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ABSTRACT

Large Language Models (LLMs) often lack meaningful confidence estimates for
their outputs. While base LLMs are known to exhibit next-token calibration, it re-
mains unclear whether they can assess confidence in the actual meaning of their re-
sponses beyond the token level. We find that, when using a certain sampling-based
notion of semantic calibration, base LLMs are remarkably well-calibrated: they
can meaningfully assess confidence in various open-ended question-answering
tasks, despite being trained on only next-token prediction. To formalize this phe-
nomenon, we introduce “B-calibration,” a notion of calibration parameterized by
the choice of equivalence classes. Our main theoretical contribution establishes
a mechanism for why semantic calibration emerges in base LLMs, leveraging a
recent connection between calibration and local loss optimality. This theoretical
mechanism leads to a testable prediction: base LLMs will be semantically cali-
brated when they can easily predict their own distribution over semantic answer
classes before generating a response. We state three implications of this predic-
tion, which we validate through experiments: (1) Base LLMs are semantically
calibrated across question-answering tasks, (2) instruction-tuning procedures sys-
tematically break this calibration, and (3) chain-of-thought reasoning breaks cali-
bration (intuitively because models cannot predict their final answers before com-
pleting their generation). To our knowledge, our work provides the first principled
explanation of when and why semantic calibration emerges in LLMs.

1 INTRODUCTION

As Large Language Models (LLMs) become increasingly capable, it is important to understand the
nature and extent of their uncertainty. Addressing this is an active research question: can we extract
a meaningful notion of confidence in an LLM’s answers? This question is scientifically interesting
even aside from applications: it is a way of asking, informally, do LLMs “know what they don’t
know”? (Kadavath et al., 2022)

In the classification literature, one well-understood criterion for uncertainty quantification is calibra-
tion: do the predicted probabilities reflect empirical frequencies? For example, if an image classifier
is 80% confident on a set of inputs, then it should be correct on 80% of those predictions. To apply
this definition to LLMs, one approach is to treat the LLM as a classifier that predicts the next-token,
given all previous tokens. There is strong empirical and theoretical evidence that base LLMs, which
are only pre-trained with the maximum likelihood loss, are typically next-token-calibrated (OpenAI,
2023; Zhang et al., 2024; Desai & Durrett, 2020). Next-token calibration is a meaningful notion of
calibration in certain settings like True/False or multiple choice questions, where a single token en-
capsulates the entire response (Kadavath et al., 2022; Plaut et al., 2025). However, when the model
produces long-form answers to open-ended questions, we desire a notion of uncertainty with respect
to the semantic meaning of the response, which next-token calibration does not directly capture.

Prior works have proposed a variety of notions of semantic confidence for long-form text, including
verbalized measures and sampling-based measures (e.g. semantic entropy of Farquhar et al. (2024)).
See Vashurin et al. (2025) for a comprehensive overview. However, from the empirical data it is
unclear whether LLMs are naturally calibrated with respect to any of these notions of confidence,
without being specifically trained for calibration (Kadavath et al., 2022; Yin et al., 2023; Band et al.,
2024; Kapoor et al., 2024; Yoon et al., 2025; Mei et al., 2025). Empirically, calibration may depend
on many factors: the test distribution (math, trivia, etc.), the post-training procedure (RLHF, DPO,
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Figure 1: Semantic calibration refers to calibration of an LLM-induced semantic classifier (dashed
box): the classifier induced by post-processing LLM outputs with a given semantic collapsing func-
tion, which we refer to as B throughout. To measure semantic confidence calibration: for a given
question, sample multiple temperature T =1 generations, and extract semantic answers by applying
the collapsing function B (e.g. a strong LLM prompted to extract one-word answers). This yields
an empirical distribution over semantic classes (above: Paris, Rome, Berlin), which we treat as the
classifier output. This classifier output defines a semantic prediction (=argmax probability) and a
semantic confidence (=max probability). Semantic confidence calibration means, over all questions,
these predictions are confidence-calibrated in the standard classification sense.

RLVR, none, etc.), the inference-time procedure (few-shot examples, chain-of-thought (CoT), best-
of-K, etc.), the model size, the model architecture, the sampling temperature, etc. All of these factors
have been posited to affect calibration, for reasons that are not yet well understood (Kadavath et al.,
2022; OpenAI, 2023; Leng et al., 2025; Xiao et al., 2025; Zhang et al., 2024; Wang et al., 2025).

A priori, there is no reason to expect emergence1 of any of these forms of semantic calibration as
a product of standard pre-training with the maximum likelihood loss. In this work, we show both
theoretically and empirically that a particular type of sampling-based semantic calibration actually
does emerge for a large class of LLMs. Our definition is closely related to semantic entropy (Far-
quhar et al., 2024), as well as the sampling-based definitions of confidence in Wang et al. (2023),
Wei et al. (2024), and Lamb et al. (2025). At a high level, our approach involves treating the LLM as
a standard multi-class classifier (by collapsing outputs with the same semantic meaning), and then
applying recent theoretical results from the literature on classifier calibration (Gopalan et al., 2024;
Błasiok et al., 2023; 2024). Fig. 1 illustrates the overall setup, described in detail in the next section.
To our knowledge, our work is the first to propose a theoretically plausible mechanism for semantic
calibration in LLMs, and we validate the predictions of this theory empirically.

Summary of Contributions. We empirically show that LLMs are semantically-calibrated surpris-
ingly often, for certain settings and types of questions. We offer a candidate theoretical mechanism
to explain how this calibration emerges from standard LLM training (that does not explicitly encour-
age it), and discuss under which settings and for which questions we expect it. The basic prediction
of our theory is that semantic calibration is likely to hold when (1) the model is a base LLM, and (2)
the model is able to directly predict the probability that its answer will land in a given semantic class,
even before it has started to generate it. Intuitively, in order to be semantically calibrated, the model
must “know” how likely it is to generate a “Paris”-type answer, before it has determined exactly how
it will phrase its answer. This theoretical insight leads to a number of practical predictions about
which models and tasks should be semantically calibrated, which we then test experimentally.

Organization. We start by formally defining the notions of calibration we consider in Sec. 2. In
Sec. 3, we introduce our proposed theoretical mechanism for emergent calibration, and state our
formal results. In Sec. 4, we apply the theory to make three concrete predictions about when LLMs
are semantically calibrated, and in Sec. 5, we experimentally test these predictions.

1We use emergent here to mean a structural regularity that arises implicitly (“for free”) due to system
dynamics, not as a result of explicit external constraints. That is, “Emergence Through Compression” in the
terminology of Krakauer et al. (2025). We do not mean to discuss changes as a result of model scaling, which
is another common use of the term emergence (Wei et al., 2022).
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Figure 2: Reliability diagrams demonstrating semantic confidence-calibration of base (pretrained-
only) LLMs across various combinations of datasets, models, and prompts. Calibration error mea-
sured with SmoothECE (smECE), average confidence and accuracy marked with a black cross, and
density of semantic confidences shown in gray histogram; details in Appendix D.1.

2 SEMANTIC CALIBRATION AND B-CALIBRATION

We now informally describe our framework; formal definitions follow in Sec. 2.1. The core of our
approach is a collapsing functionB which post-processes the LLM’s raw text outputs, mapping each
generation to one of a finite set of classes. Of particular interest are semantic collapsing functions2,
which we focus on now. As illustrated in Fig. 1, a semantic collapsing function implicitly transforms
the LLM into an LLM-induced semantic classifier: For a given question, the classifier’s output is
a distribution over semantic classes, whose probabilities can be empirically estimated by sampling
multiple generations from the LLM and applying B to each. From this distribution, we define the
semantic confidence as the probability of the most-likely semantic class, and the semantic accuracy
as whether the most-likely semantic class matches the ground truth’s semantic class. The LLM
is semantically confidence-calibrated if these confidences and accuracies are calibrated across a
dataset—e.g., among questions with 70% semantic confidence, the average semantic accuracy is
also 70%. This definition coincides with Lamb et al. (2025)’s definition of “Empirical Semantic
Confidence” when applied to the full distribution. For example, Fig. 2 measures calibration of
several models using this approach (full experimental details in Sec. 5).

2.1 NOTATION AND SETUP

We now establish the notation used throughout the paper. We assume that our semantic collapsing
function outputs at mostK ∈ N classes, which we represent by the set of indices [K] ≡ {1, . . . ,K}.
We allow K to be arbitrarily large. We identify these classes with the set of standard basis vectors
EK ⊂ RK . The set of probability distributions over a finite set S is denoted ∆(S). For convenience,
we use the shorthand ∆K ≡ ∆([K]) for the probability simplex over the K classes.

Language Model and Data. Let V be the model’s vocabulary. We assume throughout that the
evaluation data comes from a ground-truth distribution D over prompt-completion pairs (x, y) ∈
V∗×VN , where N is a maximum generation length. An LLM is a function pθ : V∗ → ∆(VN ) that
maps a prompt x to a distribution over output strings. We use conventional notation: px ≡ pθ(· | x)
is the entire distribution over sequences for a given prompt, so we can denote px(z) = pθ(z | x)
as the probability of a specific sequence z. The conditional probability of the next token is denoted
pθ(zi | x, z<i). To distinguish model outputs from the dataset, we use z ∈ VN for generated strings
and y ∈ VN for ground-truth completions from D.

Collapsing function. The core of our framework is the collapsing function B : V∗ × VN → [K]
that classifies a given prompt-completion pair into one of K categories. In our theory, B is allowed
to be arbitrary, but we often will think of it as a “semantic collapsing” function, grouping many
different strings into a single semantic class, as visualized in Fig. 1. An example of such a function
is described in App. D. For convenience, we write Bx(z) ≡ B(x, z) to emphasize its role as a
classifier for outputs z given a fixed prompt x.

2To implement this function, we use a strong auxiliary LLM prompted to extract a canonical short answer
from a long-form string. Details in App. D.
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2.2 CONFIDENCE CALIBRATION

We first recall the relevant definitions of calibration in the multi-class setting (for a unified treatment,
see Gopalan et al. (2024, Section 2)). In the K-class setting, classifiers output values c ∈ ∆K and
the true labels take values y ∈ EK (one-hot encodings). Calibration is a property defined for any
joint distribution of prediction-label pairs (c, y) ∈ ∆K ×EK , regardless of whether it was generated
by a classifier. We will focus primarily on confidence calibration, which only considers the proba-
bility assigned to the predicted class; however, we provide analogous results for full calibration in
App. E.3. The following definition is standard:

Definition 1 (Confidence-calibration). A distributionD over prediction-output pairs (c, y) ∈ ∆K×
EK is perfectly confidence-calibrated if

E
(c,y)∼D

[yk⋆ − ck⋆ | ck⋆ ] ≡ 0 where k⋆ ← argmax
k∈[K]

ck.

The definition depends crucially on the distribution D. In this work we take D to be the evaluation
distribution of interest (e.g. TriviaQA, GSM8k, etc), unless otherwise specified.

From Language Model to Categorical Predictor For a given prompt x, we obtain a distribution
over K categories by pushing-forward3 the LLM’s output distribution pθ(· | x) via the function Bx.
Specifically, the distribution over categories πx := Bx♯px ≡ Bx♯pθ(· | x) assigns to each category
k ∈ [K] the sum of probabilities of all strings z that Bx maps to that category:

(Bx♯px)(k) = Pr
z∼pθ(·|x)

[Bx(z) = k] =
∑

z :Bx(z)=k

pθ(z | x). (1)

This process transforms the original prompt-answer pair (x, y) from the datasetD into a pair suitable
for calibration analysis: (Bx♯px, Bx(y)), where Bx♯px is the model’s predicted distribution over
categories and Bx(y) is the ground-truth category. Now, we say that the model pθ is B-confidence-
calibrated if the induced distribution over (Bx♯px, Bx(y)) is confidence-calibrated. That is, B-
confidence-calibration means if the generated and ground-truth answers are both post-processed by
B, then the resulting K-way-classifier is confidence-calibrated.

Definition 2 (B-confidence-calibration). The model pθ is B-confidence-calibrated with respect to
distribution D if the induced distribution over pairs (Bx♯px, Bx(y)) ∈ ∆K × [K] is perfectly
confidence-calibrated (per Definition 1).

Our entire framework is well-defined for any arbitrary computable function B, though we usually
choose B to be a semantic-collapsing function. In general, an LLM might be B-calibrated for some
choices of B, but not others—one goal of our theory is to understand why.

3 THEORETICAL MECHANISM

Our proposed mechanism for emergent calibration connects the statistical property of calibration
to the optimization property of local loss optimality, extending the results of Błasiok et al. (2023;
2024) to our LLM setting. The core intuition is that a miscalibrated model implies the existence
of a “simple” perturbation that would reduce its test loss. For instance, an overconfident model
could improve its test loss simply by down-weighting the probability mass on all strings within its
top semantic class. We argue that base LLMs, trained to minimize cross-entropy loss, should not
leave such “easy wins” on the table, and thus should be well-calibrated. The primary challenge is
formalizing how an autoregressive model can implement such a sequence-level perturbation. To
do so, the model must implicitly “know” its semantic confidence. This requirement is key, as its
difficulty varies by task (e.g., it is easier for trivia than for chain-of-thought math), allowing our
theory to make fine-grained, testable predictions. A technical overview is in Sec. 3.1, followed by
formal theorem statements in Sec. 3.2 and Sec. 3.3. All proofs are deferred to App. E.
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Figure 3: Proposed Mechanism for Semantic Calibration in LLMs.

3.1 PROPOSED MECHANISM: OVERVIEW

Fig. 3 illustrates our proposed mechanism. There are three steps; two of them we prove and the third
is an existing heuristic. We outline each step below, following Fig. 3 from right-to-left.

■ The first step of our argument, outlined in Sec. 3.2, is a general equivalence, building on the work
of Błasiok et al. (2023) which established a link between calibration and local loss optimality. We
prove in Thm. 6 that for any choice of collapsing function B, B-calibration is equivalent to local-
loss-optimality with respect to a corresponding family of local perturbations, denotedWB . That is,
an LLM is perfectly B-calibrated on distribution D if and only if its cross-entropy loss on D cannot
be improved by perturbing the LLM’s output distribution (on entire sequences) via some function in
the familyWB . Thus, Thm. 6 tells us that if we want to understand when LLMs are B-calibrated,
we can equivalently understand which types of perturbations LLMs are loss-optimal with respect to.

■ At this point, we invoke an informal assumption proposed in Błasiok et al. (2023), and likely
folklore much earlier: we assume that base LLMs are nearly locally-loss-optimal on their pretraining
distribution, w.r.t. any perturbation that is “simple” for the LLM to implement. The intuition here
is that since base LLMs are trained explicitly to minimize cross-entropy loss, they should not leave
any easy wins on the table: if such simple perturbations could have improved the test loss, the
training procedure would already have incorporated them. We agree with Błasiok et al. (2023) that
this assumption is plausible, because it is fairly weak; it does not require that models are globally
optimal in any sense. 4

■ From the above two points, we can conclude that a base LLM will be B-calibrated if the corre-
sponding perturbation familyWB is simple for the LLM to implement. But when isWB simple to
implement? This is subtle because the perturbationsWB are defined over the sequence-level prob-
ability distribution, but LLMs must implement perturbations by modifying next-token probabilities.
We bridge this gap in Thm. 9: we show that if the LLM is able to “autoregressively-estimate” B –
that is, estimate its own induced distribution over B-classes at each point during autoregressive gen-
eration – then the associated family of perturbationsWB has a simple autoregressive representation.
Roughly-speaking, the autoregressive-estimation requirement says that the model must “know” how
likely it is to generate an answer of a given B-class at every point during generation (even the very
beginning). Notably, this does not require the model to know the correct answer’s B-class.

Putting everything together, this mechanism predicts that a base LLM will be B-calibrated if B
is easy for the LLM to autoregressively estimate. When B is a semantic collapsing function, this
theory naturally suggests a number of practical predictions about which models and tasks should
be semantically calibrated, which we explore and test experimentally in Sec. 5. The next several
sections give the formal theory supporting the mechanism we have just outlined.

3.2 B-CALIBRATION AND LOCAL LOSS OPTIMALITY

We now setup and establish the equivalence between calibration and local loss optimality (Thm. 6).
We use the sequence-level cross-entropy loss, which decomposes into the standard autoregressive
next-token log-loss: E(x,y)∼D[ℓ(y, px)] = E(x,y)∼D

[
−
∑
i∈[N ] log pθ(yi | y<i, x)

]
. We will use

3We use “♯” as the standard notation for the mathematical pushforward of a measure by a function. E.g. for
a function B and distribution p, the notation B♯p denotes the distribution of {B(x)}x∼p

4Technically, we need local-loss-optimality not only for the overall pretraining distribution, but also for each
evaluation distribution individually (TriviaQA, GSM8k, etc), since we are evaluating calibration on individual
distributions. We will however assume that the latter holds (which is plausible if each evaluation distribution is
a reasonably-sized sub-distribution of the pretraining distribution on which local-loss-optimality holds).
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the following notion of perturbing a distribution, known as exponential tilting (Cover & Thomas,
1999, Chapter 11), which turns out to be the appropriate notion for the cross-entropy loss.
Definition 3 (Perturbation operator). Given a distribution f ∈ ∆(VN ) over sequences, and a signed
measure w ∈ R|VN |, define the perturbed distribution (f ⋆ w) ∈ ∆(VN ) as:

∀z ∈ VN : (f ⋆ w)[z] := softmax
(
w[z] + log f [z]

)
. (2)

Next we define a specific class of perturbations which characterize B-confidence-calibration. In-
tuitively, these perturbations modify the probability of the most-likely B-class, by modifying the
probability of each string z according to (only) its B-class Bx(z). The formal definition is some-
what technical, based on the language of weighted calibration developed in Gopalan et al. (2024).
Definition 4 (Semantic Perturbation Function Classes). Given an arbitrary collapsing function
Bx(z) ∈ [K], we define the class WB of perturbation functions w(x, px) ∈ R|VN | as follows.
These functions w(x, px) generate a perturbation vector based on the prompt x and the model’s
predictive distribution px.

WB := {w | ∃τ : [0, 1]→ [−1, 1] ∀z ∈ VN : w(x, px)[z] = τ
(
πx[k

∗]
)
· 1{Bx(z) = k∗}},

where πx := Bx♯px, and k∗ ← argmax
k∈[K]

πx[k].

Finally, we define local loss optimality with respect to an arbitrary perturbation classW .
Definition 5 (W-local loss optimality). We say that pθ isW-locally loss-optimal if

∀w ∈ W : E
(x,y)∼D

[ℓ(y, px)] ≤ E
(x,y)∼D

[ℓ(y, px ⋆ wx)] where wx ≡ w(x, px) , px ≡ pθ(· | x).

We can now state the main result of this section (see App. E for all proofs).
Theorem 6 (Equivalence of Calibration and Local Loss Optimality). Given a model pθ, a collapsing
functionB, and a distributionD, the model pθ is perfectlyB-confidence-calibrated onD if and only
if pθ isWB-locally loss-optimal on D.
Remark 7. Thm. 6 states a simplified version of our full theoretical results, for the sake of clarity.
Thm. 6 only characterizes perfect confidence-calibration, but it is possible to show a much more
robust equivalence: it turns out that a model is “close to” B-calibrated if and only if it is ”close
to” locally-loss-optimal in the appropriate sense. We state and prove this generalized version as
Thm. 36 in App. E, where we also generalize to allow any arbitrary proper-loss ℓ, and any notion of
weighted-calibration (including canonical calibration and confidence calibration).

Remark: Technical Tools and Prior Work The connection between local-loss-optimality and
calibration was formally studied in (Błasiok et al., 2023), which proved a version of Thm. 6 for bi-
nary classifiers, and was our inspiration for this work. Moving from binary classifiers to LLMs posed
three main technical challenges. First, in binary classifiers there is essentially only one canonical
notion of calibration, and so Błasiok et al. (2023) only required one notion of local-loss-optimality.
However in our LLM setting, there are many notions of calibration (parameterized by functions B),
and so we needed to identify the “right” notion of local-loss-optimality that is also parameterized by
B. To do this we observed that B-calibration can be written as a type of “weighted calibration,” a
notion introduced in Gopalan et al. (2024). Second, we needed to generalize the 1-dimensional re-
sults of Błasiok et al. (2023) to higher dimensions, to handle multi-class settings. This turned out to
be a straightforward though somewhat technical generalization, using the Savage representation of
proper losses (Savage, 1971). Third, and most significantly: unlike classifiers, LLMs do not output
their predicted probabilities explicitly. Rather, they implicitly define a probability distribution via
their next-token predictions. This difference between implicit and explicit probability distributions
required a number of conceptual adaptations to the theory of Błasiok et al. (2023), which guided our
definitions of the perturbation operator andW-local-loss-optimality (Definition 5).

3.3 SPECIALIZING TO AUTOREGRESSIVE MODELS

It remains to understand when the perturbation classWB is easy for an LLM to implement (Thm. 9
from Fig. 3). The challenge is that these perturbations are defined over entire sequences, while
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autoregressive models operate token-by-token. Thus, for a perturbation to be easy for an LLM to
implement, the perturbed next-token probabilities (px ⋆ wx)(zi | z<i) must be some simple mod-
ification of the original probabilities px(zi | z<i). It turns out that for perturbations in WB , the
perturbed next-token distribution can be expressed as a simple re-weighting of the original distri-
bution. This re-weighting is governed by a set of scalar-valued functions {gi}, defined below. We
call these functions “autoregressive B-confidences”, because gi(z≤i;x) is the probability mass the
model places on its most-likely B-class, given both the question x and the response prefix z≤i gen-
erated so far. Thus, the difficulty of implementing the sequence-level perturbation reduces to the
difficulty of representing these intermediate confidence values during generation.
Definition 8 (AutoregressiveB-Confidences). For a given functionB : V∗×VN → [K] and model
pθ, we define the autoregressive B-confidences as the scalar-valued functions {gi}i∈{0,1,...,N}:

gi(z≤i;x) := Pr
z∼pθ(·|x,z≤i)

[Bx(z) = k∗] where k∗ ← argmax
k∈[K]

(Bx♯px)[k].

We will informally say that B is “easy to autoregressively represent” if the autoregressive B-
confidences gi have a simple representation (e.g. each gi is computable by a small circuit). In
that case, we show in Thm. 9 that the perturbed model pθ ⋆ w has an only-slightly-more-complex
representation than the original model pθ. Specifically, the perturbed model can be computed by
composing a circuit Cw with the functions gi. Explicit formulas are provided in App. E.6.3.
Theorem 9. For all functions B : V∗ × VN → [K] and all perturbations w ∈ WB , there exists a
small circuit5 Cw such that for all models pθ : V∗ → ∆(VN ), all x ∈ V∗, z ∈ VN , all i ∈ [N ], and
with px := pθ(· | x), wx := w(x, px), the perturbed model x 7→ px ⋆ wx satisfies

(px ⋆ wx)(zi | z<i) ∝ Cw(a, gi(z≤i;x), g0(x)) (3)

where the constant of proportionality is independent of zi, a := px(zi | z<i) is the original next-
token probabilities, and g0, gi are the autoregressive B-confidences of Definition 8.

Putting all the theory together, the message is: ifB is easy for the LLM to autoregressively represent,
then perturbationsWB are easy to implement, and we should expect emergent B-calibration.

4 EXPERIMENTAL PREDICTIONS: WHEN ARE LLMS CALIBRATED?

Our main empirical question is: Under what conditions and for which functionsB should we expect
a pretrained LLM to be B-confidence-calibrated?

The theory of the previous section suggests an answer: we should expect emergent B-calibration
when the autoregressiveB-confidences (Definition 8) are easy for the LLM to learn. We can simplify
this into an experimentally-testable heuristic: for a given question x, is it easy for the LLM to predict
(i.e. does it “know”) the distribution Bx♯px of its answers post-processed by B? Practically, we can
operationalize “easy for the LLM to predict” by training a small LoRA on top of the base LLM to
predict the B-class of the answer.
Claim 10 (Main, heuristic). Let (x, y) ∼ D be a distribution on question-answer pairs, let B :
V∗ × VN → [K] be a collapsing function, and let pθ(z | x) be an autoregressive language model
trained on D with cross-entropy loss. Then, pθ will be B-confidence-calibrated on D if the function
G : V∗ → ∆K defined as

G : x 7→ Bx♯px is “easy to learn” for the LLM (e.g. with a LoRA adapter)

In words: the LLM should be able to accurately estimate the distribution over semantic labelsBx(z),
under its own generative process, given the question x.

Finally, we specialize Claim 10 to the practical case of semantic calibration—that is, we let B be a
function that collapses long-form answers into semantic equivalence classes, yielding the following:
Corollary 11 (Main, heuristic). LLMs trained autoregressively with cross-entropy loss will be se-
mantically calibrated on in-distribution data if: the model can easily predict its own output distri-
bution over semantic answers, given only the question.

5Specifically, an arithmetic circuit of constant depth and Θ(K) width.
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Corollary 11 leads to the following predictions, which we verify experimentally in Sec. 5.

Prediction 1: Semantic calibration emerges from standard pretraining. When B is a semantic-
collapsing function, we expect it to be easy-to-predict in many settings: Claim 10 only requires
that the LLM intuitively “knows” what types of semantic-answers it is likely to output for a given
question. Thus, we should expect emergent semantic calibration for a large class of pretrained
LLMs, a remarkable fact not previously understood.

Prediction 2: Instruction-tuning can break calibration. We only theoretically predict calibration
in models trained autoregressively with cross-entropy loss, that is, standard pretraining or SFT.
(Cross-entropy loss is required to connect calibration with local-loss-optimality in Thm. 6.) We
have no reason to expect calibration in models trained in other ways, including Instruct models
post-trained with RLHF, DPO, or RLVR – although our theory does not preclude it.

Prediction 3: Chain-of-thought reasoning (CoT) can break calibration. To satisfy the conditions
of our theory, the distribution over semantic classes must be easy for the model to estimate, even be-
fore generating the first token. In hard CoT setting such as math problem-solving, the model usually
does not know what its answer will be until it has finished “thinking”. Therefore, CoT is expected
to break our mechanism for calibration. Notably, what makes CoT powerful (allowing the model
to leverage more compute to produce a better answer than it could have produced immediately) is
exactly what makes our mechanism of calibration fail.

5 EXPERIMENTS

In this section, we experimentally test the predictions of our theory on real models and datasets.
All of our experiments include 5-shot examples in the prompt, and use temperature T = 1 sam-
pling. We compare three different prompts, designed to elicit different styles of responses from the
model: “concise” (answer in a single word/phrase), “sentence” (answer in a complete sentence),
and “chain-of-thought (cot)”. The few-shot examples are formatted in the desired style (e.g. for the
“sentence” type, the few-shot examples have complete sentence answers). To measure calibration
error, we use the SmoothECE metric introduced by Błasiok & Nakkiran (2024). For lack of space,
full experimental details are in App. D.

5.1 EXPERIMENTAL RESULTS

We evaluate semantic calibration of Qwen, Gemini, Mistral, and Llama-family models, of varying
sizes from 0.5B to 72B, for base and instruct variants, using each of the 3 response styles, on 6
open-ended question-answer datasets: GSM8K (Cobbe et al., 2021), OpenMathInstruct-2 (Toshni-
wal et al., 2025), TriviaQA (Joshi et al., 2017), SimpleQA (Wei et al., 2024), MATH500 (Lightman
et al., 2023), and TruthfulQA (Lin et al., 2022b). This yields over 650 evaluation experiments, which
we compile into Fig. 4 by overlaying their reliability diagrams. The box-plots in the bottom row of
Fig. 4 show the distribution of calibration errors in aggregate for each dataset and configuration.
We will use this condensed figure to discuss our experimental predictions. We expect our theory to
apply on all datasets except, notably, TruthfulQA: This dataset contains common human miscon-
ceptions, and thus violates our in-distribution assumptions (see Remark 12). The full list of models
is in App. D.3 and disaggregated results are reported in App. F.

Prediction 1: Semantic calibration emerges from standard pretraining. Our theory predicts
that base models, in non-CoT settings, should be semantically calibrated. The top row of Fig. 4
shows reliability diagrams for all such models we evaluated (configurations base-concise and base-
sentence), and we observe nearly all of these experiments are well-calibrated. Notably, semantic
calibration does not depend significantly on model size for base models: even small models (≤ 1B)
are remarkably calibrated; see App. C for a more in-depth look at this aspect. Models are also
well-calibrated regardless of the response style (“sentence” vs. “concise”), supporting our theory
that semantic calibration depends not on the specific phrasing of the answer, but rather on whether
the model “knows” its semantic class distribution before starting to generate.

Prediction 2: Post-training can break calibration. The middle row of Fig. 4 includes reliability
diagrams for instruct post-trained models, for all three response types. Many of these settings are
miscalibrated, typically overconfident (i.e. a curve below the diagonal), as expected from a reward-
maximizing RL objective. Fig. 5 takes a closer look at the effect of different types of instruction-
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Figure 4: Semantic Calibration of LLMs. We evaluate Qwen, Gemini, Mistral, and Llama-
family models, with 6 configurations for each model: (model-variant, response-style) ∈ {Base,
Instruct} × {Concise, Sentence, CoT}. First row (predicted calibrated): Reliabil-
ity diagrams of all configurations predicted to be confidence-calibrated according to our theory:
base models with concise or sentence response types. TruthfulQA, a dataset of common miscon-
ceptions, is the exception: it violates the in-distribution assumptions of our theory, and is poorly
calibrated. Second row (not predicted calibrated): Configurations which need not be calibrated
according to our theory: post-trained instruct models with any response type: concise, sentence,
chain-of-thought; and base models with chain-of-thought. Third row: Box plots summarizing the
distribution of calibration errors for each of the 6 configurations. Only the first two configurations
(base-concise and base-sentence) are reliably well-calibrated, as predicted by our theory. Note, we
only consider chain-of-thought for the math datasets. TruthfulQA reference answers are available
only in the sentence-length form, which is why we only report results for sentence response-style.
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Figure 5: Calibration error for three models based on Mistral-7B-v0.1: pretrained-only, instruction-
supervised-finetuned, and DPO-finetuned. Here, “sentence” response style, see Fig. 8 for others.

tuning on calibration. We compare three models from the same lineage: a base model (Mistral-7B-
v0.1), a version of it post-trained via instruction supervised finetuning (SFT, zephyr-7b-sft-full), and
a version post-trained via both SFT and Direct Preference Optimization (DPO, zephyr-7b-dpo-full)
(Rafailov et al., 2024). The DPO model (not trained with a proper loss) is significantly miscalibrated,
while the SFT-only model and the base model (both trained with proper losses) are better calibrated.

Prediction 3: CoT reasoning can break calibration. The middle row of Fig. 4 shows CoT with
both base and instruct models, which are poorly calibrated in the math settings (GSM8K, OpenMath-
Instruct, MATH500). Base-cot responses are underconfident (above the diagonal), while instruct-cot
are underconfident for GSM8K, but overconfident for OpenMathInstruct, see Fig. 9. Notably, this
miscalibration is not inherent to math: base models are calibrated when asked to provide the answer
immediately (base-concise and base-sentence), but become miscalibrated when allowed to reason.
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Figure 6: Testing Claim 10
across Qwen2.5 models.

Quantitative Learnability Probe. Claim 10 suggests an explicit
experiment to predict when a base model will be B-confidence-
calibrated for a given choice of B: can the model “easily learn”
the function G : x 7→ Bx♯px mapping a question x to the distri-
bution over the model’s own semantic answers for that question? We
can test this by training a small LoRA (Hu et al., 2022) on top of
the model, to directly generate the semantic class distribution Bx♯px
when prompted with the question x. For example, in CoT settings,
this would require the LoRA to “short-circuit” the reasoning steps,
and immediately generate the final answer that the model would have
produced with CoT. Notably, this does not require the model to produce the correct semantic answer,
but just match its own generative distribution. In Fig. 6, we train rank-8 LoRAs on Qwen2.5 models
of varying sizes, on GSM8K.

We then compare each LoRA’s KL gap to optimality (x-axis) to the underlying model’s calibration
error (y-axis). The correlation agrees with our theory: models which can easily predict their own
semantic class distribution (low KL gap) are also well-calibrated. Full details in App. D.2.

6 CONCLUSION

We find that base LLMs, despite being trained with a token-level syntactic objective, are remarkably
calibrated with respect to the sequence-level semantics of their generations. Our central contribu-
tion is a principled mechanism behind this emergence, building on recent theoretical connections be-
tween calibration and loss-optimality (Błasiok et al., 2023; 2024). This theory provides a unified lens
through which to understand the nuanced calibration behavior of models in practice, distinguishing
settings which are calibrated from those which are not. Among limitations, we only propose one
possible mechanism for calibration; it is possible that other types of calibration (e.g. verbalized cal-
ibration) emerge for yet-undiscovered reasons; other limitations discussed in Appendix B.1. More
generally, our work can be seen as a step towards understanding the formal structure of LLMs’
output distribution.
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A ADDITIONAL RELATED WORKS

Recalibration Methods. A number of prior works study methods to improve the calibration of
LLMs, ranging from temperature-scaling at inference-time (e.g., Xie et al., 2024; Shen et al., 2024)
to training calibration-specific probes that predict correctness (Mielke et al., 2022) or training with
calibration-improving regularization terms (Wang et al., 2025). Other approaches attempt to cluster
questions and predict per-cluster accuracy (Lin et al., 2022a; Ulmer et al., 2024), or make use of
the fact that ensembling models tends to improve calibration (Jiang et al., 2023b; Hou et al., 2024).
Probabilistic approaches (such as Bayesian deep learning, or evidential deep learning) have been
found to often yield better calibration (e.g., Li et al., 2025; Yang et al., 2024a).

Sampling-based Confidences. A number of prior works have proposed sampling-based ap-
proaches to defining LLM uncertainty. Both Wang et al. (2023) and Wei et al. (2024) sample
multiple answers per-question, and define confidence as the frequency of the most-common an-
swer. Wei et al. (2024) additionally groups answers together by string-matching, which allows for
some degree of semantic equivalence. This approach was extended and popularized by the notion
of semantic entropy (Farquhar et al., 2024). Semantic entropy clusters sampled answers together by
semantic content, and then measures the empirical entropy of clustered answers. Recently, Lamb
et al. (2025) define Empirical Semantic Confidence, which is essentially an empirical version of our
notion of semantic confidence. Note that one distinguishing aspect of our formalism is, we param-
eterize the notion of calibration by the choice of collapsing function B. This allows us to develop
somewhat more general theoretical insights, which are not tied to a fixed notion of semantics.

Factors which Harm LLM Calibration. Various factors have been observed in prior work to
harm LLM calibration. It is well-known that RLHF often harms calibration in multiple-choice QA
settings (Kadavath et al., 2022; OpenAI, 2023). Other RL post-training methods such as DPO have
also been observed to harm calibration (Leng et al., 2025; Xiao et al., 2025). Some studies have also
found chain-of-thought responses to harm calibration, agreeing with our results (Zhang et al., 2024).
However, we warn that not all of these works use the same notion of confidence and calibration as
we do, and so are not directly comparable.

B EXTENDED DISCUSSION AND REMARKS

B.1 LIMITATIONS

Types of Calibration. One limitation of our paper is that we focus on a very specific type of
calibration, which is essentially a sampling-based notion (B-confidence-calibration). It is possible
that other types of calibration (e.g. verbalized calibration) also emerge for certain types of LLM
training; we consider this possibility interesting but out-of-scope for the current work.

Practical Implications. Our work is primarily scientifically motivated, and so we do not fully ex-
plore practical considerations or implications. For example, we do not consider the computational
efficiency of our confidence measurements. This is a limitation to using such measures in practice,
since computing semantic confidence requires sampling an LLM multiple times for the same ques-
tion. We consider translating our scientific results into real-world improvements to be an important
direction for future work.

Datasets. Although we evaluate on a variety of different models, we only evaluate on 6 selected
datasets. We chose these datasets to cover a diversity of domains and problem difficulties, from
questions about world-knowledge to mathematical reasoning problems. Further, we chose datasets
with open-ended answers, since calibration of multiple-choice datasets is already extensively studied
(Kadavath et al., 2022; Zhu et al., 2023). Although we do not expect our results to depend signif-
icantly on the choice of dataset, it is possible that certain other datasets have different calibration
behavior; this is a limitation of our experiments.

Remark 12. Notably, there are some datasets which we would expect to behave differently, such as
TruthfulQA (Lin et al., 2022b), which is a dataset containing common human misconceptions. This
dataset fails to satisfy the “in-distribution” requirement of our results (e.g. Claim 10), and so it is
consistent with our theory for models to be miscalibrated.
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B.2 POTENTIAL EXTENSIONS

The theoretical framework described here is fairly general, and extends beyond the setting of
confidence-calibration in LLMs. Briefly, since most of our theory is stated in the language of
weighted calibration (Gopalan et al., 2024), it applies to any property that can be written as weighted
calibration. This includes slightly stronger notions of calibration, such as top-label calibration, and
also includes conformal-prediction type of guarantees (more details in App. E.8.1. See Gopalan et al.
(2024) for a number of properties which can be expressed as weighted calibration, and App. E.8 for
the connection to conformal prediction. Our general theoretical results appear in App. E.

Intuitively, the high-level message of our results is that if a model is trained with a max-likelihood /
log-loss objective, then we should expect it to satisfy weighted calibration for a “simple” family of
weight functions. The appropriate notion of simplicity depends on the model architecture; simple
weight functions should roughly correspond to easy-to-learn perturbations to the model’s output
distribution. At this level of generality, we expect some version of our results to apply even for real-
valued density models, such as continuous normalizing flows (e.g. Zhai et al. (2025)), which are also
trained with the log-likelihood objective. That is, we should expect such normalizing flows to also
exhibit certain (weak) types of calibration. We believe this is a promising avenue for future work.

B.3 TECHNICAL REMARKS

We collect several technical remarks regarding the theory of Sec. 3.

Remark 13 (Heuristic Simplifications). In translating the theoretical results of Sec. 3 to the practi-
cal heuristic of Claim 10, we took several steps which we describe more explicitly here. First, Thm. 9
is about ease of representation, but in Claim 10 we chose to use ease of learning. This is both more
practical (since learning can be directly tested) and, we believe, more natural (since then both the
premise and conclusion of Claim 10 involve the learning procedure of the LLM).

Now, Thm. 9 suggests that for B-confidence-calibration, it is sufficient for the functions {gi} of
Definition 8 to be “easy to learn” for the LLM, for all prefix lengths i ∈ [N ]. Claim 10 deviates
from this in two ways. First, instead of considering all prefix lengths i, we only consider the empty
prefix (i = 0) i.e. the model’s distribution given only the question. Intuitively, the prediction from
the empty prefix is likely the most challenging, and practically, this simplification means that only
one simple-to-implement probe is required. Second, instead of considering learnability of only the
semantic confidence function (g0), Claim 10 considers learnability of the entire semantic distribution
(Bx♯px). Practically, this improves robustness of the empirical estimator, since the KL divergence
can be estimated from samples. Empirically, we did not find these simplifications to significantly
affect the conclusions.

Remark 14 (Multicalibration). One detail of the theory worth discussing further is the role of the
distribution D. For clarity of exposition, we described the theory as if there is only one distribu-
tion D of interest, but in reality, we evaluate calibration across multiple distributions (TriviaQA,
GSM8K, etc), and we pretrain on yet another distribution. Moreover, we find that a single model
can be simultaneously calibrated across many evaluation distributions. We touched upon this issue
in Footnote 4, but there is a theoretically cleaner (though more involved) way to think about multiple
distributions, which we outline now.

Formally, requiring B-calibration across multiple distributions simultaneously can be thought of as
a multi-calibration property (Hébert-Johnson et al., 2018). Suppose for example that the pretraining
distribution D is some mixture of disjoint sub-distributions: D = α1D1 +α2D2 + . . . . Suppose we
are interested in B-calibration simultaneously for distributions D1 and D2. Then, it is possible to
show a generalization of Thm. 6:

A model is B-confidence-calibrated across both D1 and D2 if and only if it is
locally-loss-optimal on D w.r.t. an expanded class of perturbationsW∗

B .

Informally, the class of perturbations W∗
B is essentially the usual class WB (of Definition 4) aug-

mented by indicator functions 1{x ∈ D1}, 1{x ∈ D2} for membership in each sub-distribution.

We will not get into the technical details, but using this version of Thm. 6, it is possible to carry out
the remaining steps of the argument from Sec. 3 and Fig. 3. Applying the same heuristics, for exam-
ple, we would conclude: an LLM will be simultaneously B-confidence-calibrated on distributions
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D1,D2 if it is easy for the LLM to (1) estimate its own distribution on B-classes and (2) identify
samples as either x ∈ D1 or x ∈ D2.

The second condition is likely to be satisfied in all our experiments, since all our evaluation datasets
are distinct and easy to identify. Thus, the predictions of our theory remain unchanged, justifying
our choice to avoid discussing multicalibration in the main body.

Remark 15 (Full calibration). At first glance, it may seem that a minor generalization of our mech-
anism (Fig. 3) would also imply full B-calibration (i.e., canonical calibration of the B-induced
classifier), rather than just confidence-calibration. After all, Thm. 6 formally generalizes to arbi-
trary weight families W (see Thm. 27), including the family corresponding to full B-calibration
(defined as W(full)

B in Definition 20). However, full B-calibration is too strong a property to hold
in general6. So, which part of our argument in Fig. 3 breaks for full calibration? The culprit is the
heuristic step in Fig. 3. The weight familyW(full)

B relevant for full calibration is, roughly speaking,
“too large” for the same heuristic to hold.

To better understand why the heuristic fails, here is more general version of the heuristic step in
Fig. 3, which we believe is plausible for arbitrary weight familiesW .

Claim 16 (heuristic, informal). If a perturbation familyW is easy-to-learn for a
pretrained LLM, meaning: for all perturbations w ∈ W , the LLM pθ : V∗ →
∆(VN ) can be easily LoRA-fine-tuned to match the distribution of a perturbed-
model G : V∗ → ∆(VN ),

G : x 7→ px ⋆ wx ≡ pθ(· | x) ⋆ w(x, px) (4)

then pθ will beW-locally-loss-optimal w.r.t. its pretraining loss.

In other words, if all perturbations in the familyW can be “easily learnt,” then we should expect the
LLM to be loss-optimal w.r.t. W . Claim 10 is essentially a special case of this more general claim,
for the specific classWB relevant to B-confidence-calibration.

If we believe Claim 16, we can see why our mechanism would apply to confidence-calibration but not
to full-calibration: For confidence-calibration, the perturbation class WB (Definition 4) is simple
enough to be learnable, while for full calibration, the corresponding perturbation class W(full)

B
(Definition 20) is too large to be efficiently learnable from samples. To gain intuition for this, it
helps to directly compare Definition 20 to Definition 4. From this discussion, we can see it is likely
possible to extend our results to certain types of calibration which are weaker than full-calibration,
but stronger than confidence-calibration. We leave this direction for future work.

C ADDITIONAL EXPERIMENTAL RESULTS

Due to their volume, disaggregated reliability diagram results are reported separately in App. F.

Effect of Model Size. Fig. 7 explores the effect of model size on calibration. We plot calibration
error vs. semantic accuracy for all models in the sweep of Fig. 4, which includes a range of model
sizes from 0.5B to 72B. For base models without chain-of-thought (top row), we see no correlation
between model capability (semantic accuracy) and calibration error (smECE). This is consistent
with our theoretical predictions, which have no explicit dependency on model size or capability.
The bottom row shows the remaining configurations (instruct models, and chain-of-though), where
our theory does not predict calibration. Note that prior works have observed that calibration can
improve significantly with model size (Kadavath et al., 2022; Zhu et al., 2023). We do not find this
to be the case for base models, though it may hold for Instruct models.

6For example, when K (the number of B-classes) is large, full B-calibration would be computationally
intractable to even estimate (Gopalan et al., 2024).
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Figure 7: Calibration Error vs. Semantic Accuracy for all models in the sweep of Fig. 4. In the
settings our theory applies (top row: base models without chain-of-thought), we see no correlation
between model capability (semantic accuracy) and calibration error. Each dot represents a separate
model, colors as per Fig. 4.
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SFT model (zephyr-7b-sft-full), DPO model (zephyr-7b-dpo-full). We did not evaluate TriviaQA
and SimpleQA for the “cot” response style. The “cot” result for Mistral-7B-v0.1 for OpenMathIn-
struct is missing due to the model not terminating generation within its maximum context length.
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D ADDITIONAL EXPERIMENTAL DETAILS

Datasets. We focus on open-ended question-answer (QA) settings, since calibration for multiple-
choice QA is already well-studied (Kadavath et al., 2022; Zhu et al., 2023), and a special case of
our results. We evaluate on: GSM8K (Cobbe et al., 2021), OpenMathInstruct-2 (Toshniwal et al.,
2025), TriviaQA (Joshi et al., 2017), and SimpleQA (Wei et al., 2024), from Huggingface datasets
(Wolf et al., 2019; Lhoest et al., 2021).

Models. We evaluate on models including the Qwen, Gemini, Mistral, and Llama family, of sizes
from 0.5B to 72B. The full list of models we evaluate is in App. D.3. We use vLLM (Kwon et al.,
2023) for inference.

Prompt format. See App. D.4 for the exact phrasing used in prompts. All of our experiments
include 5-shot examples in the prompt. We use three different prompt types, designed to elicit three
different styles of responses from the model: “sentence”, “concise”, and “chain-of-thought (cot)”.
The few-shot examples are formatted in the desired style (e.g. for the “sentence” type, the few-shot
examples have complete-sentence answers). For instruct models, in addition to formatted few-shot
examples, the prompt also includes explicit formatting instructions. The “concise” prompt type
encourages the model to respond with just the final answer (a single word, phrase, or number). The
“sentence” prompt type asks the model to answer each question in a complete sentence (making it
likely to phrase the same semantic answer in different ways, so theB-collapsing function is essential
for a meaningful notion of semantic calibration). The “cot” prompt type elicits chain-of-thought
reasoning from the model; this prompt type is only used for math datasets.

These prompts are typically successful in eliciting the desired type of responses from the model.
However, in some cases we observed models (especially Qwen models) produce “chain-of-thought”
responses even when prompted to reply in a single word. To exclude such cases, we exclude any
responses for the “concise” prompt on math datasets which are too long (heuristically, more than 15
characters before the first newline).

The semantic collapsing function. Recall, the function B is intended to collapse semantically-
equivalent generations into a single class, an idea proposed by Kuhn et al. (2023). We implement
the function B with a two-stage procedure as follows.

The first stage is canonicalization: we extract a short “canonical form” answer from the LLM’s
response. For “concise” and “cot” prompt types, this is done via simple string parsing (for “cot”,
extracting only the final answer). For the “sentence” type, we use a strong LLM (Qwen3-14B-
Instruct) prompted to extract a short-answer from the generation, given the question as context. The
prompts used for canonicalization are in App. D.4: Prompt 4 for non-math settings, and Prompt 5
for math settings. We also normalize strings at this stage, converting to lower-case and stripping
spaces, including a math-specific normalization for domains with LaTeX outputs. Specifically, we
use the MATH string-normalization from Minerva, given in Listing 1, Appendix D.1 of Lewkowycz
et al. (2022).

The second stage, used only for non-math settings, is semantic clustering: we prompt an LLM judge
(Qwen3-14B-Instruct) to assess whether two responses to a question are semantically equivalent,
and use the output to cluster responses7. This is necessary for non-math settings to handle irrelevant
differences in canonical forms (e.g. “Seattle, WA” vs “Seattle”). The prompt used for semantic
equivalence is Prompt 6 in App. D.4. For math settings, the second stage is unnecessary, since the
first stage already outputs a number or symbol that can be directly compared.

Measuring calibration. We first produce an LLM-induced semantic classifier, following the ex-
perimental procedure described in Sec. 2 and illustrated in Fig. 1. For each dataset, we take 10K ran-
dom evaluation samples (or the entire dataset for those with fewer than 10K total samples). For each
question, we construct the appropriate 5-shot prompt, sample M = 50 responses from the LLM at
temperature 1, and then apply the semantic collapsing function (described above) to each response.
The semantic confidence is defined as the empirical frequency of the plurality semantic class, and
the semantic accuracy is the 0/1 indicator of whether this plurality class matches the ground-truth’s
semantic class. This yields, for each question, a pair of (semantic-confidence, semantic-accuracy)

7This is a slight variation of the two-way entailment method used by Farquhar et al. (2024).
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∈ [0, 1]×{0, 1}. We then evaluate the calibration of the resulting classifier over the entire dataset of
questions using SmoothECE (smECE, Błasiok & Nakkiran (2024)), a theoretically-principled ver-
sion of the Expected Calibration Error (ECE). We use the SmoothECE implementation provided by:
https://github.com/apple/ml-calibration.

D.1 VISUALIZING CALIBRATION: RELIABILITY DIAGRAMS

We follow the guidance of Błasiok & Nakkiran (2024), and visualize calibration using kernel-
smoothed reliability diagrams.

Reading the Diagram. Fig. 2 gives several examples of reliability diagrams. The solid red line is
the regression line, an estimate of µ(c) := E[semantic accuracy | semantic confidence = c]. The
black cross is the point (E[semantic confidence],E[semantic accuracy]) ∈ [0, 1]× [0, 1], that is, the
average semantic confidence and accuracy. The gray histograms at the bottom of the plot visual-
ize the density of semantic confidences. We plot two overlaid histograms, one for the confidence
distribution of correct predictions (i.e. the confidence of samples where semantic-accuracy=1), and
another for the confidence distribution of incorrect predictions. The width of the red regression line
varies with the overall density of semantic-confidences.

Implementation Details. For reliability diagrams, we use the implementation of relplot
(https://github.com/apple/ml-calibration) with minor modifications: we use a
fixed kernel bandwidth σ = 0.05 for the regression line, and we visualize the density of confidences
using histogram binning with 15 constant-width bins.

To compute the scalar SmoothECE (smECE) metric, we use the original implementation of
relplot without modification (including its automatic choice of bandwidth).

D.2 LORA FINE-TUNING

To test Claim 10 more quantitatively, we train a LoRA version of the LLM to explicitly learn the
function G defined in Claim 10. We do this as follows. Let pθ be the base model. Instantiate a
rank=8 LoRA adapter (Hu et al., 2022) on top of the original model pθ, which we denote pϕ.

We want to train pϕ to behave as the “semantically-collapsed” version of pθ. That is, when prompted
with a question x, the model pϕ should generate a distribution on answers b which imitates the base
model’s semantic answers Bx(z):

pϕ(b | x) ≈ Pr
z∼pθ(·|x)

[Bx(z) = b] ≡ (Bx♯px)(b) (5)

Since our implementation of the collapsing function B produces string outputs (canonical answers),
we can train pϕ as a standard autoregressive model. Explicitly:

1. For each question in the dataset x, sample the original model 50 times, and apply the
collapsing function B to each generation. This produces 50 samples {(x, bi)} of question
x and canonical-answer bi for each original question x, effectively expanding the original
dataset size by 50 times.

2. Train pϕ with the standard autoregressive objective, on the prompt-completion pairs
{(x, bi)} from above. That is, train pϕ to complete prompt x with generation bi.

Our training procedure is similar to the procedure used to train “P(IK)” in Kadavath et al. (2022), in
that we also train on an “expanded” training set defined by base model samples. Similar to Kadavath
et al. (2022), we do this mainly for convenience.

For GSM8K, we hold-out 2000 questions for evaluation, and use the remainder for training as
above. We train all models on an 8xA100 node for 1 epoch on the expanded dataset, using the
SFTTrainer implementation from Huggingface TRL (von Werra et al., 2020) with the following
parameters in Table 1. Note, we shuffle the expanded training set manually beforehand, so we do
not ask the dataloader to shuffle.
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Table 1: Hyperparameters for Supervised Fine-Tuning (SFT).
Parameter Value
Training & Hardware
num train epochs 1
per device train batch size 4
gradient accumulation steps 2
(Effective Batch Size) 64 (4 x 8 GPUs x 2)
bf16 True

Optimizer & Scheduler
optim adamw torch fused
learning rate 5e-5
weight decay 0.0
warmup ratio 0.05

PEFT (LoRA) Configuration
use peft True
lora r 8
lora alpha 16
lora dropout 0.0
lora target modules all-linear
task type CAUSAL LM
bias none

Data Handling
packing False
dataloader shuffle False

After training, we evaluate how closely Eq. (5) holds, by estimating the KL divergence between
RHS and LHS of Eq. (5). This KL measures how well our LoRA pϕ matches its training distribution.
Conveniently, the KL can be written as the difference between the negative-log-loss of pϕ and the
semantic entropy of the original model pθ:

Gap to optimality := KL( (Bx♯px) ∥ pϕ(· | x) ) (6)
= E

x∼D
z∼pθ(z|x)

[− log pϕ(B(z) | x)]

︸ ︷︷ ︸
Eval NLL loss of pϕ

− H(Bx♯px)︸ ︷︷ ︸
Semantic entropy of pθ

(7)

This is particularly convenient because the eval log-loss is a standard metric tracked during training.
Note that for our purposes, it is important to compute the unnormalized log-loss (i.e., not normalized
by sequence-length).

In Fig. 6, we plot the KL gap of Eq. (7) on the x-axis, and the SmoothECE of the original model
pθ on the y-axis. We evaluate base models: Qwen2.5-{0.5B, 1.5B, 3B, 7B, 14B}, with all three
response styles: concise, sentence, cot. This results in 15 points plotted in Fig. 6, colored according
to response style using the color scheme of Fig. 4. We observe that, consistent with Claim 10,
configurations where the semantic class distribution is easy-to-learn (low KL gap) also have small
calibration error. The points with high KL (and high calibration error) are the chain-of-thought
experiments, as well as the small 0.5B model with the “sentence” response type.
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D.3 LLMS EVALUATED

Below, we list all models evaluated in this paper. All were obtained from HuggingFace.

Table 2: Pretrained-only base models evaluated in this paper. Models
sharing a prefix and reference are grouped.

Family Prefix Model Suffix Reference

google/

gemma-2-2b
(Gemma Team et al., 2024)gemma-2-9b

gemma-2-27b

gemma-3-1b-pt

(Gemma Team et al., 2025)gemma-3-4b-pt
gemma-3-12b-pt
gemma-3-27b-pt

Qwen/

Qwen2.5-0.5B

(Yang et al., 2024c)

Qwen2.5-1.5B
Qwen2.5-3B
Qwen2.5-7B
Qwen2.5-14B
Qwen2.5-32B
Qwen2.5-72B

Qwen2.5-Math-1.5B
(Yang et al., 2024b)Qwen2.5-Math-7B

Qwen2.5-Math-72B

Qwen3-0.6B-Base

(Yang et al., 2025)
Qwen3-1.7B-Base
Qwen3-4B-Base
Qwen3-8B-Base
Qwen3-14B-Base

mistralai/

Mistral-7B-v0.1 (Jiang et al., 2023a)
Mistral-7B-v0.3

Mistral-Small-24B-Base-2501 (Mistral AI Team, 2024b)

Mixtral-8x7B-v0.1 (Mistral AI Team, 2023)

meta-llama/
Llama-3.1-8B (Grattafiori et al., 2024)
Llama-3.1-70B
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Table 3: Instruction-tuned models evaluated in this paper. Models shar-
ing a prefix and reference are grouped.

Family Prefix Model Suffix Reference

google/

gemma-2-2b-it
(Gemma Team et al., 2024)gemma-2-9b-it

gemma-2-27b-it

gemma-3-1b-it

(Gemma Team et al., 2025)gemma-3-4b-it
gemma-3-12b-it
gemma-3-27b-it

Qwen/

Qwen2.5-0.5B-Instruct

(Yang et al., 2024c)

Qwen2.5-1.5B-Instruct
Qwen2.5-3B-Instruct
Qwen2.5-7B-Instruct
Qwen2.5-14B-Instruct
Qwen2.5-32B-Instruct
Qwen2.5-72B-Instruct

Qwen2.5-Math-1.5B-Instruct
(Yang et al., 2024b)Qwen2.5-Math-7B-Instruct

Qwen2.5-Math-72B-Instruct

Qwen3-0.6B

(Yang et al., 2025)

Qwen3-1.7B
Qwen3-4B
Qwen3-8B
Qwen3-14B
Qwen3-32B

mistralai/

Mistral-7B-Instruct-v0.1 (Jiang et al., 2023a)
Mistral-7B-Instruct-v0.3

Ministral-8B-Instruct-2410 (Mistral AI Team, 2024a)

Mistral-Small-24B-Instruct-2501 (Mistral AI Team, 2024b)

NousResearch/
Nous-Hermes-2-Mixtral-8x7B-SFT (Nous Research, 2024b)

Nous-Hermes-2-Mixtral-8x7B-DPO (Nous Research, 2024a)

alignment- zephyr-7b-dpo-full (Tunstall et al., 2023)
handbook/ zephyr-7b-sft-full

meta-llama/
Llama-3.1-8B-Instruct

(Grattafiori et al., 2024)Llama-3.1-70B-Instruct
Llama-3.3-70B-Instruct

microsoft/ phi-4 (Abdin et al., 2024)
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D.4 PROMPTS

We use 3 different prompt styles: concise, sentence, and chain-of-thought (cot). All prompts use 5
few-shot examples from the dataset. We describe the prompt formatting here by way of example,
using our prompts for the GSM8K dataset. For base models, we use the full prompt text as context,
while for instruct models we format the few-shot examples using the model-specific chat template
(per Huggingface).

Prompt 1 shows the “concise” prompt for GSM8K. This prompt style uses only the final answers
provided by the dataset (excluding any chain-of-thought).

Prompt 2 shows the “sentence” prompt type. This prompt formats the few-shot answers in com-
plete sentences, and also includes instructions to format answers accordingly. Note that we inten-
tionally varied the sentence structure of the few-shot examples, to encourage the model to use a
diversity of phrasings. This makes the “sentence” responses more syntactically complex than the
“concise” responses, though not more semantically complex — thus testing the limits of our theory.

Prompt 3 shows the “cot” prompt type. This includes reasoning and formatting instructions, as
well as few-shot examples that include reasoning-traces (provided by the dataset).

The prompt formatting for other datasets follow the same conventions as these GSM8K examples.
We exclude the “cot” prompt type for non-math datasets.

Prompt 1: GSM8K-concise

Question: Natalia sold clips to 48 of her friends in April, and then she sold half as many clips in
May. How many clips did Natalia sell altogether in April and May?
Answer: 72

Question: Weng earns $12 an hour for babysitting. Yesterday, she just did 50 minutes of babysitting.
How much did she earn?
Answer: 10

Question: Betty is saving money for a new wallet which costs $100. Betty has only half of the money
she needs. Her parents decided to give her $15 for that purpose, and her grandparents twice as much
as her parents. How much more money does Betty need to buy the wallet?
Answer: 5

Question: Julie is reading a 120-page book. Yesterday, she was able to read 12 pages and today, she
read twice as many pages as yesterday. If she wants to read half of the remaining pages tomorrow, how
many pages should she read?

Answer: 42

Question: James writes a 3-page letter to 2 different friends twice a week. How many pages does he
write a year?
Answer: 624

Question: {QUESTION}
Answer:

Prompt 2: GSM8K-sentence

Answer the following question in a single brief but complete sentence.
Question: Natalia sold clips to 48 of her friends in April, and then she sold half as many clips in
May. How many clips did Natalia sell altogether in April and May?
Answer: Natalia sold 72 clips in April and May combined.

Answer the following question in a single brief but complete sentence.
Question: Weng earns $12 an hour for babysitting. Yesterday, she just did 50 minutes of babysitting.
How much did she earn?
Answer: Weng earned only $10 yesterday.

Answer the following question in a single brief but complete sentence.
Question: Betty is saving money for a new wallet which costs $100. Betty has only half of the money
she needs. Her parents decided to give her $15 for that purpose, and her grandparents twice as much
as her parents. How much more money does Betty need to buy the wallet?
Answer: Betty needs $5 more to buy the wallet.

Answer the following question in a single brief but complete sentence.
Question: Julie is reading a 120-page book. Yesterday, she was able to read 12 pages and today, she
read twice as many pages as yesterday. If she wants to read half of the remaining pages tomorrow, how
many pages should she read?
Answer: She would need to read 42 pages tomorrow.

Answer the following question in a single brief but complete sentence.
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Question: James writes a 3-page letter to 2 different friends twice a week. How many pages does he
write a year?
Answer: James writes 624 pages per year.

Answer the following question in a single brief but complete sentence.
Question: {QUESTION}
Answer:

Prompt 3: GSM8K-cot

Answer the following question. To do that, first reason about it by saying ’Reasoning:’ and then
derive the answer. After that, when you are done, write ’My answer is: ’ and write a short and
concise answer to the question.Last, write <DONE>.
Question: Natalia sold clips to 48 of her friends in April, and then she sold half as many clips in
May. How many clips did Natalia sell altogether in April and May?
Answer: Reasoning: Natalia sold 48/2 = <<48/2=24>>24 clips in May.
Natalia sold 48+24 = <<48+24=72>>72 clips altogether in April and May.
My answer is: 72<DONE>

Answer the following question. To do that, first reason about it by saying ’Reasoning:’ and then
derive the answer. After that, when you are done, write ’My answer is: ’ and write a short and
concise answer to the question.Last, write <DONE>.
Question: Weng earns $12 an hour for babysitting. Yesterday, she just did 50 minutes of babysitting.
How much did she earn?
Answer: Reasoning: Weng earns 12/60 = $<<12/60=0.2>>0.2 per minute.
Working 50 minutes, she earned 0.2 x 50 = $<<0.2*50=10>>10.
My answer is: 10<DONE>

Answer the following question. To do that, first reason about it by saying ’Reasoning:’ and then
derive the answer. After that, when you are done, write ’My answer is: ’ and write a short and
concise answer to the question.Last, write <DONE>.
Question: Betty is saving money for a new wallet which costs $100. Betty has only half of the money
she needs. Her parents decided to give her $15 for that purpose, and her grandparents twice as much
as her parents. How much more money does Betty need to buy the wallet?
Answer: Reasoning: In the beginning, Betty has only 100 / 2 = $<<100/2=50>>50.
Betty’s grandparents gave her 15 * 2 = $<<15*2=30>>30.
This means, Betty needs 100 - 50 - 30 - 15 = $<<100-50-30-15=5>>5 more.
My answer is: 5<DONE>

Answer the following question. To do that, first reason about it by saying ’Reasoning:’ and then
derive the answer. After that, when you are done, write ’My answer is: ’ and write a short and
concise answer to the question.Last, write <DONE>.
Question: Julie is reading a 120-page book. Yesterday, she was able to read 12 pages and today, she
read twice as many pages as yesterday. If she wants to read half of the remaining pages tomorrow, how
many pages should she read?

Answer: Reasoning: Maila read 12 x 2 = <<12*2=24>>24 pages today.
So she was able to read a total of 12 + 24 = <<12+24=36>>36 pages since yesterday.
There are 120 - 36 = <<120-36=84>>84 pages left to be read.
Since she wants to read half of the remaining pages tomorrow, then she should read 84/2 =
<<84/2=42>>42 pages.
My answer is: 42<DONE>

Answer the following question. To do that, first reason about it by saying ’Reasoning:’ and then
derive the answer. After that, when you are done, write ’My answer is: ’ and write a short and
concise answer to the question.Last, write <DONE>.
Question: James writes a 3-page letter to 2 different friends twice a week. How many pages does he
write a year?
Answer: Reasoning: He writes each friend 3*2=<<3*2=6>>6 pages a week
So he writes 6*2=<<6*2=12>>12 pages every week
That means he writes 12*52=<<12*52=624>>624 pages a year
My answer is: 624<DONE>

Answer the following question. To do that, first reason about it by saying ’Reasoning:’ and then
derive the answer. After that, when you are done, write ’My answer is: ’ and write a short and
concise answer to the question.Last, write <DONE>.
Question: {QUESTION}
Answer:

Prompt 4: Canonicalization

Question: "{QUESTION}"
Response: "{RESPONSE}"

Your task is to return **only** the core answer from this response.
Follow these rules:
- Keep only the core answer (e.g., a number, a name, or a short phrase).
- Remove all extra words and filler.
- Expand all abbreviations to their full form (e.g., ’USA’ -> ’United States of America’).
- Write all numbers with digits, not as words (e.g., ’eight’ -> ’8’).
- For locations, output only the highest-precision part (e.g. ’Seattle, Washington’ -> ’Seattle’)
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- For dates, unless otherwise specified, format as YYYY-MM-DD (e.g. "August 1, 1990" -> "1990-08-01")
. If only a month or year is specified, leave as-is (e.g. "August" or "2003" or "July, 2000"). Do not
make up unspecified information.
- No explaining or reasoning. Output the core answer only.
- If the response does not address the question, or if you are unsure what to do, return the response
unchanged.
- Never alter the meaning of the response, even if it is incorrect.
- Do not infer missing information; only rephrase what is given in the response.

Prompt 5: Canonicalization (math)

Response: "{RESPONSE}"

Your task is to return **only** the core answer from this response.
Follow these rules:
- Keep only the core answer, as a raw number or LaTeX string (e.g. ’0.5’ or ’\frac{1}{2}’).
- If the answer is the value of a variable, only output the value itself (e.g. ’x=10’ -> ’10’).
- Write all numbers with digits, not as words (e.g., ’eight’ -> ’8’).
- Remove all extra words and filler.
- No explaining or reasoning. Output the core answer only.
- If the response does not contain a numeric value, or if you are unsure what to do, return the
response unchanged.
- Never alter the value of the response, even if it is incorrect.
- Do not infer missing information; only extract what is given in the response.

Prompt 6: Semantic Equivalence

You will be given a question, and two possible responses. Your task is to determine whether the two
answers are semantically consistent, i.e., whether the two responses agree on what the answer to the
question is.

Question: {QUESTION}
Response 1: {RESPONSE1}
Response 2: {RESPONSE2}

Are these two responses semantically aligned responses to the question? Respond only with either the
string "Yes" or the string "No".
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E THEORY

E.1 QUICK REFERENCE

For convenience, we give references to proofs of theorems from the main body.

• Thm. 6 is proved in App. E.5.
• Thm. 9 is re-stated and proved as Thm. 31 in App. E.6.3.

Proving these theorems involves some additional theoretical machinery, which we develop in the
remaining sections. The following sections restate some of the notation and definitions from the
main body for convenience.

E.2 WEIGHTED CALIBRATION

A key object in our theory is the notion of weighted calibration, from Gopalan et al. (2024), which is
capable of expressing many different types of calibration. We use a version of this definition suitable
for our LLM setting, stated below.
Definition 17 (Weighted Calibration, Gopalan et al. (2024)). For a set W of weight functions w :
V∗ × ∆(VN ) → RN , and a distribution D over pairs (x, y) ∈ V∗ × VN , a model pθ is perfectly
W-weighted-calibrated on D if:

E
(x,y)∼D

[⟨ỹ − px, w(x, px)⟩] ≡ 0

where px := pθ(· | x) ∈ ∆(VN ) ⊂ R|VN | is the model’s output distribution on input x, and
ỹ ∈ {0, 1}|VN | is the one-hot-encoding of y.

E.3 EQUIVALENCE BETWEEN B-CALIBRATION AND WEIGHTED CALIBRATION

Here we prove that several kinds of B-calibration (including B-confidence-calibration and full B-
calibration) can be characterized in terms of weighted calibration (Definition 17).

Notation and Setup There are two relevant output spaces: the space VN of long-form answer
strings, and the space [K] of semantic answer classes. Let M := |VN |. It will be convenient to
identify strings z ∈ VN with an index in [M ], and we will abuse notation by writing z ∈ [M ].

To simplify some of the proofs, we will rely on an explicit one-hot representation. For a string
y ∈ VN , we denote its one-hot representation as ỹ ∈ {0, 1}M . For a given prompt x ∈ V∗, the
model’s distribution over completions is pθ(· | x) ∈ ∆(VN ) ⊂ RM , which we treat as a vector
embedded in RM . We write px := pθ(· | x) for convenience.

A collapsing functionB : V∗×VN → [K] assigns to each prompt x ∈ V∗ and long-answer y ∈ VN
a B-class Bx(y) ∈ [K]. Moreover, the function B along with the model pθ induces a distribution
on classes [K] as follows. For a given input x ∈ V∗, we take the model’s distribution pθ(· | x) and
push it forward through Bx to obtain a categorical distribution πx defined as

πx := Bx♯pθ(· | x) ∈ ∆K . (8)
Explicitly, the probability assigned to a category c ∈ [K] is:

πx(c) = (Bx♯px) (c) = Pr
z∼pθ(·|x)

[Bx(z) = c] =
∑

z:Bx(z)=c

pθ(z | x). (9)

This push-forward operation can be written in matrix form. Define the collapsing matrix Bx as:

Bx ∈ {0, 1}K×M , [Bx]k,z = 1{Bx(z)=k}. (10)

Then the pushforward distribution and ground-truth semantic class can be expressed as
πx = Bxpx ∈ ∆K , Bxỹ = eBx(y) ∈ EK .

Thus, matrix-vector multiplication exactly implements the pushforward operation:

(πx)k =
∑

z:Bx(z)=k

pθ(z | x) = [Bxpx]k. (11)
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E.3.1 FULL CALIBRATION

Definition 18 (Full Calibration). A distribution D over prediction-output pairs (c, y) ∈ ∆K × EK
is perfectly calibrated if the expected error, conditioned on the prediction, is the zero vector:

E
(c,y)∼D

[y − c | c] ≡ 0. (12)

Note that since y and c are both vectors in RK , this subtraction is well-defined.

Now, we apply this template to our setting. We say a model is B-calibrated if the distribution it
induces over the collapsed, semantic categories is itself perfectly calibrated.

Definition 19 (B-Calibration). A model pθ is B-calibrated on a distribution D if the induced distri-
bution over pairs (πx, Bx(y)) is perfectly calibrated according to Definition 18. Here, πx = Bx♯px
takes the role of the prediction c, and the ground-truth category Bx(y) ∈ [K] takes the role of the
outcome y. Formally:

E
(x,y)∼D

[Bx(y)− πx | πx] ≡ 0. (13)

Following our convention, the scalar Bx(y) ∈ [K] is identified with its one-hot vector in EK to
perform the vector subtraction.

Now, we provide results for B-calibration that are analogous to Definition 4 and Thm. 6 for B-
confidence-calibration.

Definition 20 (Semantic Perturbation Function Classes). Given an arbitrary function Bx(z) ∈ [K],
which we think of as a semantic collapsing function, we define the B-induced weighted function
class (a class of perturbation functions w(x, px) that generate a perturbation vector based on the
context x and the model’s predictive distribution px):

W(full)
B =

{
w | w(x, px)[z] = τ(πx)[Bx(z)] for some τ : ∆K → [−1, 1]K

}
. (14)

Intuitively, every sequence z is assigned a weight based on its semantic category Bx(z) ∈ [K], and
the weighting scheme itself can adapt based on the model’s overall categorical prediction πx.

Lemma 21. Let w ∈ W(full)
B be a weight function defined by w(x, px)[z] = τ(πx)[Bx(z)]. Its

corresponding vector representation is given by B⊤
x τ(πx).

Proof. We will prove the equivalence by showing that for any sequence z ∈ VN , the z-th component
of the vector B⊤

x τ(πx) is equal to τ(πx)[Bx(z)]. Let u = τ(πx), which is a vector in RK .

Now, we want to analyze the components of the vector v = B⊤
x u.

For any z ∈ VN , the z-th component of v is given by the definition of matrix-vector multiplication:

[v]z = [B⊤
x u]z =

K∑
k=1

[B⊤
x ]z,k · uk =

K∑
k=1

[Bx]k,z · uk =

K∑
k=1

1{Bx(z)=k} · uk

where the last equality is by definition of Bx; see Eq. (10). The indicator function 1{Bx(z)=k} is
non-zero for only one value of k in the sum, namely when k is equal to the category of the sequence
z, i.e., k = Bx(z). Therefore, the sum collapses to a single term:

[v]z = 1 · uBx(z) +
∑

Bx(z)̸=k

0 · uk = uBx(z).

Substituting back the definition of u = τ(πx), we get: [v]z = τ(πx)[Bx(z)]. This expression
matches the definition of w(x, px)[z] exactly.

Since this holds for all sequences z, the vector B⊤
x τ(πx) is the vector representation of the function

w(x, px).

With the definition of the weighted class and its vector representation, we can state the main equiv-
alence theorem.
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Theorem 22 (B-Calibration as Weighted Calibration). A model pθ is perfectly B-calibrated if and
only if it is perfectlyW(full)

B -weighted-calibrated.

Proof. We start from the definition of B-calibration, which (as established in Definition 18) is for-
mally expressed as a vector condition:

E
[
eBx(y) − πx | πx

]
= 0.

By the properties of conditional expectation, this holds if and only if for all functions τ : ∆K →
[−1, 1]K , it holds

E
[
⟨eBx(y) − πx, τ(πx)⟩

]
= 0. (15)

Substituting the matrix representation into Eq. (15):

E
[
⟨eBx(y) − πx, τ(πx)⟩

]
= 0 ⇐⇒ E [⟨Bxỹ −Bxpx, τ(Bxpx)⟩] = 0

⇐⇒ E [⟨Bx(ỹ − px), τ(Bxpx)⟩] = 0

⇐⇒ E
[
⟨ỹ − px,B⊤

x τ(Bxpx)⟩
]
= 0

From Lemma 21, the term B⊤
x τ(Bxpx) is precisely the vector representation of the function

w(x, px) from Definition 20. Thus, the condition is equivalent to:

E [⟨ỹ − px, w(x, px)⟩] = 0, for all w ∈ W(full)
B ,

which is exactly the definition ofW(full)
B -weighted-calibration ; see Definition 17.

E.3.2 CONFIDENCE CALIBRATION

We first define the standard notion of confidence calibration, a weaker form of calibration that fo-
cuses only on the model’s top prediction.
Definition 23 (Confidence Calibration). A distribution D over prediction-output pairs (c, y) ∈
∆K × EK is perfectly confidence-calibrated if, conditioned on the model’s top predicted proba-
bility, that probability matches the expected outcome. Formally,

E
(c,y)∼D

[yk⋆ − ck⋆ | ck⋆ ] ≡ 0 where k⋆ = argmax
k∈[K]

ck. (16)

Now, we apply this concept to our LLM setting. A model is B-confidence-calibrated if the categori-
cal distribution it induces is confidence-calibrated.
Definition 24 (B-Confidence-Calibration). A model pθ isB-confidence-calibrated on a distribution
D if the induced distribution over pairs (πx, Bx(y)) is perfectly confidence-calibrated according to
Definition 23. This requires that, for k⋆ = argmaxk∈[K] πx(k),

E
(x,y)∼D

[1{Bx(y) = k⋆} − πx(k⋆) | πx(k⋆)] = 0. (17)

We re-state Definition 4 here for convenience:
Definition 25 (Semantic Perturbation Function Classes). Given an arbitrary collapsing function
Bx(z) ∈ [K], we define the class WB of perturbation functions w(x, px) ∈ R|VN | as follows.
These functions generate a perturbation vector based on the prompt x and the model’s predictive
distribution px:

WB :=
{
w

∣∣∣ ∃τ : [0, 1]→ [−1, 1] ∀z ∈ VN : w(x, px)[z] = τ
(
πx(k

⋆)
)
· 1{Bx(z) = k⋆}

}
,

where πx := Bx♯px, k⋆ := argmax
k∈[K]

πx(k).

Using this definition, we have the following equivalence.
Theorem 26 (B-Confidence-Calibration as Weighted Calibration). A model pθ is perfectly B-
confidence-calibrated if and only if it is perfectlyWB-weighted-calibrated.
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Proof. The model isWB-weighted-calibrated if, for all w ∈ WB , the following holds:

E
(x,y)∼D

[⟨ỹ − px, w(x, px)⟩] = 0.

For a given w defined by a function τ : [0, 1] → [−1, 1], since ỹ is a one-hot vector with a 1 in the
coordinate z = y, the first term evaluates to

⟨ỹ, w(x, px)⟩ =
∑
z

ỹ[z]w(x, px)[z] = w(x, px)[y], (18)

Substituting the definition of w:

w(x, px)[y] = τ (v⋆x) · 1{Bx(y)=k⋆} where v⋆x := πx(k
⋆).

The second term is ⟨px, w(x, px)⟩ =
∑
z px(z)w(x, px)[z]. Substituting the definition of w:∑

z

px(z)w(x, px)[z] =
∑
z

px(z)
(
τ (v⋆x) · 1{Bx(z)=k⋆}

)
= τ (v⋆x) ·

∑
z

px(z)1{Bx(z)=k⋆}

= τ (v⋆x) · Pr[Bx(z) = k⋆] = τ (v⋆x) · v⋆x

Putting these together, the weighted calibration condition becomes:

E
(x,y)∼D

[
τ (v⋆x) · 1{Bx(y)=k⋆} − τ (v

⋆
x) · v⋆x

]
= 0⇐⇒ E

(x,y)∼D

[
τ (v⋆x) ·

(
1{Bx(y)=k⋆} − v

⋆
x

)]
= 0.

This condition must hold for all functions τ : [0, 1] → [−1, 1]. By the properties of conditional
expectation, this is true if and only if the term being multiplied by the arbitrary function of v⋆x has a
conditional expectation of zero. This gives us:

E
[
1{Bx(y)=k⋆} − v

⋆
x | v⋆x

]
= 0,

which is precisely the definition of B-confidence-calibration.

E.4 EQUIVALENCE BETWEEN WEIGHTED-CALIBRATION AND LOCAL LOSS OPTIMALITY

For the log-loss ℓ(y, f) := −
∑
i yi log(fi), we can analyze perturbations more easily through its

dual representation. The dual loss, which operates on a logit vector z is defined as

ℓ⋆(y, z) = log

 K∑
j=1

ezj

− yT z and∇zℓ⋆(y, z) = softmax(z)− y = f − y

The primal and dual views are connected by the variable mapping z = log f , which provides the
key equality ℓ(y, f) = ℓ⋆(y, z). This relationship allows us to translate complex perturbations
in the probability space into simple ones in the logit space. A multiplicative re-weighting of the
probabilities, defined as f ⋆ w := softmax(log f + w) = softmax(z + w), is equivalent to a simple
additive perturbation w on the logits. Therefore, the loss of the perturbed model can be expressed in
either world:

ℓ(y, f ⋆ w)︸ ︷︷ ︸
Loss on perturbed probabilities

= ℓ⋆(y, z + w)︸ ︷︷ ︸
Loss on perturbed logits

(19)

Theorem 27 (Equivalence of Calibration and Local Loss Optimality). Given a model pθ, a
distribution D, and a family of weight functions W (Definition 17), the model pθ is perfectly
W-weighted-calibrated on D if and only if it isW-locally loss-optimal on D.

Proof. We apply the first-order optimality condition to the dual loss ℓ⋆(y, z) with a simple additive
perturbation w on the logits z. With the perturbed loss function, for ε > 0,

L(ε) = ℓ⋆(y, z + εw) and
dL
dε

(ε) = ⟨∇zℓ⋆(y, z + εw), w⟩
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By local loss optimality

0 ≤ L(ε)− L(0)
ε

=
dL
dε

(0) +
o(ε)

ε
−→ ⟨∇zℓ⋆(y, z), w⟩

The same reasoning replacing w by −w, we also have ⟨∇zℓ⋆(y, z), w⟩ ≤ 0. Thus

ℓ⋆(y, z) ≤ ℓ⋆(y, z + εw) =⇒ ⟨∇zℓ⋆(y, z), w⟩ = 0

The opposite implication follow from convexity, we have:

ℓ⋆(y, z + w) ≥ ℓ⋆(y, z) + ⟨∇zℓ⋆(y, z), w⟩.

Thus, if ⟨∇zℓ⋆(y, z), w⟩ = 0 holds, the inequality simplifies to: ℓ⋆(y, z + w) ≥ ℓ⋆(y, z).
Taking the expectation on both side

E
(x,y)∼D

[ℓ(y, f)] ≤ E
(x,y)∼D

[ℓ(y, f ⋆ w)]⇐⇒ E
(x,y)∼D

[ℓ⋆(y, z)] ≤ E
(x,y)∼D

[ℓ⋆(y, z + w)]

⇐⇒ E
(x,y)∼D

⟨f − y, w⟩ = E
(x,y)∼D

⟨∇zℓ⋆(y, z), w⟩ = 0

A model is calibrated under the log-loss if and only if its expected prediction error f−y is orthogonal
to any systematic perturbation w of its logits.

E.5 PROOF OF THM. 6

We can now combine the above ingredients to directly prove Thm. 6 from the main body.

Proof. Recall we have a model pθ, a collapsing function B, and a distribution D.

We have the following equivalences:

pθ is B-confidence-calibrated on D ⇐⇒ pθ isWB-weighted-calibrated on D (by Thm. 26)
⇐⇒ pθ isWB-locally-loss-optimal on D (by Thm. 27)

E.6 AUTOREGRESSIVE SETTINGS

Recall the definition of the perturbation operator, Definition 3,

∀z ∈ VN : (f ⋆ w)[z] := softmax
(
w[z] + log f [z]

)
=

f [z] exp(w[z])∑
z′∈VN f [z′] exp(w[z′])

(20)

highlighting that this transformation is a multiplicative reweighting of the reference distribution f
by ew[z], followed by a renormalization to get a valid distribution. Applying it to the next-token
setting, we obtain significant simplifications for both full and confidence calibration.

E.6.1 WEIGHTED CALIBRATION

Lemma 28 (Autoregressive Decomposition of the Perturbation). For any position i, the perturbed
conditional probability of the next token is the original conditional probability multiplied by a ratio
of “lookahead expectations”:

(px ⋆ wx)(zi | z<i) = px(zi | z<i) ·
Ez>i∼px(·|z≤i)

[
exp(wx(z≤i, z>i))

]
Ez≥i∼px(·|z<i)

[
exp(wx(z<i, z≥i))

] . (21)

Proof. Let Z :=
∑
z px(z) e

wx(z). By definition of conditional probability,

(px ⋆ wx)(zi | z<i) =
(px ⋆ wx)(z≤i)

(px ⋆ wx)(z<i)
. (22)
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Expanding the perturbation operator and applying px(z≤i, z>i) = px(z≤i)px(z>i | z≤i),

(px ⋆ wx)(z≤i) =
1

Z

∑
z>i

px(z≤i, z>i) e
wx(z≤i,z>i)

=
px(z≤i)

Z
E

z>i∼px(·|z≤i)
[ewx(z≤i,z>i)].

Similarly,

(px ⋆ wx)(z<i) =
px(z<i)

Z
E

z≥i∼px(·|z<i)
[ewx(z<i,z≥i)]. (23)

Taking the ratio and canceling Z,

(px ⋆ wx)(zi | z<i) =
px(z≤i)

px(z<i)
·
Ez>i∼px(·|z≤i)[e

wx(z≤i,z>i)]

Ez≥i∼px(·|z<i)[e
wx(z<i,z≥i)]

= px(zi | z<i) ·
Ez>i∼px(·|z≤i)[e

wx(z≤i,z>i)]

Ez≥i∼px(·|z<i)[e
wx(z<i,z≥i)]

.

E.6.2 B-CALIBRATION

The general decomposition in Lemma 28 is insightful but computationally intractable, as it requires
summing over all possible future sequences. We now show that for our specific class of semantic
perturbationsWB , this complex ratio simplifies dramatically into a small, efficient arithmetic circuit.
The key is to define two “autoregressive B-confidence” vectors that can be tracked during generation.

Autoregressive B-confidence Given a model px and a semantic mapping Bx, we define:

1. The initial B-confidence g0(x) ∈ ∆K , which is the model’s overall predicted distribution
on the K categories before generation begins. This corresponds to the B-induced pushfor-
ward distribution πx = Bx♯px:

g0(x)[b] := Pr
z∼px

[Bx(z) = b]. (24)

2. The conditional B-confidence gi(x, z≤i) ∈ ∆K , which is the model’s predicted distribution
on categories, conditioned on having generated the prefix z≤i:

gi(x, z≤i)[b] := Pr
z′∼px(·|z≤i)

[Bx(z≤i, z
′) = b]. (25)

Theorem 29 (Simple Circuit for B-Perturbations). For any perturbation w ∈ WB (defined by a
scaling function τ ), the perturbed next-token probability is proportional to the original conditional
probability multiplied by a simple circuit Cw:

(px ⋆ wx)(zi | z<i) ∝ px(zi | z<i) · Cw(g0(x), gi(x, z≤i)), (26)

where the constant of proportionality does not depend on zi, and

Cw(g0, gi) =

K∑
b=1

exp(τ(g0)[b]) · gi[b]. (27)

This circuit has constant depth and width linear in K.

Proof. From Lemma 28, we know that

(px ⋆ wx)(zi | z<i) = px(zi | z<i) ·
Ez∼px(·|z≤i)[e

wx(z≤i,z)]

Ez∼px(·|z<i)[e
wx(z<i,z)]

. (28)

For w ∈ WB , by definition, wx(z) = τ(g0(x))[Bx(z)] where g0(x) = Bx♯px.
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Expanding the expectation,

E
z∼px(·|z≤i)

[ewx(z≤i,z)] = E
z∼px(·|z≤i)

[eτ(g0(x))[Bx(z≤i,z)]]

=

K∑
b=1

Pr[Bx(z≤i, z) = b] · eτ(g0(x))[b]

=

K∑
b=1

gi(x, z≤i)[b] · eτ(g0(x))[b].

The denominator is an expectation over z ∼ px(·|z<i), which depends only on the prefix z<i and
not on the choice of zi. Hence it is a constant with respect to zi and can be absorbed into the
proportionality. Therefore, (px ⋆ wx)(zi | z<i) ∝ px(zi | z<i) · ⟨exp(τ(g0(x))), gi(x, z≤i)⟩.

E.6.3 PROOF OF THM. 9: A SIMPLE CIRCUIT FOR B-CONFIDENCE-PERTURBATIONS

The circuit for general B-perturbations involves a K-dimensional inner product. For the more re-
stricted class of B-confidence-perturbations, WB , the structure simplifies even further to a trivial
scalar arithmetic circuit. First, we define the key scalar quantities needed.
Definition 30 (Autoregressive Top-1 Confidence). Given a model px and mapping Bx, let πx =
Bx♯px be the initial categorical distribution, and let k⋆ := argmaxk∈[K](πx)k be the single most
likely category. We define:

1. The top confidence value v⋆x ∈ [0, 1], which is the model’s confidence in this top category:

v⋆x := (πx)k⋆ . (29)

2. The conditional probability of hitting the top category, g(conf)i (x, z≤i) ∈ [0, 1], which is the
probability of eventually generating a sequence in category k⋆, given the prefix z≤i:

g
(conf)
i (x, z≤i) := Pr

z′∼px(·|z≤i)
[Bx(z≤i, z

′) = k⋆]. (30)

With these scalars, the autoregressive update becomes a simple linear transformation.
Theorem 31. For any perturbation w ∈ WB (defined by a function τ ), the perturbed next-token
probability is proportional to the original probability modified by a simple scalar circuit Cw:

(px ⋆ wx)(zi | z<i) ∝ px(zi | z<i) · Cw(v⋆x, g
(conf)
i (x, z≤i)), (31)

where the circuit Cw is a linear function of g(conf)i :

Cw(v, g) := 1 + (exp(τ(v))− 1)× g. (32)

Proof. By Lemma 28,

(px ⋆ wx)(zi | z<i) ∝ px(zi | z<i) · E
z∼px(·|z≤i)

[
exp(wx(z))

]
. (33)

For w ∈ WB we have

wx(z) = cx · 1{Bx(z) = k⋆}, with cx := τ(v⋆x).

exp(wx(z)) = 1 + (exp(cx)− 1) · 1{Bx(z) = k⋆}.

Taking expectation under z ∼ px(· | z≤i) yields

1 + (exp(cx)− 1) Pr[Bx(z) = k⋆ | z≤i] = 1 + (exp(τ(v⋆x))− 1) g
(conf)
i (x, z≤i). (34)

By Lemma 28, the perturbed conditional probability is the original px(zi | z<i) scaled by the ratio
of this term to an analogous denominator depending only on the prefix z<i. Since the denominator
is independent of zi, it can be absorbed into the overall proportionality constant.
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E.7 QUANTITATIVE BOUNDS ON MULTI-CLASS CALIBRATION AND POST-PROCESSING GAP

Beyond cross-entropy loss, we provide in this section a generalization for the class of proper loss
functions and quantitative bounds relating post-processing and calibration gap. The main result in
this section, Thm. 36 should be interpreted as a generalization of Theorem E.3 in Błasiok et al.
(2023) to the multi-class setting, and a robust version of Thm. 27: it essentially states that a model
is “close to”W-weighted-calibrated if it is “close to”W-loss-optimal.

First, we recall a standard result on convex representation of proper losses (Savage, 1971; Schervish,
1989; Gneiting & Raftery, 2007).
Definition 32 (Savage representation). A loss function ℓ : {e1, . . . , eK} × ∆K → R is proper iff
there exists a convex function ϕ : ∆K → R such that

ℓ(y, v) = −ϕ(v) + ⟨v − y,∇ϕ(v)⟩. (35)

Next, define the convex conjugate ψ = ϕ∗, a dual variable, and the dual form of the loss.
Definition 33 (Dual loss). For a proper loss ℓ with potential ϕ as in Definition 32, define:

Convex conjugate: ψ(u) := ϕ∗(u) := sup
v∈∆K

(
⟨u, v⟩ − ϕ(v)

)
,

Dual variable: dual(v) := ∇ϕ(v),
Dual loss: ℓ(ψ)(y, z) := ψ(z)− ⟨y, z⟩.

Remark 34. The dual parameterization of Definition 33 satisfies:

1. Agreement between primal and dual losses: ℓ(ψ)(y, dual(v)) = ℓ(y, v).

2. Probability→ dual map: dual(v) = ∇ϕ(v) for all v ∈ ∆K .

3. Dual→ probability map: v = ∇ψ(dual(v)) for all v ∈ ∆K .
Definition 35 (Generalized dual calibration and post-processing gap). LetW be a class of functions
w : X × RK → RK , and let D be a distribution over X × {e1, . . . , eK}.
For a predictor f : X → ∆K , let g : X → RK be its dual representation such that

f(x) = ∇ψ(g(x)) ∀x ∈ X . (36)

Define for shorthand

∆(w) := E(x,y)∼D
[
⟨y − f(x), w(x, g(x))⟩

]
, L(h) := E(x,y)∼D[ℓ

(ψ)(y, h(x))]. (37)

• The dual calibration error of g with respect toW is

CE(g;W) := sup
w∈W

|∆(w)|. (38)

• The dual post-processing gap of g with respect to a function classH is

Gap(g;H) := L(g)− inf
h∈H
L(h). (39)

Theorem 36 (General relationship between calibration and post-processing). Let ψ : RK → R
be differentiable and λ-smooth, i.e. ∇ψ is λ-Lipschitz. Let W be a class of bounded functions
w : X × RK → RK with ∥wx∥ ≤ 1. For w ∈ W and β ∈ [−1/λ, 1/λ], define the perturbed dual
predictor

gw(x) := g(x) + β w(x, g(x)). (40)
Let GW := {gw : w ∈ W, β ∈ [−1/λ, 1/λ]}. Then, for every g : X → RK and distribution D,

1

2

(
CE(g;W)

)2

≤ λ ·Gap(g;GW) ≤ CE(g;W). (41)

Proof. By the definition of ℓ(ψ),

L(g)− L(gw) = E
[
ψ(g(x))− ⟨y, g(x)⟩ − ψ(gw(x)) + ⟨y, gw(x)⟩

]
= E

[
ψ(g(x))− ψ(gw(x)) + β⟨y, w(x, g(x))⟩

]
.
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By convexity and λ-smoothness of ψ, for z = g(x), z′ = gw(x) and wx = w(x, g(x))

⟨∇ψ(z), βwx⟩ ≤ ψ(z′)− ψ(z) ≤ ⟨∇ψ(z), βwx⟩+
λβ2

2
∥wx∥2. (42)

Since f(x) = ∇ψ(g(x)) and ∥wx∥ ≤ 1, this yields

β∆(w)− λβ2

2
≤ L(g)− L(gw) ≤ β∆(w). (43)

Lower bound. For w ∈ W , set β = ∆(w)/λ (which lies in [−1/λ, 1/λ]). Then

1

2λ
∆(w)2 ≤ L(g)− L(gw). (44)

Taking sup
w∈W

yields

1

2

(
CE(g;W)

)2 ≤ λ ·Gap(g;GW). (45)

Upper bound. For gw ∈ GW , since |β| ≤ 1/λ

L(g)− L(gw) ≤ β∆(w) ≤ 1

λ
|∆(w)|. (46)

Taking sup
w∈W

gives

λ ·Gap(g;GW) ≤ CE(g;W). (47)

Combining the upper and lower bounds proves Eq. (41).

Remark 37 (Tighter exponent under strong convexity). If, in addition, ψ is µ-strongly convex for
some µ > 0 i.e.

ψ(z′) ≥ ψ(z) + ⟨∇ψ(z), z′ − z⟩+ µ
2 ∥z

′ − z∥2,
then one obtains matching upper and lower bounds. In this case, both inequalities in Thm. 36
become quadratic in the calibration error:

µ

2λ2
(
CE(g;W)

)2 ≤ Gap(g;GW) ≤ 1

2µ

(
CE(g;W)

)2
. (48)

That is, the dual post-processing gap and the squared dual calibration error are equivalent up to
constants determined by (µ, λ).

E.7.1 SPECIALIZATION TO CROSS-ENTROPY LOSS

For completeness, we summarize the standard facts about the dual parametrization of the negative
log-loss in Table 4.

Table 4: Duality relationships for the Negative Log-Loss (Cross-Entropy) proper scoring rule.

Primal Proper Loss (ℓnll) ℓ(y, v) = −
∑K
i=1 yi log vi

Convex Function (ϕ) ϕ(v) =
∑K
i=1 vi log(vi) (Negative Entropy)

Convex Conjugate (ϕ∗) ϕ∗(z) = log
(∑K

i=1 exp(zi)
)

(Log-Sum-Exp)

Dual Loss (ℓ∗nll) ℓ∗(y, z) = ϕ∗(z)− yT z

Dual Mapping (∇ϕ∗) ∇ϕ∗(z) = softmax(z)

The log-sum-exp function ϕ∗(z) = log
(∑K

i=1 exp(zi)
)

is 1/4-smooth, as shown in Beck &
Teboulle (2003) and Nesterov (2005), so Thm. 36 applies with λ = 1/4. Moreover, to translate
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the result into the notation of our main theorems, recall the relationship between the primal predic-
tion f(x) and its dual representation g(x):

f(x) = ∇ϕ∗(g(x)) = softmax(g(x))
g(x) = log(f(x))

The perturbed loss can then be expressed in terms of the dual variables. The dual loss on perturbed
logits g + w is equivalent to the primal loss on the perturbed probability distribution f ⋆ w:

ℓ∗nll(y, g + w) = ℓnll(y, softmax(g + w)) = ℓnll(y, f ⋆ w)

where f ⋆ w = softmax(log(f) + w).
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E.8 CONFORMAL PREDICTION VIA WEIGHTED CALIBRATION

Here we observe that conformal prediction guarantees can be expressed as a type of weighted cali-
bration (Gopalan et al., 2024), for a particular weight family.

Recall conformal prediction asks for a model F (x) which outputs a set of labels, with the guarantee
that this set contains the true label with high probability. Specifically, a conformal predictor has
coverage α if:

Pr
x,y∼D

[y ∈ F (x)] ≥ 1− α. (49)

For an introduction to conformal prediction, see Angelopoulos et al. (2023) or the lecture notes of
Tibshirani (2023).

E.8.1 CONFORMAL PREDICTION FROM FULL CALIBRATION

Given a standard predictor f , which outputs a distribution on labels, one natural way to construct a
conformal predictor Fα is: given input x, and prediction f(x), output the set of highest-predicted-
probability labels which sum to total probability 1 − α. This means, outputting the K most-likely
classes according to f(x), where K is chosen per-sample based on the predicted probabilities.

The first observation (which is folklore) is: if the predictor f is perfectly calibrated, in the sense
of full-calibration, then the induced conformal predictor Fα is correct (i.e. has coverage α). This
statement is not very relevant in practice, since full calibration is often too strong to hold. However,
we can achieve the same result with a weaker notion of calibration. This is a straightforward result;
we sketch the argument below.

E.8.2 CONFORMAL PREDICTION FROM WEIGHTED CALIBRATION

Lemma 38. Suppose f : X → ∆N is perfectly weighted-calibrated (in the sense of Gopalan et al.
(2024)) with respect to the following family of weight functions w(f) ∈ RN :

W := {w(f) = σ1Tα(f) | α ∈ [0, 1], σ ∈ {±1}} (50)

Where 1T ∈ {0, 1}N is the indicator-vector for set of indices T , and the set T contains the highest-
probability labels, defined as:

t∗α(f) := max{t :

 ∑
i∈[N ]

fi1{fi ≥ t}

 ≥ 1− α} (the threshold probability, given f )

Tα(f) := {i : fi ≥ t∗α(f)} (The set of top-class indices, for given level α)

That is, suppose:

E
(x,y)∼D

[⟨y − f(x), w(f(x))⟩] ≡ 0

Then, the induced conformal predictor Fα of f is valid at all coverage levels α.

Proof. (Sketch) Notice that by construction, ⟨f,1Tα(f)⟩ ≥ 1−α. Therefore by calibration we must
have: ⟨y,1Tα(f)⟩ ≥ 1− α.

Moreover, the set Tα(f) is exactly the output of the induced conformal predictor Fα, given base
prediction f . Therefore

Pr[y ∈ Tα(f(x))] = E[⟨y,1Tα(f)⟩] (51)

≥ 1− α (52)

By the general connection of Theorem 27, if a model f isW-locally-loss-optimal w.r.t. the weight
class of Equation (50), then the induced conformal predictor Fα has coverage α for all α ∈ [0, 1].
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F DISAGGREGATED RELIABILITY DIAGRAM RESULTS

In this section, we report disaggregated reliability diagram results for individual configurations we
evaluated. The plots are displayed as follow:

• the right three columns present results for instruct models,
• the left three columns present results for the corresponding base models.

In some cases, there are multiple instruct models trained from a single base models, hence for some
base models, their results are being presented multiple times.

Some instruct models do not have a public corresponding base model—in those cases, the left three
columns of the row are empty.

As discussed in the Sec. 5, TriviaQA and SimpleQA were not evaluated for the CoT response style.

The figures start on the next page. For a quick references:

• GSM8K in App. F.1
• OpenMathInstruct in App. F.2
• TriviaQA in App. F.3
• SimpleQA in App. F.4

40



2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213

Under review as a conference paper at ICLR 2026

F.1 GSM8K

0.0

0.5

1.0

Se
m

an
tic

Ac
cu

ra
cy

base-concise

smECE : 0.052

base-sentence
Qwen2.5-0.5B
smECE : 0.174

base-cot

smECE : 0.275

e e e

instruct-concise

smECE : 0.111

instruct-sentence
Qwen2.5-0.5B-Instruct

smECE : 0.122

instruct-cot

smECE : 0.248

0.0

0.5

1.0

Se
m

an
tic

Ac
cu

ra
cy smECE : 0.027

Qwen2.5-1.5B
smECE : 0.042 smECE : 0.285

e e e

smECE : 0.157
Qwen2.5-1.5B-Instruct

smECE : 0.123 smECE : 0.262

0.0

0.5

1.0

Se
m

an
tic

Ac
cu

ra
cy smECE : 0.033

Qwen2.5-3B
smECE : 0.040 smECE : 0.213

e e e

smECE : 0.332
Qwen2.5-3B-Instruct

smECE : 0.326 smECE : 0.066

0.0

0.5

1.0

Se
m

an
tic

Ac
cu

ra
cy smECE : 0.047

Qwen2.5-7B
smECE : 0.032 smECE : 0.121

e e e

smECE : 0.357
Qwen2.5-7B-Instruct

smECE : 0.322 smECE : 0.068

0.0

0.5

1.0

Se
m

an
tic

Ac
cu

ra
cy smECE : 0.050

Qwen2.5-14B
smECE : 0.020 smECE : 0.095

e e e

smECE : 0.381
Qwen2.5-14B-Instruct

smECE : 0.312 smECE : 0.012

0.0

0.5

1.0

Se
m

an
tic

Ac
cu

ra
cy smECE : 0.051

Qwen2.5-32B
smECE : 0.028 smECE : 0.066

e e e

smECE : 0.332
Qwen2.5-32B-Instruct

smECE : 0.240 smECE : 0.010

0.0 0.5 1.0
Semantic Con�dence

0.0

0.5

1.0

Se
m

an
tic

Ac
cu

ra
cy smECE : 0.040

0.0 0.5 1.0
Semantic Con�dence

Qwen2.5-72B
smECE : 0.036

0.0 0.5 1.0
Semantic Con�dence

smECE : 0.073

0.0 0.5 1.0
Semantic Con�dence

e e e

smECE : 0.286

0.0 0.5 1.0
Semantic Con�dence

Qwen2.5-72B-Instruct
smECE : 0.252

0.0 0.5 1.0
Semantic Con�dence

smECE : 0.011

GSM8K
Qwen/Qwen2.5 family

41



2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267

Under review as a conference paper at ICLR 2026

0.0

0.5

1.0

Se
m

an
tic

Ac
cu

ra
cy

base-concise

smECE : 0.018

base-sentence
Qwen3-0.6B-Base
smECE : 0.026

base-cot

smECE : 0.287

e e e

instruct-concise

smECE : 0.405

instruct-sentence
Qwen3-0.6B

smECE : 0.185

instruct-cot

smECE : 0.064

0.0

0.5

1.0

Se
m

an
tic

Ac
cu

ra
cy smECE : 0.021

Qwen3-1.7B-Base
smECE : 0.036 smECE : 0.240

e e e

smECE : 0.399

Qwen3-1.7B
smECE : 0.379 smECE : 0.067

0.0

0.5

1.0

Se
m

an
tic

Ac
cu

ra
cy smECE : 0.021

Qwen3-4B-Base
smECE : 0.029 smECE : 0.178

e e e

smECE : 0.399

Qwen3-4B
smECE : 0.343 smECE : 0.036

0.0

0.5

1.0

Se
m

an
tic

Ac
cu

ra
cy smECE : 0.036

Qwen3-8B-Base
smECE : 0.060 smECE : 0.122

e e e

smECE : 0.399

Qwen3-8B
smECE : 0.316 smECE : 0.011

0.0

0.5

1.0

Se
m

an
tic

Ac
cu

ra
cy smECE : 0.035

Qwen3-14B-Base
smECE : 0.032 smECE : 0.140

e e e

smECE : 0.399

Qwen3-14B
smECE : 0.299 smECE : 0.012

0.0 0.5 1.0
Semantic Con�dence

Se
m

an
tic

Ac
cu

ra
cy smECE : 0.332

0.0 0.5 1.0
Semantic Con�dence

Qwen3-32B
smECE : 0.238

0.0 0.5 1.0
Semantic Con�dence

smECE : 0.011

GSM8K
Qwen/Qwen3 family

42



2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321

Under review as a conference paper at ICLR 2026

0.0

0.5

1.0

Se
m

an
tic

Ac
cu

ra
cy

base-concise

smECE : 0.065

base-sentence
gemma-2-2b

smECE : 0.037

base-cot

smECE : 0.108

e e e

instruct-concise

smECE : 0.396

instruct-sentence
gemma-2-2b-it
smECE : 0.263

instruct-cot

smECE : 0.090

0.0

0.5

1.0

Se
m

an
tic

Ac
cu

ra
cy smECE : 0.016

gemma-2-9b
smECE : 0.018 smECE : 0.323

e e e

smECE : 0.199
gemma-2-9b-it
smECE : 0.228 smECE : 0.019

0.0 0.5 1.0
Semantic Con�dence

0.0

0.5

1.0

Se
m

an
tic

Ac
cu

ra
cy smECE : 0.030

0.0 0.5 1.0
Semantic Con�dence

gemma-2-27b
smECE : 0.023

0.0 0.5 1.0
Semantic Con�dence

smECE : 0.299

0.0 0.5 1.0
Semantic Con�dence

e e e

smECE : 0.261

0.0 0.5 1.0
Semantic Con�dence

gemma-2-27b-it
smECE : 0.282

0.0 0.5 1.0
Semantic Con�dence

smECE : 0.012

GSM8K
google/gemma-2 family

0.0

0.5

1.0

Se
m

an
tic

Ac
cu

ra
cy

base-concise

smECE : 0.046

base-sentence
gemma-3-1b-pt
smECE : 0.040

base-cot

smECE : 0.162

e e e

instruct-concise

smECE : 0.392

instruct-sentence
gemma-3-1b-it
smECE : 0.226

instruct-cot

smECE : 0.226

0.0

0.5

1.0

Se
m

an
tic

Ac
cu

ra
cy smECE : 0.017

gemma-3-4b-pt
smECE : 0.016 smECE : 0.219

e e e

smECE : 0.405
gemma-3-4b-it
smECE : 0.418 smECE : 0.023

0.0

0.5

1.0

Se
m

an
tic

Ac
cu

ra
cy smECE : 0.025

gemma-3-12b-pt
smECE : 0.037 smECE : 0.325

e e e

smECE : 0.387
gemma-3-12b-it
smECE : 0.373 smECE : 0.012

0.0 0.5 1.0
Semantic Con�dence

0.0

0.5

1.0

Se
m

an
tic

Ac
cu

ra
cy smECE : 0.031

0.0 0.5 1.0
Semantic Con�dence

gemma-3-27b-pt
smECE : 0.017

0.0 0.5 1.0
Semantic Con�dence

smECE : 0.248

0.0 0.5 1.0
Semantic Con�dence

e e e

smECE : 0.344

0.0 0.5 1.0
Semantic Con�dence

gemma-3-27b-it
smECE : 0.347

0.0 0.5 1.0
Semantic Con�dence

smECE : 0.017

GSM8K
google/gemma-3 family

43



2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375

Under review as a conference paper at ICLR 2026

0.0

0.5

1.0

Se
m

an
tic

Ac
cu

ra
cy

base-concise

smECE : 0.035

base-sentence
Mistral-7B-v0.1
smECE : 0.037

base-cot

smECE : 0.227

e e e

instruct-concise

smECE : 0.060

instruct-sentence
Mistral-7B-Instruct-v0.1

smECE : 0.054

instruct-cot

smECE : 0.230

0.0

0.5

1.0

Se
m

an
tic

Ac
cu

ra
cy smECE : 0.017

Mistral-7B-v0.3
smECE : 0.026 smECE : 0.208

e e e

smECE : 0.232
Mistral-7B-Instruct-v0.3

smECE : 0.194 smECE : 0.260

Se
m

an
tic

Ac
cu

ra
cy smECE : 0.028

Ministral-8B-Instruct-2410
smECE : 0.018 smECE : 0.217

0.0

0.5

1.0

Se
m

an
tic

Ac
cu

ra
cy smECE : 0.015

Mistral-Small-24B-Base-2501
smECE : 0.024 smECE : 0.306

e e e

smECE : 0.035
Mistral-Small-24B-Instruct-2501

smECE : 0.129 smECE : 0.226

Se
m

an
tic

Ac
cu

ra
cy smECE : 0.236

Mistral-Large-Instruct-2411
smECE : 0.190 smECE : 0.311

0.0 0.5 1.0
Semantic Con�dence

0.0

0.5

1.0

Se
m

an
tic

Ac
cu

ra
cy smECE : 0.033

0.0 0.5 1.0
Semantic Con�dence

Mixtral-8x7B-v0.1
smECE : 0.014

0.0 0.5 1.0
Semantic Con�dence

smECE : 0.296

0.0 0.5 1.0
Semantic Con�dence

e e e

smECE : 0.359

0.0 0.5 1.0
Semantic Con�dence

Mixtral-8x7B-Instruct-v0.1
smECE : 0.296

0.0 0.5 1.0
Semantic Con�dence

smECE : 0.167

GSM8K
mistralai/Mistral family

44



2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429

Under review as a conference paper at ICLR 2026

0.0

0.5

1.0

Se
m

an
tic

Ac
cu

ra
cy

base-concise

smECE : 0.041

base-sentence
Qwen2.5-Math-1.5B

smECE : 0.049

base-cot

smECE : 0.323

e e e

instruct-concise

smECE : 0.029

instruct-sentence
Qwen2.5-Math-1.5B-Instruct

smECE : 0.061

instruct-cot

smECE : 0.261

0.0

0.5

1.0

Se
m

an
tic

Ac
cu

ra
cy smECE : 0.127

Qwen2.5-Math-7B
smECE : 0.057 smECE : 0.223

e e e

smECE : 0.187
Qwen2.5-Math-7B-Instruct

smECE : 0.202 smECE : 0.403

0.0 0.5 1.0
Semantic Con�dence

0.0

0.5

1.0

Se
m

an
tic

Ac
cu

ra
cy smECE : 0.059

0.0 0.5 1.0
Semantic Con�dence

Qwen2.5-Math-72B
smECE : 0.024

0.0 0.5 1.0
Semantic Con�dence

smECE : 0.155

0.0 0.5 1.0
Semantic Con�dence

e e e

smECE : 0.332

0.0 0.5 1.0
Semantic Con�dence

Qwen2.5-Math-72B-Instruct
smECE : 0.331

0.0 0.5 1.0
Semantic Con�dence

smECE : 0.399

GSM8K
Qwen/Qwen2.5-Math family

0.0

0.5

1.0

Se
m

an
tic

Ac
cu

ra
cy

base-concise

smECE : 0.033

base-sentence
Mixtral-8x7B-v0.1

smECE : 0.014

base-cot

smECE : 0.296

e e e

instruct-concise

smECE : 0.061

instruct-sentence
Nous-Hermes-2-Mixtral-8x7B-SFT

smECE : 0.069

instruct-cot

smECE : 0.072

0.0 0.5 1.0
Semantic Con�dence

0.0

0.5

1.0

Se
m

an
tic

Ac
cu

ra
cy smECE : 0.033

0.0 0.5 1.0
Semantic Con�dence

Mixtral-8x7B-v0.1
smECE : 0.014

0.0 0.5 1.0
Semantic Con�dence

smECE : 0.296

0.0 0.5 1.0
Semantic Con�dence

e e e

smECE : 0.101

0.0 0.5 1.0
Semantic Con�dence

Nous-Hermes-2-Mixtral-8x7B-DPO
smECE : 0.113

0.0 0.5 1.0
Semantic Con�dence

smECE : 0.152

GSM8K
NousResearch/Nous-Hermes-2-Mixtral-8x7B family

0.0

0.5

1.0

Se
m

an
tic

Ac
cu

ra
cy

base-concise

smECE : 0.035

base-sentence
Mistral-7B-v0.1
smECE : 0.037

base-cot

smECE : 0.227

e e e

instruct-concise

smECE : 0.322

instruct-sentence
zephyr-7b-dpo-full

smECE : 0.241

instruct-cot

smECE : 0.191

0.0 0.5 1.0
Semantic Con�dence

0.0

0.5

1.0

Se
m

an
tic

Ac
cu

ra
cy smECE : 0.035

0.0 0.5 1.0
Semantic Con�dence

Mistral-7B-v0.1
smECE : 0.037

0.0 0.5 1.0
Semantic Con�dence

smECE : 0.227

0.0 0.5 1.0
Semantic Con�dence

e e e

smECE : 0.128

0.0 0.5 1.0
Semantic Con�dence

zephyr-7b-s�-full
smECE : 0.087

0.0 0.5 1.0
Semantic Con�dence

smECE : 0.240

GSM8K
alignment-handbook/zephyr-7b family

45



2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483

Under review as a conference paper at ICLR 2026

0.0

0.5

1.0

Se
m

an
tic

Ac
cu

ra
cy

base-concise

smECE : 0.040

base-sentence
Llama-3.1-8B

smECE : 0.028

base-cot

smECE : 0.245

e e e

instruct-concise

smECE : 0.278

instruct-sentence
Llama-3.1-8B-Instruct

smECE : 0.095

instruct-cot

smECE : 0.146

0.0

0.5

1.0

Se
m

an
tic

Ac
cu

ra
cy smECE : 0.023

Llama-3.1-70B
smECE : 0.014 smECE : 0.299

e e e

smECE : 0.216
Llama-3.1-70B-Instruct

smECE : 0.133 smECE : 0.017

0.0 0.5 1.0
Semantic Con�dence

0.0

0.5

1.0

Se
m

an
tic

Ac
cu

ra
cy smECE : 0.023

0.0 0.5 1.0
Semantic Con�dence

Llama-3.1-70B
smECE : 0.014

0.0 0.5 1.0
Semantic Con�dence

smECE : 0.299

0.0 0.5 1.0
Semantic Con�dence

e e e
smECE : 0.338

0.0 0.5 1.0
Semantic Con�dence

Llama-3.3-70B-Instruct
smECE : 0.301

0.0 0.5 1.0
Semantic Con�dence

smECE : 0.008

GSM8K
meta-llama/Llama-3 family

base-concise base-sentence base-cot

Se
m

an
tic

Ac
cu

ra
cy

instruct-concise

smECE : 0.247

instruct-sentence
phi-4

smECE : 0.202

instruct-cot

smECE : 0.055

0.0 0.5 1.0
Semantic Con�dence

0.0

0.5

1.0

Se
m

an
tic

Ac
cu

ra
cy smECE : 0.023

0.0 0.5 1.0
Semantic Con�dence

Llama-3.1-70B
smECE : 0.014

0.0 0.5 1.0
Semantic Con�dence

smECE : 0.299

0.0 0.5 1.0
Semantic Con�dence

e e e

smECE : 0.338

0.0 0.5 1.0
Semantic Con�dence

Llama-3.3-70B-Instruct
smECE : 0.301

0.0 0.5 1.0
Semantic Con�dence

smECE : 0.008

GSM8K
microso�/phi-4 family

base-concise base-sentence base-cot

Se
m

an
tic

Ac
cu

ra
cy

instruct-concise

smECE : 0.247

instruct-sentence
phi-4

smECE : 0.202

instruct-cot

smECE : 0.055

0.0 0.5 1.0
Semantic Con�dence

0.0

0.5

1.0

Se
m

an
tic

Ac
cu

ra
cy smECE : 0.023

0.0 0.5 1.0
Semantic Con�dence

Llama-3.1-70B
smECE : 0.014

0.0 0.5 1.0
Semantic Con�dence

smECE : 0.299

0.0 0.5 1.0
Semantic Con�dence

e e e

smECE : 0.338

0.0 0.5 1.0
Semantic Con�dence

Llama-3.3-70B-Instruct
smECE : 0.301

0.0 0.5 1.0
Semantic Con�dence

smECE : 0.008

GSM8K
microso�/phi-4 family

46



2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537

Under review as a conference paper at ICLR 2026

F.2 OPENMATHINSTRUCT

0.0

0.5

1.0

Se
m

an
tic

Ac
cu

ra
cy

base-concise

smECE : 0.035

base-sentence
Qwen2.5-0.5B
smECE : 0.045

base-cot

smECE : 0.149

e e e

instruct-concise

smECE : 0.068

instruct-sentence
Qwen2.5-0.5B-Instruct

smECE : 0.025

instruct-cot

smECE : 0.138

0.0

0.5

1.0

Se
m

an
tic

Ac
cu

ra
cy smECE : 0.041

Qwen2.5-1.5B
smECE : 0.016 smECE : 0.050

e e e

smECE : 0.149
Qwen2.5-1.5B-Instruct

smECE : 0.064 smECE : 0.136

0.0

0.5

1.0

Se
m

an
tic

Ac
cu

ra
cy smECE : 0.029

Qwen2.5-3B
smECE : 0.017 smECE : 0.171

e e e

smECE : 0.333
Qwen2.5-3B-Instruct

smECE : 0.291 smECE : 0.098

0.0

0.5

1.0

Se
m

an
tic

Ac
cu

ra
cy smECE : 0.014

Qwen2.5-7B
smECE : 0.025 smECE : 0.160

e e e

smECE : 0.397
Qwen2.5-7B-Instruct

smECE : 0.331 smECE : 0.165

0.0

0.5

1.0

Se
m

an
tic

Ac
cu

ra
cy smECE : 0.016

Qwen2.5-14B
smECE : 0.017 smECE : 0.224

e e e

smECE : 0.399
Qwen2.5-14B-Instruct

smECE : 0.359 smECE : 0.038

0.0

0.5

1.0

Se
m

an
tic

Ac
cu

ra
cy smECE : 0.022

Qwen2.5-32B
smECE : 0.012 smECE : 0.098

e e e

smECE : 0.387
Qwen2.5-32B-Instruct

smECE : 0.335 smECE : 0.036

0.0 0.5 1.0
Semantic Con�dence

0.0

0.5

1.0

Se
m

an
tic

Ac
cu

ra
cy smECE : 0.017

0.0 0.5 1.0
Semantic Con�dence

Qwen2.5-72B
smECE : 0.035

0.0 0.5 1.0
Semantic Con�dence

smECE : 0.240

0.0 0.5 1.0
Semantic Con�dence

e e e

smECE : 0.383

0.0 0.5 1.0
Semantic Con�dence

Qwen2.5-72B-Instruct
smECE : 0.330

0.0 0.5 1.0
Semantic Con�dence

smECE : 0.235

OpenMathInstruct
Qwen/Qwen2.5 family

47



2538
2539
2540
2541
2542
2543
2544
2545
2546
2547
2548
2549
2550
2551
2552
2553
2554
2555
2556
2557
2558
2559
2560
2561
2562
2563
2564
2565
2566
2567
2568
2569
2570
2571
2572
2573
2574
2575
2576
2577
2578
2579
2580
2581
2582
2583
2584
2585
2586
2587
2588
2589
2590
2591

Under review as a conference paper at ICLR 2026

0.0

0.5

1.0

Se
m

an
tic

Ac
cu

ra
cy

base-concise

smECE : 0.032

base-sentence
Qwen3-0.6B-Base
smECE : 0.021

base-cot

smECE : 0.086

e e e

instruct-concise

smECE : 0.462

instruct-sentence
Qwen3-0.6B

smECE : 0.143

instruct-cot

smECE : 0.027

0.0

0.5

1.0

Se
m

an
tic

Ac
cu

ra
cy smECE : 0.014

Qwen3-1.7B-Base
smECE : 0.016 smECE : 0.156

e e e

smECE : 0.432

Qwen3-1.7B
smECE : 0.374 smECE : 0.038

0.0

0.5

1.0

Se
m

an
tic

Ac
cu

ra
cy smECE : 0.019

Qwen3-4B-Base
smECE : 0.018 smECE : 0.224

e e e

smECE : 0.428

Qwen3-4B
smECE : 0.358 smECE : 0.085

0.0

0.5

1.0

Se
m

an
tic

Ac
cu

ra
cy smECE : 0.021

Qwen3-8B-Base
smECE : 0.031 smECE : 0.200

e e e

smECE : 0.426

Qwen3-8B
smECE : 0.365 smECE : 0.111

0.0

0.5

1.0

Se
m

an
tic

Ac
cu

ra
cy smECE : 0.031

Qwen3-14B-Base
smECE : 0.024 smECE : 0.199

e e e

smECE : 0.420

Qwen3-14B
smECE : 0.359 smECE : 0.135

0.0 0.5 1.0
Semantic Con�dence

Se
m

an
tic

Ac
cu

ra
cy smECE : 0.432

0.0 0.5 1.0
Semantic Con�dence

Qwen3-32B
smECE : 0.288

0.0 0.5 1.0
Semantic Con�dence

smECE : 0.073

OpenMathInstruct
Qwen/Qwen3 family

48



2592
2593
2594
2595
2596
2597
2598
2599
2600
2601
2602
2603
2604
2605
2606
2607
2608
2609
2610
2611
2612
2613
2614
2615
2616
2617
2618
2619
2620
2621
2622
2623
2624
2625
2626
2627
2628
2629
2630
2631
2632
2633
2634
2635
2636
2637
2638
2639
2640
2641
2642
2643
2644
2645

Under review as a conference paper at ICLR 2026

0.0

0.5

1.0

Se
m

an
tic

Ac
cu

ra
cy

base-concise

smECE : 0.014

base-sentence
gemma-2-2b

smECE : 0.020

base-cot

smECE : 0.146

e e e

instruct-concise

smECE : 0.392

instruct-sentence
gemma-2-2b-it
smECE : 0.177

instruct-cot

smECE : 0.083

0.0

0.5

1.0

Se
m

an
tic

Ac
cu

ra
cy smECE : 0.013

gemma-2-9b
smECE : 0.022 smECE : 0.109

e e e

smECE : 0.275
gemma-2-9b-it
smECE : 0.253 smECE : 0.033

0.0 0.5 1.0
Semantic Con�dence

0.0

0.5

1.0

Se
m

an
tic

Ac
cu

ra
cy smECE : 0.024

0.0 0.5 1.0
Semantic Con�dence

gemma-2-27b
smECE : 0.026

0.0 0.5 1.0
Semantic Con�dence

smECE : 0.128

0.0 0.5 1.0
Semantic Con�dence

e e e

smECE : 0.298

0.0 0.5 1.0
Semantic Con�dence

gemma-2-27b-it
smECE : 0.292

0.0 0.5 1.0
Semantic Con�dence

smECE : 0.024

OpenMathInstruct
google/gemma-2 family

0.0

0.5

1.0

Se
m

an
tic

Ac
cu

ra
cy

base-concise

smECE : 0.040

base-sentence
gemma-3-1b-pt
smECE : 0.033

base-cot

smECE : 0.253

e e e

instruct-concise

smECE : 0.399

instruct-sentence
gemma-3-1b-it
smECE : 0.117

instruct-cot

smECE : 0.181

0.0

0.5

1.0

Se
m

an
tic

Ac
cu

ra
cy smECE : 0.019

gemma-3-4b-pt
smECE : 0.019 smECE : 0.063

e e e

smECE : 0.394
gemma-3-4b-it
smECE : 0.400 smECE : 0.256

0.0

0.5

1.0

Se
m

an
tic

Ac
cu

ra
cy smECE : 0.029

gemma-3-12b-pt
smECE : 0.052 smECE : 0.060

e e e

smECE : 0.387
gemma-3-12b-it
smECE : 0.380 smECE : 0.169

0.0 0.5 1.0
Semantic Con�dence

0.0

0.5

1.0

Se
m

an
tic

Ac
cu

ra
cy smECE : 0.020

0.0 0.5 1.0
Semantic Con�dence

gemma-3-27b-pt
smECE : 0.052

0.0 0.5 1.0
Semantic Con�dence

smECE : 0.093

0.0 0.5 1.0
Semantic Con�dence

e e e

smECE : 0.374

0.0 0.5 1.0
Semantic Con�dence

gemma-3-27b-it
smECE : 0.385

0.0 0.5 1.0
Semantic Con�dence

smECE : 0.209

OpenMathInstruct
google/gemma-3 family

49



2646
2647
2648
2649
2650
2651
2652
2653
2654
2655
2656
2657
2658
2659
2660
2661
2662
2663
2664
2665
2666
2667
2668
2669
2670
2671
2672
2673
2674
2675
2676
2677
2678
2679
2680
2681
2682
2683
2684
2685
2686
2687
2688
2689
2690
2691
2692
2693
2694
2695
2696
2697
2698
2699

Under review as a conference paper at ICLR 2026

0.0

0.5

1.0

Se
m

an
tic

Ac
cu

ra
cy

base-concise

smECE : 0.024

base-sentence
Mistral-7B-v0.1
smECE : 0.014

base-cot

e e e

instruct-concise

smECE : 0.080

instruct-sentence
Mistral-7B-Instruct-v0.1

smECE : 0.055

instruct-cot

0.0

0.5

1.0

Se
m

an
tic

Ac
cu

ra
cy smECE : 0.023

Mistral-7B-v0.3
smECE : 0.020 smECE : 0.114

e e e

smECE : 0.198
Mistral-7B-Instruct-v0.3

smECE : 0.143 smECE : 0.106

Se
m

an
tic

Ac
cu

ra
cy smECE : 0.024

Ministral-8B-Instruct-2410
smECE : 0.019 smECE : 0.137

0.0

0.5

1.0

Se
m

an
tic

Ac
cu

ra
cy smECE : 0.027

Mistral-Small-24B-Base-2501
smECE : 0.037 smECE : 0.138

e e e

smECE : 0.225
Mistral-Small-24B-Instruct-2501

smECE : 0.056 smECE : 0.189

Se
m

an
tic

Ac
cu

ra
cy smECE : 0.262

Mistral-Large-Instruct-2411
smECE : 0.182 smECE : 0.183

0.0 0.5 1.0
Semantic Con�dence

0.0

0.5

1.0

Se
m

an
tic

Ac
cu

ra
cy smECE : 0.020

0.0 0.5 1.0
Semantic Con�dence

Mixtral-8x7B-v0.1
smECE : 0.043

0.0 0.5 1.0
Semantic Con�dence

smECE : 0.080

0.0 0.5 1.0
Semantic Con�dence

e e e

smECE : 0.343

0.0 0.5 1.0
Semantic Con�dence

Mixtral-8x7B-Instruct-v0.1
smECE : 0.204

0.0 0.5 1.0
Semantic Con�dence

smECE : 0.090

OpenMathInstruct
mistralai/Mistral family

50



2700
2701
2702
2703
2704
2705
2706
2707
2708
2709
2710
2711
2712
2713
2714
2715
2716
2717
2718
2719
2720
2721
2722
2723
2724
2725
2726
2727
2728
2729
2730
2731
2732
2733
2734
2735
2736
2737
2738
2739
2740
2741
2742
2743
2744
2745
2746
2747
2748
2749
2750
2751
2752
2753

Under review as a conference paper at ICLR 2026

0.0

0.5

1.0

Se
m

an
tic

Ac
cu

ra
cy

base-concise

smECE : 0.025

base-sentence
Qwen2.5-Math-1.5B

smECE : 0.015

base-cot

e e e

instruct-concise

smECE : 0.065

instruct-sentence
Qwen2.5-Math-1.5B-Instruct

smECE : 0.070

instruct-cot

0.0

0.5

1.0

Se
m

an
tic

Ac
cu

ra
cy smECE : 0.035

Qwen2.5-Math-7B
smECE : 0.018

e e e

smECE : 0.185
Qwen2.5-Math-7B-Instruct

smECE : 0.154

0.0 0.5 1.0
Semantic Con�dence

0.0

0.5

1.0

Se
m

an
tic

Ac
cu

ra
cy smECE : 0.038

0.0 0.5 1.0
Semantic Con�dence

Qwen2.5-Math-72B
smECE : 0.048

0.0 0.5 1.0
Semantic Con�dence

0.0 0.5 1.0
Semantic Con�dence

e e e

smECE : 0.331

0.0 0.5 1.0
Semantic Con�dence

Qwen2.5-Math-72B-Instruct
smECE : 0.328

0.0 0.5 1.0
Semantic Con�dence

OpenMathInstruct
Qwen/Qwen2.5-Math family

0.0

0.5

1.0

Se
m

an
tic

Ac
cu

ra
cy

base-concise

smECE : 0.020

base-sentence
Mixtral-8x7B-v0.1

smECE : 0.043

base-cot

smECE : 0.080

e e e

instruct-concise

smECE : 0.046

instruct-sentence
Nous-Hermes-2-Mixtral-8x7B-SFT

smECE : 0.047

instruct-cot

smECE : 0.180

0.0 0.5 1.0
Semantic Con�dence

0.0

0.5

1.0

Se
m

an
tic

Ac
cu

ra
cy smECE : 0.020

0.0 0.5 1.0
Semantic Con�dence

Mixtral-8x7B-v0.1
smECE : 0.043

0.0 0.5 1.0
Semantic Con�dence

smECE : 0.080

0.0 0.5 1.0
Semantic Con�dence

e e e

smECE : 0.089

0.0 0.5 1.0
Semantic Con�dence

Nous-Hermes-2-Mixtral-8x7B-DPO
smECE : 0.091

0.0 0.5 1.0
Semantic Con�dence

smECE : 0.049

OpenMathInstruct
NousResearch/Nous-Hermes-2-Mixtral-8x7B family

0.0

0.5

1.0

Se
m

an
tic

Ac
cu

ra
cy

base-concise

smECE : 0.024

base-sentence
Mistral-7B-v0.1
smECE : 0.014

base-cot

e e e

instruct-concise

smECE : 0.339

instruct-sentence
zephyr-7b-dpo-full

smECE : 0.180

instruct-cot

smECE : 0.328

0.0 0.5 1.0
Semantic Con�dence

0.0

0.5

1.0

Se
m

an
tic

Ac
cu

ra
cy smECE : 0.024

0.0 0.5 1.0
Semantic Con�dence

Mistral-7B-v0.1
smECE : 0.014

0.0 0.5 1.0
Semantic Con�dence

0.0 0.5 1.0
Semantic Con�dence

e e e

smECE : 0.187

0.0 0.5 1.0
Semantic Con�dence

zephyr-7b-s�-full
smECE : 0.048

0.0 0.5 1.0
Semantic Con�dence

smECE : 0.223

OpenMathInstruct
alignment-handbook/zephyr-7b family

51



2754
2755
2756
2757
2758
2759
2760
2761
2762
2763
2764
2765
2766
2767
2768
2769
2770
2771
2772
2773
2774
2775
2776
2777
2778
2779
2780
2781
2782
2783
2784
2785
2786
2787
2788
2789
2790
2791
2792
2793
2794
2795
2796
2797
2798
2799
2800
2801
2802
2803
2804
2805
2806
2807

Under review as a conference paper at ICLR 2026

0.0

0.5

1.0

Se
m

an
tic

Ac
cu

ra
cy

base-concise

smECE : 0.015

base-sentence
Llama-3.1-8B

smECE : 0.021

base-cot

smECE : 0.108

e e e

instruct-concise

smECE : 0.164

instruct-sentence
Llama-3.1-8B-Instruct

smECE : 0.147

instruct-cot

smECE : 0.294

0.0

0.5

1.0

Se
m

an
tic

Ac
cu

ra
cy smECE : 0.018

Llama-3.1-70B
smECE : 0.034 smECE : 0.053

e e e

smECE : 0.259
Llama-3.1-70B-Instruct

smECE : 0.165 smECE : 0.036

0.0 0.5 1.0
Semantic Con�dence

0.0

0.5

1.0

Se
m

an
tic

Ac
cu

ra
cy smECE : 0.018

0.0 0.5 1.0
Semantic Con�dence

Llama-3.1-70B
smECE : 0.034

0.0 0.5 1.0
Semantic Con�dence

smECE : 0.053

0.0 0.5 1.0
Semantic Con�dence

e e e
smECE : 0.393

0.0 0.5 1.0
Semantic Con�dence

Llama-3.3-70B-Instruct
smECE : 0.333

0.0 0.5 1.0
Semantic Con�dence

smECE : 0.177

OpenMathInstruct
meta-llama/Llama-3 family

base-concise base-sentence base-cot

Se
m

an
tic

Ac
cu

ra
cy

instruct-concise

smECE : 0.255

instruct-sentence
phi-4

smECE : 0.175

instruct-cot

smECE : 0.192

0.0 0.5 1.0
Semantic Con�dence

0.0

0.5

1.0

Se
m

an
tic

Ac
cu

ra
cy smECE : 0.018

0.0 0.5 1.0
Semantic Con�dence

Llama-3.1-70B
smECE : 0.034

0.0 0.5 1.0
Semantic Con�dence

smECE : 0.053

0.0 0.5 1.0
Semantic Con�dence

e e e

smECE : 0.393

0.0 0.5 1.0
Semantic Con�dence

Llama-3.3-70B-Instruct
smECE : 0.333

0.0 0.5 1.0
Semantic Con�dence

smECE : 0.177

OpenMathInstruct
microso�/phi-4 family

base-concise base-sentence base-cot

Se
m

an
tic

Ac
cu

ra
cy

instruct-concise

smECE : 0.255

instruct-sentence
phi-4

smECE : 0.175

instruct-cot

smECE : 0.192

0.0 0.5 1.0
Semantic Con�dence

0.0

0.5

1.0

Se
m

an
tic

Ac
cu

ra
cy smECE : 0.018

0.0 0.5 1.0
Semantic Con�dence

Llama-3.1-70B
smECE : 0.034

0.0 0.5 1.0
Semantic Con�dence

smECE : 0.053

0.0 0.5 1.0
Semantic Con�dence

e e e

smECE : 0.393

0.0 0.5 1.0
Semantic Con�dence

Llama-3.3-70B-Instruct
smECE : 0.333

0.0 0.5 1.0
Semantic Con�dence

smECE : 0.177

OpenMathInstruct
microso�/phi-4 family

52



2808
2809
2810
2811
2812
2813
2814
2815
2816
2817
2818
2819
2820
2821
2822
2823
2824
2825
2826
2827
2828
2829
2830
2831
2832
2833
2834
2835
2836
2837
2838
2839
2840
2841
2842
2843
2844
2845
2846
2847
2848
2849
2850
2851
2852
2853
2854
2855
2856
2857
2858
2859
2860
2861

Under review as a conference paper at ICLR 2026

F.3 TRIVIAQA

0.0

0.5

1.0

Se
m

an
tic

Ac
cu

ra
cy

base-concise

smECE : 0.091

base-sentence
Qwen2.5-0.5B

smECE : 0.039

base-cot

e e e

instruct-concise

smECE : 0.048

instruct-sentence
Qwen2.5-0.5B-Instruct

smECE : 0.028

instruct-cot

0.0

0.5

1.0

Se
m

an
tic

Ac
cu

ra
cy smECE : 0.041

Qwen2.5-1.5B
smECE : 0.045

e e e

smECE : 0.058

Qwen2.5-1.5B-Instruct
smECE : 0.029

0.0

0.5

1.0

Se
m

an
tic

Ac
cu

ra
cy smECE : 0.041

Qwen2.5-3B
smECE : 0.028

e e e

smECE : 0.081

Qwen2.5-3B-Instruct
smECE : 0.087

0.0

0.5

1.0

Se
m

an
tic

Ac
cu

ra
cy smECE : 0.030

Qwen2.5-7B
smECE : 0.030

e e e

smECE : 0.096

Qwen2.5-7B-Instruct
smECE : 0.112

0.0

0.5

1.0

Se
m

an
tic

Ac
cu

ra
cy smECE : 0.030

Qwen2.5-14B
smECE : 0.030

e e e

smECE : 0.081

Qwen2.5-14B-Instruct
smECE : 0.104

0.0

0.5

1.0

Se
m

an
tic

Ac
cu

ra
cy smECE : 0.030

Qwen2.5-32B
smECE : 0.039

e e e

smECE : 0.095

Qwen2.5-32B-Instruct
smECE : 0.110

0.0 0.5 1.0
Semantic Con�dence

0.0

0.5

1.0

Se
m

an
tic

Ac
cu

ra
cy smECE : 0.028

0.0 0.5 1.0
Semantic Con�dence

Qwen2.5-72B
smECE : 0.036

0.0 0.5 1.0
Semantic Con�dence

e e e

smECE : 0.081

0.0 0.5 1.0
Semantic Con�dence

Qwen2.5-72B-Instruct
smECE : 0.080

TriviaQA
Qwen/Qwen2.5 family

53



2862
2863
2864
2865
2866
2867
2868
2869
2870
2871
2872
2873
2874
2875
2876
2877
2878
2879
2880
2881
2882
2883
2884
2885
2886
2887
2888
2889
2890
2891
2892
2893
2894
2895
2896
2897
2898
2899
2900
2901
2902
2903
2904
2905
2906
2907
2908
2909
2910
2911
2912
2913
2914
2915

Under review as a conference paper at ICLR 2026

0.0

0.5

1.0

Se
m

an
tic

Ac
cu

ra
cy

base-concise

smECE : 0.054

base-sentence
Qwen3-0.6B-Base
smECE : 0.030

base-cot

e e e

instruct-concise

smECE : 0.077

instruct-sentence
Qwen3-0.6B

smECE : 0.151

instruct-cot

0.0

0.5

1.0

Se
m

an
tic

Ac
cu

ra
cy smECE : 0.045

Qwen3-1.7B-Base
smECE : 0.021

e e e

smECE : 0.185

Qwen3-1.7B
smECE : 0.205

0.0

0.5

1.0

Se
m

an
tic

Ac
cu

ra
cy smECE : 0.041

Qwen3-4B-Base
smECE : 0.032

e e e

smECE : 0.182

Qwen3-4B
smECE : 0.174

0.0

0.5

1.0

Se
m

an
tic

Ac
cu

ra
cy smECE : 0.028

Qwen3-8B-Base
smECE : 0.025

e e e

smECE : 0.148

Qwen3-8B
smECE : 0.142

0.0

0.5

1.0

Se
m

an
tic

Ac
cu

ra
cy smECE : 0.027

Qwen3-14B-Base
smECE : 0.020

e e e

smECE : 0.122

Qwen3-14B
smECE : 0.118

0.0 0.5 1.0
Semantic Con�dence

Se
m

an
tic

Ac
cu

ra
cy smECE : 0.079

0.0 0.5 1.0
Semantic Con�dence

Qwen3-32B
smECE : 0.088

TriviaQA
Qwen/Qwen3 family

54



2916
2917
2918
2919
2920
2921
2922
2923
2924
2925
2926
2927
2928
2929
2930
2931
2932
2933
2934
2935
2936
2937
2938
2939
2940
2941
2942
2943
2944
2945
2946
2947
2948
2949
2950
2951
2952
2953
2954
2955
2956
2957
2958
2959
2960
2961
2962
2963
2964
2965
2966
2967
2968
2969

Under review as a conference paper at ICLR 2026

0.0

0.5

1.0

Se
m

an
tic

Ac
cu

ra
cy

base-concise

smECE : 0.052

base-sentence
gemma-2-2b

smECE : 0.087

base-cot

e e e

instruct-concise

smECE : 0.041

instruct-sentence
gemma-2-2b-it
smECE : 0.045

instruct-cot

0.0

0.5

1.0

Se
m

an
tic

Ac
cu

ra
cy smECE : 0.036

gemma-2-9b
smECE : 0.035

e e e

smECE : 0.079

gemma-2-9b-it
smECE : 0.079

0.0 0.5 1.0
Semantic Con�dence

0.0

0.5

1.0

Se
m

an
tic

Ac
cu

ra
cy smECE : 0.052

0.0 0.5 1.0
Semantic Con�dence

gemma-2-27b
smECE : 0.030

0.0 0.5 1.0
Semantic Con�dence

e e e

smECE : 0.078

0.0 0.5 1.0
Semantic Con�dence

gemma-2-27b-it
smECE : 0.075

TriviaQA
google/gemma-2 family

0.0

0.5

1.0

Se
m

an
tic

Ac
cu

ra
cy

base-concise

smECE : 0.071

base-sentence
gemma-3-1b-pt
smECE : 0.063

base-cot

e e e

instruct-concise

smECE : 0.229

instruct-sentence
gemma-3-1b-it
smECE : 0.106

instruct-cot

0.0

0.5

1.0

Se
m

an
tic

Ac
cu

ra
cy smECE : 0.059

gemma-3-4b-pt
smECE : 0.096

e e e

smECE : 0.166

gemma-3-4b-it
smECE : 0.137

0.0

0.5

1.0

Se
m

an
tic

Ac
cu

ra
cy smECE : 0.041

gemma-3-12b-pt
smECE : 0.036

e e e

smECE : 0.150

gemma-3-12b-it
smECE : 0.136

0.0 0.5 1.0
Semantic Con�dence

0.0

0.5

1.0

Se
m

an
tic

Ac
cu

ra
cy smECE : 0.048

0.0 0.5 1.0
Semantic Con�dence

gemma-3-27b-pt
smECE : 0.035

0.0 0.5 1.0
Semantic Con�dence

e e e

smECE : 0.106

0.0 0.5 1.0
Semantic Con�dence

gemma-3-27b-it
smECE : 0.100

TriviaQA
google/gemma-3 family

55



2970
2971
2972
2973
2974
2975
2976
2977
2978
2979
2980
2981
2982
2983
2984
2985
2986
2987
2988
2989
2990
2991
2992
2993
2994
2995
2996
2997
2998
2999
3000
3001
3002
3003
3004
3005
3006
3007
3008
3009
3010
3011
3012
3013
3014
3015
3016
3017
3018
3019
3020
3021
3022
3023

Under review as a conference paper at ICLR 2026

0.0

0.5

1.0

Se
m

an
tic

Ac
cu

ra
cy

base-concise

smECE : 0.035

base-sentence
Mistral-7B-v0.1
smECE : 0.036

base-cot

e e e

instruct-concise

smECE : 0.047

instruct-sentence
Mistral-7B-Instruct-v0.1

smECE : 0.046

instruct-cot

0.0

0.5

1.0

Se
m

an
tic

Ac
cu

ra
cy smECE : 0.029

Mistral-7B-v0.3
smECE : 0.035

e e e

smECE : 0.095

Mistral-7B-Instruct-v0.3
smECE : 0.089

Se
m

an
tic

Ac
cu

ra
cy smECE : 0.045

Ministral-8B-Instruct-2410
smECE : 0.029

0.0

0.5

1.0

Se
m

an
tic

Ac
cu

ra
cy smECE : 0.042

Mistral-Small-24B-Base-2501
smECE : 0.032

e e e

smECE : 0.041

Mistral-Small-24B-Instruct-2501
smECE : 0.035

Se
m

an
tic

Ac
cu

ra
cy smECE : 0.064

Mistral-Large-Instruct-2411
smECE : 0.064

0.0 0.5 1.0
Semantic Con�dence

0.0

0.5

1.0

Se
m

an
tic

Ac
cu

ra
cy smECE : 0.031

0.0 0.5 1.0
Semantic Con�dence

Mixtral-8x7B-v0.1
smECE : 0.031

0.0 0.5 1.0
Semantic Con�dence

e e e

smECE : 0.096

0.0 0.5 1.0
Semantic Con�dence

Mixtral-8x7B-Instruct-v0.1
smECE : 0.081

TriviaQA
mistralai/Mistral family

56



3024
3025
3026
3027
3028
3029
3030
3031
3032
3033
3034
3035
3036
3037
3038
3039
3040
3041
3042
3043
3044
3045
3046
3047
3048
3049
3050
3051
3052
3053
3054
3055
3056
3057
3058
3059
3060
3061
3062
3063
3064
3065
3066
3067
3068
3069
3070
3071
3072
3073
3074
3075
3076
3077

Under review as a conference paper at ICLR 2026

0.0

0.5

1.0

Se
m

an
tic

Ac
cu

ra
cy

base-concise

smECE : 0.072

base-sentence
Qwen2.5-Math-1.5B

smECE : 0.039

base-cot

e e e

instruct-concise

smECE : 0.120

instruct-sentence
Qwen2.5-Math-1.5B-Instruct

smECE : 0.097

instruct-cot

0.0

0.5

1.0

Se
m

an
tic

Ac
cu

ra
cy smECE : 0.036

Qwen2.5-Math-7B
smECE : 0.022

e e e

smECE : 0.179

Qwen2.5-Math-7B-Instruct
smECE : 0.127

0.0 0.5 1.0
Semantic Con�dence

0.0

0.5

1.0

Se
m

an
tic

Ac
cu

ra
cy smECE : 0.024

0.0 0.5 1.0
Semantic Con�dence

Qwen2.5-Math-72B
smECE : 0.030

0.0 0.5 1.0
Semantic Con�dence

e e e

smECE : 0.058

0.0 0.5 1.0
Semantic Con�dence

Qwen2.5-Math-72B-Instruct
smECE : 0.113

TriviaQA
Qwen/Qwen2.5-Math family

0.0

0.5

1.0

Se
m

an
tic

Ac
cu

ra
cy

base-concise

smECE : 0.031

base-sentence
Mixtral-8x7B-v0.1

smECE : 0.031

base-cot

e e e

instruct-concise

smECE : 0.066

instruct-sentence
Nous-Hermes-2-Mixtral-8x7B-SFT

smECE : 0.052

instruct-cot

0.0 0.5 1.0
Semantic Con�dence

0.0

0.5

1.0

Se
m

an
tic

Ac
cu

ra
cy smECE : 0.031

0.0 0.5 1.0
Semantic Con�dence

Mixtral-8x7B-v0.1
smECE : 0.031

0.0 0.5 1.0
Semantic Con�dence

e e e

smECE : 0.059

0.0 0.5 1.0
Semantic Con�dence

Nous-Hermes-2-Mixtral-8x7B-DPO
smECE : 0.051

TriviaQA
NousResearch/Nous-Hermes-2-Mixtral-8x7B family

0.0

0.5

1.0

Se
m

an
tic

Ac
cu

ra
cy

base-concise

smECE : 0.035

base-sentence
Mistral-7B-v0.1
smECE : 0.036

base-cot

e e e

instruct-concise

smECE : 0.100

instruct-sentence
zephyr-7b-dpo-full

smECE : 0.095

instruct-cot

0.0 0.5 1.0
Semantic Con�dence

0.0

0.5

1.0

Se
m

an
tic

Ac
cu

ra
cy smECE : 0.035

0.0 0.5 1.0
Semantic Con�dence

Mistral-7B-v0.1
smECE : 0.036

0.0 0.5 1.0
Semantic Con�dence

e e e

smECE : 0.032

0.0 0.5 1.0
Semantic Con�dence

zephyr-7b-s�-full
smECE : 0.036

TriviaQA
alignment-handbook/zephyr-7b family

57



3078
3079
3080
3081
3082
3083
3084
3085
3086
3087
3088
3089
3090
3091
3092
3093
3094
3095
3096
3097
3098
3099
3100
3101
3102
3103
3104
3105
3106
3107
3108
3109
3110
3111
3112
3113
3114
3115
3116
3117
3118
3119
3120
3121
3122
3123
3124
3125
3126
3127
3128
3129
3130
3131

Under review as a conference paper at ICLR 2026

0.0

0.5

1.0

Se
m

an
tic

Ac
cu

ra
cy

base-concise

smECE : 0.034

base-sentence
Llama-3.1-8B

smECE : 0.051

base-cot

e e e

instruct-concise

smECE : 0.056

instruct-sentence
Llama-3.1-8B-Instruct

smECE : 0.039

instruct-cot

0.0

0.5

1.0

Se
m

an
tic

Ac
cu

ra
cy smECE : 0.044

Llama-3.1-70B
smECE : 0.038

e e e

smECE : 0.040

Llama-3.1-70B-Instruct
smECE : 0.044

0.0 0.5 1.0
Semantic Con�dence

0.0

0.5

1.0

Se
m

an
tic

Ac
cu

ra
cy smECE : 0.044

0.0 0.5 1.0
Semantic Con�dence

Llama-3.1-70B
smECE : 0.038

0.0 0.5 1.0
Semantic Con�dence

e e e
smECE : 0.056

0.0 0.5 1.0
Semantic Con�dence

Llama-3.3-70B-Instruct
smECE : 0.053

TriviaQA
meta-llama/Llama-3 family

base-concise base-sentence base-cot

Se
m

an
tic

Ac
cu

ra
cy

instruct-concise

smECE : 0.052

instruct-sentence
phi-4

smECE : 0.046

instruct-cot

0.0 0.5 1.0
Semantic Con�dence

0.0

0.5

1.0

Se
m

an
tic

Ac
cu

ra
cy smECE : 0.044

0.0 0.5 1.0
Semantic Con�dence

Llama-3.1-70B
smECE : 0.038

0.0 0.5 1.0
Semantic Con�dence

e e e

smECE : 0.056

0.0 0.5 1.0
Semantic Con�dence

Llama-3.3-70B-Instruct
smECE : 0.053

TriviaQA
microso�/phi-4 family

base-concise base-sentence base-cot

Se
m

an
tic

Ac
cu

ra
cy

instruct-concise

smECE : 0.052

instruct-sentence
phi-4

smECE : 0.046

instruct-cot

0.0 0.5 1.0
Semantic Con�dence

0.0

0.5

1.0

Se
m

an
tic

Ac
cu

ra
cy smECE : 0.044

0.0 0.5 1.0
Semantic Con�dence

Llama-3.1-70B
smECE : 0.038

0.0 0.5 1.0
Semantic Con�dence

e e e

smECE : 0.056

0.0 0.5 1.0
Semantic Con�dence

Llama-3.3-70B-Instruct
smECE : 0.053

TriviaQA
microso�/phi-4 family

58



3132
3133
3134
3135
3136
3137
3138
3139
3140
3141
3142
3143
3144
3145
3146
3147
3148
3149
3150
3151
3152
3153
3154
3155
3156
3157
3158
3159
3160
3161
3162
3163
3164
3165
3166
3167
3168
3169
3170
3171
3172
3173
3174
3175
3176
3177
3178
3179
3180
3181
3182
3183
3184
3185

Under review as a conference paper at ICLR 2026

F.4 SIMPLEQA

0.0

0.5

1.0

Se
m

an
tic

Ac
cu

ra
cy

base-concise

smECE : 0.022

base-sentence
Qwen2.5-0.5B

smECE : 0.062

base-cot

e e e

instruct-concise

smECE : 0.041

instruct-sentence
Qwen2.5-0.5B-Instruct

smECE : 0.069

instruct-cot

0.0

0.5

1.0

Se
m

an
tic

Ac
cu

ra
cy smECE : 0.036

Qwen2.5-1.5B
smECE : 0.041

e e e

smECE : 0.061

Qwen2.5-1.5B-Instruct
smECE : 0.066

0.0

0.5

1.0

Se
m

an
tic

Ac
cu

ra
cy smECE : 0.043

Qwen2.5-3B
smECE : 0.072

e e e

smECE : 0.299

Qwen2.5-3B-Instruct
smECE : 0.184

0.0

0.5

1.0

Se
m

an
tic

Ac
cu

ra
cy smECE : 0.047

Qwen2.5-7B
smECE : 0.072

e e e

smECE : 0.275

Qwen2.5-7B-Instruct
smECE : 0.252

0.0

0.5

1.0

Se
m

an
tic

Ac
cu

ra
cy smECE : 0.055

Qwen2.5-14B
smECE : 0.080

e e e

smECE : 0.269

Qwen2.5-14B-Instruct
smECE : 0.303

0.0

0.5

1.0

Se
m

an
tic

Ac
cu

ra
cy smECE : 0.049

Qwen2.5-32B
smECE : 0.074

e e e

smECE : 0.280

Qwen2.5-32B-Instruct
smECE : 0.288

0.0 0.5 1.0
Semantic Con�dence

0.0

0.5

1.0

Se
m

an
tic

Ac
cu

ra
cy smECE : 0.041

0.0 0.5 1.0
Semantic Con�dence

Qwen2.5-72B
smECE : 0.059

0.0 0.5 1.0
Semantic Con�dence

e e e

smECE : 0.306

0.0 0.5 1.0
Semantic Con�dence

Qwen2.5-72B-Instruct
smECE : 0.280

SimpleQA
Qwen/Qwen2.5 family

59



3186
3187
3188
3189
3190
3191
3192
3193
3194
3195
3196
3197
3198
3199
3200
3201
3202
3203
3204
3205
3206
3207
3208
3209
3210
3211
3212
3213
3214
3215
3216
3217
3218
3219
3220
3221
3222
3223
3224
3225
3226
3227
3228
3229
3230
3231
3232
3233
3234
3235
3236
3237
3238
3239

Under review as a conference paper at ICLR 2026

0.0

0.5

1.0

Se
m

an
tic

Ac
cu

ra
cy

base-concise

smECE : 0.028

base-sentence
Qwen3-0.6B-Base
smECE : 0.054

base-cot

e e e

instruct-concise

smECE : 0.078

instruct-sentence
Qwen3-0.6B

smECE : 0.112

instruct-cot

0.0

0.5

1.0

Se
m

an
tic

Ac
cu

ra
cy smECE : 0.034

Qwen3-1.7B-Base
smECE : 0.066

e e e

smECE : 0.194

Qwen3-1.7B
smECE : 0.239

0.0

0.5

1.0

Se
m

an
tic

Ac
cu

ra
cy smECE : 0.048

Qwen3-4B-Base
smECE : 0.068

e e e

smECE : 0.243

Qwen3-4B
smECE : 0.267

0.0

0.5

1.0

Se
m

an
tic

Ac
cu

ra
cy smECE : 0.043

Qwen3-8B-Base
smECE : 0.040

e e e

smECE : 0.255

Qwen3-8B
smECE : 0.264

0.0

0.5

1.0

Se
m

an
tic

Ac
cu

ra
cy smECE : 0.042

Qwen3-14B-Base
smECE : 0.057

e e e

smECE : 0.258

Qwen3-14B
smECE : 0.287

0.0 0.5 1.0
Semantic Con�dence

Se
m

an
tic

Ac
cu

ra
cy smECE : 0.181

0.0 0.5 1.0
Semantic Con�dence

Qwen3-32B
smECE : 0.222

SimpleQA
Qwen/Qwen3 family

60



3240
3241
3242
3243
3244
3245
3246
3247
3248
3249
3250
3251
3252
3253
3254
3255
3256
3257
3258
3259
3260
3261
3262
3263
3264
3265
3266
3267
3268
3269
3270
3271
3272
3273
3274
3275
3276
3277
3278
3279
3280
3281
3282
3283
3284
3285
3286
3287
3288
3289
3290
3291
3292
3293

Under review as a conference paper at ICLR 2026

0.0

0.5

1.0

Se
m

an
tic

Ac
cu

ra
cy

base-concise

smECE : 0.046

base-sentence
gemma-2-2b

smECE : 0.059

base-cot

e e e

instruct-concise

smECE : 0.169

instruct-sentence
gemma-2-2b-it
smECE : 0.114

instruct-cot

0.0

0.5

1.0

Se
m

an
tic

Ac
cu

ra
cy smECE : 0.044

gemma-2-9b
smECE : 0.039

e e e

smECE : 0.242

gemma-2-9b-it
smECE : 0.198

0.0 0.5 1.0
Semantic Con�dence

0.0

0.5

1.0

Se
m

an
tic

Ac
cu

ra
cy smECE : 0.055

0.0 0.5 1.0
Semantic Con�dence

gemma-2-27b
smECE : 0.057

0.0 0.5 1.0
Semantic Con�dence

e e e

smECE : 0.250

0.0 0.5 1.0
Semantic Con�dence

gemma-2-27b-it
smECE : 0.235

SimpleQA
google/gemma-2 family

0.0

0.5

1.0

Se
m

an
tic

Ac
cu

ra
cy

base-concise

smECE : 0.040

base-sentence
gemma-3-1b-pt
smECE : 0.074

base-cot

e e e

instruct-concise

smECE : 0.277

instruct-sentence
gemma-3-1b-it
smECE : 0.193

instruct-cot

0.0

0.5

1.0

Se
m

an
tic

Ac
cu

ra
cy smECE : 0.033

gemma-3-4b-pt
smECE : 0.035

e e e

smECE : 0.339

gemma-3-4b-it
smECE : 0.347

0.0

0.5

1.0

Se
m

an
tic

Ac
cu

ra
cy smECE : 0.044

gemma-3-12b-pt
smECE : 0.040

e e e

smECE : 0.363

gemma-3-12b-it
smECE : 0.354

0.0 0.5 1.0
Semantic Con�dence

0.0

0.5

1.0

Se
m

an
tic

Ac
cu

ra
cy smECE : 0.050

0.0 0.5 1.0
Semantic Con�dence

gemma-3-27b-pt
smECE : 0.051

0.0 0.5 1.0
Semantic Con�dence

e e e

smECE : 0.391

0.0 0.5 1.0
Semantic Con�dence

gemma-3-27b-it
smECE : 0.392

SimpleQA
google/gemma-3 family

61



3294
3295
3296
3297
3298
3299
3300
3301
3302
3303
3304
3305
3306
3307
3308
3309
3310
3311
3312
3313
3314
3315
3316
3317
3318
3319
3320
3321
3322
3323
3324
3325
3326
3327
3328
3329
3330
3331
3332
3333
3334
3335
3336
3337
3338
3339
3340
3341
3342
3343
3344
3345
3346
3347

Under review as a conference paper at ICLR 2026

0.0

0.5

1.0

Se
m

an
tic

Ac
cu

ra
cy

base-concise

smECE : 0.045

base-sentence
Mistral-7B-v0.1
smECE : 0.046

base-cot

e e e

instruct-concise

smECE : 0.093

instruct-sentence
Mistral-7B-Instruct-v0.1

smECE : 0.093

instruct-cot

0.0

0.5

1.0

Se
m

an
tic

Ac
cu

ra
cy smECE : 0.047

Mistral-7B-v0.3
smECE : 0.054

e e e

smECE : 0.163

Mistral-7B-Instruct-v0.3
smECE : 0.154

Se
m

an
tic

Ac
cu

ra
cy smECE : 0.057

Ministral-8B-Instruct-2410
smECE : 0.050

0.0

0.5

1.0

Se
m

an
tic

Ac
cu

ra
cy smECE : 0.043

Mistral-Small-24B-Base-2501
smECE : 0.041

e e e

smECE : 0.373

Mistral-Small-24B-Instruct-2501
smECE : 0.437

Se
m

an
tic

Ac
cu

ra
cy smECE : 0.276

Mistral-Large-Instruct-2411
smECE : 0.211

0.0 0.5 1.0
Semantic Con�dence

0.0

0.5

1.0

Se
m

an
tic

Ac
cu

ra
cy smECE : 0.053

0.0 0.5 1.0
Semantic Con�dence

Mixtral-8x7B-v0.1
smECE : 0.049

0.0 0.5 1.0
Semantic Con�dence

e e e

smECE : 0.324

0.0 0.5 1.0
Semantic Con�dence

Mixtral-8x7B-Instruct-v0.1
smECE : 0.231

SimpleQA
mistralai/Mistral family

62



3348
3349
3350
3351
3352
3353
3354
3355
3356
3357
3358
3359
3360
3361
3362
3363
3364
3365
3366
3367
3368
3369
3370
3371
3372
3373
3374
3375
3376
3377
3378
3379
3380
3381
3382
3383
3384
3385
3386
3387
3388
3389
3390
3391
3392
3393
3394
3395
3396
3397
3398
3399
3400
3401

Under review as a conference paper at ICLR 2026

0.0

0.5

1.0

Se
m

an
tic

Ac
cu

ra
cy

base-concise

smECE : 0.032

base-sentence
Qwen2.5-Math-1.5B

smECE : 0.042

base-cot

e e e

instruct-concise

smECE : 0.049

instruct-sentence
Qwen2.5-Math-1.5B-Instruct

smECE : 0.070

instruct-cot

0.0

0.5

1.0

Se
m

an
tic

Ac
cu

ra
cy smECE : 0.052

Qwen2.5-Math-7B
smECE : 0.061

e e e

smECE : 0.302

Qwen2.5-Math-7B-Instruct
smECE : 0.307

0.0 0.5 1.0
Semantic Con�dence

0.0

0.5

1.0

Se
m

an
tic

Ac
cu

ra
cy smECE : 0.040

0.0 0.5 1.0
Semantic Con�dence

Qwen2.5-Math-72B
smECE : 0.039

0.0 0.5 1.0
Semantic Con�dence

e e e

smECE : 0.250

0.0 0.5 1.0
Semantic Con�dence

Qwen2.5-Math-72B-Instruct
smECE : 0.320

SimpleQA
Qwen/Qwen2.5-Math family

0.0

0.5

1.0

Se
m

an
tic

Ac
cu

ra
cy

base-concise

smECE : 0.053

base-sentence
Mixtral-8x7B-v0.1

smECE : 0.049

base-cot

e e e

instruct-concise

smECE : 0.186

instruct-sentence
Nous-Hermes-2-Mixtral-8x7B-SFT

smECE : 0.138

instruct-cot

0.0 0.5 1.0
Semantic Con�dence

0.0

0.5

1.0

Se
m

an
tic

Ac
cu

ra
cy smECE : 0.053

0.0 0.5 1.0
Semantic Con�dence

Mixtral-8x7B-v0.1
smECE : 0.049

0.0 0.5 1.0
Semantic Con�dence

e e e

smECE : 0.141

0.0 0.5 1.0
Semantic Con�dence

Nous-Hermes-2-Mixtral-8x7B-DPO
smECE : 0.124

SimpleQA
NousResearch/Nous-Hermes-2-Mixtral-8x7B family

0.0

0.5

1.0

Se
m

an
tic

Ac
cu

ra
cy

base-concise

smECE : 0.045

base-sentence
Mistral-7B-v0.1
smECE : 0.046

base-cot

e e e

instruct-concise

smECE : 0.168

instruct-sentence
zephyr-7b-dpo-full

smECE : 0.164

instruct-cot

0.0 0.5 1.0
Semantic Con�dence

0.0

0.5

1.0

Se
m

an
tic

Ac
cu

ra
cy smECE : 0.045

0.0 0.5 1.0
Semantic Con�dence

Mistral-7B-v0.1
smECE : 0.046

0.0 0.5 1.0
Semantic Con�dence

e e e

smECE : 0.060

0.0 0.5 1.0
Semantic Con�dence

zephyr-7b-s�-full
smECE : 0.067

SimpleQA
alignment-handbook/zephyr-7b family

63



3402
3403
3404
3405
3406
3407
3408
3409
3410
3411
3412
3413
3414
3415
3416
3417
3418
3419
3420
3421
3422
3423
3424
3425
3426
3427
3428
3429
3430
3431
3432
3433
3434
3435
3436
3437
3438
3439
3440
3441
3442
3443
3444
3445
3446
3447
3448
3449
3450
3451
3452
3453
3454
3455

Under review as a conference paper at ICLR 2026

0.0

0.5

1.0

Se
m

an
tic

Ac
cu

ra
cy

base-concise

smECE : 0.038

base-sentence
Llama-3.1-8B

smECE : 0.038

base-cot

e e e

instruct-concise

smECE : 0.180

instruct-sentence
Llama-3.1-8B-Instruct

smECE : 0.139

instruct-cot

0.0

0.5

1.0

Se
m

an
tic

Ac
cu

ra
cy smECE : 0.051

Llama-3.1-70B
smECE : 0.031

e e e

smECE : 0.141

Llama-3.1-70B-Instruct
smECE : 0.131

0.0 0.5 1.0
Semantic Con�dence

0.0

0.5

1.0

Se
m

an
tic

Ac
cu

ra
cy smECE : 0.051

0.0 0.5 1.0
Semantic Con�dence

Llama-3.1-70B
smECE : 0.031

0.0 0.5 1.0
Semantic Con�dence

e e e
smECE : 0.293

0.0 0.5 1.0
Semantic Con�dence

Llama-3.3-70B-Instruct
smECE : 0.300

SimpleQA
meta-llama/Llama-3 family

base-concise base-sentence base-cot

Se
m

an
tic

Ac
cu

ra
cy

instruct-concise

smECE : 0.264

instruct-sentence
phi-4

smECE : 0.156

instruct-cot

0.0 0.5 1.0
Semantic Con�dence

0.0

0.5

1.0

Se
m

an
tic

Ac
cu

ra
cy smECE : 0.051

0.0 0.5 1.0
Semantic Con�dence

Llama-3.1-70B
smECE : 0.031

0.0 0.5 1.0
Semantic Con�dence

e e e

smECE : 0.293

0.0 0.5 1.0
Semantic Con�dence

Llama-3.3-70B-Instruct
smECE : 0.300

SimpleQA
microso�/phi-4 family

base-concise base-sentence base-cot

Se
m

an
tic

Ac
cu

ra
cy

instruct-concise

smECE : 0.264

instruct-sentence
phi-4

smECE : 0.156

instruct-cot

0.0 0.5 1.0
Semantic Con�dence

0.0

0.5

1.0

Se
m

an
tic

Ac
cu

ra
cy smECE : 0.051

0.0 0.5 1.0
Semantic Con�dence

Llama-3.1-70B
smECE : 0.031

0.0 0.5 1.0
Semantic Con�dence

e e e

smECE : 0.293

0.0 0.5 1.0
Semantic Con�dence

Llama-3.3-70B-Instruct
smECE : 0.300

SimpleQA
microso�/phi-4 family

64


	Introduction
	Semantic Calibration and B-Calibration
	Notation and Setup
	Confidence Calibration

	Theoretical Mechanism
	Proposed Mechanism: Overview
	B-calibration and local loss optimality
	Specializing to Autoregressive Models

	Experimental Predictions: When are LLMs calibrated?
	Experiments
	Experimental Results

	Conclusion
	Additional Related Works
	Extended Discussion and Remarks
	Limitations
	Potential Extensions
	Technical Remarks

	Additional Experimental Results
	Additional Experimental Details
	Visualizing calibration: reliability diagrams
	LoRA Fine-Tuning
	LLMs evaluated
	Prompts

	Theory
	Quick Reference
	Weighted Calibration
	Equivalence between B-calibration and weighted calibration
	Full Calibration
	Confidence Calibration

	Equivalence between Weighted-Calibration and Local Loss Optimality
	Proof of thm:calibrationequivalences
	Autoregressive Settings
	Weighted Calibration
	B-Calibration
	Proof of thm:ar-b-cal: A Simple Circuit for B-Confidence-Perturbations

	Quantitative Bounds on Multi-Class Calibration and Post-Processing Gap
	Specialization to cross-entropy loss

	Conformal Prediction via Weighted Calibration
	Conformal Prediction from Full Calibration
	Conformal Prediction from Weighted Calibration


	Disaggregated Reliability Diagram Results
	GSM8K
	OpenMathInstruct
	TriviaQA
	SimpleQA


