role in provably obtaining identi a-
guarantee that the estimated core featidresorrespond to  bility. Furthermore, the conditional independenceZef
the ground-truth factor&.. In fact, they can be arbitrary givenY can be more naturally captured wh¥nis con-
linear transformations df . without sacri cing prediction ~ sidered as an input. Similarly to above, for any poste-
performance (Locatello et al., 2019) (see ablation studie§0r g, we can lower-bound the conditional log-evidence
in Sec. 4), thus not satisfying our desired properties. Ireslogp(XjY)  Eqzjx:v) |09%; and in-
addition, as the dimensionality of the core featufgss  corporate the generative assumptionglipto obtain the
typically unknown, a conservative choice for the number nal ELBO objective:

of latent features (over-parameterized setting) may wrongly ; ;

) / , _ pr (XjZ)p « (ZjY)

include style features or redundant core features in the pre- logp(XjY) Egq , zjx;v)log o

diction model (see ablation study in Sec. 4). In the next Ge (ZiX5Y)
section, we propose our framewdZk AP that mitigates the =La( @5 9X;Y): (4)

aforementioned issues: it learns a prediction model using th¢y,o component oELAPcorresponding tt  is highlighted
ground-truth core concepts (even in the over-parameterizeg) e in Fig. 1(b). Here, ¢ are the parameters of the

3.2. CLAP to overcome shortcomings
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Figure 2:We present how the prediction model obtained by traifh@\P can be used and interpreted at test time. Supplying a test

imagesx to the componerit , of CLAP, we learn core featured.. These features are visualized using latent traversals and interpreted
by a human, who assigns them to high-level concepts. Furthermore, the estimated linear classi er predicts a label and provides global
(population wise) and local (instance wise) importance for the interpreted concepts.

encoder, andl those of the decoder. Appealing to the dataFig. 1(b). This coupling via a shared decoder is crucial, as
generating mechanis(it), we can further factorize the prior it forces thel , architecture to also perform concept learn-
inthe formp « (ZjY ) = p(ZcjY )p(Zs). Here,p(ZcjY ) is  ing: During joint training, the two encoders b§; andL
a Gaussian density function with diagonal covariance andearn approximately the same latent space (we show in The-
different parameters for differet while we model the orem 1 that the latent spaces align in the in nite data limit).
prior p(Zs) as a standard Gaussian distribution without loss'SincelL ¢ provably identi es the ground-truth features in
of generality. We aggregate all these parameters§'in the latent space, it then follows that the estimated core fea-
In general, maximizing the ELBO or even the true Iog-tures obtalned_ b_y the encode_quf clos_ely align withZ.
. . S Thus, after training the combined objectivg + L, the
evidence would not allow for of identi cation the true con- | . . ; .
. . : trained VAE architecture correspondingltg provides an
cepts. However, a simple heterogeneity assumption can - T X .
. . X interpretable prediction model: an input image is mapped to
alleviate this issue, formally stated in Supp. Mat. Sec. A.1, .
_ T _ accurate ground-truth core features, which are then used on
Assumptiori (Concept learning, informal)The functions  top of a simple classi er to predict the target label We

f;f ? satisfy a regularity condition and the distribution of refer the reader to Sec. 3.4 for more discussion on how the
core features change “enough' when conditioned on diffetrainedCLAPIs used at test time.

ent realizations o¥ . ) )
L . . Sparsity penalty to account for overparameterized
Lemmal (MaximizingL  identi es the ground-truth con- latent spaceWe add a regularization term, (f: ) to im-

_cepts) S_,uppose t_he dgta is generated accordi_ng tothe mOdﬁlose simultaneous group sparsity on the prediction weights
in (1) with no noise, i.e. 0 and Assumption 1 holds.

and decoder weights — this ensures that if an estimated core

Shupposd_d IS nt;axw?:zed mf the in n_|te|d3tf:1j I_|m|rt] W'thd [eature feature is predictive, it has non-negligible effect in
the correct number of latent features included in the modey, o reconstruction of the image and vice versa. In particular,

Then, the posterior samplés obtained from the encoder let k¢; ks be the conservative choice on the dimensionality

O are equal t'o the ground-truth featusup to permu- of the core and style features in our VAE model, respec-
tation and scaling. tively. Further, letk = k. + kg be the total number of
datent variables. We consider the following parameteriza-
tion for the decodef = f° B; B 2 R* ¥ and classi er
= 0. C; C2 R* ke wherg jisthe number of labels
be predicted antl® ©are one-to-one and continuous.
hen, the sparsity inducing penaltyf; ) in the combined

We prove this lemma in Supp. Mat. Sec. A.2.2, and als
extend to the noisy setting in Supp. Mat. Sec. A.4. Theo
retical results for identi biality were previously established

in (Khemakhem et al., 2020). We note that our guarantee
differ substantially and refer to Supp. Mat. Sec. B for more
details. Despite the concept-learning capabilities, a model 1nformally speaking, the reason for this is that the latent fea-

trained only onL cannotbe used for prediction since it tures in each architecture reconstruct the image via the same de-

requires the labels as input to the encagler(ZjX ;Y ). coder. Since the common decoder de nes a generative model , the
posteriors (i.e. the different encoders) need to be similar as well.

Therefore, we combine the objectiveg andL by uti-
lizing the same decodérin (2) and(4), as represented in
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objective function (3) takes the form: 3.4. UsingCLAP's output for interpretation
Xe B.. X« h i We now discuss howZLAPs trained model can be used
(f; )= I C"f >0 + I BIi , > 0 ;to produce an end-to-end interpretable prediction model
i=1 o2 i=ke+l pipeline, which we represent in Fig. 2.
®)

At inference time, the part dELAPs model corresponding
where the indicator functioH ] counts the number of latent t0 L is utilized, since it does not require a label as an input
features effectively utilizes by the model. Note that the(Fig. 2 left). As we describe in detail next, the learned con-
nonzero columns of correspond to core features in the cepts are visualized using latent traversals; to conclude the
model with predictive power, and the nonzero columns ofPipeline, a human expert visually inspects these traversals
B correspond to core and style features that are used f@&nd assigns a meaning to the relative latent variables.
reconstruction with the decoder For practical consider- |hterpretations via latent traversals Generally, the visual
ations, we consider ths following convex surrogate in OUfexplanations provided by the model need to be evaluated
experiments: (f; )= &, B} C] 2" by a human expert (see Sec. 1). As is customary for VAE
models, we provide such visualizations via latent traver-
sals. Speci cally, letx be an input image. The core con-
In Sec. 3.2, we described how after the trainingChfAP,  cepts associated toare obtained via the posterior mean
the component correspondingltg can be used as an inter- ~(x) := Equ (2ij)[2C]. The semantics & are then dis-

pretable prediction model. We next provide guarantees thatovered by performing latent traversals. In these, we change
this prediction model is optimal in terms of accuracy and isgne component of(x) at a time, while keeping the others
based on high-level features that align with the ground-truthyed, and observe the reconstructions obtained through the
concepts. In the sequel, we denkteks to be the number  gecoder”. Owing to the concept-learning capabilities of
of core and style features chosen in the VAE architecturg| Ap, the traversals on the core latent features will produce
andkZ; kI to be the dimensions of the corresponding truegistinct changes in the reconstructed images corresponding
features of the generative model in Fig. 1(a). Further, wag the different discovered ground-truth concepts, which
useq~,, g~ to denote the encoders obtained by maximizyill allow the human expert to assign them with a semantic
ing the objective in(3) in the in nite data limit and le2 meaning. This procedure is represented in the top-right of
be the posterior samples obtained frgrp for input X ?.  Fig. 2. There, for example, upon visual inspection, the rst
Finally, we denote the trained classi er &= "° &, and latent is assigned the meaning"8hape” from the expert,

the core feature; are speci ed as the vector of elements the secondColor” , and so on.

of 2 corresponding to nonzero columns@®f Interpretable predictions using learned conceptdNVe note
Jpere that in our experiments, we found a linear classi er
to be well-performing across all datasets. For this reason,
the following description assumesto simply be the lin-
ear weights of the corresponding linear classiper(Y j2.).

3.3. Theoretical guarantees folCLAP

Our main theorem additionally requires an assumption abo
a simple classi er being optimal:

Assumptior® (optimal classi er) The Bayes optimal clas-

si er for predicting ¥ usingZ.; belongs to the set of simple For each concept, we provide both a global and local rel-

classi ers used irCLAP. - : . :
) . evance for prediction, as depicted in the bottom right of
Theoreml (CLAPlearns an optimal prediction model us- g 5 e giobal relevance represents the importance of

ing interpretable ground-truth featllj?re?onsis?er th((ejs?]\me a concept for prediction at a population level (i.e. across
setup as Lemma %j ZS#DEOI%1 c: s ks, an rtnglt images) and is thus directly encoded in the entrieS.ofhe
Assqmptlons Lan old. T ep,t gposterlor SAMPIES |5cal relevance is instead image-speci ¢, and is observed in
obtained from the encodek, are identical to the posterior - < ,mmands of the linear combinatigh{x): i . These

samples obtained from the encodes . Furthermore, the  ,, measures allow the practitioner to transparently assess
core feature® . are 1) optimally predictiveY j2. dsty jX,  thedecision process of the model, as they assign a prediction

and 2) aligned with the ground trutit, is equal toZ. up ~ Weight to human interpretable features.

to scaling and permutation. 4. Experimental results

The proof of Theorem 1 is presented in Supp. Mat. Sec. A.3. ) )

model obtained bCLAPis optimal. Furthermore, the core ate our theoretical results, and evaluate the abilit¢lohP
features? . align with the ground-truth concepts. Finally, 0 learn an accurate prediction model using the ground-truth
the number of predictive factors equals to the number oféatures. Since in most real-world datasets, ground-truth

ground-truth concepts; that is, our model obtains the minifactors are unknown but necessary to verify whe@eAP
mal set of predictive features. can work in practice, we resort to three standard "disentan-
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(a) CLAPtraversals and interpretations (b) SENN prototypes

Figure 3:a) CLAPtraversals on (in order) the MPI3D, Shapes3D and SmallNORB datasets, and b) SENN prototypes on (in order) the
MPI3D and Shapes3D datasets.

glement” datasets MPI3D (Gondal et al., 2019), Shapes3Degligible global and local weights (i.e. no predictive value)

(Burgess & Kim, 2018) and SmallINORB (LeCun et al., to the remaining latent features included in the model. This
2004). These datasets consist of collections of objects geis in contrast to the concepts shown in Fig. 3(a) that have
erated synthetically according to some ground-truth factor;on-negligible global and local weights. In other words,

of variation. The images are a priori unlabeled; thus, wean line with our theory, estimated core features that have
select some of the ground-truth factors, which represent thprediction power align with the ground-truth concepts.

concept< . to be discovered, and generate arti cial binary Comparison with baselineswe compare the outputs of

labelsY . The ground-truth factord. are object shape, size . el
and color for MPI3D, object color and size for Shapes3D§(|)' st;;N ;t: dtg(ésveAEf(JsoEl\g:la(lAggZ; ':C\il)'s ri‘ d\i]czi%ﬁk?riia-
and object type and lighting for SmallNORB (see Supp. Mat. y ’ ' P

Sec. D). For all the experiments and baselines in Sec. 4, dgls in the existing literature that are closesILAP. To

tails on training and architectures employed are deferred texplaln Its predictions and visualize the leamed concepts,

Supp. Mat. Sec. C. In general, for all methods, we use ENN uses prototypes — a set of training images that “best

neural network architectures comparable in complexity torepresent every latent variable. In Fig. 3(b), we depict the

- . o prototypes relative to some of these features. Similarly to
those utilized in (Joy et al., 2021; Qiao etal,, 2019). CLAP, human inspection is needed to describe the concepts

As explained in Sec. 3.4, we proceed with the evaluatiorihat such latents encode. However, the task here is substan-
of CLAPDby rst generating latent traversals. The goal is to tially more dif cult: for any of the latents, we can observe
determine whether the discovered concepts have a one-tmany different changes, e.g in the rst row objects of dif-
one correspondence with the ground-trdththat we used ferent colors and shapes are observed, and from different
to generate the data. In Fig. 3(a), every row correspondsamera angles. This indicates that not only SENN is not
to the traversal for one latent feature. As can be observedble to identify the ground-truth, thus hindering inter-

the estimated core features indeed represent the grounaretability, but also mixes them with non-predictive style
truth ones; this means that the model identi es the groundfeaturesZs. We also apply CCVAE on synthetic data and
truth concepts underlying the data generating mechanisrabserve that its learned latent features do not align with the
Importantly, we remark that the concept names assigneground-truth ones; due to space constraints, we show these
to the single rows (e.dg'Size”, "Shape”) are obtained by results in Supp. Mat. Sec. F.

visual inspection; the model doesn't have direct access t

them, but only to the imageé and labelsy | Rblation studies In order to demonstrate the importance of

each of our design choices, we also perform various ablation
Finally, the discovered@. are also fully predictive, as studies on the MPI3D dataset, presented in Supp. Mat. E.
CLAP achieves classi cation accuracy abod®9 on all  Firstly, we show that if the sparsity penalty, (f; ) is

the datasets. We include additional traversals in Supp. Matemoved from the learning objective, the resulting model
Sec. D.1; there, we also show that, due to the sparsity regtilizes separately some latent variables for visualization,
ularization penalty (f; ), the model accurately assigns and some others for prediction. On the other hand, with the
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(a) CLAPtraversals and interpretations (b) CCVAE traversals

Figure 4:0utput of CLAPand traversals of CCVAE for the Chest X-ray dataset. In (a), we present the weights for both the atelectasis
and lung in Itration disease predictions, as well as the human interpretations of the discovered concepts. For better visual comparison, we
only show the images obtained at the extremes of the latent traversals. Moreover, we highlight the changes that occur during the traversals.
We include magni ed gures with full traversals in Supp. Mat. Sec. G, as well as a glossary on how to read the results.

use of 5 (f; ), CLAPensures correspondence betweenBoth CLAPand CCVAE attain similar classi cation accura-
features utilized for prediction and visualization. Further-cies of 0.903 and 0.898, respectively. In Fig. 4, we compare
more, we show latent traversals for a model trained only orthe traversals obtained by both methods. First we observe
L,. As explained in Sec. 3.1, the learned features are fullghat CLAPmanages to learn concepts that are localized in
predictive, but do not correspond to the ground-truth onethe X-Ray image, corresponding to separate properties, such
In fact, it can be observed that various ground-truth featuresis”Heart shape” and’Lung shape”. Instead, in both the
change jointly within one single traversal. Further, we emiraversals presented for CCVAE, characteristics that can be
pirically con rm that the concept-learning capabilities of associated to both the heart and lung shapes vary together.
CLAPrely on the labels’ being informative enough, as Thus, while CCVAE nds similar concepts for prediction,
highlighted by the assumptions in Sec. 3.2. Practically, thighey do not appear as separate componerfs oHence it
means that multiple labels help with more accurate recoverys harder for a human expert to uniquely label the learned
of the ground-trutt? .; we show that the concept learning concepts and, consequently, interpret the model's output.
capabilities ofCLAP indeed decrease on a dataset wher

. . eAnother desirable characteristic GLAPIs that the global
only one label is available.

and local weights re ect the importance of the concepts in
5. Future Outlook predicting different diseases. For example, compared to at-
electasis, the concept "lung shape” has higher weight (both
So far, we have evaluat&l APin synthetic scenarios where global and local) in determining the presence of lung in I-
we know the ground-truth data generating mechanism angation. Since lung in ltration is a condition related to dense
the core factors are easy to recognize for a layperson. F@ubstances in the lungs, the concept "lung shape” learned by
many scienti ¢ scenarios such as the example in the introcLAPis natural and indicative. Further, we remark that the
duction, evaluating whether learned concepts correspongdiscovered concepts manifest through very nuanced traver-
to the "ground-truth” can only be done by domain expertssals. This is sensible, as it is to be expected that real life
Nevertheless, we provide the outputs@IfAP for some  examples come with subtle and less pronounced features
challenging real datasets to highlight some of its favorablehan synthetic and commonly used datasets. In conclusion,
properties compared to other competing methods. these experiments show the advancement and potential of

In this section, we present results on the Chest X-ray datasecl\’,l‘AP compared tq e.X|st|ng methods for providing real-life
and defer additional experiments on the PlantVillage datasépterpretable predictions.

(Hughes et al., 2015) to Supp. Mat. Sec. H. The ChesThere are a number of exciting future directions that can
X-ray dataset (Wang et al., 2017) consists of radiographyurther improveCLAPfor broader and more effective use in
images; each image has 14 associated binary disease labedsl-world scenarios. For example, the visualizations of the
We emphasize that only the disease labels may be used WAE are not optimally sharp compared to the status quo for
learn the underlying concepts and no additional supervisiolGANs. Hence, it would be interesting to explore whether
is available. As explained in Sec. 1.1, many inherentlyone can obtain provable concept learning when the VAE is
interpretable models cannot be applied successfully in thigeplaced by a GAN structure. Further, in many scienti c
setting, since they generally assume further informatiorapplications, the number of available images can be quite
on the ground-truth factors. Due to the negative results fogmall. An interesting avenue for future research could be to
SENN in Sec. 4, we only compare our method with CCVAE.develop solutions for the small data regime.



CLAP Interpretable Predictions

References Hyvarinen, A., Sasaki, H., and Turner, R. Nonlinear ICA us-
ing auxiliary variables and generalized contrastive learn-
ing. InInternational Conference on Arti cial Intelligence
and Statistics2019.

Alvarez-Melis, D. and Jaakkola, T. On the robust-
ness of interpretability methods. larXiv preprint
arXiv:1806.080492018a.

Alvarez-Melis, D. and Jaakkola, T. Towards robust inter-JoY: T., Schmon, S., Torr, P., Siddharth, N., and Rainforth, T.
pretability with self-explaining neural networks. Neu- Capturing label characteristics in VAEs. limternational
ral Information Processing Systen2018b. Conference in Learning Representatipf621.

Antoran, J., Bhatt, U., Adel, T., Weller, A., and Hamdez- Kazhdan, D., Dimanov, B., Jamnik, M., d,iP., and Weller,
Lobato, J. M. Getting a CLUE: A method for explaining ~A. Now you see me (CME): Concept-based model ex-
uncertainty estimates. Imternational Conference in traction. Ininternational Conference on Information and
Learning Representation2021. Knowledge Managemeri2020.

Bach, S., Binder, A., Montavon, G., Klauschen, FijIdr,  Khemakhem, I., Kingma, R., Monti, P., and Hynnen, A.
K.-R., and Samek, W. On pixel-wise explanations for \variational autoencoders and nonlinear ICA: A unifying
non-linear classi er decisions by layer-wise relevance framework. InArti cial Intelligence and Statistics2020.
propagationPLOS ONE 10(7):1-46, 07 2015.

Kim, H. and Mnih, A. Disentangling by factorising. In

Burgess, C. and Kim, H. 3D Shapes Dataset. International Conference on Machine Learnjr&19.

https://github.com/deepmind/3dshapes-dataset/, 2018.

Pal, A., Matthey, L., Watters, N. Kingma, D., Rezende, D., Mohamed, S., and Welling, M.
' rehrar ret ean. Semi-supervised learning with deep generative models.
In Neural Information Processing Systeri§14.

Burgess, C., Higgins, I.
Desjardins, G., and Lerchner, A. Understanding disen-
tangling in -VAE. In arXiv preprint arXiv:1804.03599

2018. Kumar, A., Sattigeri, P., and Balakrishnan, A. Variational
Chang, C.-H., Creager, E., Goldenberg, A., and Duvenaud, inference of disentangled latent concepts from unlabeled
D. K. Explaining image classi ers by counterfactual 0Observations. Iinternational Conference in Learning

generation. Irinternational Conference in Learning Rep-  Representation017.

resentations2019. ] )
Kumar, I. E., Venkatasubramanian, S., Scheidegger, C. E.,

Chen, T. Q., Li, X., Grosse, R., and Duvenaud, D. K. Iso- and Friedler, S. A. Problems with Shapley-value-based
lating sources of disentanglement in variational autoen- explanations as feature importance measurebitémna-
coders. InNeural Information Processing Systerii®18. tional Conference in Machine Learning020.

Gondal, M W., Wiithrich, M., Miladinovt, D., Locatello, Lang, O., Gandelsman, Y., Yarom, M., Wald, Y., Elidan, G.,
F., Breidt, M., Volchkov, V., Akpo, J., Bachem, O.,  passidim, A., Freeman, W. T., Isola, P., Globerson, A.,
Schilkopf, B., and Bauer, S. On the transfer of inductive Irani, M., and Mosseri, . Explaining in style: Training
bias from simulation to the real world: a new disentangle- 5 AN to explain a classi er in StyleSpace. limterna-
ment dataset. INeural Information Processing Systems  tional Conference in Computer Visip2021.

20109.
eCun, Y., Huang, F., and Bottou, L. Learning methods for
generic object recognition with invariance to pose and
lighting. In Computer Vision and Pattern Recognitjon
2004.

Gresele, L., Rubenstein, P., Mehrjou, A., Locatello, F., ancJ‘
Schblkopf, B. The incomplete Rosetta stone problem:
Identi ability results for multi-view nonlinear ICA. In
Uncertainty in Arti cial Intelligence 2019.

Higgins, I., Matthey, L., Pal, A., Burgess, C. P., Glorot, X., Locatello, F., Bauer, S., Lucic, M., Raetsch, G., Gelly, S.,
Botvinick, M. M., Mohamed, S., and Lerchner, A. beta- Scfdlkopf, B., and Bachem, O. Challenging common
VAE: Learning basic visual concepts with a constrained assumptions in the unsupervised learning of disentangled
variational framework. Iinternational Conference in  fepresentations. Imternational Conference in Machine
Learning Representation2017. Learning 2019.

Hughes, D., Salath M., et al. An open access reposi- Locatello, F., Poole, B., Raetsch, G., 8tiopf, B., Bachem,
tory of images on plant health to enable the develop- O., and Tschannen, M. Weakly-supervised disentangle-
ment of mobile disease diagnostics. drXiv preprint ment without compromises. Imternational Conference
arXiv:1511.080602015. in Machine Learning2020.



CLAP Interpretable Predictions

Mita, G., Filippone, M., and Michiardi, P. An identi able Wu, Z., Lischinski, D., and Shechtman, E. StyleSpace

double VAE for disentangled representationsinterna- analysis: Disentangled controls for StyleGAN image gen-
tional Conference on Machine Learning021. eration. InConference on Computer Vision and Pattern
Recognition2021.

Qiao, J., Li, Z., Xu, B., Cai, R., and Zhang, K. Disentan-

glement challenge: From regularization to reconstructionYeh. C., Kim, B., Arik, S., Li, C.-L., P ster, T., and Raviku-
arXiv preprint arXiv:1912.001550109. mar, P. On completeness-aware concept-based explana-

tions in deep neural networks. Meural Information
Reyes, M., Meier, R., Pereira, S., Silva, C., Dahlweid, F., Processing System2020.
von Tengg-Kobligk, H., Summers, R., and Wiest, R. On
the interpretability of arti cial intelligence in radiology:
Challenges and opportunitieRadiology:Atrti cial intel-
ligence 23:€190043, 2020.

Rezende, D., Mohamed, S., and Wierstra, D. Stochastic
backpropagation and approximate inference in deep gen-
erative models. Imnternational Conference in Machine
Learning 2014.

Rudin, C. Please stop explaining black box models for high
stakes decisions. larXiv preprint arXiv:1811.10154
2018.

Selvaraju, R., Cogswell, M., Das, A., Vedantam, R., Parikh,
D., and Batra, D. Grad-CAM: Visual explanations from
deep networks via gradient-based localizationlnber-
national Conference on Computer Visj@017.

Shu, R., Chen, Y., Kumar, A., Ermon, S., and Poole, B.
Weakly supervised disentanglement with guarantees. In
International Conference on Learning Representatjons
2020.

Simonyan, K., Vedaldi, A., and Zisserman, A. Deep in-
side convolutional networks: Visualising image classi-
cation models and saliency maps. arXiv preprint
arxiv:1312.60342014.

Stiglic, G., Kocbek, P., Fijavko, N., Zitnik, M., Verbert, K.,
and Cilar, L. Interpretability of machine learning-based
prediction models in healthcar@Viley Interdisciplinary
Reviews: Data Mining and Knowledge Discoviety,
2020.

von Kugelgen, J., Sharma, Y., Gresele, L., Brendel, W.,
Scholkopf, B., Besserve, M., and Locatello, F. Self-
supervised learning with data augmentations provably
isolates content from style. INeural Information Pro-
cessing System2021.

Wang, X., Peng, Y., Lu, L., Lu, Z., Bagheri, M., and
Summers, R. ChestX-ray8: Hospital-scale chest X-ray
database and benchmarks on weakly-supervised classi-
cation and localization of common thorax diseases. In
Computer Vision and Pattern Recognitj@017.



CLAP Interpretable Predictions

A. Proof of Theoretical results

For simplicity, we rst prove guarantees f@LAPIn the setting where the number of latent variables is speci ed correctly.
Subsequently, we will extend the analysis to the setting where the number of latent variables is miss-speci ed (i.e. chosen
conservatively).

Throughout, we use the following notation. LRt be the distribution oK, Py be the probability distribution oPx .y be
the joint probability distribution of an@X ;Y ), andPy jy be the probability distribution oXjY , all with respect to the
data generating model. Associated with the probability distributiynsindPy jv are the density functions with we denote
by p’(X) andp’(XjY)

A.1. Formal description of our assumptions

Let f %be the function from the decompositibr= f © B introduced in relation to the sparsity regularization teBrig the
identity matrix when the number of latents is correctly speci ed). Assumption 1 then is formally described as follows:

Assumptiorl (Concept learning, formal)

Assumption 1.1. The functiorfs® f * are one-to-one and continuous
Assumption 1.2. There exisfg;y) 2 Y s.t. Dy?(D;) ! has distinct diagonal entries not equal to one

The rst component of Assumptions 1 is rather mild and ensures that the functions mapping from the latent space to the
input space are injective. The second component of Assumption 1 states that variations in thiesladngld impact the

variance of all the core latent features (hence the exclusion of value “one”) and in a distinct manner. This type of assumption
is similar in spirit to requiring “heterogeneous interventions” in causal structural learning. Speci cally, in the context of
our anti-causal graphical model 1(a), the laheBY can be viewed as an “environment” variable where an environment
dictates the distribution of the core latent features. A change in an environment can then be viewed as interventions on the
core latent features. Thus, in this perspective, the second component of Assumption 1 requires the impact of the interventions
to be on all of the core features and to be suf ciently heterogeneous. Furthermore, we note that the second component of
Assumption 1 requires that changes to the label lead to simultaneous changes to all of the core features. This assumption can
be relaxed so that not all of the core features must vary at once with a change in the label, as long as each feature varies for
some change to the label. Mathematically, the assumption can be relaxed to the following: farjevefit];i 6 j, there

existsy; ¥ 2 Y suchthafD/D? ']; 6 [D;D? ']; and[D;D? ']; 61,[D;D} ']; 61.

We now state Assumption 2 formally. Speci cally, lettiggbe the set of simple classi ers in the training, we require:

Assumptior® (optimal prediction, formal) The Bayes optimal classi er for predicting usingZ. belongs to the set of
simple classi ersS used inCLAP, i.e.

Eflogp’(Y jZ¢)] = max Eflogp (YjZc)l:

A.2. Analysis with known number of latent features
A.2.1. MAXIMIZING L, ACHIEVES OPTIMAL PREDICTION

As described in Section 3.1, maximizing the objectiyeachieves optimal prediction. We formalize this below.

Lemma2 (MaximizingL , achieves optimal prediction)Suppose the data is generated according to the mogg) with no
noise,i.e.  Oand Assumptions 1.1 and 2 hold. Suppbsgés maximized in the in nite data limit with the correct number

of latent features included in the model. Then, the posterior sarﬁ@lerbtained from the encodey, are optimallly
- . dist |, .
prediction:Y j2. €Y jX.

Proof of Lemma 2We analyze the following estimator in the in nite data limit:

argmaxEx.v p ., [Lp( P; Pif; XY (6)
L
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The optimization program (6) can be equivalently expressed as:

#

argmax Ex pe Eq,zix)llogpr (XjZ) KL q»(ZjX);p »(Z)

R {z— }

m reconstruction loss # (7)
+ Exiv pov Eqpzix)llogp (YjZe)l
| —{z. }
classi cation term
Here,Z is an approximation for the true latent variablesvith pr (xjZ) = t(z) Consider maximizing the reconstruction

loss in(7). In this setting, the VAE model searches for an approxima‘ﬁcm) ast X where the parameters of the VAE
model (e.g. posteriorP, prior P, f) are optimized to yield the best approximationof In other words, VAE training
approximates the following optimization:

argmax Exp, [logpr; » (X)]; 8)

dist

where the likelihoogy. »(X) is de ned with respect to the distributiafi f (Z) with Z being a Gaussian mixture
dist

distribution with parameters”. Optimality for(8)is achieved iiX =X, i.e.p;. »(X) = ip?(x). In particular, by de nition
1

this is achieved fof = f ? sincex %f ?(Z). Similarly, sincex & £ ? POD ,8 POD S Z and the family
of Gaussian mixture distributions is invariant to linear transformations, we can further conclufiettat POD IE)I

for any permutation matrif and diagonal matriP is also an optimum of (8).

Since it is hard to maximize ovgx. » directly, the VAE training approach uses a surrogate for the depsiig the ELBO
approximation. Speci cally, recall that the ELBO is a lower bound for the log-likelihood:

log (°(X))  Eq,@zixollogp (XiZ)] KL q+(ZiX):p#(2) : ©)
Equality holds if the approximate posterior matches the true posterior, that is in the noiseless casex ixany
ge(ZIX =x)= g (Z]X = X) = ¢ 1(x)" (10)

Here, we have appealed to one-to-one property of the function f by Assumption 1.1 and that the number of latents is speci ed

correctly. Hence, with the choice of the posterio(108), and settingk oSty , the maximization ovef; P of (8) and the

reconstruction loss in (7) are equivalent.

We nally need to verify that P in (10)leads to an optimal prediction in the classi cation tern{. This follows by noting

thatY jf (X) CgsthX according to the graphical model in Figure 1(a), from the optingu@) for q », and Assumption
2. O

A.2.2. FROOF OFLEMMA 1: MAXIMIZING L IDENTIFIES THE TRUE CONCEPTS

We analyze the following estimator in the in nite data limit

X
argmax Py (Y = V)Ex p ., [La ( @5 “fiX;Y)]
ol oclf y2y .
X . .
=argmax Py (Y = y)Ex pyy Eq. (ZIX5Y = y)llogpr (XjZ)] (11)
o oclf y2Y

KL qa(Z]X;Y =y)pa(ZiY =y)
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where equality follows from the de nition of ., . Here,Z is an approximation for the underlying latent variables

with Zjy =y N vi Doy G

G 2 R* s, altogether accumulated in the paramefer Finally, we have thap(XjZ) = ¢ .

, for some vector y and (diagonal) matri®y 2 Rk *c and a general matrix

The proof of Lemma 1 relies on the following lemmas, which we state below and prove later.

Lemmad. Leta;b2 N, . Suppos€®D = DQ for orthogonal matrixQ 2 R(a*0) (a+b) gnd diagonal matriced; D where
in the rst a coordinatesD has unequal diagonal entries with no entry equal to one. Suppose that therases ofD; D

are equal td.. Then,Q takes the following formQ = whereP 2 R? 2 s a permutation matrix an@ 2 RP P

P O
0 Q
is an orthogonal matrix.

Lemmad. The following two statements are equivalent:

1. the parameterS™®;f; f~,; By; Ggyoy ) are optimizers of (11).

2. forally2Y,X ©'A(2Z); zjy =y N 7 I%y ((j‘), . "= parameters oZjX;Y =y.

With Lemmas 3 and 4 at hand, we are ready to prove Lemma 1.

dist

Proof of Lemma 1Lemma 4 states that in the noiseless case0, we haveX f?(2) dst f\(z) for Zjy =y

N Ay, I?)y g . We now show that the set of all possible solutionsffpdenoted by, is restricted to maps of the
PD

?
form f 0 G

for permutation and diagonal matrices of dimensign k. and generaks ks matrix G.

Remember in the noiseless cage= f ?(Z). We then have the following equality:

( )
H = continuous, one-to-orfe f 1(X)jy =y N v Doy g ; Dy diagonal for ally 2 Y
( )
@ g for a continuous, one-to-ore g 1(Z)jy =y N v Doy ((3) ;Dy diagonal forally 2 Y ;

where for everyy 2 Y, Dy 2 Rk ke andG 2 R*s *s. Here the relatior? follows from f ? being one-to-one and

continuous from Assumption 1.1 as wellgs® ?(Z). We further have
( )
® £? M forinvertible matrixM M (Z)jY =y N vi Oy g ; Dy diagonal for ally 2 Y
( 1=2 1=2 ) (12)

D} Dy 0

© ¢» -
S PMME Y e Y 0o

; Dy diagonaj Qy orthogonal for aly 2 Y

. (b . - .
The relatlon(:) follows from the fact that the set of one-to-one continuous operators that preserve Gaussianity are linear; the

?
relation’? follows fromzZjY =y N ;f Doy ((;);’ and the following calculations:
1 D;-,’ 0 T Dy O
M™% oM = 0o o
1=2 2 1=2
Dy O Dy O Dy O
06 MUY Mg = (13)
1=2 2 1=2
, Doy ((_); M ! Doy GO? is an orthogonal matrix
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Consider the paly; y satisfying Assumption 1.2. Then, sinbk doesn't depend oy, we have that:

D 0 1=2Q Dy 0 *_ D7 0 1:2Q p, 0 ‘7 14)
0 G? Y 0 G 0 G’ ¥ 0 G
De ne the quantities:
wi= OO0 0 A @00 0
Then the relation (14) reduces to the following condition:
(A?) 2Q,A’? s an orthogonal matrix (15)
The relation (15) leads to the conclusion:
QA = A’Qy: (16)
Since by Assumption 1.2, the r, diagonal elements gk’ are distinctA; A? satisfy the assumptions of Lemma 3. This
implies thatQy = %y Q for some permutation matricé, and orthogonal matricey and hence
( )
H= f° M M= POD g :D 2 Rk ke diagonajP 2 R *c permutation matrixG 2 Rks ks
which concludes the proof. O

1 Qu2
21 Q2
for D; D. We rst show thatQq> = 0. The relationQD = DQ implies that for any pair of indice§; j ) either[Q]; =0 or
[Qli 60 & [DJi =[D]J; . Considen 21 1;2;:::;kcgandj 2fke+1;k+2;:::;ke + ksg. By the above relation and
the assumption that the r&t. entries ofD are not equal to one and the lastentries ofD are equal to one, we conclude
that[Q]; = 0. Thus, we have established ti§af, = 0. Further, becaus®Q” = |, we have thaQ;1 = 0.

Proof of Lemma 3.For convenience, we rst decompose the matriQes Q whereQ; 2 R ke and similarly

It remains to show tha® is diagonal. First note that sin€gis orthogonal, the matri®Q; must be orthogonal. The equality
QD = DQ now implies thaQ;D; = D1Q;. In particularQ:D:Q] = Dy, thatisQ:D1 Q] is an eigen-decomposition of
a diagonal matrix with distinct eigenvalues. By the uniqueness of eigen-decomposgtioms;st therefore be a permutation
matrix. O

Proof of Lemma 4. Consider maximizing the reconstruction losg11). In this setting, the VAE model searches for an

approximatiorf(Z) X where the parameters of the VAE model (e.g. posterfarprior @, f) are optimized to yield
the best approximation of . In other words, VAE training approximates the following optimization:

X
argmax Py (Y = Y)BEx py, ., [logp; « (XJY = y)I; 17)
fi % yay

where the likelihoody. « (X) is de ned with respect to the distributiofi st

distribution with parameters® . Optimality for (17)is achieved ifX dsty JLepr o (X]Y = y)= p’(XjY =y). Since

it is hard to maximize ovep;. « directly, the VAE training approach uses a surrogate for the depsits the ELBO
approximation. Speci cally, recall that the ELBO is a lower bound for the log-likelihood:

log (' (XjY =¥)) Eq, zix)llogpr (XjZ)] KL g« (ZiX;Y =y);ipa(ZjY =)

f (Z) with ZjY = y being a Gaussian

Equality holds if the approximate posterior matches the true posterior, that is in the noiseless casex ixany
qa(ZX = XY =y)= p(ZIX=XY =Y)= 1 1 (18)

where we have appealedftdeing one-to-one from Assumption 1.1.. Hence, with the choice of the poste(it8)irand

settingX 4ty |, the maximization ovef, © of (17) and the reconstruction loss in (11) are equivalent. O
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A.3. Proof of Theorem 1: miss-speci ed number of latent variables

In this section, we analyze the regularized estimator:

omax By be( P PG DGYIF By a5 HEGYL o () (19)

)

For our analysis, we de ne a few quantities. f€},.,,be one-to-one extension bf to a domairR where for any 2 R¥:

0 1
ld, 0 O O
2 2N £? Vik, 9 _ % 0 0 O & K K
faxteng B (V)= f VR whereB * = 0 0 ld 2R
0 0 0 0

Here,ldy denotes an identify matrix with its size speci ed in the subscript. Finally, Wé {ginq2 RK be a random variable
that is identical taZ (true core and style features) in certain coordinates, and a standard Gaussian in other coordinates.
Speci cally:

lde, 0 0 O 8 Idkco k O 0 Z exienais Standard Gaussian

0 0 Idks 0 Zextend: z ; Idks ke

In the in nite data limit with the regularization parametey tending to zero with larger sample size, the optimal parameters
of (19) are solutions to :

argmin f; )
fi: p; p; c.d
subject-to f; ;P Py 92 argmax  Exy[Lp( P; Pif; XY (20)

f,; p;p;d;d

+ Ex;y[La ( P Pif, 5X5Y)L

The proof of the corollary requires a few lemmas which we provide next and prove later.
Lemmab. We have the following equivalence for a set of parameters P; P; ©;

f,; PP d 2 argmax IEx;v Py [Lp(C Py Pifs XSVl + Exoy pyy [La (75 Pif XY
fi; PPy d

" #
f. P p.d. oy argmax Ex pc Eq,zix)llogpr (XjZ)] KL q+(ZjX);p»(Z)
p. p. cl.ocl.g
' ' ' ' n #
+Exiy pev Eq (Zix;Y)[Iogpf (XjZ)] KL qga(ZjX;Y);pea(ZjY)
" #
;P2 argmpaxEx Y Py Eq p(Zix)[logp (YjzZo)
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Lemmab. We have the following implication for the parametefs P; ©; ©:f:

PpP s hf 2 argmax  Ex p Eg Lo ll0gpr (XjZ)] KL g e (ZjX);p e (2)

S Pl d.
L "

+ Exiv pov Eq o zix ;Y)[Iogpf (XjZ)] KL qga(ZjX;Y);pa(ZjY)
" #
;P2 ar_grrlaXEX;Y Px ;v Eq p(zjx)[lc’gp (YiZe)

) foreveryy2yY f=1£° B;X £'f(z) wherezjy =y N ys %y g and

Dy 2 R% Re;G2 RR s 1 qo(ZjX) = p(ZjX);q a(ZiX;Y = y) = p(ZjX;Y = y):

Lemma7. Consider the following optimization problem:
X
(f ops Bop) = argmin I(kB.iks, > 0)
f Oone-to-ongB ;¢
subject-to  there exists a random veco? RX with X £ B(Z)
o . Dy O
ZjY =y N Yo G forally 2 Y

Then, the following statements hold:

1. Any feasibleB hask (nonzero) linearly independent columns.

2. Any optimalB o, has exactlhk columns that are nonzero and linearly independent.

PD

3. Letting B optrequcedde those nonzero columns, théfy, Boptreduced™ f axtend 0

o o

0 ' for some diagonal
H O g
S kS

matrixD 2 RKe k¢ permutation matri 2 R*e ke and non-singular matrild 2 R

=

4. LettingZ equcedbe the latent features corresponding to nonzero columBs in
Z jY = N ., D P ID;)P D * 0 forally 2 Y
reduced =y ys 0 H 1G?H T y .

Proof of Theorem 1 Throughout the proof, we take= f° B and =

0 C. We consider the following reformulation
of the minimal value of the optimization (20):

D :=min t
subject-to  (f; ) t

aigmax  Exy oy [Lp( % Pif XY
|

f;; PP,

+ Exiy pey La (P Pf 5X5Y)

where we denote the set of feasible paramdtefs; P; P; ©; ©) of the optimization problem above I8fY . Our
objective is to show that any optimal encoder produces core features that are permutation and scaling of the true core features.
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To that end, we consider the following optimization problem:

1@ :==min t
subject-to  (f; t
j ) " #

f P, p.ocl.ocp argma}xlEx P« Eqozipllogps (XjZ)] KL g »(ZjX);p »(Z)
f, opyopy ey d

" #
+ EX Y Py % Eq o (Zj)( ’Y)[logpf (XJZ)] KL q cl (ZJX v Y )1 p cl (ZJY)
" #
;P2 argnlaxEx;Y Peiv Eqpzixyllogp (YiZ)] ;

where the set of feasible parametgrs; ;  P; P; °; ) are denoted b$® . By Lemma 5, we have th&® = SO
sothat® = | We then relax the constraint set as follows:

1®) :==min t

XK
subject-to [(kB-ik,>0) t
i=1 " #
f, PrP o 92 argmax Ex e, Ey,zx)llogpr (XjZ)] KL g e (ZjX);p»(2)
f, pyp;d;d
" #
+ EX Y Px;y Eq o (Zj)( ’Y)[logpf (XJZ)] KL q cl (ZJXvY)y p cl (ZJY)
" #
, P2 agMaxEx vy ey Eqpzixyllogp (YIZ)]

where the set of feasible parametérs; ; P; P; ©: ) are denoted bg® . Evidently,S® S @ s (1) and thus
© 1@ 1@ LetSY) be the optimal set of parametersSF . Appealing to Lemma 6 and Lemma 7, the Séx

op
given by:
(
s = (tf; PP 9 ©)jt= k;there exists arandom vect@r2 RX and matrice®; D;H s.t.

PD 0 0 0

di
x ¥fo gz B B reduced= fgxtend whereB reducea2 RE X

0 OH O
¢ parameters of the Gaussian random veZif = y where: 21)
. D' ID}P "D ! 0
ZieducedY =Y N vy Oy H 1g?H T

P parameters of the distribution &f ; q »(ZjX) ?#)q a (ZjX;Y) = p(ZjX)
2 argmaxEx;y ey By, (zjx)llogp (YiZc)]

Here,P isak. k. permutation matrixD is ak; k¢ diagonal matrix, anti isaks kg non-singular matrix. Furthermore,
B reducediS thek nonzero columns d8 andZ.qyuceqare the components @ corresponding to the nonzero column®Baf

Take any optimal set of parameterg(#1). Noting thatX £'f 2. B?Zexena it is straightforward to check that the rét,

component¥ .qucedX are a permutation and linear scalingZyf, and thus the posterior samples are optimally predictive.
As such, one possibility for an optimal predictoriss  ° C whereC has the same nonzero columngBas (21). Notice

that the resulting set of parameters is feasible in th&$etand yield the objective value= k. In other words, we have
shown that® = |@ = |®) = k,
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Now let S((,t)t be the optimal set of parameters associated Iffith By Lemmas 5, 6 and 7, any optimBlshould have at
leastk nonzero linearly independent columns. Thus, to attain the lower biétird k, the optimalB should indeed only
havek nonzero columns. This observation implies that the constraﬁgg I(kB.ik, > 0) t can be added to feasibility
setSM without changing the optimal value. Thus, we have concludecﬁiﬁ;\t S é‘:,)t Since any parameters (A1) lead

to the posterior samplesdy, 0 ZiequcedX that are a permutation and linear scaling of the sampl&s ofve have the

desired result. 0
We now prove the Lemmas 5,6, and 7 that were used in the proof of the corollary.

Proof of Lemma 5.The direction follows in a straightforward manner. For the direction we introduce some notation.

De ne:
" #

h(f; PP 9 9= Ex m Eg,il00p (XiZ)] KL s (ZiX)ip »(2)
" #
+ EX Y Px;y Eq ol (Z]X’Y)[logpf (XJZ)] KL q cl (ZJX,Y), p cl (ZJY)
" #
a( " )= Exiy pey Bquzixyllogp (YiZ)]

Note thatEx v py ., [Lp( P; Pifs XGY)I+ Exiy pey [La (P5 Pif 5XGY)1= h(f; Py Pyocs )+ g( Py ).
Thus, we have the following inequality:

o max Exy ey [LpC P Pifs 5XGY)I+ Exy opyey [La (P35 Pifs X5 Y)]
B 22
max  h(f; P; P ¢ y+max g( P ): ¢
p; p; cl; cl f ;P
Consider the parameters in (21). Notice that they optimize each term in the right hand side of the inequality above and are
feasible in the optimization problem in left hand side of the inequality. Thus, the inequa{RR)iis actually an equality.
Let top: be the optimal value of either side of the equality.

Suppose for a proof of contradiction that the directionis not valid. In other words, consider a set of maximizers

(fopti opti bt oot ot Shy) for the left hand side of the equation above that are not maximal in either term in the right

hand side. Then: | !
topt = h(fopt; bpt bpt ot opt) + O opt opt)

< max _h(f; PP o y+maxg( ;o)
p; p; cl : cl f ;P
This however contradicts the fact that the inequality (22) is an equality. O

Proof of Lemma 6 We have the following inequality:

argmax Ex p Ey,zjx)[l0gpr (XiZ)] KL g #(ZjX);p»(Z)

f; p;P; cl; cl

" #
+ EX;Y Px;y Eq ol (Z‘JX'Y)[Ingf (XJZ)] KL q cl (ZIX’Y)! p cl (ZJY)
" #
argmaxEx e, Eq 2y, l00p (XiZ)] KL 4 +(ZiX)ip+(2)
| — {z }
n Term 1 #

+ argmlax Ex:y pov Eq g @ixov)llogps (XjZ)] KL g« (ZjX;Y);pa(ZjY)
cl . cl f
| — {z }

Term 2
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Notice that the different terms in the equation above have the common parameténss, the inequality in the equation
above is an equality if there exists fithat is optimal for each of the terms in the relation above. Furthermore, from proof of

Lemma 2, Term 1 is optimized whet dst ¢ (Z) for Z being a mixture Gaussian aqd (ZjX) = p(ZjX). From Lemma
4, Term 2 is maximized wheX st (Z) for ZjY = y being a Gaussian distribution with appropriate covariance matrix.

Consider the parameters in (21); they satisfy the properties above for the same decoder.

It remains to check that there exists a set of parameters in the right hand implication of Lemma 6 that are optimally predictive.
This follows from taking the parameters (21) and noting that that the posterior safijlesre optimally predictive. [

Proof of Lemma 7 By de nition, any feasible = f° B satis es:

x %0 B(Z) andzZjY =y N vi %y G  WhereDy 2 RRe Ko andG 2 RFs Xs:
Proof of 1. Applying (f 2.end * to both sides of the relatiok ©'£0 BZ and noting thaf ° can be expressed as
f0=f2.ena 0 fora continuous and one-to-one functignwe have:

B ?Zextend(gSt g BZ:

SinceZjY = y andZjY = y are Gaussian arglis a continuous and one-to-one functigmmust be a linear map; we
denoteg by the matrixN 2 RF K. It is straightforward then to argue thBtmust havek = k. + ks total number of
linearly independent columns; these linearly independent columns are nonzero by de nition. We have proven the rstitem
inLemma 7.

Proof of 2. Gathering all the facts so far, we have that for any feaditef® B:

fO=f2 N ; BZeyend®'NBZ ; rankB) = ke + Ks: (23)

Furthermore, by the objective (20), we have that an optim& must have exactlit = k. + ks total number of linearly
independent nonzero columns (ikeof theK latent features have some visualization power). We have thus concluded the
second item in the lemma.

Proof of 3. Let B equced? R ¥ be the non-zero columns 8f, so thatB Z = B equced reducedWhereZ requcea? R and
foreveryy 2 Y:

. D 0
ZreducedY =Y N vy Oy G

Here,Dy is a diagonal matrix. Without loss of generality, we assume that every diagonal eBtyytias some variation
acrosyy 2 Y ; otherwise, we can concatenate the components that do not vary to the genera@Gnatrxdimension of
Dy andG corresponds to the number of core and style features that are selected by the nonzero counivstetthat so
far, we have only established that the dimension® pfindG sum up tok. In what follows we show that the numbers of
estimated core and style features equadts.

|d|<c 0 0 0 dist

LetM bethek k matrixM := N B reduced By relation(23), Z = M Z equced Since the distribution

0 O Ide, O
of Z is non-degenerat®] is a non-singular matrix. Therefore, for evgr2 Y we have
Lo . Dy O
M *ZjY =y N ' 0 G

Following a similar analysis as in the proof of Lemma 1, we conclude that for gv2ry , there exists an orthogonal matrix

Qy such that
2 1=2 1=2
Oy Dy 0. (24)

M= 9 & ¥ o ¢
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Choosingy; 2 Y that satisfy Assumption 1.2, relation (24) implies that

A? 1=2Q),A1:2 is an orthogonal matrix (25)
?
Here A7 = pal N whereA? = D;[D;] 1 andA3 = Id andA = AE)l A , whereA; = DyDyl andA; =1d.
? 2

Relation (25) implies that:

QyA = A7Qy:
Notice that the singular values Qf, A are equal to the singular valuesAf since product by orthogonal matrices preserves
the singular values. Similarly, singular valuesAo’ny are equal to the singular valuesAt. Thus,A? andA have the
same singular values. In other words, sidcehasks singular values equal to one akgsingular values not equal to one
(by Assumption 1.2)A; must have exactli; diagonal elements not equal to one. This allows us to conclude that the
dimensions oD are greater than or equalke.

A1

From the analysis above, we can partition the mahrias follows: 0 I% whereA; is a diagonal matrix of dimension

0
0 H
P 2 Rke ke diagonal matrixD 2 R X and a non-singular matrid 2 R¥s *s. Combining this with the expression of
M (24) and the fact that the dimensionsidf are greater than or equal kg, we conclude tha¥l takes the form:

ke k¢ with all distinct entries. Appealing to Lemma 3, we then conclude @at for a permutation matrix

_ PD O
M= "9 H
. - . . 0 Ido ., O 0 . .
Finally, combining the relation above wif@3) and the fact that 0 0 o0 W NB = 0 yields the third
Rs ks
item of the lemma.
Proof of 4. The nal component of the lemma also follows from the relatbr%i:StMZreduced O

A.4. Analysis ofL ¢ in the noisy setting

In this section, our objective is to show that the dengity(ZjX ;Y ) matches the density’(PDZjX ;Y ) for some
ke ke permutation matrix anl; k. diagonal matrix. Throughout the following discussipf( ) represents the ground
truth density corresponding to a speci ed random variable.

In addition to Assumptions 1, analysis of the noisy setting requires the following mild assumption:

Assumption 3 : the Fourier transform of the density @& non-negative everywhere

Itis straightforward to extend the characterization in Lemma 4 to the noisy case and Concludéj-ifhbf(ZH dst g (2)+
Dy O

whereZjY =y N Y'0 G

. Here,Dy isak: k. diagonal matrix an@ is aks ks matrix. SinceZ ?

Z? ,we have that:
Flp(f*(2) + )= FpO)IF [p(f *(2))]

Flp(f (2)+ )= FIp(O)IF [p(f (Z))];

whereF [ ] represents the Fourier transform gu(d represents the density function with respect to a random variable.
Sincep(f ?(2)+ )= p(f (Z)+ ), appealing to Assumption 2, we have tRdp(f *(Z))] = F [p(f (Z))], or equivalently,

f (2) £ 2(Z). We then have from the chain of equalitieh2.2) thatf = f 2 POD ,8 . Combining this with
the fact thaf (Z) £ ?(2), we conclude thaz &' POD IE)I Z. Notice that:

Z R R
, . @ Pr (Xize; Z5)P(Zcjy)P(2s) @s (o) Pr (XjZe; Nzs) p(Zcjy)p’(zs) @2
)X y) = ¢y Zs) X, = YA, = YA ; 26
p(Zex;y) P(zc; )X, y) @2 o7 (xiy) 07 (Xiy) (26)
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The equalit)}g) follows fromZ.? Zs and the equalit)(rg) follows from the change of variabléézs  z.

Now we examine the posterior densityPDZjX ;Y . Appealing to the same line of reasoning as (26), we have that:

ey Py @dd Pz 2P P @) @20 FHD P 228 (2P () 02
o o P?iY) P°(xjy)

R H ? H ? H H
© Pt (XjzeiNZzs) P(zey)P"(25) @2(@)  Pr (Xjze; Nzs) p(zciy) P’ (25) @2,
p?(Xjy) p?(Xjy)

(27)
wherep’(xjz¢; zs) is the density of the distributiod jPDZ; Zs andp’(z.jy) is the density of the distributioRD ZjY .

Here, the equality(zg) follows fromPDZ.? Zs, 2 follows from the densitX j(PDZc;Zs) = p’(Xj(D P 1Z;Zs)),

and® follows from the relationship betwednandf ?. Finally, @ follows from the equalityp’(z.jy) = p(zjy) since
PDZ. d:'StZC (due to the relation betwedlt Z and that they are both Gaussian random variables after conditioning on a

label). Comparing (26) and (27), we have the desired result.

B. Comparisons with (Khemakhem et al., 2020)

Previously, (Khemakhem et al., 2020) proved that supervision enables identi ability of the latent features. The only similarity

of our results with this work can be found in Lemma 1, although our guarantees distinguish core and style features and
allow for more relaxed assumptions. In particular, while the target label can take two distinct values for Assumption 2 to be
satis ed, the assumption in (Khemakhem et al., 2020) — when specialized to the Gaussian prior — requires that the target
label takes at leagk distinct values wher& is the number of the latent features. On all the remaining theoretical and
methodological aspects, our setting differs substantially from (Khemakhem et al., 2020). Importantly, while our method can
be employed for interpretable predictions, their proposed I-VAE is simply not applicable in our setting, as it requires labels
as inputs and thus cannot perform prediction. Furthermore, our methodology and theoretical guarantees (see Theorem 1)
covers the case of overparameterized latent spaces, i.e. the case in which the model allows for mode latent features than the
ground truth ones. This is another practically relevant novelty, as in general the number of ground truth features is unknown.

C. Implementation details
C.1. Datasets and pre-processing

For all the datasets, pixels are transformed to have values between 0 and 1 and the image size of 64x64 is kept. We randomly
X train and test set with sizes respectively @% and40%for MPI3D, 90% and10%for shapes3D, SmallNORB and
Plantvillage datasets. For the ChestXRay dataset, we use the pre-de ned train test splits.

C.2. Hyperparameter selection

Hyperparameter selection been performed via visual inspection of the travenstie training set This is a correct
validation of the algorithm, since no test data has been utilized for model selection. Furthermore, it re ects the procedure
that we propose in the paper, where model selection is carried out with a human expert. All the traversals and results we
report are then obtained on the test set as usual.

C.3. Hyper-parameters and training con guration

Most hyper-parameters and training con gurations are kept xed across datasets. An overview of hyper-parameter settings
is shown in Table 2. We set a xed dimension(@; Zs) = (10; 20). Notice that, similar to the real-life setting where the

exact dimension of the true underlying latent features is unknown we allow the latent dimension of core and style latent
features to be higher than theoretically needed for all the synthetic datasets.

We set the following values of (prediction term weight, group sparsity regularization) for the experiments: (50, 0.05) for
MPI3D; (10, 0.0001) for Shapes3D; (50, 0.01) for SmallNORB; (200, 0.01) for PlantVillage; (200, 0.05) for ChestXRay.
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Table 2: Hyperparameter settings for all datasets.

Hyperparameter Value

Core latent space dimension 10
Style latent space dimension 20

Batch size 132

Optimizer ADAM

Learning rate 5e-4

Decoder type Bernoulli

Prediction loss binary cross entropy
Training steps 150,000

C.4.CLAP model architecture

The architecture o€LAP consists of ve main modules that share weights where appropriate. The ve modules are: the
encoder, decoder and predictor in the prediction VAE, and the encoder and decoder in the concept-learning VAE.

Predictor The predictor in the prediction VAE is a simple linear predictor mapping from core latent features to the labels
where each label has a separate linear predictor.

DecodersThe decoders in both the prediction VAE and the concept-learning VAE share weights with an architecture as
depicted on the right in Table 3.

EncodersThe encoder in the prediction VAE consists of a backbone with architecture as depicted on the left in Table 3 and
two parallel fully connected layers. The output of the backbone is fed into the two separate fully connected layers where
one is learning the posterior distribution of core latent features and one is learning the posterior distribution of style latent
features.

The encoder in the concept-learning VAE shares all weights that are associated with style latent features with the encoder of
the prediction VAE. In particular, the weights of the backbone and fully connected layer that output the posterior distribution

of style latent features are shared across both. No weights are shared for that part of the concept-learning VAE associated
with core latent features. Thus, a separate backbone and fully connected layer are used to learn the posterior distribution
of core latent features in the concept-learning VAE. The lghslincorporated in the concept-learning VAE by feeding it

jointly with the output of the backbone to the fully connected layer that outputs the posterior distribution of the core latent
features.

C.5. SENN and CCVAE model architecture

For SENN, we employ the same architecture asdbAP. In particular, we utilize the encoder backbone presented in
Table 3, and map the encoding obtained from the backbone to the core and style features via two parallel linear layers. The
decoder utilized is the same. Furthermore, SENN employs an additional mapping from th¥ itgptlite prediction weights

utilized on top of the core features. This mapping is given by a neural network with str@uinw32, 4, 2, 0),

MaxPool(2, 2), ReLU, Conv(32, 4, 2, 0), MaxPool(2, 2), ReLU . To map to the prediction weights,

we atten and then utilize two linear layers with output dimensik@8and128and activations ReLU and Tanh respectively.

For CCVAE, we employ the publicly available architecture from the authors at https://github.com/thwjoy/ccvae. We note
that the encoder-decoder pair is roughly equivalent to that utilize@ féP.
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Table 3: Encoder backbone and decoder architecAlsbreviations: ¢ denotes the channel size of the input imdgethe

dimension of core latent factors, aRgthe dimension of style latent factodsayer parameters: For fully connected layers

the rst parameter denotes input dimension, and the second parameter output dimension. For LeakyRelLU the parameter
denotes its negative slope. For dropout layers the parameter denotes the probability that a whole channel is dropped out
(2D dropout). For convolutional and transposed convolutional layers the parameters can be interpreted as follows: output

channel size, kernel size, stride, padding.

Encoder backbone Decoder
Input size: 64x64xc Input size: 30 =K. + Rg
Output size: 256 Output size: 64x64xc
Layer Parameters Layer Parameters
Conv 64,3,2,1 FC 30,512
LeakyRelLU 0.01 RelLU
Dropout 0.1 FC 512,1024
Conv 64,3,2,1 ConvTranspose 64,3,2,0
LeakyRelLU 0.01 RelLU
Dropout 0.1 ConvTranspose 64,3,2,1
Conv 64,3,2,1 RelLU
LeakyRelLU 0.01 ConvTranspose 64,3,2,1
Dropout 0.1 RelLU
Conv 64,3,2,1 ConvTranspose ¢, 4,2,2
LeakyRelLU 0.01
Dropout 0.1
Flatten

FC 1024, 256
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D. Details on synthetic datasets

D.1. MPI3D traversals and details

The MPI3D dataset is an arti cial dataset of images where the ground truth factors of variation are object color, shape and
size, as well height of the camera, background color, horizontal and vertical axes of the camera. In Figure 5, we present
some example images from the dataset.

We create synthetic labels according to the following rules: for the rst Igbel,l if color in f white, green, brown, olivg

and shape ificone, cube, cylinder, spherand size irf smallg, andy = 0 otherwise; for the second labgl= 1 if color in

f green, red, blugand size irf largeg, andy = 0 otherwise; for the third labey, = 1 if shape inf cone, pyramid, and

y = 0 otherwise; for the nal labely = 1 if shape inf cylinder, hexagonal, pyramiglandy = O otherwise.

We present additional MPI3D traversals@fAPfor Z ( rst row) and Z (second row) in Figure 6.

Figure 5: Some example images from the MPI3D dataset.

Figure 6:CLAPtraversals o . ( rst row) and Zs on MPI3D dataset.
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D.2. Shapes3D

The Shapes3D dataset is composed of synthetic images of different 3D objects. The ground truth factors of variations are
oor hue, background wall hue, orientation, and the object's hue, scale, and shape. In Figure 7, we present some example
images from the dataset.

We rescale all the factors of variation, which are already discrete, to take integer values starting from 0. In particular, hue
and scale of the object have valueg@n9] and are used to create the synthetic labels. We create synthetic labels according
to the following rules: for the rstlabely =1 if scale 5andhue 3,y =0 otherwise; for the second labgl= 1 if

scale 3andhue 3,y =0 otherwise; for the second labgl= 1 if scale 4andhue 2,y =0 otherwise; for the nal

label,y =1 if scale 5,y =0 otherwise.

We presenCLAPtraversals on the Shapes3D datase#fp( rst row) and Z5 (second row) in Figure 8.

Figure 7: Some example images from the Shapes3D dataset.

Figure 8:CLAPtraversals oZ . ( rst row) and Zs on the Shapes3D dataset.



