

000 TRAINED ON TOKENS, CALIBRATED ON CONCEPTS: 001 002 THE EMERGENCE OF SEMANTIC CALIBRATION IN LLMS 003 004

005 **Anonymous authors**

006 Paper under double-blind review

007 008 ABSTRACT 009

010 Large Language Models (LLMs) often lack meaningful confidence estimates for
011 their outputs. While base LLMs are known to exhibit next-token calibration, it re-
012 mains unclear whether they can assess confidence in the actual meaning of their re-
013 sponses beyond the token level. We find that, when using a certain sampling-based
014 notion of semantic calibration, base LLMs are remarkably well-calibrated: they
015 can meaningfully assess confidence in various open-ended question-answering
016 tasks, despite being trained on only next-token prediction. To formalize this phe-
017 nomenon, we introduce “*B*-calibration,” a notion of calibration parameterized by
018 the choice of equivalence classes. Our main theoretical contribution establishes
019 a mechanism for why semantic calibration emerges in base LLMs, leveraging a
020 recent connection between calibration and local loss optimality. This theoretical
021 mechanism leads to a testable prediction: base LLMs will be semantically cali-
022 brated when they can easily predict their own distribution over semantic answer
023 classes before generating a response. We state three implications of this predic-
024 tion, which we validate through experiments: (1) Base LLMs are semantically
025 calibrated across question-answering tasks, (2) instruction-tuning procedures sys-
026 tematically break this calibration, and (3) chain-of-thought reasoning breaks cali-
027 bration (intuitively because models cannot predict their final answers before com-
028 pleting their generation). To our knowledge, our work provides the first principled
029 explanation of when and why semantic calibration emerges in LLMs.

030 031 1 INTRODUCTION

032 As Large Language Models (LLMs) become increasingly capable, it is important to understand the
033 nature and extent of their uncertainty. Addressing this is an active research question: can we extract
034 a meaningful notion of confidence in an LLM’s answers? This question is scientifically interesting
035 even aside from applications: it is a way of asking, informally, do LLMs “know what they don’t
036 know”? (Kadavath et al., 2022)

037 In the classification literature, one well-understood criterion for uncertainty quantification is *calibration*: do the predicted probabilities reflect empirical frequencies? For example, if an image classifier
038 is 80% confident on a set of inputs, then it should be correct on 80% of those predictions. To apply
039 this definition to LLMs, one approach is to treat the LLM as a classifier that predicts the next-token,
040 given all previous tokens. There is strong empirical and theoretical evidence that base LLMs, which
041 are only pre-trained with the maximum likelihood loss, are typically *next-token-calibrated* (OpenAI,
042 2023; Zhang et al., 2024; Desai & Durrett, 2020). Next-token calibration is a meaningful notion of
043 calibration in certain settings like True/False or multiple choice questions, where a single token en-
044 capsulates the entire response (Kadavath et al., 2022; Plaut et al., 2025). However, when the model
045 produces long-form answers to open-ended questions, we desire a notion of uncertainty with respect
046 to the *semantic meaning* of the response, which next-token calibration does not directly capture.

047 Prior works have proposed a variety of notions of semantic confidence for long-form text, including
048 verbalized measures and sampling-based measures (e.g. *semantic entropy* of Farquhar et al. (2024)).
049 See Vashurin et al. (2025) for a comprehensive overview. However, from the empirical data it is
050 unclear whether LLMs are naturally calibrated with respect to any of these notions of confidence,
051 without being specifically trained for calibration (Kadavath et al., 2022; Yin et al., 2023; Band et al.,
052 2024; Kapoor et al., 2024; Yoon et al., 2025; Mei et al., 2025). Empirically, calibration may depend
053 on many factors: the test distribution (math, trivia, etc.), the post-training procedure (RLHF, DPO,

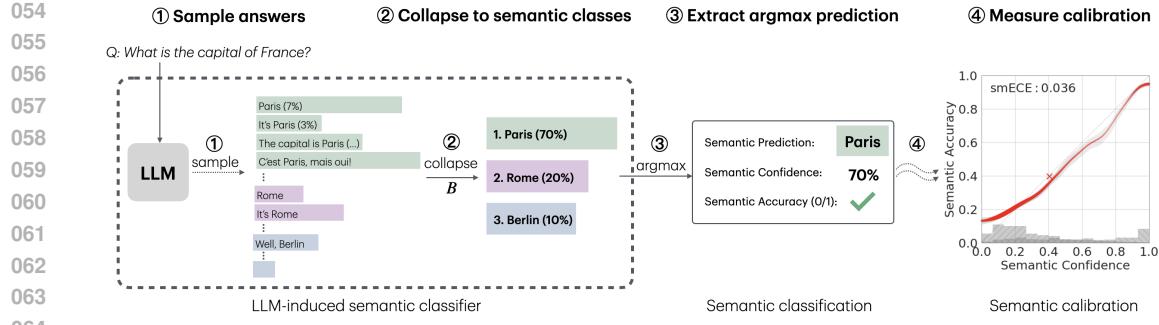


Figure 1: **Semantic calibration** refers to calibration of an *LLM-induced semantic classifier* (dashed box): the classifier induced by post-processing LLM outputs with a given semantic collapsing function, which we refer to as B throughout. To measure semantic confidence calibration: for a given question, sample multiple temperature $T=1$ generations, and extract semantic answers by applying the collapsing function B (e.g. a strong LLM prompted to extract one-word answers). This yields an empirical distribution over semantic classes (above: Paris, Rome, Berlin), which we treat as the classifier output. This classifier output defines a semantic prediction (=argmax probability) and a semantic confidence (=max probability). *Semantic confidence calibration* means, over all questions, these predictions are confidence-calibrated in the standard classification sense.

RLVR, none, etc.), the inference-time procedure (few-shot examples, chain-of-thought (CoT), best-of-K, etc.), the model size, the model architecture, the sampling temperature, etc. All of these factors have been posited to affect calibration, for reasons that are not yet well understood (Kadavath et al., 2022; OpenAI, 2023; Leng et al., 2025; Xiao et al., 2025; Zhang et al., 2024; Wang et al., 2025).

A priori, there is no reason to expect *emergence*¹ of any of these forms of semantic calibration as a product of standard pre-training with the maximum likelihood loss. In this work, we show both theoretically and empirically that a particular type of sampling-based semantic calibration actually does emerge for a large class of LLMs. Our definition is closely related to semantic entropy (Farquhar et al., 2024), as well as the sampling-based definitions of confidence in Wang et al. (2023), Wei et al. (2024), and Lamb et al. (2025). At a high level, our approach involves treating the LLM as a standard multi-class classifier (by collapsing outputs with the same semantic meaning), and then applying recent theoretical results from the literature on classifier calibration (Gopalan et al., 2024; Błasior et al., 2023; 2024). Fig. 1 illustrates the overall setup, described in detail in the next section. To our knowledge, our work is the first to propose a theoretically plausible mechanism for semantic calibration in LLMs, and we validate the predictions of this theory empirically.

Summary of Contributions. We empirically show that LLMs *are* semantically-calibrated surprisingly often, for certain settings and types of questions. We offer a candidate theoretical mechanism to explain how this calibration emerges from standard LLM training (that does not explicitly encourage it), and discuss under which settings and for which questions we expect it. The basic prediction of our theory is that semantic calibration is likely to hold when (1) the model is a base LLM, and (2) the model is able to *directly* predict the probability that its answer will land in a given semantic class, even before it has started to generate it. Intuitively, in order to be semantically calibrated, the model must “know” how likely it is to generate a “Paris”-type answer, before it has determined exactly how it will phrase its answer. This theoretical insight leads to a number of practical predictions about which models and tasks should be semantically calibrated, which we then test experimentally.

Organization. We start by formally defining the notions of calibration we consider in Sec. 2. In Sec. 3, we introduce our proposed theoretical mechanism for emergent calibration, and state our formal results. In Sec. 4, we apply the theory to make three concrete predictions about when LLMs are semantically calibrated, and in Sec. 5, we experimentally test these predictions.

¹We use *emergent* here to mean a structural regularity that arises implicitly (“for free”) due to system dynamics, not as a result of explicit external constraints. That is, “Emergence Through Compression” in the terminology of Krakauer et al. (2025). We do not mean to discuss changes as a result of model scaling, which is another common use of the term emergence (Wei et al., 2022).

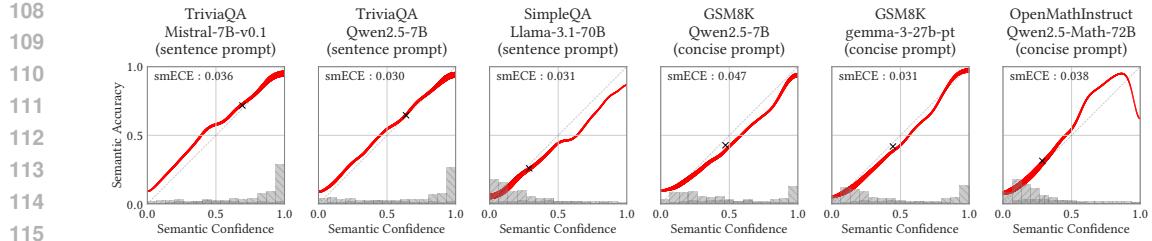


Figure 2: Reliability diagrams demonstrating *semantic confidence-calibration* of base (pretrained-only) LLMs across various combinations of datasets, models, and prompts. Calibration error measured with SmoothECE (smECE), average confidence and accuracy marked with a black cross, and density of semantic confidences shown in gray histogram; details in Appendix D.1.

2 SEMANTIC CALIBRATION AND B -CALIBRATION

We now informally describe our framework; formal definitions follow in Sec. 2.1. The core of our approach is a collapsing function B which post-processes the LLM’s raw text outputs, mapping each generation to one of a finite set of classes. Of particular interest are *semantic collapsing functions*², which we focus on now. As illustrated in Fig. 1, a semantic collapsing function implicitly transforms the LLM into an *LLM-induced semantic classifier*: For a given question, the classifier’s output is a distribution over semantic classes, whose probabilities can be empirically estimated by sampling multiple generations from the LLM and applying B to each. From this distribution, we define the semantic confidence as the probability of the most-likely semantic class, and the semantic accuracy as whether the most-likely semantic class matches the ground truth’s semantic class. The LLM is *semantically confidence-calibrated* if these confidences and accuracies are calibrated across a dataset—e.g., among questions with 70% semantic confidence, the average semantic accuracy is also 70%. This definition coincides with Lamb et al. (2025)’s definition of ‘‘Empirical Semantic Confidence’’ when applied to the full distribution. For example, Fig. 2 measures calibration of several models using this approach (full experimental details in Sec. 5).

2.1 NOTATION AND SETUP

We now establish the notation used throughout the paper. We assume that our semantic collapsing function outputs at most $K \in \mathbb{N}$ classes, which we represent by the set of indices $[K] \equiv \{1, \dots, K\}$. We allow K to be arbitrarily large. We identify these classes with the set of standard basis vectors $\mathcal{E}_K \subset \mathbb{R}^K$. The set of probability distributions over a finite set S is denoted $\Delta(S)$. For convenience, we use the shorthand $\Delta_K \equiv \Delta([K])$ for the probability simplex over the K classes.

Language Model and Data. Let \mathcal{V} be the model’s vocabulary. We assume throughout that the evaluation data comes from a ground-truth distribution \mathcal{D} over prompt-completion pairs $(x, y) \in \mathcal{V}^* \times \mathcal{V}^N$, where N is a maximum generation length. An LLM is a function $p_\theta : \mathcal{V}^* \rightarrow \Delta(\mathcal{V}^N)$ that maps a prompt x to a distribution over output strings. We use conventional notation: $p_x \equiv p_\theta(\cdot \mid x)$ is the entire distribution over sequences for a given prompt, so we can denote $p_x(z) = p_\theta(z \mid x)$ as the probability of a specific sequence z . The conditional probability of the next token is denoted $p_\theta(z_i \mid x, z_{\leq i})$. To distinguish model outputs from the dataset, we use $z \in \mathcal{V}^N$ for generated strings and $y \in \mathcal{V}^N$ for ground-truth completions from \mathcal{D} .

Collapsing function. The core of our framework is the collapsing function $B : \mathcal{V}^* \times \mathcal{V}^N \rightarrow [K]$ that classifies a given prompt-completion pair into one of K categories. In our theory, B is allowed to be arbitrary, but we often will think of it as a ‘‘semantic collapsing’’ function, grouping many different strings into a single semantic class, as visualized in Fig. 1. An example of such a function is described in App. D. For convenience, we write $B_x(z) \equiv B(x, z)$ to emphasize its role as a classifier for outputs z given a fixed prompt x .

²To implement this function, we use a strong auxiliary LLM prompted to extract a canonical short answer from a long-form string. Details in App. D.

162 2.2 CONFIDENCE CALIBRATION
163

164 We first recall the relevant definitions of calibration in the multi-class setting (for a unified treatment,
165 see Gopalan et al. (2024, Section 2)). In the K -class setting, classifiers output values $c \in \Delta_K$ and
166 the true labels take values $y \in \mathcal{E}_K$ (one-hot encodings). Calibration is a property defined for *any*
167 joint distribution of prediction-label pairs $(c, y) \in \Delta_K \times \mathcal{E}_K$, regardless of whether it was generated
168 by a classifier. We will focus primarily on *confidence calibration*, which only considers the proba-
169 bility assigned to the predicted class; however, we provide analogous results for full calibration in
170 App. E.3. The following definition is standard:

171 **Definition 1** (Confidence-calibration). *A distribution \mathcal{D} over prediction-output pairs $(c, y) \in \Delta_K \times$
172 \mathcal{E}_K is perfectly confidence-calibrated if*

$$174 \mathbb{E}_{(c,y) \sim \mathcal{D}} [y_{k^*} - c_{k^*} \mid c_{k^*}] \equiv 0 \text{ where } k^* \leftarrow \operatorname{argmax}_{k \in [K]} c_k.$$

178 The definition depends crucially on the distribution \mathcal{D} . In this work we take \mathcal{D} to be the evaluation
179 distribution of interest (e.g. TriviaQA, GSM8k, etc), unless otherwise specified.

181 **From Language Model to Categorical Predictor** For a given prompt x , we obtain a distribution
182 over K categories by pushing-forward³ the LLM’s output distribution $p_\theta(\cdot \mid x)$ via the function B_x .
183 Specifically, the distribution over categories $\pi_x := B_x \# p_x \equiv B_x \# p_\theta(\cdot \mid x)$ assigns to each category
184 $k \in [K]$ the sum of probabilities of all strings z that B_x maps to that category:

$$186 (B_x \# p_x)(k) = \Pr_{z \sim p_\theta(\cdot \mid x)} [B_x(z) = k] = \sum_{z : B_x(z) = k} p_\theta(z \mid x). \quad (1)$$

189 This process transforms the original prompt-answer pair (x, y) from the dataset \mathcal{D} into a pair suitable
190 for calibration analysis: $(B_x \# p_x, B_x(y))$, where $B_x \# p_x$ is the model’s predicted distribution over
191 categories and $B_x(y)$ is the ground-truth category. Now, we say that the model p_θ is B -confidence-
192 calibrated if the induced distribution over $(B_x \# p_x, B_x(y))$ is confidence-calibrated. That is, B -
193 confidence-calibration means if the generated and ground-truth answers are both post-processed by
194 B , then the resulting K -way-classifier is confidence-calibrated.

195 **Definition 2** (B -confidence-calibration). *The model p_θ is B -confidence-calibrated with respect to
196 distribution \mathcal{D} if the induced distribution over pairs $(B_x \# p_x, B_x(y)) \in \Delta_K \times [K]$ is perfectly
197 confidence-calibrated (per Definition 1).*

199 Our entire framework is well-defined for any arbitrary computable function B , though we usually
200 choose B to be a semantic-collapsing function. In general, an LLM might be B -calibrated for some
201 choices of B , but not others—one goal of our theory is to understand why.

203 3 THEORETICAL MECHANISM
204

205 Our proposed mechanism for emergent calibration connects the statistical property of calibration
206 to the optimization property of *local loss optimality*, extending the results of Błasiok et al. (2023;
207 2024) to our LLM setting. The core intuition is that a miscalibrated model implies the existence
208 of a “simple” perturbation that would reduce its test loss. For instance, an overconfident model
209 could improve its test loss simply by down-weighting the probability mass on all strings within its
210 top semantic class. We argue that base LLMs, trained to minimize cross-entropy loss, should not
211 leave such “easy wins” on the table, and thus should be well-calibrated. The primary challenge is
212 formalizing how an autoregressive model can implement such a sequence-level perturbation. To
213 do so, the model must implicitly “know” its semantic confidence. This requirement is key, as its
214 difficulty varies by task (e.g., it is easier for trivia than for chain-of-thought math), allowing our
215 theory to make fine-grained, testable predictions. A technical overview is in Sec. 3.1, followed by
formal theorem statements in Sec. 3.2 and Sec. 3.3. All proofs are deferred to App. E.

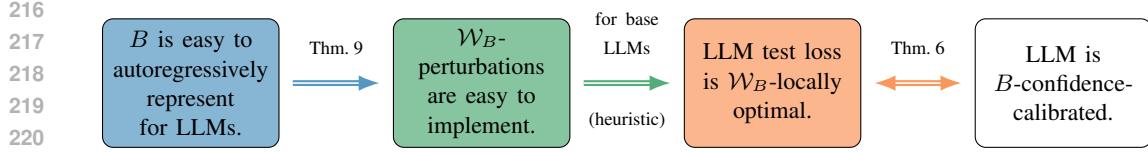


Figure 3: Proposed Mechanism for Semantic Calibration in LLMs.

3.1 PROPOSED MECHANISM: OVERVIEW

Fig. 3 illustrates our proposed mechanism. There are three steps; two of them we prove and the third is an existing heuristic. We outline each step below, following Fig. 3 from right-to-left.

■ The first step of our argument, outlined in Sec. 3.2, is a general equivalence, building on the work of Blasiok et al. (2023) which established a link between calibration and local loss optimality. We prove in Thm. 6 that for any choice of collapsing function B , B -calibration is *equivalent* to local-loss-optimality with respect to a corresponding family of local perturbations, denoted \mathcal{W}_B . That is, an LLM is perfectly B -calibrated on distribution \mathcal{D} if and only if its cross-entropy loss on \mathcal{D} cannot be improved by perturbing the LLM’s output distribution (on entire sequences) via some function in the family \mathcal{W}_B . Thus, Thm. 6 tells us that if we want to understand when LLMs are B -calibrated, we can equivalently understand which types of perturbations LLMs are loss-optimal with respect to.

■ At this point, we invoke an informal assumption proposed in Blasiok et al. (2023), and likely folklore much earlier: we assume that base LLMs are nearly locally-loss-optimal on their pretraining distribution, w.r.t. any perturbation that is “simple” for the LLM to implement. The intuition here is that since base LLMs are trained explicitly to minimize cross-entropy loss, they should not leave any easy wins on the table: if such simple perturbations could have improved the test loss, the training procedure would already have incorporated them. We agree with Blasiok et al. (2023) that this assumption is plausible, because it is fairly weak; it does not require that models are *globally* optimal in any sense.⁴

■ From the above two points, we can conclude that a base LLM will be B -calibrated if the corresponding perturbation family \mathcal{W}_B is simple for the LLM to implement. But when is \mathcal{W}_B simple to implement? This is subtle because the perturbations \mathcal{W}_B are defined over the *sequence-level* probability distribution, but LLMs must implement perturbations by modifying *next-token* probabilities. We bridge this gap in Thm. 9: we show that if the LLM is able to “autoregressively-estimate” B – that is, estimate its own induced distribution over B -classes at each point during autoregressive generation – then the associated family of perturbations \mathcal{W}_B has a simple autoregressive representation. Roughly-speaking, the autoregressive-estimation requirement says that the model must “know” how likely it is to generate an answer of a given B -class at every point during generation (even the very beginning). Notably, this does not require the model to know the *correct answer’s* B -class.

Putting everything together, this mechanism predicts that a base LLM will be B -calibrated if B is easy for the LLM to autoregressively estimate. When B is a semantic collapsing function, this theory naturally suggests a number of practical predictions about which models and tasks should be semantically calibrated, which we explore and test experimentally in Sec. 5. The next several sections give the formal theory supporting the mechanism we have just outlined.

3.2 B -CALIBRATION AND LOCAL LOSS OPTIMALITY

We now setup and establish the equivalence between calibration and local loss optimality (Thm. 6). We use the sequence-level cross-entropy loss, which decomposes into the standard autoregressive next-token log-loss: $\mathbb{E}_{(x,y) \sim \mathcal{D}}[\ell(y, p_x)] = \mathbb{E}_{(x,y) \sim \mathcal{D}} \left[- \sum_{i \in [N]} \log p_\theta(y_i | y_{<i}, x) \right]$. We will use

³We use “ \sharp ” as the standard notation for the mathematical pushforward of a measure by a function. E.g. for a function B and distribution p , the notation $B \sharp p$ denotes the distribution of $\{B(x)\}_{x \sim p}$

⁴Technically, we need local-loss-optimality not only for the overall pretraining distribution, but also for each evaluation distribution individually (TriviaQA, GSM8k, etc), since we are evaluating calibration on individual distributions. We will however assume that the latter holds (which is plausible if each evaluation distribution is a reasonably-sized sub-distribution of the pretraining distribution on which local-loss-optimality holds).

270 the following notion of perturbing a distribution, known as *exponential tilting* (Cover & Thomas,
 271 1999, Chapter 11), which turns out to be the appropriate notion for the cross-entropy loss.

272 **Definition 3** (Perturbation operator). *Given a distribution $f \in \Delta(\mathcal{V}^N)$ over sequences, and a signed
 273 measure $w \in \mathbb{R}^{|\mathcal{V}^N|}$, define the perturbed distribution $(f \star w) \in \Delta(\mathcal{V}^N)$ as:*

$$275 \quad \forall z \in \mathcal{V}^N : \quad (f \star w)[z] := \text{softmax}(w[z] + \log f[z]). \quad (2)$$

277 Next we define a specific class of perturbations which characterize B -confidence-calibration. In-
 278 tuitively, these perturbations modify the probability of the most-likely B -class, by modifying the
 279 probability of each string z according to (only) its B -class $B_x(z)$. The formal definition is some-
 280 what technical, based on the language of weighted calibration developed in Gopalan et al. (2024).

281 **Definition 4** (Semantic Perturbation Function Classes). *Given an arbitrary collapsing function
 282 $B_x(z) \in [K]$, we define the class \mathcal{W}_B of perturbation functions $w(x, p_x) \in \mathbb{R}^{|\mathcal{V}^N|}$ as follows.
 283 These functions $w(x, p_x)$ generate a perturbation vector based on the prompt x and the model's
 284 predictive distribution p_x .*

$$285 \quad \mathcal{W}_B := \{w \mid \exists \tau : [0, 1] \rightarrow [-1, 1] \forall z \in \mathcal{V}^N : w(x, p_x)[z] = \tau(\pi_x[k^*]) \cdot \mathbb{1}\{B_x(z) = k^*\}\},$$

$$286 \quad \text{where } \pi_x := B_x \# p_x, \quad \text{and } k^* \leftarrow \underset{k \in [K]}{\text{argmax}} \pi_x[k].$$

289 Finally, we define local loss optimality with respect to an arbitrary perturbation class \mathcal{W} .

290 **Definition 5** (\mathcal{W} -local loss optimality). *We say that p_θ is \mathcal{W} -locally loss-optimal if*

$$292 \quad \forall w \in \mathcal{W} : \quad \mathbb{E}_{(x, y) \sim \mathcal{D}} [\ell(y, p_x)] \leq \mathbb{E}_{(x, y) \sim \mathcal{D}} [\ell(y, p_x \star w_x)] \quad \text{where } w_x \equiv w(x, p_x), p_x \equiv p_\theta(\cdot \mid x).$$

294 We can now state the main result of this section (see App. E for all proofs).

296 **Theorem 6** (Equivalence of Calibration and Local Loss Optimality). *Given a model p_θ , a collapsing
 297 function B , and a distribution \mathcal{D} , the model p_θ is perfectly B -confidence-calibrated on \mathcal{D} if and only
 298 if p_θ is \mathcal{W}_B -locally loss-optimal on \mathcal{D} .*

299 **Remark 7.** *Thm. 6 states a simplified version of our full theoretical results, for the sake of clarity.
 300 Thm. 6 only characterizes perfect confidence-calibration, but it is possible to show a much more
 301 robust equivalence: it turns out that a model is “close to” B -calibrated if and only if it is “close
 302 to” locally-loss-optimal in the appropriate sense. We state and prove this generalized version as
 303 [Thm. 36](#) in App. E, where we also generalize to allow any arbitrary proper-loss ℓ , and any notion of
 304 weighted-calibration (including canonical calibration and confidence calibration).*

305 **Remark: Technical Tools and Prior Work** The connection between local-loss-optimality and
 306 calibration was formally studied in (Błasiok et al., 2023), which proved a version of Thm. 6 for bi-
 307 nary classifiers, and was our inspiration for this work. Moving from binary classifiers to LLMs posed
 308 three main technical challenges. First, in binary classifiers there is essentially only one canonical
 309 notion of calibration, and so Błasiok et al. (2023) only required one notion of local-loss-optimality.
 310 However in our LLM setting, there are many notions of calibration (parameterized by functions B),
 311 and so we needed to identify the “right” notion of local-loss-optimality that is also parameterized by
 312 B . To do this we observed that B -calibration can be written as a type of “weighted calibration,” a
 313 notion introduced in Gopalan et al. (2024). Second, we needed to generalize the 1-dimensional re-
 314 sults of Błasiok et al. (2023) to higher dimensions, to handle multi-class settings. This turned out to
 315 be a straightforward though somewhat technical generalization, using the Savage representation of
 316 proper losses (Savage, 1971). Third, and most significantly: unlike classifiers, LLMs do not output
 317 their predicted probabilities explicitly. Rather, they implicitly define a probability distribution via
 318 their next-token predictions. This difference between implicit and explicit probability distributions
 319 required a number of conceptual adaptations to the theory of Błasiok et al. (2023), which guided our
 320 definitions of the perturbation operator and \mathcal{W} -local-loss-optimality (Definition 5).

321 3.3 SPECIALIZING TO AUTOREGRESSIVE MODELS

322 It remains to understand when the perturbation class \mathcal{W}_B is easy for an LLM to implement (Thm. 9
 323 from Fig. 3). The challenge is that these perturbations are defined over entire sequences, while

autoregressive models operate token-by-token. Thus, for a perturbation to be easy for an LLM to implement, the perturbed next-token probabilities $(p_x \star w_x)(z_i \mid z_{\leq i})$ must be some simple modification of the original probabilities $p_x(z_i \mid z_{\leq i})$. It turns out that for perturbations in \mathcal{W}_B , the perturbed next-token distribution can be expressed as a simple re-weighting of the original distribution. This re-weighting is governed by a set of scalar-valued functions $\{g_i\}$, defined below. We call these functions “autoregressive B -confidences”, because $g_i(z_{\leq i}; x)$ is the probability mass the model places on its most-likely B -class, given both the question x and the response prefix $z_{\leq i}$ generated so far. Thus, the difficulty of implementing the sequence-level perturbation reduces to the difficulty of representing these intermediate confidence values during generation.

Definition 8 (Autoregressive B -Confidences). *For a given function $B : \mathcal{V}^* \times \mathcal{V}^N \rightarrow [K]$ and model p_θ , we define the autoregressive B -confidences as the scalar-valued functions $\{g_i\}_{i \in \{0, 1, \dots, N\}}$:*

$$g_i(z_{\leq i}; x) := \Pr_{z \sim p_\theta(\cdot \mid x, z_{\leq i})} [B_x(z) = k^*] \text{ where } k^* \leftarrow \operatorname{argmax}_{k \in [K]} (B_x \sharp p_x)[k].$$

We will informally say that B is “easy to autoregressively represent” if the autoregressive B -confidences g_i have a simple representation (e.g. each g_i is computable by a small circuit). In that case, we show in Thm. 9 that the perturbed model $p_\theta \star w$ has an only-slightly-more-complex representation than the original model p_θ . Specifically, the perturbed model can be computed by composing a circuit C_w with the functions g_i . Explicit formulas are provided in App. E.6.3.

Theorem 9. *For all functions $B : \mathcal{V}^* \times \mathcal{V}^N \rightarrow [K]$ and all perturbations $w \in \mathcal{W}_B$, there exists a small circuit⁵ C_w such that for all models $p_\theta : \mathcal{V}^* \rightarrow \Delta(\mathcal{V}^N)$, all $x \in \mathcal{V}^*$, $z \in \mathcal{V}^N$, all $i \in [N]$, and with $p_x := p_\theta(\cdot \mid x)$, $w_x := w(x, p_x)$, the perturbed model $x \mapsto p_x \star w_x$ satisfies*

$$(p_x \star w_x)(z_i \mid z_{\leq i}) \propto C_w(a, g_i(z_{\leq i}; x), g_0(x)) \quad (3)$$

where the constant of proportionality is independent of z_i , $a := p_x(z_i \mid z_{\leq i})$ is the original next-token probabilities, and g_0, g_i are the autoregressive B -confidences of Definition 8.

Putting all the theory together, the message is: if B is easy for the LLM to autoregressively represent, then perturbations \mathcal{W}_B are easy to implement, and we should expect emergent B -calibration.

4 EXPERIMENTAL PREDICTIONS: WHEN ARE LLMs CALIBRATED?

Our main empirical question is: *Under what conditions and for which functions B should we expect a pretrained LLM to be B -confidence-calibrated?*

The theory of the previous section suggests an answer: we should expect emergent B -calibration when the autoregressive B -confidences (Definition 8) are easy for the LLM to learn. We can simplify this into an experimentally-testable heuristic: for a given question x , is it easy for the LLM to predict (i.e. does it “know”) the distribution $B_x \sharp p_x$ of its answers post-processed by B ? Practically, we can operationalize “easy for the LLM to predict” by training a small LoRA on top of the base LLM to predict the B -class of the answer.

Claim 10 (Main, heuristic). *Let $(x, y) \sim \mathcal{D}$ be a distribution on question-answer pairs, let $B : \mathcal{V}^* \times \mathcal{V}^N \rightarrow [K]$ be a collapsing function, and let $p_\theta(z \mid x)$ be an autoregressive language model trained on \mathcal{D} with cross-entropy loss. Then, p_θ will be B -confidence-calibrated on \mathcal{D} if the function $G : \mathcal{V}^* \rightarrow \Delta_K$ defined as*

$$G : x \mapsto B_x \sharp p_x \text{ is “easy to learn” for the LLM (e.g. with a LoRA adapter)}$$

In words: the LLM should be able to accurately estimate the distribution over semantic labels $B_x(z)$, under its own generative process, given the question x .

Finally, we specialize Claim 10 to the practical case of semantic calibration—that is, we let B be a function that collapses long-form answers into semantic equivalence classes, yielding the following:

Corollary 11 (Main, heuristic). *LLMs trained autoregressively with cross-entropy loss will be semantically calibrated on in-distribution data if: the model can easily predict its own output distribution over semantic answers, given only the question.*

⁵Specifically, an arithmetic circuit of constant depth and $\Theta(K)$ width.

378 Corollary 11 leads to the following predictions, which we verify experimentally in Sec. 5.
 379

380 **Prediction 1: Semantic calibration emerges from standard pretraining.** When B is a semantic-
 381 collapsing function, we expect it to be easy-to-predict in many settings: Claim 10 only requires
 382 that the LLM intuitively “knows” what types of semantic-answers it is likely to output for a given
 383 question. Thus, we *should* expect emergent semantic calibration for a large class of pretrained
 384 LLMs, a remarkable fact not previously understood.

385 **Prediction 2: Instruction-tuning can break calibration.** We only theoretically predict calibration
 386 in models trained autoregressively with cross-entropy loss, that is, standard pretraining or SFT.
 387 (Cross-entropy loss is required to connect calibration with local-loss-optimality in Thm. 6.) We
 388 have no reason to expect calibration in models trained in other ways, including Instruct models
 389 post-trained with RLHF, DPO, or RLVR – although our theory does not preclude it.

390 **Prediction 3: Chain-of-thought reasoning (CoT) can break calibration.** To satisfy the conditions
 391 of our theory, the distribution over semantic classes must be easy for the model to estimate, even be-
 392 fore generating the first token. In hard CoT setting such as math problem-solving, the model usually
 393 *does not* know what its answer will be until it has finished “thinking”. Therefore, CoT is expected
 394 to break our mechanism for calibration. Notably, what makes CoT powerful (allowing the model
 395 to leverage more compute to produce a better answer than it could have produced immediately) is
 396 exactly what makes our mechanism of calibration fail.

397 5 EXPERIMENTS

400 In this section, we experimentally test the predictions of our theory on real models and datasets.
 401 All of our experiments include 5-shot examples in the prompt, and use temperature $T = 1$ sam-
 402 pling. We compare three different prompts, designed to elicit different styles of responses from the
 403 model: “concise” (answer in a single word/phrase), “sentence” (answer in a complete sentence),
 404 and “chain-of-thought (cot)”. The few-shot examples are formatted in the desired style (e.g. for the
 405 “sentence” type, the few-shot examples have complete sentence answers). To measure calibration
 406 error, we use the SmoothECE metric introduced by Błasiok & Nakkiran (2024). For lack of space,
 407 full experimental details are in App. D.

408 5.1 EXPERIMENTAL RESULTS

409 We evaluate semantic calibration of Qwen, Gemini, Mistral, and Llama-family models, of varying
 410 sizes from 0.5B to 72B, for base and instruct variants, using each of the 3 response styles, on 6
 411 open-ended question-answer datasets: GSM8K (Cobbe et al., 2021), OpenMathInstruct-2 (Toshni-
 412 wal et al., 2025), TriviaQA (Joshi et al., 2017), SimpleQA (Wei et al., 2024), MATH500 (Lightman
 413 et al., 2023), and TruthfulQA (Lin et al., 2022b). This yields over 650 evaluation experiments, which
 414 we compile into Fig. 4 by overlaying their reliability diagrams. The box-plots in the bottom row of
 415 Fig. 4 show the distribution of calibration errors in aggregate for each dataset and configuration.
 416 We will use this condensed figure to discuss our experimental predictions. **We expect our theory to**
 417 **apply on all datasets except, notably, TruthfulQA: This dataset contains common human miscon-**
 418 **ceptions, and thus violates our in-distribution assumptions (see Remark 12).** The full list of models
 419 is in App. D.3 and disaggregated results are reported in App. F.

420 **Prediction 1: Semantic calibration emerges from standard pretraining.** Our theory predicts
 421 that base models, in non-CoT settings, should be semantically calibrated. The top row of Fig. 4
 422 shows reliability diagrams for all such models we evaluated (configurations **base-concise** and **base-**
 423 **sentence**), and we observe nearly all of these experiments are well-calibrated. Notably, semantic
 424 calibration does not depend significantly on model size for base models: even small models ($\leq 1B$)
 425 are remarkably calibrated; see App. C for a more in-depth look at this aspect. Models are also
 426 well-calibrated regardless of the response style (“sentence” vs. “concise”), supporting our theory
 427 that semantic calibration depends not on the specific phrasing of the answer, but rather on whether
 428 the model “knows” its semantic class distribution before starting to generate.

429 **Prediction 2: Post-training can break calibration.** The middle row of Fig. 4 includes reliability
 430 diagrams for instruct post-trained models, for all three response types. Many of these settings are
 431 miscalibrated, typically overconfident (i.e. a curve below the diagonal), as expected from a reward-
 432 maximizing RL objective. Fig. 5 takes a closer look at the effect of different types of instruction-

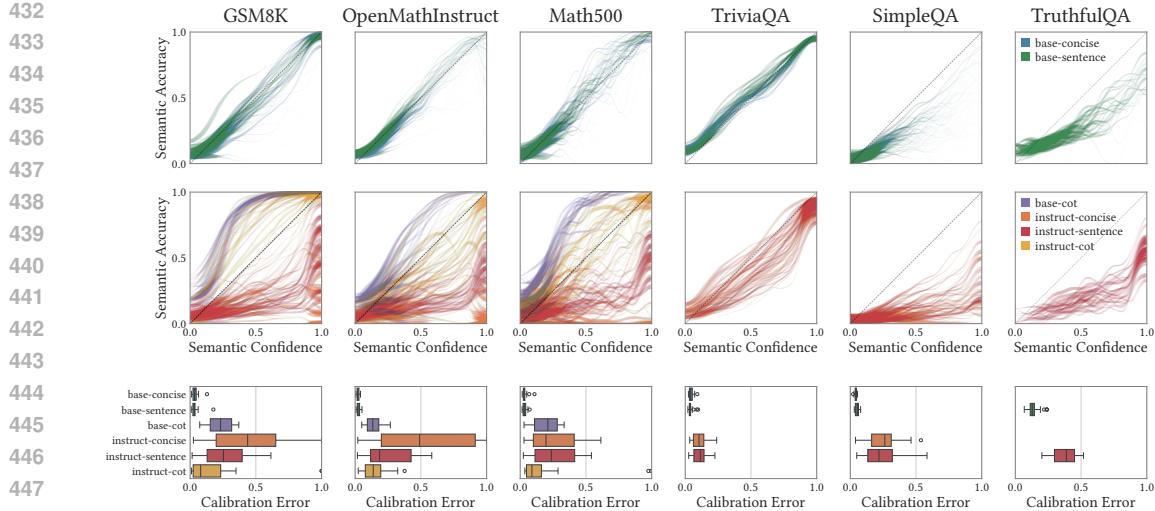


Figure 4: **Semantic Calibration of LLMs.** We evaluate Qwen, Gemini, Mistral, and Llama-family models, with 6 configurations for each model: $(\text{model-variant}, \text{response-style}) \in \{\text{Base}, \text{Instruct}\} \times \{\text{Concise}, \text{Sentence}, \text{CoT}\}$. **First row (predicted calibrated):** Reliability diagrams of all configurations predicted to be confidence-calibrated according to our theory: base models with **concise** or **sentence** response types. **TruthfulQA**, a dataset of common misconceptions, is the exception: it violates the in-distribution assumptions of our theory, and is poorly calibrated. **Second row (not predicted calibrated):** Configurations which need not be calibrated according to our theory: post-trained instruct models with any response type: **concise**, **sentence**, **chain-of-thought**; and base models with **chain-of-thought**. **Third row:** Box plots summarizing the distribution of calibration errors for each of the 6 configurations. Only the first two configurations (**base-concise** and **base-sentence**) are reliably well-calibrated, as predicted by our theory. Note, we only consider chain-of-thought for the math datasets. **TruthfulQA** reference answers are available only in the sentence-length form, which is why we only report results for sentence response-style.

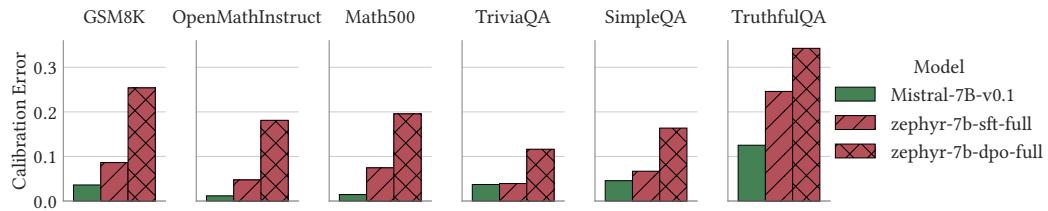


Figure 5: Calibration error for three models based on Mistral-7B-v0.1: pretrained-only, instruction-supervised-finetuned, and DPO-finetuned. Here, “sentence” response style, see Fig. 8 for others.

tuning on calibration. We compare three models from the same lineage: a base model (Mistral-7B-v0.1), a version of it post-trained via instruction supervised finetuning (SFT, zephyr-7b-sft-full), and a version post-trained via both SFT and Direct Preference Optimization (DPO, zephyr-7b-dpo-full) (Rafailov et al., 2024). The DPO model (not trained with a proper loss) is significantly miscalibrated, while the SFT-only model and the base model (both trained with proper losses) are better calibrated.

Prediction 3: CoT reasoning can break calibration. The middle row of Fig. 4 shows CoT with both **base** and **instruct** models, which are poorly calibrated in the math settings (GSM8K, OpenMathInstruct, MATH500). **Base-cot** responses are underconfident (above the diagonal), while **instruct-cot** are underconfident for GSM8K, but overconfident for OpenMathInstruct, see Fig. 9. Notably, this miscalibration is not inherent to math: base models are calibrated when asked to provide the answer immediately (**base-concise** and **base-sentence**), but become miscalibrated when allowed to reason.

486 **Quantitative Learnability Probe.** Claim 10 suggests an explicit
 487 experiment to predict when a base model will be B -confidence-
 488 calibrated for a given choice of B : can the model “easily learn”
 489 the function $G : x \mapsto B_x \# p_x$ mapping a question x to the distri-
 490 bution over the model’s own semantic answers for that question? We
 491 can test this by training a small LoRA (Hu et al., 2022) on top of
 492 the model, to directly generate the semantic class distribution $B_x \# p_x$
 493 when prompted with the question x . For example, in CoT settings,
 494 this would require the LoRA to “short-circuit” the reasoning steps,
 495 and immediately generate the final answer that the model would have
 496 produced with CoT. Notably, this does not require the model to produce the *correct* semantic answer,
 497 but just match its own generative distribution. In Fig. 6, we train rank-8 LoRAs on Qwen2.5 models
 498 of varying sizes, on GSM8K.

499 We then compare each LoRA’s KL gap to optimality (x-axis) to the underlying model’s calibration
 500 error (y-axis). The correlation agrees with our theory: models which can easily predict their own
 501 semantic class distribution (low KL gap) are also well-calibrated. Full details in App. D.2.

502 6 CONCLUSION

504 We find that base LLMs, despite being trained with a token-level syntactic objective, are remarkably
 505 calibrated with respect to the *sequence-level semantics* of their generations. Our central contribu-
 506 tion is a principled mechanism behind this emergence, building on recent theoretical connections be-
 507 tween calibration and loss-optimality (Błasiok et al., 2023; 2024). This theory provides a unified lens
 508 through which to understand the nuanced calibration behavior of models in practice, distinguishing
 509 settings which are calibrated from those which are not. Among limitations, we only propose one
 510 possible mechanism for calibration; it is possible that other types of calibration (e.g. verbalized cal-
 511 ibration) emerge for yet-undiscovered reasons; other limitations discussed in Appendix B.1. More
 512 generally, our work can be seen as a step towards understanding the formal structure of LLMs’
 513 output distribution.

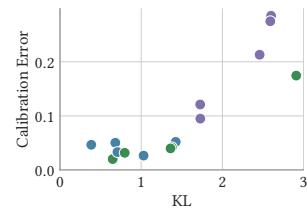


Figure 6: Testing Claim 10
 across Qwen2.5 models.

514
 515
 516
 517
 518
 519
 520
 521
 522
 523
 524
 525
 526
 527
 528
 529
 530
 531
 532
 533
 534
 535
 536
 537
 538
 539

540 REFERENCES
541

542 Marah Abdin, Jyoti Aneja, Harkirat Behl, Sébastien Bubeck, Ronen Eldan, Suriya Gunasekar,
543 Michael Harrison, Russell J Hewett, Mojan Javaheripi, Piero Kauffmann, et al. Phi-4 techni-
544 cal report. *arXiv preprint arXiv:2412.08905*, 2024.

545 Anastasios N Angelopoulos, Stephen Bates, et al. Conformal prediction: A gentle introduction.
546 *Foundations and trends® in machine learning*, 16(4):494–591, 2023.

548 Neil Band, Xuechen Li, Tengyu Ma, and Tatsunori Hashimoto. Linguistic calibration of long-form
549 generations, 2024.

550 Amir Beck and Marc Teboulle. Mirror descent and nonlinear projected subgradient methods for
551 convex optimization. *Operations Research Letters*, 31(3):167–175, 2003.

553 Jarosław Błasiok and Preetum Nakkiran. Smooth ECE: Principled reliability diagrams via kernel
554 smoothing. In *International Conference on Learning Representations*, 2024.

555 Jarosław Błasiok, Parikshit Gopalan, Lunjia Hu, and Preetum Nakkiran. When does optimizing a
556 proper loss yield calibration? In *Advances in Neural Information Processing Systems*, 2023.

558 Jarosław Błasiok, Parikshit Gopalan, Lunjia Hu, Adam Tauman Kalai, and Preetum Nakkiran. Loss
559 minimization yields multicalibration for large neural networks. In *Innovations in Theoretical
560 Computer Science Conference*, volume 287, pp. 17–1, 2024.

561 Karl Cobbe, Vineet Kosaraju, Mohammad Bavarian, Mark Chen, Heewoo Jun, Lukasz Kaiser,
562 Matthias Plappert, Jerry Tworek, Jacob Hilton, Reiichiro Nakano, Christopher Hesse, and John
563 Schulman. Training verifiers to solve math word problems. *arXiv preprint arXiv:2110.14168*,
564 2021.

565 Thomas M Cover and Joy A Thomas. *Elements of information theory*. John Wiley & Sons, 1999.

567 Shrey Desai and Greg Durrett. Calibration of pre-trained transformers. In *Empirical Methods in
568 Natural Language Processing*, pp. 295–302, 2020.

570 Sebastian Farquhar, Jannik Kossen, Lorenz Kuhn, and Yarin Gal. Detecting hallucinations in large
571 language models using semantic entropy. *Nature*, 630(8017):625–630, 2024.

572 The Gemma Team, Morgane Rivière, Shreya Pathak, Pier Giuseppe Sessa, Cassidy Hardin, Surya
573 Bhupatiraju, Léonard Hussenot, Thomas Mesnard, Bobak Shahriari, Alexandre Ramé, et al.
574 Gemma 2: Improving open language models at a practical size. *arXiv preprint arXiv:2408.00118*,
575 2024.

576 The Gemma Team, Aishwarya Kamath, Johan Ferret, Shreya Pathak, Nino Vieillard, Ramona Mer-
577 hej, Sarah Perrin, Tatiana Matejovicova, Alexandre Ramé, Morgane Rivière, et al. Gemma 3
578 technical report. *arXiv preprint arXiv:2503.19786*, 2025.

580 Tilmann Gneiting and Adrian E Raftery. Strictly proper scoring rules, prediction, and estimation.
581 *Journal of the American statistical Association*, 102(477):359–378, 2007.

582 Parikshit Gopalan, Lunjia Hu, and Guy N Rothblum. On computationally efficient multi-class cali-
583 bration. In *Conference on Learning Theory*, pp. 1983–2026. PMLR, 2024.

585 Aaron Grattafiori, Abhimanyu Dubey, Abhinav Jauhri, Abhinav Pandey, Abhishek Kadian, Ahmad
586 Al-Dahle, Aiesha Letman, Akhil Mathur, Alan Schelten, Alex Vaughan, et al. The llama 3 herd
587 of models. *arXiv preprint arXiv:2407.21783*, 2024.

588 Ursula Hébert-Johnson, Michael Kim, Omer Reingold, and Guy Rothblum. Multicalibration: Cal-
589 ibration for the (computationally-identifiable) masses. In *International Conference on Machine
590 Learning*, pp. 1939–1948. PMLR, 2018.

592 Bairu Hou, Yujian Liu, Kaizhi Qian, Jacob Andreas, Shiyu Chang, and Yang Zhang. Decomposing
593 uncertainty for large language models through input clarification ensembling. In *International
Conference on Machine Learning*, 2024.

594 Edward J Hu, Yelong Shen, Phillip Wallis, Zeyuan Allen-Zhu, Yuanzhi Li, Shean Wang, Lu Wang,
 595 Weizhu Chen, et al. Lora: Low-rank adaptation of large language models. In *International*
 596 *Conference on Learning Representations*, 2022.

597 Albert Qiaochu Jiang, Alexandre Sablayrolles, Arthur Mensch, Chris Bamford, Devendra Singh
 598 Chaplot, Diego de Las Casas, Florian Bressand, Gianna Lengyel, Guillaume Lample, Lucile
 599 Saulnier, Lélio Renard Lavaud, Marie-Anne Lachaux, Pierre Stock, Teven Le Scao, Thibaut
 600 Lavril, Thomas Wang, Timothée Lacroix, and William El Sayed. Mistral 7b. *arXiv preprint*
 601 *arXiv:2310.06825*, 2023a.

602 Mingjian Jiang, Yangjun Ruan, Sicong Huang, Saifei Liao, Silviu Pitis, Roger Baker Grosse, and
 603 Jimmy Ba. Calibrating language models via augmented prompt ensembles. In *International*
 604 *Conference on Machine Learning Workshop on Deployable Generative AI*, 2023b.

605 Mandar Joshi, Eunsol Choi, Daniel Weld, and Luke Zettlemoyer. TriviaQA: A large scale distantly
 606 supervised challenge dataset for reading comprehension. In *Association for Computational Lin-*
 607 *guistics (Volume 1: Long Papers)*, pp. 1601–1611, 2017. doi: 10.18653/v1/P17-1147.

608 Saurav Kadavath, Tom Conerly, Amanda Askell, Tom Henighan, Dawn Drain, Ethan Perez,
 609 Nicholas Schiefer, Zac Hatfield-Dodds, Nova DasSarma, Eli Tran-Johnson, et al. Language mod-
 610 els (mostly) know what they know. *arXiv preprint arXiv:2207.05221*, 2022.

611 Sanyam Kapoor, Nate Gruver, Manley Roberts, Katie Collins, Arka Pal, Umang Bhatt, Adrian
 612 Weller, Samuel Dooley, Micah Goldblum, and Andrew G Wilson. Large language models must
 613 be taught to know what they don't know. In *Advances in Neural Information Processing Systems*,
 614 2024.

615 David C Krakauer, John W Krakauer, and Melanie Mitchell. Large language models and emergence:
 616 A complex systems perspective. *arXiv preprint arXiv:2506.11135*, 2025.

617 Lorenz Kuhn, Yarin Gal, and Sebastian Farquhar. Semantic uncertainty: Linguistic invariances for
 618 uncertainty estimation in natural language generation. In *International Conference on Learning*
 619 *Representations*, 2023.

620 Woosuk Kwon, Zhuohan Li, Siyuan Zhuang, Ying Sheng, Lianmin Zheng, Cody Hao Yu, Joseph
 621 Gonzalez, Hao Zhang, and Ion Stoica. Efficient memory management for large language model
 622 serving with pagedattention. In *Symposium on Operating Systems Principles*, pp. 611–626, 2023.

623 Tom A Lamb, Desi R Ivanova, Philip Torr, and Tim GJ Rudner. Semantic-level confidence calibra-
 624 tion of language models via temperature scaling. In *ICLR Workshop: Quantify Uncertainty and*
 625 *Hallucination in Foundation Models: The Next Frontier in Reliable AI*, 2025.

626 Jixuan Leng, Chengsong Huang, Banghua Zhu, and Jiaxin Huang. Taming overconfidence in llms:
 627 Reward calibration in rlhf. In *International Conference on Learning Representations*, 2025.

628 Aitor Lewkowycz, Anders Andreassen, David Dohan, Ethan Dyer, Henryk Michalewski, Vinay Ra-
 629 masesh, Ambrose Slone, Cem Anil, Imanol Schlag, Theo Gutman-Solo, et al. Solving quantitative
 630 reasoning problems with language models. *Advances in Neural Information Processing Systems*,
 631 35:3843–3857, 2022.

632 Quentin Lhoest, Albert Villanova Del Moral, Yacine Jernite, Abhishek Thakur, Patrick Von Platen,
 633 Suraj Patil, Julien Chaumont, Mariama Drame, Julien Plu, Lewis Tunstall, et al. Datasets: A
 634 community library for natural language processing. *arXiv preprint arXiv:2109.02846*, 2021.

635 Yawei Li, David Rügamer, Bernd Bischl, and Mina Rezaei. Calibrating llms with information-
 636 theoretic evidential deep learning. In *International Conference on Learning Representations*,
 637 2025.

638 Hunter Lightman, Vineet Kosaraju, Yura Burda, Harri Edwards, Bowen Baker, Teddy Lee, Jan
 639 Leike, John Schulman, Ilya Sutskever, and Karl Cobbe. Let's verify step by step. *arXiv preprint*
 640 *arXiv:2305.20050*, 2023.

641 Stephanie Lin, Jacob Hilton, and Owain Evans. Teaching models to express their uncertainty in
 642 words. *Transactions on Machine Learning Research*, 2022a. ISSN 2835-8856.

648 Stephanie Lin, Jacob Hilton, and Owain Evans. Truthfulqa: Measuring how models mimic human
 649 falsehoods. In *Association for Computational Linguistics (Volume 1: Long Papers)*, pp. 3214–
 650 3252, 2022b.

651

652 Zhiting Mei, Christina Zhang, Tenny Yin, Justin Lidard, Ola Shorinwa, and Anirudha Majumdar.
 653 Reasoning about uncertainty: Do reasoning models know when they don't know? *arXiv preprint*
 654 *arXiv:2506.18183*, 2025.

655

656 Sabrina J. Mielke, Arthur Szlam, Emily Dinan, and Y-Lan Boureau. Reducing conversational
 657 agents' overconfidence through linguistic calibration. *Transactions of the Association for Com-
 658 putational Linguistics*, 10:857–872, 2022. doi: 10.1162/tacl_a_00494.

659

660 Mistral AI Team. Mixtral of experts. [https://mistral.ai/news/
 mixtral-of-experts](https://mistral.ai/news/mixtral-of-experts), December 2023. Accessed: 2025-09-22.

661

662 Mistral AI Team. Ministraux: A structural and semantic evolution for ministral. <https://mistral.ai/news/ministraux>, December 2024a. Accessed: 2025-09-22.

663

664 Mistral AI Team. Mistral small 3.1: Efficient, powerful, and affordable. <https://mistral.ai/news/mistral-small-3-1>, December 2024b. Accessed: 2025-09-22.

665

666 Yurii Nesterov. Smooth minimization of non-smooth functions. *Mathematical Programming*, 103
 667 (1):127–152, 2005.

668

669 Nous Research. Nous-hermes-2-mixtral-8x7b-dpo. [https://huggingface.co/
 NousResearch/Nous-Hermes-2-Mixtral-8x7B-DPO](https://huggingface.co/NousResearch/Nous-Hermes-2-Mixtral-8x7B-DPO), January 2024a. Hugging
 670 Face Model Repository. Accessed: 2025-09-22.

671

672 Nous Research. Nous-hermes-2-mixtral-8x7b-sft. [https://huggingface.co/
 NousResearch/Nous-Hermes-2-Mixtral-8x7B-SFT](https://huggingface.co/NousResearch/Nous-Hermes-2-Mixtral-8x7B-SFT), January 2024b. Hugging
 673 Face Model Repository. Accessed: 2025-09-22.

674

675

676 OpenAI. Gpt-4 technical report. *arXiv preprint arXiv:2303.08774*, 2023.

677

678 Benjamin Plaut, Khanh Xuan Nguyen, and Tu Trinh. Probabilities of chat LLMs are miscalibrated
 679 but still predict correctness on multiple-choice q&a. *Transactions on Machine Learning Research*,
 680 2025. ISSN 2835-8856.

681

682 Rafael Rafailov, Archit Sharma, Eric Mitchell, Stefano Ermon, Christopher D. Manning, and
 683 Chelsea Finn. Direct preference optimization: Your language model is secretly a reward model,
 2024.

684

685 Leonard J Savage. Elicitation of personal probabilities and expectations. *Journal of the American
 686 Statistical Association*, 66(336):783–801, 1971.

687

688 Mark J Schervish. A general method for comparing probability assessors. *The Annals of Statistics*,
 17(4):1856–1879, 1989.

689

690 Maohao Shen, Subhro Das, Kristjan Greenewald, Prasanna Sattigeri, Gregory W. Wornell, and
 691 Soumya Ghosh. Thermometer: Towards universal calibration for large language models. In
 692 *International Conference on Machine Learning*, pp. 44687–44711, 2024.

693

694 Ryan Tibshirani. Conformal prediction. Technical report, UC Berkeley, 2023. URL
 695 [https://www.stat.berkeley.edu/~ryantibs/statlearn-s23/lectures/
 conformal.pdf](https://www.stat.berkeley.edu/~ryantibs/statlearn-s23/lectures/conformal.pdf).

696

697 Shubham Toshniwal, Wei Du, Ivan Moshkov, Branislav Kisacanin, Alexan Ayrapetyan, and Igor
 698 Gitman. Openmathinstruct-2: Accelerating ai for math with massive open-source instruction
 699 data. In *International Conference on Learning Representations*, 2025.

700

701 Lewis Tunstall, Edward Beeching, Nathan Lambert, Nazneen Rajani, Kashif Rasul, Younes Belkada,
 Shengyi Huang, Leandro Von Werra, Clémentine Fourrier, Nathan Habib, et al. Zephyr: Direct
 distillation of lm alignment. *arXiv preprint arXiv:2310.16944*, 2023.

702 Dennis Ulmer, Martin Gubri, Hwaran Lee, Sangdoo Yun, and Seong Oh. Calibrating large language
 703 models using their generations only. In *Association for Computational Linguistics (Volume 1:
 704 Long Papers)*, pp. 15440–15459, 2024. doi: 10.18653/v1/2024.acl-long.824.

705 Roman Vashurin, Ekaterina Fadeeva, Artem Vazhentsev, Lyudmila Rvanova, Daniil Vasilev, Akim
 706 Tsvigun, Sergey Petrakov, Rui Xing, Abdelrahman Sadallah, Kirill Grishchenkov, Alexander
 707 Panchenko, Timothy Baldwin, Preslav Nakov, Maxim Panov, and Artem Shelmanov. Benchmark-
 708 ing uncertainty quantification methods for large language models with LM-polygraph. *Trans-
 709 actions of the Association for Computational Linguistics*, 13:220–248, 2025. doi: 10.1162/
 710 tacl_a.00737.

711 Leandro von Werra, Younes Belkada, Lewis Tunstall, Edward Beeching, Tristan Thrush, Nathan
 712 Lambert, Shengyi Huang, Kashif Rasul, and Quentin Gallouédec. Trl: Transformer reinforcement
 713 learning. <https://github.com/huggingface/trl>, 2020.

714 Xuezhi Wang, Jason Wei, Dale Schuurmans, Quoc V Le, Ed H. Chi, Sharan Narang, Aakanksha
 715 Chowdhery, and Denny Zhou. Self-consistency improves chain of thought reasoning in language
 716 models. In *International Conference on Learning Representations*, 2023.

717 Ziming Wang, Zeyu Shi, Haoyi Zhou, Shiqi Gao, Qingyun Sun, and Jianxin Li. Towards objective
 718 fine-tuning: How LLMs' prior knowledge causes potential poor calibration? In *Association
 719 for Computational Linguistics (Volume 1: Long Papers)*, pp. 14830–14853, 2025. ISBN 979-8-
 720 89176-251-0. doi: 10.18653/v1/2025.acl-long.722.

721 Jason Wei, Yi Tay, Rishi Bommasani, Colin Raffel, Barret Zoph, Sebastian Borgeaud, Dani Yo-
 722 gatama, Maarten Bosma, Denny Zhou, Donald Metzler, Ed H. Chi, Tatsunori Hashimoto, Oriol
 723 Vinyals, Percy Liang, Jeff Dean, and William Fedus. Emergent abilities of large language models.
Transactions on Machine Learning Research, 2022. ISSN 2835-8856.

724 Jason Wei, Nguyen Karina, Hyung Won Chung, Yunxin Joy Jiao, Spencer Papay, Amelia Glaese,
 725 John Schulman, and William Fedus. Measuring short-form factuality in large language models.
 726 In *Advances in Neural Information Processing Systems*, 2024.

727 Thomas Wolf, Lysandre Debut, Victor Sanh, Julien Chaumond, Clement Delangue, Anthony Moi,
 728 Pierrick Cistac, Tim Rault, Rémi Louf, Morgan Funtowicz, et al. Huggingface's transformers:
 729 State-of-the-art natural language processing. *arXiv preprint arXiv:1910.03771*, 2019.

730 Jiancong Xiao, Bojian Hou, Zhanliang Wang, Ruochen Jin, Qi Long, Weijie J Su, and Li Shen.
 731 Restoring calibration for aligned large language models: A calibration-aware fine-tuning ap-
 732 proach. In *International Conference on Machine Learning*, 2025.

733 Johnathan Xie, Annie S Chen, Yoonho Lee, Eric Mitchell, and Chelsea Finn. Calibrating language
 734 models with adaptive temperature scaling. In *Empirical Methods in Natural Language Process-
 735 ing*, pp. 18128–18138, 2024. doi: 10.18653/v1/2024.emnlp-main.1007.

736 Adam X Yang, Maxime Robeyns, Xi Wang, and Laurence Aitchison. Bayesian low-rank adaptation
 737 for large language models. In *International Conference on Learning Representations*, 2024a.

738 An Yang, Beichen Zhang, Binyuan Hui, Bofei Gao, Bowen Yu, Chengpeng Li, Dayiheng Liu, Jian-
 739 hong Tu, Jingren Zhou, Junyang Lin, et al. Qwen2.5-math technical report: Toward mathematical
 740 expert model via self-improvement. *arXiv preprint arXiv:2409.12122*, 2024b.

741 An Yang, Anfeng Li, Baosong Yang, Beichen Zhang, Binyuan Hui, Bo Zheng, Bowen Yu,
 742 Chang Gao, Chengan Huang, Chenxu Lv, et al. Qwen3 technical report. *arXiv preprint
 743 arXiv:2505.09388*, 2025.

744 Qwen An Yang, Baosong Yang, Beichen Zhang, Binyuan Hui, Bo Zheng, Bowen Yu, Chengyuan
 745 Li, Dayiheng Liu, Fei Huang, Guanting Dong, Haoran Wei, Huan Lin, Jian Yang, Jianhong Tu,
 746 Jianwei Zhang, Jianxin Yang, Jiaxin Yang, Jingren Zhou, Junyang Lin, Kai Dang, Keming Lu,
 747 Keqin Bao, Kexin Yang, Le Yu, Mei Li, Mingfeng Xue, Pei Zhang, Qin Zhu, Rui Men, Runji Lin,
 748 Tianhao Li, Tingyu Xia, Xingzhang Ren, Xuancheng Ren, Yang Fan, Yang Su, Yi-Chao Zhang,
 749 Yunyang Wan, Yuqi Liu, Zeyu Cui, Zhenru Zhang, Zihan Qiu, Shanghaoran Quan, and Zekun
 750 Wang. Qwen2.5 technical report. *arXiv preprint arXiv:2412.15115*, 2024c.

756 Zhangyue Yin, Qiushi Sun, Qipeng Guo, Jiawen Wu, Xipeng Qiu, and Xuanjing Huang. Do large
757 language models know what they don't know? In *Findings of the Association for Computational*
758 *Linguistics: ACL 2023*, pp. 8653–8665, 2023.

759

760 Dongkeun Yoon, Seungone Kim, Sohee Yang, Sunkyoung Kim, Soyeon Kim, Yongil Kim, Eunbi
761 Choi, Yireun Kim, and Minjoon Seo. Reasoning models better express their confidence. *arXiv*
762 *preprint arXiv:2505.14489*, 2025.

763

764 Shuangfei Zhai, Ruixiang Zhang, Preetum Nakkiran, David Berthelot, Jiatao Gu, Huangjie Zheng,
765 Tianrong Chen, Miguel Ángel Bautista, Navdeep Jaitly, and Joshua M. Susskind. Normalizing
766 flows are capable generative models. In *International Conference on Machine Learning*, 2025.

767

768 Hanlin Zhang, YiFan Zhang, Yaodong Yu, Dhruv Madeka, Dean Foster, Eric Xing, Himabindu
769 Lakkaraju, and Sham Kakade. A study on the calibration of in-context learning. In *Conference of*
770 *the North American Chapter of the Association for Computational Linguistics: Human Language*
771 *Technologies (Volume 1: Long Papers)*, pp. 6118–6136, 2024. doi: 10.18653/v1/2024.naacl-long.
772 340.

773

774 Chiwei Zhu, Benfeng Xu, Quan Wang, Yongdong Zhang, and Zhendong Mao. On the calibration
775 of large language models and alignment. In *Findings of the Association for Computational*
776 *Linguistics: EMNLP*, pp. 9778–9795, 2023. doi: 10.18653/v1/2023.findings-emnlp.654.

777

778

779

780

781

782

783

784

785

786

787

788

789

790

791

792

793

794

795

796

797

798

799

800

801

802

803

804

805

806

807

808

809

810	APPENDIX CONTENTS	
811		
812		
813	A Additional Related Works	17
814		
815	B Extended Discussion and Remarks	17
816		
817	B.1 Limitations	17
818	B.2 Potential Extensions	18
819	B.3 Technical Remarks	18
820		
821	C Additional Experimental Results	19
822		
823	D Additional Experimental Details	21
824		
825	D.1 Visualizing calibration: reliability diagrams	22
826	D.2 LoRA Fine-Tuning	22
827	D.3 LLMs evaluated	24
828	D.4 Prompts	26
829		
830		
831	E Theory	29
832		
833	E.1 Quick Reference	29
834	E.2 Weighted Calibration	29
835	E.3 Equivalence between B -calibration and weighted calibration	29
836	E.3.1 Full Calibration	30
837	E.3.2 Confidence Calibration	31
838		
839	E.4 Equivalence between Weighted-Calibration and Local Loss Optimality	32
840	E.5 Proof of Thm. 6	33
841	E.6 Autoregressive Settings	33
842	E.6.1 Weighted Calibration	33
843	E.6.2 B -Calibration	34
844	E.6.3 Proof of Thm. 9: A Simple Circuit for B -Confidence-Perturbations	35
845	E.7 Quantitative Bounds on Multi-Class Calibration and Post-Processing Gap	36
846	E.7.1 Specialization to cross-entropy loss	37
847	E.8 Conformal Prediction via Weighted Calibration	39
848	E.8.1 Conformal Prediction from Full Calibration	39
849	E.8.2 Conformal Prediction from Weighted Calibration	39
850		
851		
852		
853		
854	F Disaggregated Reliability Diagram Results	40
855		
856	F.1 GSM8K	41
857	F.2 OpenMathInstruct	47
858	F.3 TriviaQA	53
859	F.4 SimpleQA	59
860		
861		
862		
863		

864

A ADDITIONAL RELATED WORKS

865
Recalibration Methods. A number of prior works study methods to improve the calibration of
 866 LLMs, ranging from temperature-scaling at inference-time (e.g., Xie et al., 2024; Shen et al., 2024)
 867 to training calibration-specific probes that predict correctness (Mielke et al., 2022) or training with
 868 calibration-improving regularization terms (Wang et al., 2025). Other approaches attempt to cluster
 869 questions and predict per-cluster accuracy (Lin et al., 2022a; Ulmer et al., 2024), or make use of
 870 the fact that ensembling models tends to improve calibration (Jiang et al., 2023b; Hou et al., 2024).
 871 Probabilistic approaches (such as Bayesian deep learning, or evidential deep learning) have been
 872 found to often yield better calibration (e.g., Li et al., 2025; Yang et al., 2024a).
 873

874
Sampling-based Confidences. A number of prior works have proposed sampling-based ap-
 875 proaches to defining LLM uncertainty. Both Wang et al. (2023) and Wei et al. (2024) sample
 876 multiple answers per-question, and define confidence as the frequency of the most-common an-
 877 swer. Wei et al. (2024) additionally groups answers together by string-matching, which allows for
 878 some degree of semantic equivalence. This approach was extended and popularized by the notion
 879 of *semantic entropy* (Farquhar et al., 2024). Semantic entropy clusters sampled answers together by
 880 semantic content, and then measures the empirical entropy of clustered answers. Recently, Lamb
 881 et al. (2025) define Empirical Semantic Confidence, which is essentially an empirical version of our
 882 notion of semantic confidence. Note that one distinguishing aspect of our formalism is, we param-
 883 eterize the notion of calibration by the choice of collapsing function B . This allows us to develop
 884 somewhat more general theoretical insights, which are not tied to a fixed notion of semantics.
 885

886
Factors which Harm LLM Calibration. Various factors have been observed in prior work to
 887 harm LLM calibration. It is well-known that RLHF often harms calibration in multiple-choice QA
 888 settings (Kadavath et al., 2022; OpenAI, 2023). Other RL post-training methods such as DPO have
 889 also been observed to harm calibration (Leng et al., 2025; Xiao et al., 2025). Some studies have also
 890 found chain-of-thought responses to harm calibration, agreeing with our results (Zhang et al., 2024).
 891 However, we warn that not all of these works use the same notion of confidence and calibration as
 892 we do, and so are not directly comparable.
 893

894

B EXTENDED DISCUSSION AND REMARKS

895

B.1 LIMITATIONS

896
Types of Calibration. One limitation of our paper is that we focus on a very specific type of
 897 calibration, which is essentially a sampling-based notion (B -confidence-calibration). It is possible
 898 that other types of calibration (e.g. verbalized calibration) also emerge for certain types of LLM
 899 training; we consider this possibility interesting but out-of-scope for the current work.
 900

901
Practical Implications. Our work is primarily scientifically motivated, and so we do not fully ex-
 902 plore practical considerations or implications. For example, we do not consider the computational
 903 efficiency of our confidence measurements. This is a limitation to using such measures in practice,
 904 since computing semantic confidence requires sampling an LLM multiple times for the same ques-
 905 tion. We consider translating our scientific results into real-world improvements to be an important
 906 direction for future work.
 907

908
Datasets. Although we evaluate on a variety of different models, we only evaluate on 6 selected
 909 datasets. We chose these datasets to cover a diversity of domains and problem difficulties, from
 910 questions about world-knowledge to mathematical reasoning problems. Further, we chose datasets
 911 with *open-ended* answers, since calibration of multiple-choice datasets is already extensively studied
 912 (Kadavath et al., 2022; Zhu et al., 2023). Although we do not expect our results to depend signif-
 913 icantly on the choice of dataset, it is possible that certain other datasets have different calibration
 914 behavior; this is a limitation of our experiments.
 915

Remark 12. *Notably, there are some datasets which we would expect to behave differently, such as TruthfulQA (Lin et al., 2022b), which is a dataset containing common human misconceptions. This dataset fails to satisfy the “in-distribution” requirement of our results (e.g. Claim 10), and so it is consistent with our theory for models to be miscalibrated.*

918 B.2 POTENTIAL EXTENSIONS
919

920 The theoretical framework described here is fairly general, and extends beyond the setting of
921 confidence-calibration in LLMs. Briefly, since most of our theory is stated in the language of
922 *weighted calibration* (Gopalan et al., 2024), it applies to any property that can be written as weighted
923 calibration. This includes slightly stronger notions of calibration, such as top-label calibration, and
924 also includes conformal-prediction type of guarantees (more details in App. E.8.1. See Gopalan et al.
925 (2024) for a number of properties which can be expressed as weighted calibration, and App. E.8 for
926 the connection to conformal prediction. Our general theoretical results appear in App. E.

927 Intuitively, the high-level message of our results is that if a model is trained with a max-likelihood /
928 log-loss objective, then we should expect it to satisfy weighted calibration for a “simple” family of
929 weight functions. The appropriate notion of simplicity depends on the model architecture; simple
930 weight functions should roughly correspond to easy-to-learn perturbations to the model’s output
931 distribution. At this level of generality, we expect some version of our results to apply even for real-
932 valued density models, such as continuous normalizing flows (e.g. Zhai et al. (2025)), which are also
933 trained with the log-likelihood objective. That is, we should expect such normalizing flows to also
934 exhibit certain (weak) types of calibration. We believe this is a promising avenue for future work.

935 B.3 TECHNICAL REMARKS
936

937 We collect several technical remarks regarding the theory of Sec. 3.

938 **Remark 13** (Heuristic Simplifications). *In translating the theoretical results of Sec. 3 to the practical*
939 *heuristic of Claim 10, we took several steps which we describe more explicitly here. First, Thm. 9*
940 *is about ease of representation, but in Claim 10 we chose to use ease of learning. This is both more*
941 *practical (since learning can be directly tested) and, we believe, more natural (since then both the*
942 *premise and conclusion of Claim 10 involve the learning procedure of the LLM).*

943 Now, Thm. 9 suggests that for B -confidence-calibration, it is sufficient for the functions $\{g_i\}$ of
944 Definition 8 to be “easy to learn” for the LLM, for all prefix lengths $i \in [N]$. Claim 10 deviates
945 from this in two ways. First, instead of considering all prefix lengths i , we only consider the empty
946 prefix ($i = 0$) i.e. the model’s distribution given only the question. Intuitively, the prediction from
947 the empty prefix is likely the most challenging, and practically, this simplification means that only
948 one simple-to-implement probe is required. Second, instead of considering learnability of only the
949 semantic confidence function (g_0), Claim 10 considers learnability of the entire semantic distribution
950 ($B_x \# p_x$). Practically, this improves robustness of the empirical estimator, since the KL divergence
951 can be estimated from samples. Empirically, we did not find these simplifications to significantly
952 affect the conclusions.

953 **Remark 14** (Multicalibration). *One detail of the theory worth discussing further is the role of the*
954 *distribution \mathcal{D} . For clarity of exposition, we described the theory as if there is only one distribu-*
955 *tion \mathcal{D} of interest, but in reality, we evaluate calibration across multiple distributions (TriviaQA,*
956 *GSM8K, etc), and we pretrain on yet another distribution. Moreover, we find that a single model*
957 *can be simultaneously calibrated across many evaluation distributions. We touched upon this issue*
958 *in Footnote 4, but there is a theoretically cleaner (though more involved) way to think about multiple*
959 *distributions, which we outline now.*

960 *Formally, requiring B -calibration across multiple distributions simultaneously can be thought of as*
961 *a multi-calibration property (Hébert-Johnson et al., 2018). Suppose for example that the pretraining*
962 *distribution \mathcal{D} is some mixture of disjoint sub-distributions: $\mathcal{D} = \alpha_1 D_1 + \alpha_2 D_2 + \dots$. Suppose we*
963 *are interested in B -calibration simultaneously for distributions D_1 and D_2 . Then, it is possible to*
964 *show a generalization of Thm. 6:*

965 A model is B -confidence-calibrated across both D_1 and D_2 if and only if it is
966 locally-loss-optimal on \mathcal{D} w.r.t. an expanded class of perturbations \mathcal{W}_B^* .

967 *Informally, the class of perturbations \mathcal{W}_B^* is essentially the usual class \mathcal{W}_B (of Definition 4) aug-
968 mented by indicator functions $\mathbb{1}\{x \in \mathcal{D}_1\}$, $\mathbb{1}\{x \in \mathcal{D}_2\}$ for membership in each sub-distribution.*

970 *We will not get into the technical details, but using this version of Thm. 6, it is possible to carry out*
971 *the remaining steps of the argument from Sec. 3 and Fig. 3. Applying the same heuristics, for exam-*
972 *ple, we would conclude: an LLM will be simultaneously B -confidence-calibrated on distributions*

972 $\mathcal{D}_1, \mathcal{D}_2$ if it is easy for the LLM to (1) estimate its own distribution on B -classes and (2) identify
 973 samples as either $x \in \mathcal{D}_1$ or $x \in \mathcal{D}_2$.

974 The second condition is likely to be satisfied in all our experiments, since all our evaluation datasets
 975 are distinct and easy to identify. Thus, the predictions of our theory remain unchanged, justifying
 976 our choice to avoid discussing multicalibration in the main body.

977 **Remark 15** (Full calibration). At first glance, it may seem that a minor generalization of our mech-
 978 anism (Fig. 3) would also imply full B -calibration (i.e., canonical calibration of the B -induced
 979 classifier), rather than just confidence-calibration. After all, Thm. 6 formally generalizes to arbi-
 980 trary weight families \mathcal{W} (see Thm. 27), including the family corresponding to full B -calibration
 981 (defined as $\mathcal{W}_B^{(\text{full})}$ in Definition 20). However, full B -calibration is too strong a property to hold
 982 in general⁶. So, which part of our argument in Fig. 3 breaks for full calibration? The culprit is the
 983 heuristic step in Fig. 3. The weight family $\mathcal{W}_B^{(\text{full})}$ relevant for full calibration is, roughly speaking,
 984 “too large” for the same heuristic to hold.

985 To better understand why the heuristic fails, here is more general version of the heuristic step in
 986 Fig. 3, which we believe is plausible for arbitrary weight families \mathcal{W} .

987
 988
 989
 990 **Claim 16** (heuristic, informal). If a perturbation family \mathcal{W} is easy-to-learn for a
 991 pretrained LLM, meaning: for all perturbations $w \in \mathcal{W}$, the LLM $p_\theta : \mathcal{V}^* \rightarrow$
 992 $\Delta(\mathcal{V}^N)$ can be easily LoRA-fine-tuned to match the distribution of a perturbed-
 993 model $G : \mathcal{V}^* \rightarrow \Delta(\mathcal{V}^N)$,

$$994 G : x \mapsto p_x \star w_x \equiv p_\theta(\cdot \mid x) \star w(x, p_x) \quad (4)$$

995 then p_θ will be \mathcal{W} -locally-loss-optimal w.r.t. its pretraining loss.

996
 997 In other words, if all perturbations in the family \mathcal{W} can be “easily learnt,” then we should expect the
 998 LLM to be loss-optimal w.r.t. \mathcal{W} . Claim 10 is essentially a special case of this more general claim,
 999 for the specific class \mathcal{W}_B relevant to B -confidence-calibration.

1000 If we believe Claim 16, we can see why our mechanism would apply to confidence-calibration but not
 1001 to full-calibration: For confidence-calibration, the perturbation class \mathcal{W}_B (Definition 4) is simple
 1002 enough to be learnable, while for full calibration, the corresponding perturbation class $\mathcal{W}_B^{(\text{full})}$
 1003 (Definition 20) is too large to be efficiently learnable from samples. To gain intuition for this, it
 1004 helps to directly compare Definition 20 to Definition 4. From this discussion, we can see it is likely
 1005 possible to extend our results to certain types of calibration which are weaker than full-calibration,
 1006 but stronger than confidence-calibration. We leave this direction for future work.

1011 C ADDITIONAL EXPERIMENTAL RESULTS

1012 Due to their volume, disaggregated reliability diagram results are reported separately in App. F.

1013 **Effect of Model Size.** Fig. 7 explores the effect of model size on calibration. We plot calibration
 1014 error vs. semantic accuracy for all models in the sweep of Fig. 4, which includes a range of model
 1015 sizes from 0.5B to 72B. For base models without chain-of-thought (top row), we see no correlation
 1016 between model capability (semantic accuracy) and calibration error (smECE). This is consistent
 1017 with our theoretical predictions, which have no explicit dependency on model size or capability.
 1018 The bottom row shows the remaining configurations (instruct models, and chain-of-thought), where
 1019 our theory does not predict calibration. Note that prior works have observed that calibration can
 1020 improve significantly with model size (Kadavath et al., 2022; Zhu et al., 2023). We do not find this
 1021 to be the case for *base models*, though it may hold for Instruct models.

1022
 1023
 1024
 1025 ⁶For example, when K (the number of B -classes) is large, full B -calibration would be computationally
 intractable to even estimate (Gopalan et al., 2024).

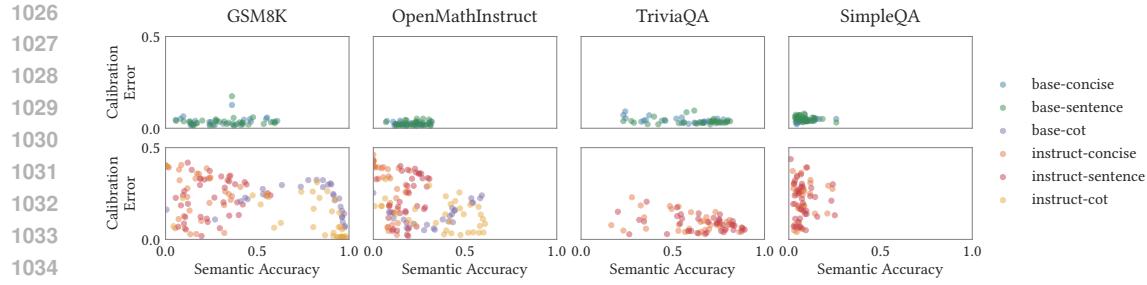


Figure 7: **Calibration Error vs. Semantic Accuracy** for all models in the sweep of Fig. 4. In the settings our theory applies (top row: base models without chain-of-thought), we see no correlation between model capability (semantic accuracy) and calibration error. Each dot represents a separate model, colors as per Fig. 4.

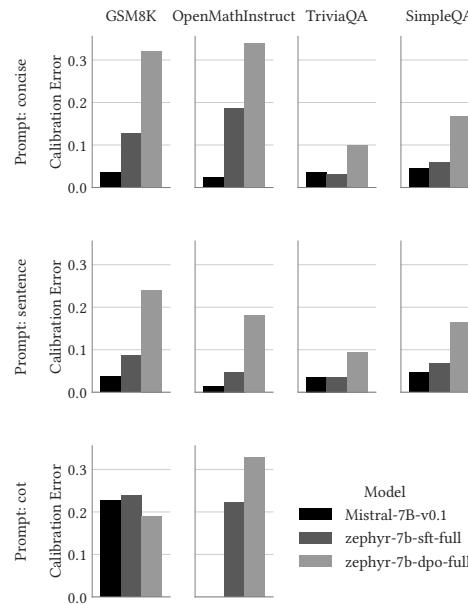


Figure 8: Calibration error for three models based on Mistral-7B- v0.1: pretrained-only, instruction-SFT model (zephyr-7b-sft-full), DPO model (zephyr-7b-dpo-full). We did not evaluate TriviaQA and SimpleQA for the “cot” response style. The “cot” result for Mistral-7B-v0.1 for OpenMathInstruct is missing due to the model not terminating generation within its maximum context length.

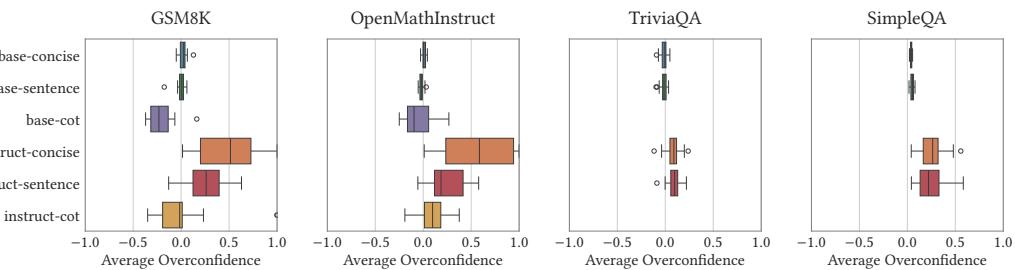


Figure 9: Distribution of average overconfidence (or “mean non-absolute calibration error”) for data in Fig. 4. Positive values indicate overconfidence, negative values indicate underconfidence.

1080 **D ADDITIONAL EXPERIMENTAL DETAILS**
10811082 **Datasets.** We focus on open-ended question-answer (QA) settings, since calibration for multiple-
1083 choice QA is already well-studied (Kadavath et al., 2022; Zhu et al., 2023), and a special case of
1084 our results. We evaluate on: GSM8K (Cobbe et al., 2021), OpenMathInstruct-2 (Toshniwal et al.,
1085 2025), TriviaQA (Joshi et al., 2017), and SimpleQA (Wei et al., 2024), from Huggingface datasets
1086 (Wolf et al., 2019; Lhoest et al., 2021).1087 **Models.** We evaluate on models including the Qwen, Gemini, Mistral, and Llama family, of sizes
1088 from 0.5B to 72B. The full list of models we evaluate is in App. D.3. We use vLLM (Kwon et al.,
1089 2023) for inference.1090 **Prompt format.** See App. D.4 for the exact phrasing used in prompts. All of our experiments
1091 include 5-shot examples in the prompt. We use three different prompt types, designed to elicit three
1092 different styles of responses from the model: “sentence”, “concise”, and “chain-of-thought (cot)”.
1093 The few-shot examples are formatted in the desired style (e.g. for the “sentence” type, the few-shot
1094 examples have complete-sentence answers). For instruct models, in addition to formatted few-shot
1095 examples, the prompt also includes explicit formatting instructions. The “concise” prompt type
1096 encourages the model to respond with just the final answer (a single word, phrase, or number). The
1097 “sentence” prompt type asks the model to answer each question in a complete sentence (making it
1098 likely to phrase the same semantic answer in different ways, so the B -collapsing function is essential
1099 for a meaningful notion of semantic calibration). The “cot” prompt type elicits chain-of-thought
1100 reasoning from the model; this prompt type is only used for math datasets.
11011102 These prompts are typically successful in eliciting the desired type of responses from the model.
1103 However, in some cases we observed models (especially Qwen models) produce “chain-of-thought”
1104 responses even when prompted to reply in a single word. To exclude such cases, we exclude any
1105 responses for the “concise” prompt on math datasets which are too long (heuristically, more than 15
1106 characters before the first newline).1107 **The semantic collapsing function.** Recall, the function B is intended to collapse semantically-
1108 equivalent generations into a single class, an idea proposed by Kuhn et al. (2023). We implement
1109 the function B with a two-stage procedure as follows.1110 The first stage is canonicalization: we extract a short “canonical form” answer from the LLM’s
1111 response. For “concise” and “cot” prompt types, this is done via simple string parsing (for “cot”,
1112 extracting only the final answer). For the “sentence” type, we use a strong LLM (Qwen3-14B-
1113 Instruct) prompted to extract a short-answer from the generation, given the question as context. The
1114 prompts used for canonicalization are in App. D.4: Prompt 4 for non-math settings, and Prompt 5
1115 for math settings. We also normalize strings at this stage, converting to lower-case and stripping
1116 spaces, including a math-specific normalization for domains with LaTeX outputs. Specifically, we
1117 use the MATH string-normalization from Minerva, given in Listing 1, Appendix D.1 of Lewkowycz
1118 et al. (2022).1119 The second stage, used only for non-math settings, is semantic clustering: we prompt an LLM judge
1120 (Qwen3-14B-Instruct) to assess whether two responses to a question are semantically equivalent,
1121 and use the output to cluster responses⁷. This is necessary for non-math settings to handle irrelevant
1122 differences in canonical forms (e.g. “Seattle, WA” vs “Seattle”). The prompt used for semantic
1123 equivalence is Prompt 6 in App. D.4. For math settings, the second stage is unnecessary, since the
1124 first stage already outputs a number or symbol that can be directly compared.1125 **Measuring calibration.** We first produce an LLM-induced semantic classifier, following the ex-
1126 perimental procedure described in Sec. 2 and illustrated in Fig. 1. For each dataset, we take 10K ran-
1127 dom evaluation samples (or the entire dataset for those with fewer than 10K total samples). For each
1128 question, we construct the appropriate 5-shot prompt, sample $M = 50$ responses from the LLM at
1129 temperature 1, and then apply the semantic collapsing function (described above) to each response.
1130 The semantic confidence is defined as the empirical frequency of the plurality semantic class, and
1131 the semantic accuracy is the 0/1 indicator of whether this plurality class matches the ground-truth’s
1132 semantic class. This yields, for each question, a pair of (semantic-confidence, semantic-accuracy)1133 ⁷This is a slight variation of the two-way entailment method used by Farquhar et al. (2024).

1134 $\in [0, 1] \times \{0, 1\}$. We then evaluate the calibration of the resulting classifier over the entire dataset of
 1135 questions using SmoothECE (smECE, Błasiok & Nakkiran (2024)), a theoretically-principled ver-
 1136 sion of the Expected Calibration Error (ECE). We use the SmoothECE implementation provided by:
 1137 <https://github.com/apple/ml-calibration>.
 1138

1139 D.1 VISUALIZING CALIBRATION: RELIABILITY DIAGRAMS

1141 We follow the guidance of Błasiok & Nakkiran (2024), and visualize calibration using kernel-
 1142 smoothed reliability diagrams.
 1143

1144 **Reading the Diagram.** Fig. 2 gives several examples of reliability diagrams. The solid red line is
 1145 the regression line, an estimate of $\mu(c) := \mathbb{E}[\text{semantic accuracy} \mid \text{semantic confidence} = c]$. The
 1146 black cross is the point $(\mathbb{E}[\text{semantic confidence}], \mathbb{E}[\text{semantic accuracy}]) \in [0, 1] \times [0, 1]$, that is, the
 1147 average semantic confidence and accuracy. The gray histograms at the bottom of the plot visual-
 1148 ize the density of semantic confidences. We plot two overlaid histograms, one for the confidence
 1149 distribution of correct predictions (i.e. the confidence of samples where semantic-accuracy=1), and
 1150 another for the confidence distribution of incorrect predictions. The width of the red regression line
 1151 varies with the overall density of semantic-confidences.

1152 **Implementation Details.** For reliability diagrams, we use the implementation of `relplot`
 1153 (<https://github.com/apple/ml-calibration>) with minor modifications: we use a
 1154 fixed kernel bandwidth $\sigma = 0.05$ for the regression line, and we visualize the density of confidences
 1155 using histogram binning with 15 constant-width bins.

1156 To compute the scalar SmoothECE (smECE) metric, we use the original implementation of
 1157 `relplot` without modification (including its automatic choice of bandwidth).
 1158

1159 D.2 LoRA FINE-TUNING

1160 To test Claim 10 more quantitatively, we train a LoRA version of the LLM to explicitly learn the
 1161 function G defined in Claim 10. We do this as follows. Let p_θ be the base model. Instantiate a
 1162 rank=8 LoRA adapter (Hu et al., 2022) on top of the original model p_θ , which we denote p_ϕ .
 1163

1164 We want to train p_ϕ to behave as the “semantically-collapsed” version of p_θ . That is, when prompted
 1165 with a question x , the model p_ϕ should generate a distribution on answers b which imitates the base
 1166 model’s semantic answers $B_x(z)$:

$$1167 \quad p_\phi(b \mid x) \approx \Pr_{z \sim p_\theta(\cdot \mid x)}[B_x(z) = b] \equiv (B_x \# p_x)(b) \quad (5)$$

1168 Since our implementation of the collapsing function B produces string outputs (canonical answers),
 1169 we can train p_ϕ as a standard autoregressive model. Explicitly:

- 1170 1. For each question in the dataset x , sample the original model 50 times, and apply the
 1171 collapsing function B to each generation. This produces 50 samples $\{(x, b_i)\}$ of question
 1172 x and canonical-answer b_i for each original question x , effectively expanding the original
 1173 dataset size by 50 times.
 1174
- 1175 2. Train p_ϕ with the standard autoregressive objective, on the prompt-completion pairs
 1176 $\{(x, b_i)\}$ from above. That is, train p_ϕ to complete prompt x with generation b_i .
 1177

1178 Our training procedure is similar to the procedure used to train “P(IK)” in Kadavath et al. (2022), in
 1179 that we also train on an “expanded” training set defined by base model samples. Similar to Kadavath
 1180 et al. (2022), we do this mainly for convenience.

1181 For GSM8K, we hold-out 2000 questions for evaluation, and use the remainder for training as
 1182 above. We train all models on an 8xA100 node for 1 epoch on the expanded dataset, using the
 1183 SFTTrainer implementation from Huggingface TRL (von Werra et al., 2020) with the following
 1184 parameters in Table 1. Note, we shuffle the expanded training set manually beforehand, so we do
 1185 not ask the dataloader to shuffle.

1188

1189

1190

1191

1192

1193

1194

1195

1196

1197

1198

1199

1200

1201

1202

1203

1204

1205

1206

1207

1208

1209

1210

1211

1212

1213

1214

1215

1216

1217

1218

1219

1220

1221

1222

1223

1224

1225

1226

1227

1228

Table 1: Hyperparameters for Supervised Fine-Tuning (SFT).

Parameter	Value
<i>Training & Hardware</i>	
num_train_epochs	1
per_device_train_batch_size	4
gradient_accumulation_steps	2
(Effective Batch Size)	64 (4 x 8 GPUs x 2)
bf16	True
<i>Optimizer & Scheduler</i>	
optim	adamw_torch_fused
learning_rate	5e-5
weight_decay	0.0
warmup_ratio	0.05
<i>PEFT (LoRA) Configuration</i>	
use_peft	True
lora_r	8
lora_alpha	16
lora_dropout	0.0
lora_target_modules	all-linear
task_type	CAUSAL_LM
bias	none
<i>Data Handling</i>	
packing	False
dataloader_shuffle	False

After training, we evaluate how closely Eq. (5) holds, by estimating the KL divergence between RHS and LHS of Eq. (5). This KL measures how well our LoRA p_ϕ matches its training distribution. Conveniently, the KL can be written as the difference between the *negative-log-loss* of p_ϕ and the *semantic entropy* of the original model p_θ :

$$\text{Gap to optimality} := KL((B_x \# p_x) \parallel p_\phi(\cdot | x)) \quad (6)$$

$$= \underbrace{\mathbb{E}_{\substack{x \sim \mathcal{D} \\ z \sim p_\theta(z|x)}} [-\log p_\phi(B(z) | x)]}_{\text{Eval NLL loss of } p_\phi} - \underbrace{H(B_x \# p_x)}_{\text{Semantic entropy of } p_\theta} \quad (7)$$

This is particularly convenient because the eval log-loss is a standard metric tracked during training. Note that for our purposes, it is important to compute the *unnormalized* log-loss (i.e., not normalized by sequence-length).

In **Fig. 6**, we plot the KL gap of Eq. (7) on the x-axis, and the SmoothECE of the original model p_θ on the y-axis. We evaluate base models: Qwen2.5- $\{0.5B, 1.5B, 3B, 7B, 14B\}$, with all three response styles: `concise`, `sentence`, `cot`. This results in 15 points plotted in Fig. 6, colored according to response style using the color scheme of Fig. 4. We observe that, consistent with Claim 10, configurations where the semantic class distribution is easy-to-learn (low KL gap) also have small calibration error. The points with high KL (and high calibration error) are the `chain-of-thought` experiments, as well as the small 0.5B model with the “sentence” response type.

1236

1237

1238

1239

1240

1241

1242 D.3 LLMS EVALUATED
12431244 Below, we list all models evaluated in this paper. All were obtained from HuggingFace.
12451246 Table 2: Pretrained-only base models evaluated in this paper. Models
1247 sharing a prefix and reference are grouped.

1248 1249 Family Prefix	1250 Model Suffix	1251 Reference
	1252 gemma-2-2b 1253 gemma-2-9b 1254 gemma-2-27b	(Gemma Team et al., 2024)
1255 google/	1256 gemma-3-1b-pt 1257 gemma-3-4b-pt 1258 gemma-3-12b-pt 1259 gemma-3-27b-pt	(Gemma Team et al., 2025)
1260 Qwen/	1261 Qwen2.5-0.5B 1262 Qwen2.5-1.5B 1263 Qwen2.5-3B 1264 Qwen2.5-7B 1265 Qwen2.5-14B 1266 Qwen2.5-32B 1267 Qwen2.5-72B	(Yang et al., 2024c)
1268 Qwen/	1269 Qwen2.5-Math-1.5B 1270 Qwen2.5-Math-7B 1271 Qwen2.5-Math-72B	(Yang et al., 2024b)
1272 mistralai/	1273 Qwen3-0.6B-Base 1274 Qwen3-1.7B-Base 1275 Qwen3-4B-Base 1276 Qwen3-8B-Base 1277 Qwen3-14B-Base	(Yang et al., 2025)
1278 meta-llama/	1279 Mistral-7B-v0.1 1280 Mistral-7B-v0.3 1281 Mistral-Small-24B-Base-2501 1282 Mixtral-8x7B-v0.1	(Jiang et al., 2023a) (Mistral AI Team, 2024b) (Mistral AI Team, 2023)
1283	1284 Llama-3.1-8B 1285 Llama-3.1-70B	(Grattafiori et al., 2024)

1286
1287
1288
1289
1290
1291
1292
1293
1294
1295

Family Prefix	Model Suffix	Reference
google/	gemma-2-2b-it	(Gemma Team et al., 2024)
	gemma-2-9b-it	
	gemma-2-27b-it	
Qwen/	gemma-3-1b-it	(Gemma Team et al., 2025)
	gemma-3-4b-it	
	gemma-3-12b-it	
	gemma-3-27b-it	
	Qwen2.5-0.5B-Instruct	
Qwen/	Qwen2.5-1.5B-Instruct	(Yang et al., 2024c)
	Qwen2.5-3B-Instruct	
	Qwen2.5-7B-Instruct	
	Qwen2.5-14B-Instruct	
	Qwen2.5-32B-Instruct	
	Qwen2.5-72B-Instruct	
	Qwen2.5-Math-1.5B-Instruct	
Qwen/	Qwen2.5-Math-7B-Instruct	(Yang et al., 2024b)
	Qwen2.5-Math-72B-Instruct	
	Qwen3-0.6B	
Qwen/	Qwen3-1.7B	(Yang et al., 2025)
	Qwen3-4B	
	Qwen3-8B	
	Qwen3-14B	
	Qwen3-32B	
mistralai/	Mistral-7B-Instruct-v0.1	(Jiang et al., 2023a)
	Mistral-7B-Instruct-v0.3	
NousResearch/	Ministrال-8B-Instruct-2410	(Mistral AI Team, 2024a)
	Mistral-Small-24B-Instruct-2501	
alignment-handbook/	Nous-Hermes-2-Mixtral-8x7B-SFT	(Nous Research, 2024b)
	Nous-Hermes-2-Mixtral-8x7B-DPO	
meta-llama/	zephyr-7b-dpo-full	(Tunstall et al., 2023)
	zephyr-7b-sft-full	
microsoft/	Llama-3.1-8B-Instruct	(Grattafiori et al., 2024)
	Llama-3.1-70B-Instruct	
	Llama-3.3-70B-Instruct	

1350
1351

D.4 PROMPTS

1352
1353
1354
1355
1356

We use 3 different prompt styles: concise, sentence, and chain-of-thought (cot). All prompts use 5 few-shot examples from the dataset. We describe the prompt formatting here by way of example, using our prompts for the GSM8K dataset. For base models, we use the full prompt text as context, while for instruct models we format the few-shot examples using the model-specific chat template (per Huggingface).

1357
1358

Prompt 1 shows the “concise” prompt for GSM8K. This prompt style uses only the final answers provided by the dataset (excluding any chain-of-thought).

1359
1360
1361
1362
1363

Prompt 2 shows the “sentence” prompt type. This prompt formats the few-shot answers in complete sentences, and also includes instructions to format answers accordingly. Note that we intentionally varied the sentence structure of the few-shot examples, to encourage the model to use a diversity of phrasings. This makes the “sentence” responses more syntactically complex than the “concise” responses, though not more *semantically* complex — thus testing the limits of our theory.

1364
1365

Prompt 3 shows the “cot” prompt type. This includes reasoning and formatting instructions, as well as few-shot examples that include reasoning-traces (provided by the dataset).

1366
1367
1368

The prompt formatting for other datasets follow the same conventions as these GSM8K examples. We exclude the “cot” prompt type for non-math datasets.

1369
1370

Prompt 1: GSM8K-concise

1371
1372
1373

Question: Natalia sold clips to 48 of her friends in April, and then she sold half as many clips in May. How many clips did Natalia sell altogether in April and May?
Answer: 72

1374
1375

Question: Weng earns \$12 an hour for babysitting. Yesterday, she just did 50 minutes of babysitting. How much did she earn?
Answer: 10

1376
1377
1378

Question: Betty is saving money for a new wallet which costs \$100. Betty has only half of the money she needs. Her parents decided to give her \$15 for that purpose, and her grandparents twice as much as her parents. How much more money does Betty need to buy the wallet?
Answer: 5

1379
1380
1381

Question: Julie is reading a 120-page book. Yesterday, she was able to read 12 pages and today, she read twice as many pages as yesterday. If she wants to read half of the remaining pages tomorrow, how many pages should she read?
Answer: 42

1382
1383

Question: James writes a 3-page letter to 2 different friends twice a week. How many pages does he write a year?
Answer: 624

1384
1385

Question: {QUESTION}
Answer:

1386
1387

Prompt 2: GSM8K-sentence

1388
1389
1390
1391
1392

Answer the following question in a single brief but complete sentence.
Question: Natalia sold clips to 48 of her friends in April, and then she sold half as many clips in May. How many clips did Natalia sell altogether in April and May?
Answer: Natalia sold 72 clips in April and May combined.

1393
1394
1395

Answer the following question in a single brief but complete sentence.
Question: Weng earns \$12 an hour for babysitting. Yesterday, she just did 50 minutes of babysitting. How much did she earn?
Answer: Weng earned only \$10 yesterday.

1396
1397
1398

Answer the following question in a single brief but complete sentence.
Question: Betty is saving money for a new wallet which costs \$100. Betty has only half of the money she needs. Her parents decided to give her \$15 for that purpose, and her grandparents twice as much as her parents. How much more money does Betty need to buy the wallet?
Answer: Betty needs \$5 more to buy the wallet.

1399
1400
1401
1402

Answer the following question in a single brief but complete sentence.
Question: Julie is reading a 120-page book. Yesterday, she was able to read 12 pages and today, she read twice as many pages as yesterday. If she wants to read half of the remaining pages tomorrow, how many pages should she read?
Answer: She would need to read 42 pages tomorrow.

1403

Answer the following question in a single brief but complete sentence.

1404
 1405 Question: James writes a 3-page letter to 2 different friends twice a week. How many pages does he
 1406 write a year?
 1407 Answer: James writes 624 pages per year.

1408 Answer the following question in a single brief but complete sentence.
 1409 Question: {QUESTION}
 1410 Answer:

Prompt 3: GSM8K-cot

1411 Answer the following question. To do that, first reason about it by saying 'Reasoning:' and then
 1412 derive the answer. After that, when you are done, write 'My answer is:' and write a short and
 1413 concise answer to the question.Last, write <DONE>. Question: Natalia sold clips to 48 of her friends in April, and then she sold half as many clips in
 1414 May. How many clips did Natalia sell altogether in April and May?
 1415 Answer: Reasoning: Natalia sold $48/2 = <<48/2=24>>24$ clips in May.
 1416 Natalia sold $48+24 = <<48+24=72>>72$ clips altogether in April and May.
 1417 My answer is: 72<DONE>

1418 Answer the following question. To do that, first reason about it by saying 'Reasoning:' and then
 1419 derive the answer. After that, when you are done, write 'My answer is:' and write a short and
 1420 concise answer to the question.Last, write <DONE>. Question: Weng earns \$12 an hour for babysitting. Yesterday, she just did 50 minutes of babysitting.
 1421 How much did she earn?
 1422 Answer: Reasoning: Weng earns $12/60 = <<12/60=0.2>>0.2$ per minute.
 1423 Working 50 minutes, she earned $0.2 \times 50 = <<0.2*50=10>>10$.
 1424 My answer is: 10<DONE>

1425 Answer the following question. To do that, first reason about it by saying 'Reasoning:' and then
 1426 derive the answer. After that, when you are done, write 'My answer is:' and write a short and
 1427 concise answer to the question.Last, write <DONE>. Question: Betty is saving money for a new wallet which costs \$100. Betty has only half of the money
 1428 she needs. Her parents decided to give her \$15 for that purpose, and her grandparents twice as much
 1429 as her parents. How much more money does Betty need to buy the wallet?
 1430 Answer: Reasoning: In the beginning, Betty has only $100 / 2 = <<100/2=50>>50$.
 1431 Betty's grandparents gave her $15 * 2 = <<15*2=30>>30$.
 1432 This means, Betty needs $100 - 50 - 30 - 15 = <<100-50-30-15=5>>5$ more.
 1433 My answer is: 5<DONE>

1434 Answer the following question. To do that, first reason about it by saying 'Reasoning:' and then
 1435 derive the answer. After that, when you are done, write 'My answer is:' and write a short and
 1436 concise answer to the question.Last, write <DONE>. Question: Julie is reading a 120-page book. Yesterday, she was able to read 12 pages and today, she
 1437 read twice as many pages as yesterday. If she wants to read half of the remaining pages tomorrow, how
 1438 many pages should she read?
 1439 Answer: Reasoning: Maila read $12 \times 2 = <<12*2=24>>24$ pages today.
 1440 So she was able to read a total of $12 + 24 = <<12+24=36>>36$ pages since yesterday.
 1441 There are $120 - 36 = <<120-36=84>>84$ pages left to be read.
 1442 Since she wants to read half of the remaining pages tomorrow, then she should read $84/2 = <<84/2=42>>42$ pages.
 1443 My answer is: 42<DONE>

1444 Answer the following question. To do that, first reason about it by saying 'Reasoning:' and then
 1445 derive the answer. After that, when you are done, write 'My answer is:' and write a short and
 1446 concise answer to the question.Last, write <DONE>. Question: James writes a 3-page letter to 2 different friends twice a week. How many pages does he
 1447 write a year?
 1448 Answer: Reasoning: He writes each friend $3*2=<<3*2=6>>6$ pages a week
 1449 So he writes $6*2=<<6*2=12>>12$ pages every week
 1450 That means he writes $12*52=<<12*52=624>>624$ pages a year
 1451 My answer is: 624<DONE>

1452 Answer the following question. To do that, first reason about it by saying 'Reasoning:' and then
 1453 derive the answer. After that, when you are done, write 'My answer is:' and write a short and
 1454 concise answer to the question.Last, write <DONE>. Question: {QUESTION}
 1455 Answer:

Prompt 4: Canonicalization

1456 Question: "{QUESTION}"
 1457 Response: "{RESPONSE}"
 1458
 1459 Your task is to return **only** the core answer from this response.
 1460 Follow these rules:
 1461 - Keep only the core answer (e.g., a number, a name, or a short phrase).
 1462 - Remove all extra words and filler.
 1463 - Expand all abbreviations to their full form (e.g., 'USA' -> 'United States of America').
 1464 - Write all numbers with digits, not as words (e.g., 'eight' -> '8').
 1465 - For locations, output only the highest-precision part (e.g. 'Seattle, Washington' -> 'Seattle')

1458

- For dates, unless otherwise specified, format as YYYY-MM-DD (e.g. "August 1, 1990" -> "1990-08-01")
- If only a month or year is specified, leave as-is (e.g. "August" or "2003" or "July, 2000"). Do not make up unspecified information.
- No explaining or reasoning. Output the core answer only.
- If the response does not address the question, or if you are unsure what to do, return the response unchanged.
- Never alter the meaning of the response, even if it is incorrect.
- Do not infer missing information; only rephrase what is given in the response.

1464

1465

Prompt 5: Canonicalization (math)

1466

1467

Response: "{RESPONSE}"

1468

Your task is to return **only** the core answer from this response.

1469

Follow these rules:

1470

- Keep only the core answer, as a raw number or LaTeX string (e.g. '0.5' or '\frac{1}{2}').
- If the answer is the value of a variable, only output the value itself (e.g. 'x=10' -> '10').
- Write all numbers with digits, not as words (e.g., 'eight' -> '8').
- Remove all extra words and filler.
- No explaining or reasoning. Output the core answer only.
- If the response does not contain a numeric value, or if you are unsure what to do, return the response unchanged.
- Never alter the value of the response, even if it is incorrect.
- Do not infer missing information; only extract what is given in the response.

1471

1472

1473

1474

1475

1476

1477

Prompt 6: Semantic Equivalence

1478

1479

You will be given a question, and two possible responses. Your task is to determine whether the two answers are semantically consistent, i.e., whether the two responses agree on what the answer to the question is.

1480

Question: {QUESTION}

1481

Response 1: {RESPONSE1}

1482

Response 2: {RESPONSE2}

1483

Are these two responses semantically aligned responses to the question? Respond only with either the string "Yes" or the string "No".

1484

1485

1486

1487

1488

1489

1490

1491

1492

1493

1494

1495

1496

1497

1498

1499

1500

1501

1502

1503

1504

1505

1506

1507

1508

1509

1510

1511

1512 **E THEORY**
 1513

1514 **E.1 QUICK REFERENCE**
 1515

1516 For convenience, we give references to proofs of theorems from the main body.
 1517

- Thm. 6 is proved in App. E.5.
- Thm. 9 is re-stated and proved as Thm. 31 in App. E.6.3.

1520 Proving these theorems involves some additional theoretical machinery, which we develop in the
 1521 remaining sections. The following sections restate some of the notation and definitions from the
 1522 main body for convenience.
 1523

1524 **E.2 WEIGHTED CALIBRATION**
 1525

1526 A key object in our theory is the notion of *weighted calibration*, from Gopalan et al. (2024), which is
 1527 capable of expressing many different types of calibration. We use a version of this definition suitable
 1528 for our LLM setting, stated below.
 1529

Definition 17 (Weighted Calibration, Gopalan et al. (2024)). *For a set \mathcal{W} of weight functions $w : \mathcal{V}^* \times \Delta(\mathcal{V}^N) \rightarrow \mathbb{R}^N$, and a distribution \mathcal{D} over pairs $(x, y) \in \mathcal{V}^* \times \mathcal{V}^N$, a model p_θ is perfectly \mathcal{W} -weighted-calibrated on \mathcal{D} if:*

$$\mathbb{E}_{(x,y) \sim \mathcal{D}} [\langle \tilde{y} - p_x, w(x, p_x) \rangle] \equiv 0$$

1532 where $p_x := p_\theta(\cdot \mid x) \in \Delta(\mathcal{V}^N) \subset \mathbb{R}^{|\mathcal{V}^N|}$ is the model's output distribution on input x , and
 1533 $\tilde{y} \in \{0, 1\}^{|\mathcal{V}^N|}$ is the one-hot-encoding of y .
 1534

1536 **E.3 EQUIVALENCE BETWEEN B -CALIBRATION AND WEIGHTED CALIBRATION**
 1537

1538 Here we prove that several kinds of B -calibration (including B -confidence-calibration and full B -
 1539 calibration) can be characterized in terms of weighted calibration (Definition 17).
 1540

1541 **Notation and Setup** There are two relevant output spaces: the space \mathcal{V}^N of long-form answer
 1542 strings, and the space $[K]$ of semantic answer classes. Let $M := |\mathcal{V}^N|$. It will be convenient to
 1543 identify strings $z \in \mathcal{V}^N$ with an index in $[M]$, and we will abuse notation by writing $z \in [M]$.
 1544

1544 To simplify some of the proofs, we will rely on an explicit one-hot representation. For a string
 1545 $y \in \mathcal{V}^N$, we denote its one-hot representation as $\tilde{y} \in \{0, 1\}^M$. For a given prompt $x \in \mathcal{V}^*$, the
 1546 model's distribution over completions is $p_\theta(\cdot \mid x) \in \Delta(\mathcal{V}^N) \subset \mathbb{R}^M$, which we treat as a vector
 1547 embedded in \mathbb{R}^M . We write $p_x := p_\theta(\cdot \mid x)$ for convenience.
 1548

1548 A collapsing function $B : \mathcal{V}^* \times \mathcal{V}^N \rightarrow [K]$ assigns to each prompt $x \in \mathcal{V}^*$ and long-answer $y \in \mathcal{V}^N$
 1549 a B -class $B_x(y) \in [K]$. Moreover, the function B along with the model p_θ induces a distribution
 1550 on classes $[K]$ as follows. For a given input $x \in \mathcal{V}^*$, we take the model's distribution $p_\theta(\cdot \mid x)$ and
 1551 push it forward through B_x to obtain a categorical distribution π_x defined as
 1552

$$\pi_x := B_x \# p_\theta(\cdot \mid x) \in \Delta_K. \quad (8)$$

1553 Explicitly, the probability assigned to a category $c \in [K]$ is:
 1554

$$\pi_x(c) = (B_x \# p_x)(c) = \Pr_{z \sim p_\theta(\cdot \mid x)} [B_x(z) = c] = \sum_{z: B_x(z)=c} p_\theta(z \mid x). \quad (9)$$

1557 This push-forward operation can be written in matrix form. Define the collapsing matrix \mathbf{B}_x as:
 1558

$$\mathbf{B}_x \in \{0, 1\}^{K \times M}, \quad [\mathbf{B}_x]_{k,z} = \mathbb{1}_{\{B_x(z)=k\}}. \quad (10)$$

1560 Then the pushforward distribution and ground-truth semantic class can be expressed as
 1561

$$\pi_x = \mathbf{B}_x p_x \in \Delta_K, \quad \mathbf{B}_x \tilde{y} = e_{B_x(y)} \in \mathcal{E}_K.$$

1563 Thus, matrix-vector multiplication exactly implements the pushforward operation:
 1564

$$(\pi_x)_k = \sum_{z: B_x(z)=k} p_\theta(z \mid x) = [\mathbf{B}_x p_x]_k. \quad (11)$$

1566 E.3.1 FULL CALIBRATION
15671568 **Definition 18** (Full Calibration). A distribution \mathcal{D} over prediction-output pairs $(c, y) \in \Delta_K \times \mathcal{E}_K$
1569 is perfectly calibrated if the expected error, conditioned on the prediction, is the zero vector:

1570
$$\mathbb{E}_{(c,y) \sim \mathcal{D}} [y - c \mid c] \equiv 0. \quad (12)$$

1571

1572 Note that since y and c are both vectors in \mathbb{R}^K , this subtraction is well-defined.
15731574 Now, we apply this template to our setting. We say a model is B -calibrated if the distribution it
1575 induces over the collapsed, semantic categories is itself perfectly calibrated.
15761577 **Definition 19** (B-Calibration). A model p_θ is B -calibrated on a distribution \mathcal{D} if the induced distribution
1578 over pairs $(\pi_x, B_x(y))$ is perfectly calibrated according to Definition 18. Here, $\pi_x = B_x \sharp p_x$
1579 takes the role of the prediction c , and the ground-truth category $B_x(y) \in [K]$ takes the role of the
1580 outcome y . Formally:

1581
$$\mathbb{E}_{(x,y) \sim \mathcal{D}} [B_x(y) - \pi_x \mid \pi_x] \equiv 0. \quad (13)$$

1582 Following our convention, the scalar $B_x(y) \in [K]$ is identified with its one-hot vector in \mathcal{E}_K to
1583 perform the vector subtraction.
15841585 Now, we provide results for B -calibration that are analogous to Definition 4 and Thm. 6 for B -
1586 confidence-calibration.
15871588 **Definition 20** (Semantic Perturbation Function Classes). Given an arbitrary function $B_x(z) \in [K]$,
1589 which we think of as a semantic collapsing function, we define the B -induced weighted function
1590 class (a class of perturbation functions $w(x, p_x)$ that generate a perturbation vector based on the
1591 context x and the model's predictive distribution p_x):

1592
$$\mathcal{W}_B^{(\text{full})} = \{w \mid w(x, p_x)[z] = \tau(\pi_x)[B_x(z)] \text{ for some } \tau : \Delta^K \rightarrow [-1, 1]^K\}. \quad (14)$$

1593 Intuitively, every sequence z is assigned a weight based on its semantic category $B_x(z) \in [K]$, and
1594 the weighting scheme itself can adapt based on the model's overall categorical prediction π_x .
15951596 **Lemma 21.** Let $w \in \mathcal{W}_B^{(\text{full})}$ be a weight function defined by $w(x, p_x)[z] = \tau(\pi_x)[B_x(z)]$. Its
1597 corresponding vector representation is given by $\mathbf{B}_x^\top \tau(\pi_x)$.
15981599 *Proof.* We will prove the equivalence by showing that for any sequence $z \in \mathcal{V}^N$, the z -th component
1600 of the vector $\mathbf{B}_x^\top \tau(\pi_x)$ is equal to $\tau(\pi_x)[B_x(z)]$. Let $u = \tau(\pi_x)$, which is a vector in \mathbb{R}^K .
16011602 Now, we want to analyze the components of the vector $v = \mathbf{B}_x^\top u$.
16031604 For any $z \in \mathcal{V}^N$, the z -th component of v is given by the definition of matrix-vector multiplication:
1605

1606
$$[v]_z = [\mathbf{B}_x^\top u]_z = \sum_{k=1}^K [\mathbf{B}_x^\top]_{z,k} \cdot u_k = \sum_{k=1}^K [\mathbf{B}_x]_{k,z} \cdot u_k = \sum_{k=1}^K \mathbb{1}_{\{B_x(z)=k\}} \cdot u_k$$

1607 where the last equality is by definition of \mathbf{B}_x ; see Eq. (10). The indicator function $\mathbb{1}_{\{B_x(z)=k\}}$ is
1608 non-zero for only one value of k in the sum, namely when k is equal to the category of the sequence
1609 z , i.e., $k = B_x(z)$. Therefore, the sum collapses to a single term:
1610

1611
$$[v]_z = 1 \cdot u_{B_x(z)} + \sum_{B_x(z) \neq k} 0 \cdot u_k = u_{B_x(z)}.$$

1612

1613 Substituting back the definition of $u = \tau(\pi_x)$, we get: $[v]_z = \tau(\pi_x)[B_x(z)]$. This expression
1614 matches the definition of $w(x, p_x)[z]$ exactly.
16151616 Since this holds for all sequences z , the vector $\mathbf{B}_x^\top \tau(\pi_x)$ is the vector representation of the function
1617 $w(x, p_x)$. \square
1618

1619 With the definition of the weighted class and its vector representation, we can state the main equivalence theorem.

1620
 1621 **Theorem 22** (B-Calibration as Weighted Calibration). *A model p_θ is perfectly B-calibrated if and*
 1622 *only if it is perfectly $\mathcal{W}_B^{(\text{full})}$ -weighted-calibrated.*

1623 *Proof.* We start from the definition of B-calibration, which (as established in Definition 18) is for-
 1624 mally expressed as a vector condition:

$$1626 \quad \mathbb{E} [e_{B_x(y)} - \pi_x \mid \pi_x] = 0.$$

1627 By the properties of conditional expectation, this holds if and only if for all functions $\tau : \Delta_K \rightarrow$
 1628 $[-1, 1]^K$, it holds

$$1629 \quad \mathbb{E} [\langle e_{B_x(y)} - \pi_x, \tau(\pi_x) \rangle] = 0. \quad (15)$$

1630 Substituting the matrix representation into Eq. (15):

$$1632 \quad \mathbb{E} [\langle e_{B_x(y)} - \pi_x, \tau(\pi_x) \rangle] = 0 \iff \mathbb{E} [\langle \mathbf{B}_x \tilde{y} - \mathbf{B}_x p_x, \tau(\mathbf{B}_x p_x) \rangle] = 0 \\ 1633 \quad \iff \mathbb{E} [\langle \mathbf{B}_x (\tilde{y} - p_x), \tau(\mathbf{B}_x p_x) \rangle] = 0 \\ 1634 \quad \iff \mathbb{E} [\langle \tilde{y} - p_x, \mathbf{B}_x^\top \tau(\mathbf{B}_x p_x) \rangle] = 0$$

1636 From Lemma 21, the term $\mathbf{B}_x^\top \tau(\mathbf{B}_x p_x)$ is precisely the vector representation of the function
 1637 $w(x, p_x)$ from Definition 20. Thus, the condition is equivalent to:

$$1639 \quad \mathbb{E} [\langle \tilde{y} - p_x, w(x, p_x) \rangle] = 0, \quad \text{for all } w \in \mathcal{W}_B^{(\text{full})},$$

1640 which is exactly the definition of $\mathcal{W}_B^{(\text{full})}$ -weighted-calibration ; see Definition 17. □

1644 E.3.2 CONFIDENCE CALIBRATION

1645 We first define the standard notion of confidence calibration, a weaker form of calibration that fo-
 1646 cuses only on the model’s top prediction.

1647 **Definition 23** (Confidence Calibration). *A distribution \mathcal{D} over prediction-output pairs $(c, y) \in$
 1648 $\Delta_K \times \mathcal{E}_K$ is perfectly confidence-calibrated if, conditioned on the model’s top predicted proba-
 1649 bility, that probability matches the expected outcome. Formally,*

$$1651 \quad \mathbb{E}_{(c,y) \sim \mathcal{D}} [y_{k^*} - c_{k^*} \mid c_{k^*}] \equiv 0 \text{ where } k^* = \operatorname{argmax}_{k \in [K]} c_k. \quad (16)$$

1653 Now, we apply this concept to our LLM setting. A model is B-confidence-calibrated if the categori-
 1654 cal distribution it induces is confidence-calibrated.

1655 **Definition 24** (B-Confidence-Calibration). *A model p_θ is B-confidence-calibrated on a distribution
 1656 \mathcal{D} if the induced distribution over pairs $(\pi_x, B_x(y))$ is perfectly confidence-calibrated according to
 1657 Definition 23. This requires that, for $k^* = \operatorname{argmax}_{k \in [K]} \pi_x(k)$,*

$$1659 \quad \mathbb{E}_{(x,y) \sim \mathcal{D}} [\mathbb{1}\{B_x(y) = k^*\} - \pi_x(k^*) \mid \pi_x(k^*)] = 0. \quad (17)$$

1661 We re-state Definition 4 here for convenience:

1662 **Definition 25** (Semantic Perturbation Function Classes). *Given an arbitrary collapsing function
 1663 $B_x(z) \in [K]$, we define the class \mathcal{W}_B of perturbation functions $w(x, p_x) \in \mathbb{R}^{|\mathcal{V}^N|}$ as follows.
 1664 These functions generate a perturbation vector based on the prompt x and the model’s predictive
 1665 distribution p_x :*

$$1667 \quad \mathcal{W}_B := \left\{ w \mid \exists \tau : [0, 1] \rightarrow [-1, 1] \quad \forall z \in \mathcal{V}^N : w(x, p_x)[z] = \tau(\pi_x(k^*)) \cdot \mathbb{1}\{B_x(z) = k^*\} \right\}, \\ 1668 \quad \text{where } \pi_x := B_x \# p_x, \quad k^* := \operatorname{argmax}_{k \in [K]} \pi_x(k).$$

1671 Using this definition, we have the following equivalence.

1672 **Theorem 26** (B-Confidence-Calibration as Weighted Calibration). *A model p_θ is perfectly B-
 1673 confidence-calibrated if and only if it is perfectly \mathcal{W}_B -weighted-calibrated.*

1674 *Proof.* The model is \mathcal{W}_B -weighted-calibrated if, for all $w \in \mathcal{W}_B$, the following holds:
 1675

$$1676 \quad \mathbb{E}_{(x,y) \sim \mathcal{D}} [\langle \tilde{y} - p_x, w(x, p_x) \rangle] = 0. \\ 1677$$

1678 For a given w defined by a function $\tau : [0, 1] \rightarrow [-1, 1]$, since \tilde{y} is a one-hot vector with a 1 in the
 1679 coordinate $z = y$, the first term evaluates to

$$1680 \quad \langle \tilde{y}, w(x, p_x) \rangle = \sum_z \tilde{y}[z] w(x, p_x)[z] = w(x, p_x)[y], \quad (18) \\ 1681 \\ 1682$$

1683 Substituting the definition of w :

$$1684 \quad w(x, p_x)[y] = \tau(v_x^*) \cdot \mathbb{1}_{\{B_x(y)=k^*\}} \text{ where } v_x^* := \pi_x(k^*). \\ 1685$$

1686 The second term is $\langle p_x, w(x, p_x) \rangle = \sum_z p_x(z) w(x, p_x)[z]$. Substituting the definition of w :

$$1687 \quad \sum_z p_x(z) w(x, p_x)[z] = \sum_z p_x(z) (\tau(v_x^*) \cdot \mathbb{1}_{\{B_x(z)=k^*\}}) \\ 1688 \\ 1689 \\ 1690 \\ 1691 \\ 1692 \\ 1693 \\ 1694 \\ 1695 \\ 1696 \\ 1697 \\ 1698 \\ 1699 \\ 1700 \\ 1701 \\ 1702 \\ 1703 \\ 1704 \\ 1705 \\ 1706 \\ 1707 \\ 1708 \\ 1709 \\ 1710 \\ 1711 \\ 1712 \\ 1713 \\ 1714 \\ 1715 \\ 1716 \\ 1717 \\ 1718 \\ 1719 \\ 1720 \\ 1721 \\ 1722 \\ 1723 \\ 1724 \\ 1725 \\ 1726 \\ 1727$$

$$= \tau(v_x^*) \cdot \sum_z p_x(z) \mathbb{1}_{\{B_x(z)=k^*\}} \\ = \tau(v_x^*) \cdot \Pr[B_x(z) = k^*] = \tau(v_x^*) \cdot v_x^*$$

Putting these together, the weighted calibration condition becomes:

$$\mathbb{E}_{(x,y) \sim \mathcal{D}} [\tau(v_x^*) \cdot \mathbb{1}_{\{B_x(y)=k^*\}} - \tau(v_x^*) \cdot v_x^*] = 0 \iff \mathbb{E}_{(x,y) \sim \mathcal{D}} [\tau(v_x^*) \cdot (\mathbb{1}_{\{B_x(y)=k^*\}} - v_x^*)] = 0.$$

This condition must hold for all functions $\tau : [0, 1] \rightarrow [-1, 1]$. By the properties of conditional expectation, this is true if and only if the term being multiplied by the arbitrary function of v_x^* has a conditional expectation of zero. This gives us:

$$\mathbb{E} [\mathbb{1}_{\{B_x(y)=k^*\}} - v_x^* | v_x^*] = 0,$$

which is precisely the definition of B -confidence-calibration. \square

E.4 EQUIVALENCE BETWEEN WEIGHTED-CALIBRATION AND LOCAL LOSS OPTIMALITY

For the log-loss $\ell(y, f) := -\sum_i y_i \log(f_i)$, we can analyze perturbations more easily through its dual representation. The dual loss, which operates on a logit vector z is defined as

$$\ell^*(y, z) = \log \left(\sum_{j=1}^K e^{z_j} \right) - y^T z \text{ and } \nabla_z \ell^*(y, z) = \text{softmax}(z) - y = f - y$$

The primal and dual views are connected by the variable mapping $z = \log f$, which provides the key equality $\ell(y, f) = \ell^*(y, z)$. This relationship allows us to translate complex perturbations in the probability space into simple ones in the logit space. A multiplicative re-weighting of the probabilities, defined as $f \star w := \text{softmax}(\log f + w) = \text{softmax}(z + w)$, is equivalent to a simple additive perturbation w on the logits. Therefore, the loss of the perturbed model can be expressed in either world:

$$\underbrace{\ell(y, f \star w)}_{\text{Loss on perturbed probabilities}} = \underbrace{\ell^*(y, z + w)}_{\text{Loss on perturbed logits}} \quad (19)$$

Theorem 27 (Equivalence of Calibration and Local Loss Optimality). *Given a model p_θ , a distribution \mathcal{D} , and a family of weight functions \mathcal{W} (Definition 17), the model p_θ is perfectly \mathcal{W} -weighted-calibrated on \mathcal{D} if and only if it is \mathcal{W} -locally loss-optimal on \mathcal{D} .*

Proof. We apply the first-order optimality condition to the dual loss $\ell^*(y, z)$ with a simple additive perturbation w on the logits z . With the perturbed loss function, for $\varepsilon > 0$,

$$\mathcal{L}(\varepsilon) = \ell^*(y, z + \varepsilon w) \text{ and } \frac{d\mathcal{L}}{d\varepsilon}(\varepsilon) = \langle \nabla_z \ell^*(y, z + \varepsilon w), w \rangle$$

1728 By local loss optimality
 1729

$$1730 \quad 0 \leq \frac{\mathcal{L}(\varepsilon) - \mathcal{L}(0)}{\varepsilon} = \frac{d\mathcal{L}}{d\varepsilon}(0) + \frac{o(\varepsilon)}{\varepsilon} \longrightarrow \langle \nabla_z \ell^*(y, z), w \rangle$$

1732 The same reasoning replacing w by $-w$, we also have $\langle \nabla_z \ell^*(y, z), w \rangle \leq 0$. Thus
 1733

$$1734 \quad \ell^*(y, z) \leq \ell^*(y, z + \varepsilon w) \implies \langle \nabla_z \ell^*(y, z), w \rangle = 0$$

1736 The opposite implication follow from convexity, we have:
 1737

$$1738 \quad \ell^*(y, z + w) \geq \ell^*(y, z) + \langle \nabla_z \ell^*(y, z), w \rangle.$$

1739 Thus, if $\langle \nabla_z \ell^*(y, z), w \rangle = 0$ holds, the inequality simplifies to: $\ell^*(y, z + w) \geq \ell^*(y, z)$.
 1740

1741 Taking the expectation on both side

$$1742 \quad \mathbb{E}_{(x,y) \sim \mathcal{D}} [\ell(y, f)] \leq \mathbb{E}_{(x,y) \sim \mathcal{D}} [\ell(y, f \star w)] \iff \mathbb{E}_{(x,y) \sim \mathcal{D}} [\ell^*(y, z)] \leq \mathbb{E}_{(x,y) \sim \mathcal{D}} [\ell^*(y, z + w)]$$

$$1744 \quad \iff \mathbb{E}_{(x,y) \sim \mathcal{D}} \langle f - y, w \rangle = \mathbb{E}_{(x,y) \sim \mathcal{D}} \langle \nabla_z \ell^*(y, z), w \rangle = 0$$

1746 A model is calibrated under the log-loss if and only if its expected prediction error $f - y$ is orthogonal
 1747 to any systematic perturbation w of its logits. \square
 1748

1749 E.5 PROOF OF THM. 6

1751 We can now combine the above ingredients to directly prove Thm. 6 from the main body.
 1752

1753 *Proof.* Recall we have a model p_θ , a collapsing function B , and a distribution \mathcal{D} .
 1754

1755 We have the following equivalences:

$$1756 \quad p_\theta \text{ is } B\text{-confidence-calibrated on } \mathcal{D} \iff p_\theta \text{ is } \mathcal{W}_B\text{-weighted-calibrated on } \mathcal{D} \quad (\text{by Thm. 26})$$

$$1757 \quad \iff p_\theta \text{ is } \mathcal{W}_B\text{-locally-loss-optimal on } \mathcal{D} \quad (\text{by Thm. 27})$$

1759 \square

1760 E.6 AUTOREGRESSIVE SETTINGS

1762 Recall the definition of the perturbation operator, Definition 3,
 1763

$$1764 \quad \forall z \in \mathcal{V}^N : \quad (f \star w)[z] := \text{softmax}(w[z] + \log f[z]) = \frac{f[z] \exp(w[z])}{\sum_{z' \in \mathcal{V}^N} f[z'] \exp(w[z'])} \quad (20)$$

1766 highlighting that this transformation is a multiplicative reweighting of the reference distribution f
 1767 by $e^{w[z]}$, followed by a renormalization to get a valid distribution. Applying it to the next-token
 1768 setting, we obtain significant simplifications for both full and confidence calibration.
 1769

1770 E.6.1 WEIGHTED CALIBRATION

1772 **Lemma 28** (Autoregressive Decomposition of the Perturbation). *For any position i , the perturbed
 1773 conditional probability of the next token is the original conditional probability multiplied by a ratio
 1774 of “lookahead expectations”:*

$$1776 \quad (p_x \star w_x)(z_i \mid z_{<i}) = p_x(z_i \mid z_{<i}) \cdot \frac{\mathbb{E}_{z_{>i} \sim p_x(\cdot \mid z_{\leq i})} [\exp(w_x(z_{\leq i}, z_{>i}))]}{\mathbb{E}_{z_{\geq i} \sim p_x(\cdot \mid z_{<i})} [\exp(w_x(z_{<i}, z_{\geq i}))]}. \quad (21)$$

1779 *Proof.* Let $Z := \sum_z p_x(z) e^{w_x(z)}$. By definition of conditional probability,
 1780

$$1781 \quad (p_x \star w_x)(z_i \mid z_{<i}) = \frac{(p_x \star w_x)(z_{\leq i})}{(p_x \star w_x)(z_{<i})}. \quad (22)$$

1782 Expanding the perturbation operator and applying $p_x(z_{\leq i}, z_{>i}) = p_x(z_{\leq i})p_x(z_{>i} \mid z_{\leq i})$,
 1783

$$\begin{aligned} 1784 \quad (p_x \star w_x)(z_{\leq i}) &= \frac{1}{Z} \sum_{z_{>i}} p_x(z_{\leq i}, z_{>i}) e^{w_x(z_{\leq i}, z_{>i})} \\ 1785 \\ 1786 \\ 1787 \\ 1788 \end{aligned}$$

$$= \frac{p_x(z_{\leq i})}{Z} \mathbb{E}_{z_{>i} \sim p_x(\cdot \mid z_{\leq i})} [e^{w_x(z_{\leq i}, z_{>i})}].$$

1789 Similarly,
 1790

$$1791 \quad (p_x \star w_x)(z_{<i}) = \frac{p_x(z_{<i})}{Z} \mathbb{E}_{z_{\geq i} \sim p_x(\cdot \mid z_{<i})} [e^{w_x(z_{<i}, z_{\geq i})}]. \quad (23) \\ 1792$$

1793 Taking the ratio and canceling Z ,
 1794

$$\begin{aligned} 1795 \quad (p_x \star w_x)(z_i \mid z_{<i}) &= \frac{p_x(z_{\leq i})}{p_x(z_{<i})} \cdot \frac{\mathbb{E}_{z_{>i} \sim p_x(\cdot \mid z_{\leq i})} [e^{w_x(z_{\leq i}, z_{>i})}]}{\mathbb{E}_{z_{\geq i} \sim p_x(\cdot \mid z_{<i})} [e^{w_x(z_{<i}, z_{\geq i})}]} \\ 1796 \\ 1797 \\ 1798 \\ 1799 \end{aligned}$$

$$= p_x(z_i \mid z_{<i}) \cdot \frac{\mathbb{E}_{z_{>i} \sim p_x(\cdot \mid z_{\leq i})} [e^{w_x(z_{\leq i}, z_{>i})}]}{\mathbb{E}_{z_{\geq i} \sim p_x(\cdot \mid z_{<i})} [e^{w_x(z_{<i}, z_{\geq i})}]}.$$

1800 \square
 1801

1802 E.6.2 *B*-CALIBRATION

1803 The general decomposition in Lemma 28 is insightful but computationally intractable, as it requires
 1804 summing over all possible future sequences. We now show that for our specific class of semantic
 1805 perturbations \mathcal{W}_B , this complex ratio simplifies dramatically into a small, efficient arithmetic circuit.
 1806 The key is to define two “autoregressive *B*-confidence” vectors that can be tracked during generation.
 1807

1808 **Autoregressive *B*-confidence** Given a model p_x and a semantic mapping B_x , we define:
 1809

- 1810 1. The initial *B*-confidence $g_0(x) \in \Delta_K$, which is the model’s overall predicted distribution
 1811 on the K categories before generation begins. This corresponds to the *B*-induced pushfor-
 1812 ward distribution $\pi_x = B_x \# p_x$:

$$1813 \quad g_0(x)[b] := \Pr_{z \sim p_x} [B_x(z) = b]. \quad (24) \\ 1814$$

- 1815 2. The conditional *B*-confidence $g_i(x, z_{\leq i}) \in \Delta_K$, which is the model’s predicted distribution
 1816 on categories, conditioned on having generated the prefix $z_{\leq i}$:

$$1817 \quad g_i(x, z_{\leq i})[b] := \Pr_{z' \sim p_x(\cdot \mid z_{\leq i})} [B_x(z_{\leq i}, z') = b]. \quad (25) \\ 1818$$

1819 **Theorem 29** (Simple Circuit for *B*-Perturbations). *For any perturbation $w \in \mathcal{W}_B$ (defined by a
 1820 scaling function τ), the perturbed next-token probability is proportional to the original conditional
 1821 probability multiplied by a simple circuit C_w :*
 1822

$$1823 \quad (p_x \star w_x)(z_i \mid z_{<i}) \propto p_x(z_i \mid z_{<i}) \cdot C_w(g_0(x), g_i(x, z_{\leq i})), \quad (26)$$

1824 where the constant of proportionality does not depend on z_i , and
 1825

$$1826 \quad C_w(g_0, g_i) = \sum_{b=1}^K \exp(\tau(g_0)[b]) \cdot g_i[b]. \quad (27) \\ 1827 \\ 1828$$

1829 This circuit has constant depth and width linear in K .
 1830

1831 *Proof.* From Lemma 28, we know that

$$1832 \quad (p_x \star w_x)(z_i \mid z_{<i}) = p_x(z_i \mid z_{<i}) \cdot \frac{\mathbb{E}_{z \sim p_x(\cdot \mid z_{\leq i})} [e^{w_x(z_{\leq i}, z)}]}{\mathbb{E}_{z \sim p_x(\cdot \mid z_{<i})} [e^{w_x(z_{<i}, z)}]}. \quad (28) \\ 1833 \\ 1834$$

1835 For $w \in \mathcal{W}_B$, by definition, $w_x(z) = \tau(g_0(x))[B_x(z)]$ where $g_0(x) = B_x \# p_x$.

1836 Expanding the expectation,
 1837

$$\begin{aligned}
 1838 \quad & \mathbb{E}_{z \sim p_x(\cdot | z_{\leq i})} [e^{w_x(z_{\leq i}, z)}] = \mathbb{E}_{z \sim p_x(\cdot | z_{\leq i})} [e^{\tau(g_0(x))[B_x(z_{\leq i}, z)]}] \\
 1839 \quad & = \sum_{b=1}^K \Pr[B_x(z_{\leq i}, z) = b] \cdot e^{\tau(g_0(x))[b]} \\
 1840 \quad & = \sum_{b=1}^K g_i(x, z_{\leq i})[b] \cdot e^{\tau(g_0(x))[b]}.
 1841 \\
 1842 \\
 1843 \\
 1844 \\
 1845
 \end{aligned}$$

1846 The denominator is an expectation over $z \sim p_x(\cdot | z_{<i})$, which depends only on the prefix $z_{<i}$ and
 1847 not on the choice of z_i . Hence it is a constant with respect to z_i and can be absorbed into the
 1848 proportionality. Therefore, $(p_x \star w_x)(z_i | z_{<i}) \propto p_x(z_i | z_{<i}) \cdot \langle \exp(\tau(g_0(x))), g_i(x, z_{\leq i}) \rangle$. \square
 1849

1850 E.6.3 PROOF OF THM. 9: A SIMPLE CIRCUIT FOR B-CONFIDENCE-PERTURBATIONS

1851 The circuit for general B-perturbations involves a K -dimensional inner product. For the more re-
 1852 stricted class of B-confidence-perturbations, \mathcal{W}_B , the structure simplifies even further to a trivial
 1853 scalar arithmetic circuit. First, we define the key scalar quantities needed.

1854 **Definition 30** (Autoregressive Top-1 Confidence). *Given a model p_x and mapping B_x , let $\pi_x =$
 1855 $B_x \sharp p_x$ be the initial categorical distribution, and let $k^* := \operatorname{argmax}_{k \in [K]} (\pi_x)_k$ be the single most
 1856 likely category. We define:*

1857 1. *The top confidence value $v_x^* \in [0, 1]$, which is the model's confidence in this top category:*

$$1858 \quad v_x^* := (\pi_x)_{k^*}. \quad (29)$$

1859 2. *The conditional probability of hitting the top category, $g_i^{(\text{conf})}(x, z_{\leq i}) \in [0, 1]$, which is the
 1860 probability of eventually generating a sequence in category k^* , given the prefix $z_{\leq i}$:*

$$1861 \quad g_i^{(\text{conf})}(x, z_{\leq i}) := \Pr_{z' \sim p_x(\cdot | z_{\leq i})} [B_x(z_{\leq i}, z') = k^*]. \quad (30)$$

1862 With these scalars, the autoregressive update becomes a simple linear transformation.
 1863

1864 **Theorem 31.** *For any perturbation $w \in \mathcal{W}_B$ (defined by a function τ), the perturbed next-token
 1865 probability is proportional to the original probability modified by a simple scalar circuit C_w :*

$$1866 \quad (p_x \star w_x)(z_i | z_{<i}) \propto p_x(z_i | z_{<i}) \cdot C_w(v_x^*, g_i^{(\text{conf})}(x, z_{\leq i})), \quad (31)$$

1867 where the circuit C_w is a linear function of $g_i^{(\text{conf})}$:

$$1868 \quad C_w(v, g) := 1 + (\exp(\tau(v)) - 1) \times g. \quad (32)$$

1869 *Proof.* By Lemma 28,

$$1870 \quad (p_x \star w_x)(z_i | z_{<i}) \propto p_x(z_i | z_{<i}) \cdot \mathbb{E}_{z \sim p_x(\cdot | z_{\leq i})} [\exp(w_x(z))]. \quad (33)$$

1871 For $w \in \mathcal{W}_B$ we have

$$\begin{aligned}
 1872 \quad w_x(z) &= c_x \cdot \mathbb{1}\{B_x(z) = k^*\}, \quad \text{with } c_x := \tau(v_x^*). \\
 1873 \quad \exp(w_x(z)) &= 1 + (\exp(c_x) - 1) \cdot \mathbb{1}\{B_x(z) = k^*\}.
 1874
 \end{aligned}$$

1875 Taking expectation under $z \sim p_x(\cdot | z_{\leq i})$ yields

$$1876 \quad 1 + (\exp(c_x) - 1) \Pr[B_x(z) = k^* | z_{\leq i}] = 1 + (\exp(\tau(v_x^*)) - 1) g_i^{(\text{conf})}(x, z_{\leq i}). \quad (34)$$

1877 By Lemma 28, the perturbed conditional probability is the original $p_x(z_i | z_{<i})$ scaled by the ratio
 1878 of this term to an analogous denominator depending only on the prefix $z_{<i}$. Since the denominator
 1879 is independent of z_i , it can be absorbed into the overall proportionality constant. \square

1890 E.7 QUANTITATIVE BOUNDS ON MULTI-CLASS CALIBRATION AND POST-PROCESSING GAP
1891

1892 Beyond cross-entropy loss, we provide in this section a generalization for the class of proper loss
1893 functions and quantitative bounds relating post-processing and calibration gap. The main result in
1894 this section, Thm. 36 should be interpreted as a generalization of Theorem E.3 in Błasik et al.
1895 (2023) to the multi-class setting, and a robust version of Thm. 27: it essentially states that a model
1896 is “close to” \mathcal{W} -weighted-calibrated if it is “close to” \mathcal{W} -loss-optimal.

1897 First, we recall a standard result on convex representation of proper losses (Savage, 1971; Schervish,
1898 Gneiting & Raftery, 2007).

1899 **Definition 32** (Savage representation). *A loss function $\ell : \{e_1, \dots, e_K\} \times \Delta_K \rightarrow \mathbb{R}$ is proper iff
1900 there exists a convex function $\phi : \Delta_K \rightarrow \mathbb{R}$ such that*

$$1901 \quad \ell(y, v) = -\phi(v) + \langle v - y, \nabla \phi(v) \rangle. \quad (35)$$

1903 Next, define the convex conjugate $\psi = \phi^*$, a dual variable, and the dual form of the loss.

1904 **Definition 33** (Dual loss). *For a proper loss ℓ with potential ϕ as in Definition 32, define:*

$$1906 \quad \text{Convex conjugate: } \psi(u) := \phi^*(u) := \sup_{v \in \Delta_K} (\langle u, v \rangle - \phi(v)),$$

$$1908 \quad \text{Dual variable: } \text{dual}(v) := \nabla \phi(v),$$

$$1909 \quad \text{Dual loss: } \ell^{(\psi)}(y, z) := \psi(z) - \langle y, z \rangle.$$

1910 **Remark 34.** The dual parameterization of Definition 33 satisfies:

- 1912 1. *Agreement between primal and dual losses: $\ell^{(\psi)}(y, \text{dual}(v)) = \ell(y, v)$.*
- 1913 2. *Probability \rightarrow dual map: $\text{dual}(v) = \nabla \phi(v)$ for all $v \in \Delta_K$.*
- 1914 3. *Dual \rightarrow probability map: $v = \nabla \psi(\text{dual}(v))$ for all $v \in \Delta_K$.*

1916 **Definition 35** (Generalized dual calibration and post-processing gap). *Let \mathcal{W} be a class of functions
1917 $w : \mathcal{X} \times \mathbb{R}^K \rightarrow \mathbb{R}^K$, and let \mathcal{D} be a distribution over $\mathcal{X} \times \{e_1, \dots, e_K\}$.*

1918 For a predictor $f : \mathcal{X} \rightarrow \Delta_K$, let $g : \mathcal{X} \rightarrow \mathbb{R}^K$ be its dual representation such that

$$1919 \quad f(x) = \nabla \psi(g(x)) \quad \forall x \in \mathcal{X}. \quad (36)$$

1921 Define for shorthand

$$1923 \quad \Delta(w) := \mathbb{E}_{(x,y) \sim \mathcal{D}} [\langle y - f(x), w(x, g(x)) \rangle], \quad \mathcal{L}(h) := \mathbb{E}_{(x,y) \sim \mathcal{D}} [\ell^{(\psi)}(y, h(x))]. \quad (37)$$

- 1925 • The dual calibration error of g with respect to \mathcal{W} is

$$1926 \quad \text{CE}(g; \mathcal{W}) := \sup_{w \in \mathcal{W}} |\Delta(w)|. \quad (38)$$

- 1928 • The dual post-processing gap of g with respect to a function class \mathcal{H} is

$$1930 \quad \text{Gap}(g; \mathcal{H}) := \mathcal{L}(g) - \inf_{h \in \mathcal{H}} \mathcal{L}(h). \quad (39)$$

1932 **Theorem 36** (General relationship between calibration and post-processing). *Let $\psi : \mathbb{R}^K \rightarrow \mathbb{R}$
1933 be differentiable and λ -smooth, i.e. $\nabla \psi$ is λ -Lipschitz. Let \mathcal{W} be a class of bounded functions
1934 $w : \mathcal{X} \times \mathbb{R}^K \rightarrow \mathbb{R}^K$ with $\|w_x\| \leq 1$. For $w \in \mathcal{W}$ and $\beta \in [-1/\lambda, 1/\lambda]$, define the perturbed dual
1935 predictor*

$$1935 \quad g_w(x) := g(x) + \beta w(x, g(x)). \quad (40)$$

1936 Let $\mathcal{G}_{\mathcal{W}} := \{g_w : w \in \mathcal{W}, \beta \in [-1/\lambda, 1/\lambda]\}$. Then, for every $g : \mathcal{X} \rightarrow \mathbb{R}^K$ and distribution \mathcal{D} ,

$$1938 \quad \frac{1}{2} \left(\text{CE}(g; \mathcal{W}) \right)^2 \leq \lambda \cdot \text{Gap}(g; \mathcal{G}_{\mathcal{W}}) \leq \text{CE}(g; \mathcal{W}). \quad (41)$$

1940 **Proof.** By the definition of $\ell^{(\psi)}$,

$$1942 \quad \begin{aligned} \mathcal{L}(g) - \mathcal{L}(g_w) &= \mathbb{E}[\psi(g(x)) - \langle y, g(x) \rangle - \psi(g_w(x)) + \langle y, g_w(x) \rangle] \\ 1943 &= \mathbb{E}[\psi(g(x)) - \psi(g_w(x)) + \beta \langle y, w(x, g(x)) \rangle]. \end{aligned}$$

1944 By convexity and λ -smoothness of ψ , for $z = g(x)$, $z' = g_w(x)$ and $w_x = w(x, g(x))$

$$1946 \quad \langle \nabla \psi(z), \beta w_x \rangle \leq \psi(z') - \psi(z) \leq \langle \nabla \psi(z), \beta w_x \rangle + \frac{\lambda \beta^2}{2} \|w_x\|^2. \quad (42)$$

1948 Since $f(x) = \nabla \psi(g(x))$ and $\|w_x\| \leq 1$, this yields

$$1950 \quad \beta \Delta(w) - \frac{\lambda \beta^2}{2} \leq \mathcal{L}(g) - \mathcal{L}(g_w) \leq \beta \Delta(w). \quad (43)$$

1952 *Lower bound.* For $w \in \mathcal{W}$, set $\beta = \Delta(w)/\lambda$ (which lies in $[-1/\lambda, 1/\lambda]$). Then

$$1954 \quad \frac{1}{2\lambda} \Delta(w)^2 \leq \mathcal{L}(g) - \mathcal{L}(g_w). \quad (44)$$

1956 Taking $\sup_{w \in \mathcal{W}}$ yields

$$1958 \quad \frac{1}{2} (\text{CE}(g; \mathcal{W}))^2 \leq \lambda \cdot \text{Gap}(g; \mathcal{G}_{\mathcal{W}}). \quad (45)$$

1960 *Upper bound.* For $g_w \in \mathcal{G}_{\mathcal{W}}$, since $|\beta| \leq 1/\lambda$

$$1962 \quad \mathcal{L}(g) - \mathcal{L}(g_w) \leq \beta \Delta(w) \leq \frac{1}{\lambda} |\Delta(w)|. \quad (46)$$

1964 Taking $\sup_{w \in \mathcal{W}}$ gives

$$1965 \quad \lambda \cdot \text{Gap}(g; \mathcal{G}_{\mathcal{W}}) \leq \text{CE}(g; \mathcal{W}). \quad (47)$$

1967 Combining the upper and lower bounds proves Eq. (41). \square

1968 **Remark 37** (Tighter exponent under strong convexity). *If, in addition, ψ is μ -strongly convex for 1969 some $\mu > 0$ i.e.*

$$1970 \quad \psi(z') \geq \psi(z) + \langle \nabla \psi(z), z' - z \rangle + \frac{\mu}{2} \|z' - z\|^2,$$

1971 *then one obtains matching upper and lower bounds. In this case, both inequalities in Thm. 36 1972 become quadratic in the calibration error:*

$$1974 \quad \frac{\mu}{2\lambda^2} (\text{CE}(g; \mathcal{W}))^2 \leq \text{Gap}(g; \mathcal{G}_{\mathcal{W}}) \leq \frac{1}{2\mu} (\text{CE}(g; \mathcal{W}))^2. \quad (48)$$

1976 *That is, the dual post-processing gap and the squared dual calibration error are equivalent up to 1977 constants determined by (μ, λ) .*

1979 E.7.1 SPECIALIZATION TO CROSS-ENTROPY LOSS

1980 For completeness, we summarize the standard facts about the dual parametrization of the negative 1981 log-loss in Table 4.

1983 Table 4: Duality relationships for the Negative Log-Loss (Cross-Entropy) proper scoring rule.

1985 Primal Proper Loss (ℓ_{nll})	$\ell(y, v) = -\sum_{i=1}^K y_i \log v_i$
1987 Convex Function (ϕ)	$\phi(v) = \sum_{i=1}^K v_i \log(v_i)$ (Negative Entropy)
1989 Convex Conjugate (ϕ^*)	$\phi^*(z) = \log \left(\sum_{i=1}^K \exp(z_i) \right)$ (Log-Sum-Exp)
1991 Dual Loss (ℓ_{nll}^*)	$\ell^*(y, z) = \phi^*(z) - y^T z$
1994 Dual Mapping ($\nabla \phi^*$)	$\nabla \phi^*(z) = \text{softmax}(z)$

1996 The log-sum-exp function $\phi^*(z) = \log \left(\sum_{i=1}^K \exp(z_i) \right)$ is 1/4-smooth, as shown in Beck & 1997 Teboulle (2003) and Nesterov (2005), so Thm. 36 applies with $\lambda = 1/4$. Moreover, to translate

1998 the result into the notation of our main theorems, recall the relationship between the primal prediction
 1999 $f(x)$ and its dual representation $g(x)$:
 2000

$$2001 \quad f(x) = \nabla \phi^*(g(x)) = \text{softmax}(g(x)) \\ 2002 \quad g(x) = \log(f(x))$$

2003 The perturbed loss can then be expressed in terms of the dual variables. The dual loss on perturbed
 2004 logits $g + w$ is equivalent to the primal loss on the perturbed probability distribution $f \star w$:
 2005

$$2006 \quad \ell_{\text{nll}}^*(y, g + w) = \ell_{\text{nll}}(y, \text{softmax}(g + w)) = \ell_{\text{nll}}(y, f \star w)$$

2007 where $f \star w = \text{softmax}(\log(f) + w)$.
 2008

2009
 2010
 2011
 2012
 2013
 2014
 2015
 2016
 2017
 2018
 2019
 2020
 2021
 2022
 2023
 2024
 2025
 2026
 2027
 2028
 2029
 2030
 2031
 2032
 2033
 2034
 2035
 2036
 2037
 2038
 2039
 2040
 2041
 2042
 2043
 2044
 2045
 2046
 2047
 2048
 2049
 2050
 2051

2052
2053

E.8 CONFORMAL PREDICTION VIA WEIGHTED CALIBRATION

2054
2055

Here we observe that conformal prediction guarantees can be expressed as a type of *weighted calibration* (Gopalan et al., 2024), for a particular weight family.

2056
2057
2058

Recall conformal prediction asks for a model $F(x)$ which outputs a *set* of labels, with the guarantee that this set contains the true label with high probability. Specifically, a conformal predictor has *coverage* α if:

2059
2060

$$\Pr_{x,y \sim \mathcal{D}}[y \in F(x)] \geq 1 - \alpha. \quad (49)$$

2061
2062

For an introduction to conformal prediction, see Angelopoulos et al. (2023) or the lecture notes of Tibshirani (2023).

2063
2064

E.8.1 CONFORMAL PREDICTION FROM FULL CALIBRATION

2065
2066
2067
2068

Given a standard predictor f , which outputs a distribution on labels, one natural way to construct a conformal predictor F_α is: given input x , and prediction $f(x)$, output the set of highest-predicted-probability labels which sum to total probability $1 - \alpha$. This means, outputting the K most-likely classes according to $f(x)$, where K is chosen per-sample based on the predicted probabilities.

2069
2070
2071
2072
2073

The first observation (which is folklore) is: if the predictor f is perfectly calibrated, in the sense of full-calibration, then the induced conformal predictor F_α is correct (i.e. has coverage α). This statement is not very relevant in practice, since full calibration is often too strong to hold. However, we can achieve the same result with a weaker notion of calibration. This is a straightforward result; we sketch the argument below.

2074
2075

E.8.2 CONFORMAL PREDICTION FROM WEIGHTED CALIBRATION

2076
2077
2078

Lemma 38. Suppose $f : \mathcal{X} \rightarrow \Delta_N$ is perfectly weighted-calibrated (in the sense of Gopalan et al. (2024)) with respect to the following family of weight functions $w(f) \in \mathbb{R}^N$:

2079
2080

$$\mathcal{W} := \{w(f) = \sigma \mathbb{1}_{T_\alpha(f)} \mid \alpha \in [0, 1], \sigma \in \{\pm 1\}\} \quad (50)$$

2081
2082

Where $\mathbb{1}_T \in \{0, 1\}^N$ is the indicator-vector for set of indices T , and the set T contains the highest-probability labels, defined as:

2083
2084
2085
2086

$$t_\alpha^*(f) := \max\{t : \left(\sum_{i \in [N]} f_i \mathbb{1}\{f_i \geq t\} \right) \geq 1 - \alpha\} \quad (\text{the threshold probability, given } f)$$

2087
2088
2089

$$T_\alpha(f) := \{i : f_i \geq t_\alpha^*(f)\} \quad (\text{The set of top-class indices, for given level } \alpha)$$

That is, suppose:

2090
2091
2092

$$\mathbb{E}_{(x,y) \sim \mathcal{D}}[\langle y - f(x), w(f(x)) \rangle] \equiv 0$$

2093
2094

Then, the induced conformal predictor F_α of f is valid at all coverage levels α .

2095

Proof. (Sketch) Notice that by construction, $\langle f, \mathbb{1}_{T_\alpha(f)} \rangle \geq 1 - \alpha$. Therefore by calibration we must have: $\langle y, \mathbb{1}_{T_\alpha(f)} \rangle \geq 1 - \alpha$.

2096
2097
2098
2099

Moreover, the set $T_\alpha(f)$ is exactly the output of the induced conformal predictor F_α , given base prediction f . Therefore

2100
2101
2102

$$\Pr[y \in T_\alpha(f(x))] = \mathbb{E}[\langle y, \mathbb{1}_{T_\alpha(f)} \rangle] \quad (51)$$

2103
2104
2105

$$\geq 1 - \alpha \quad (52)$$

□

By the general connection of Theorem 27, if a model f is \mathcal{W} -locally-loss-optimal w.r.t. the weight class of Equation (50), then the induced conformal predictor F_α has coverage α for all $\alpha \in [0, 1]$.

2106 F DISAGGREGATED RELIABILITY DIAGRAM RESULTS 2107

2108 In this section, we report disaggregated reliability diagram results for individual configurations we
2109 evaluated. The plots are displayed as follow:
2110

- 2111 • the right three columns present results for instruct models,
- 2112 • the left three columns present results for the corresponding base models.
2113

2114 In some cases, there are multiple instruct models trained from a single base models, hence for some
2115 base models, their results are being presented multiple times.
2116

2117 Some instruct models do not have a public corresponding base model—in those cases, the left three
2118 columns of the row are empty.
2119

2120 As discussed in the Sec. 5, TriviaQA and SimpleQA were not evaluated for the CoT response style.
2121 The figures start on the next page. For a quick references:
2122

- 2123 • GSM8K in App. F.1
- 2124 • OpenMathInstruct in App. F.2
- 2125 • TriviaQA in App. F.3
- 2126 • SimpleQA in App. F.4
2127

2160 F.1 GSM8K

2161

2162

2163

2164

2165

2166

2167

2168

2169

2170

2171

2172

2173

2174

2175

2176

2177

2178

2179

2180

2181

2182

2183

2184

2185

2186

2187

2188

2189

2190

2191

2192

2193

2194

2195

2196

2197

2198

2199

2200

2201

2202

2203

2204

2205

2206

2207

2208

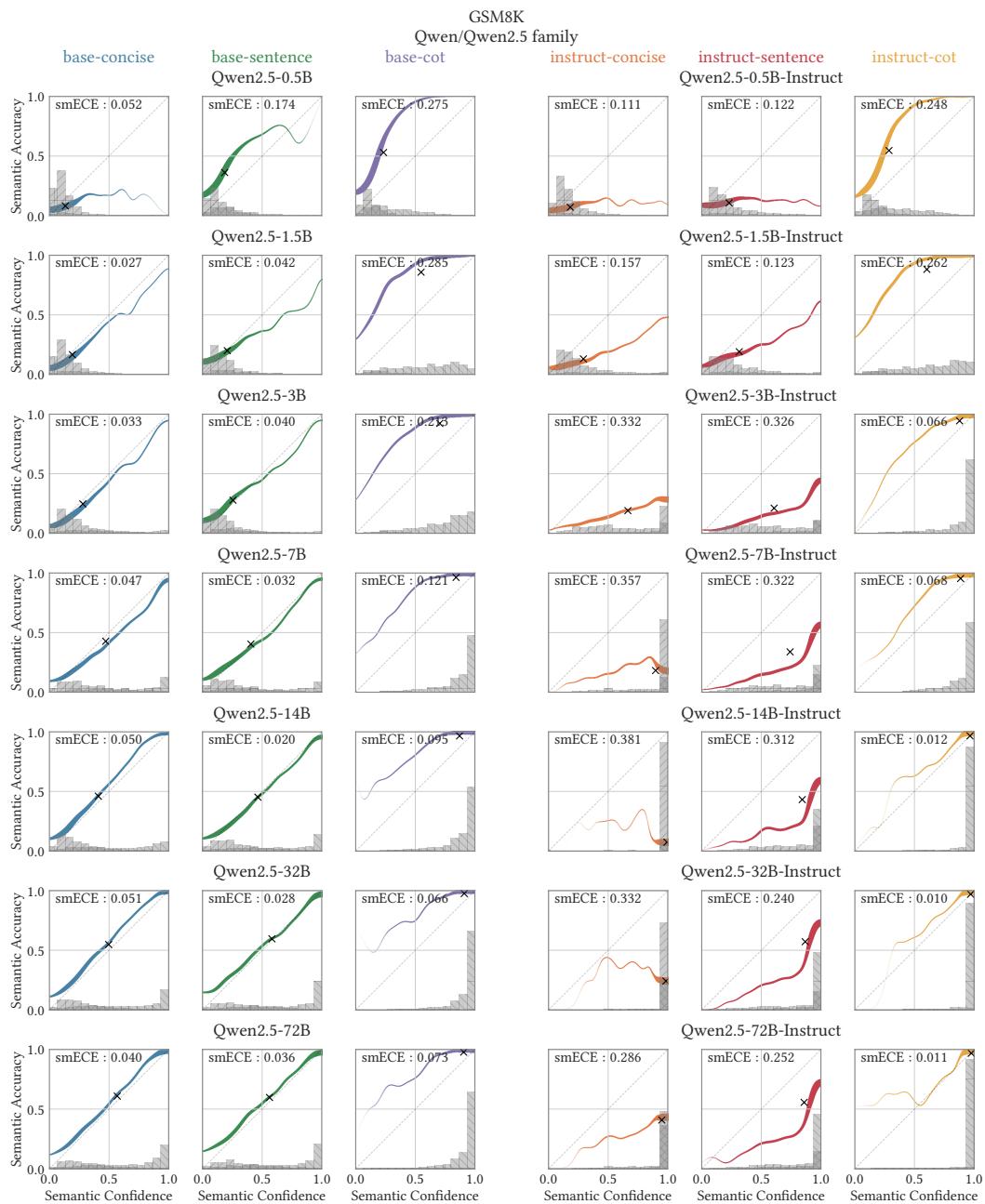
2209

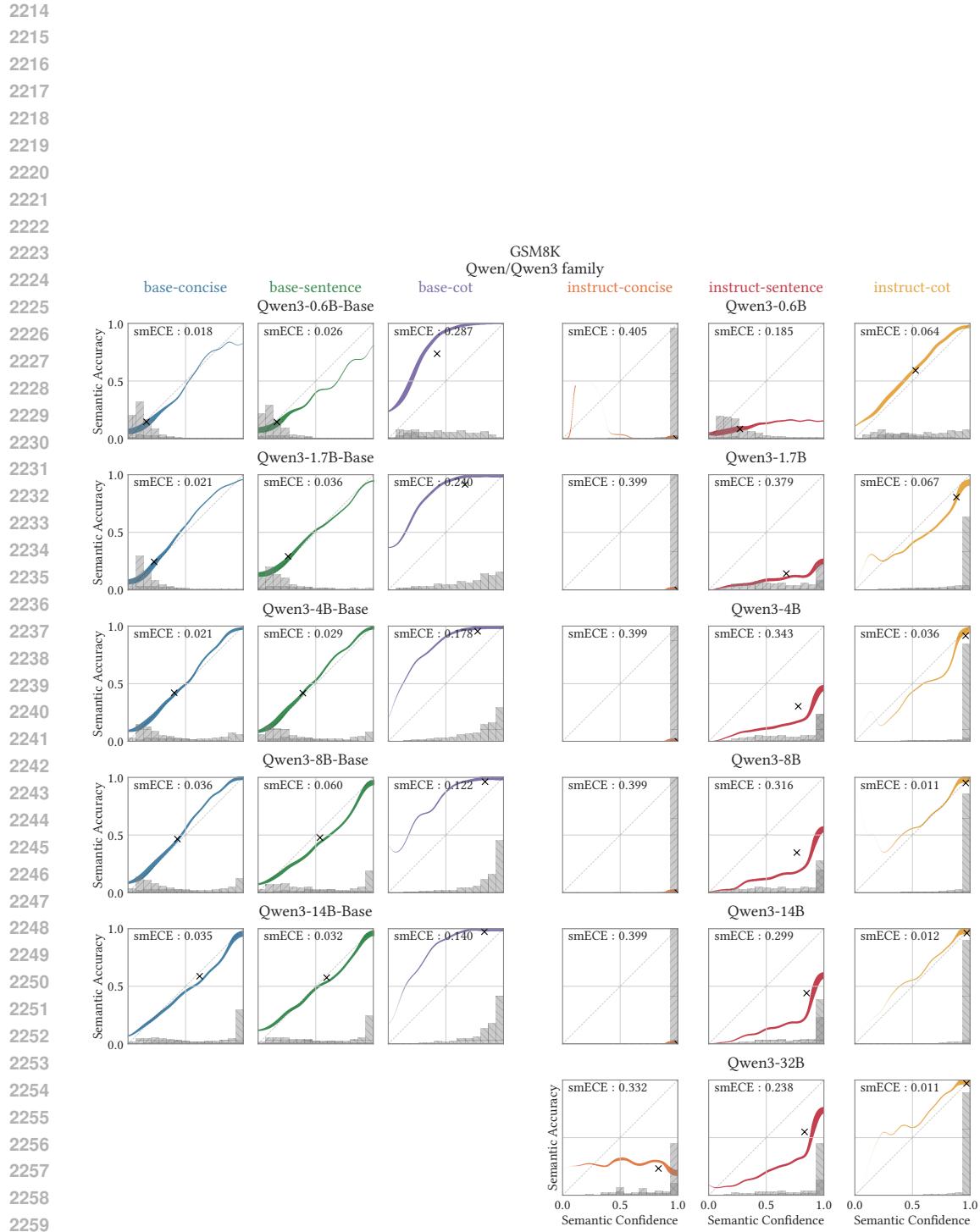
2210

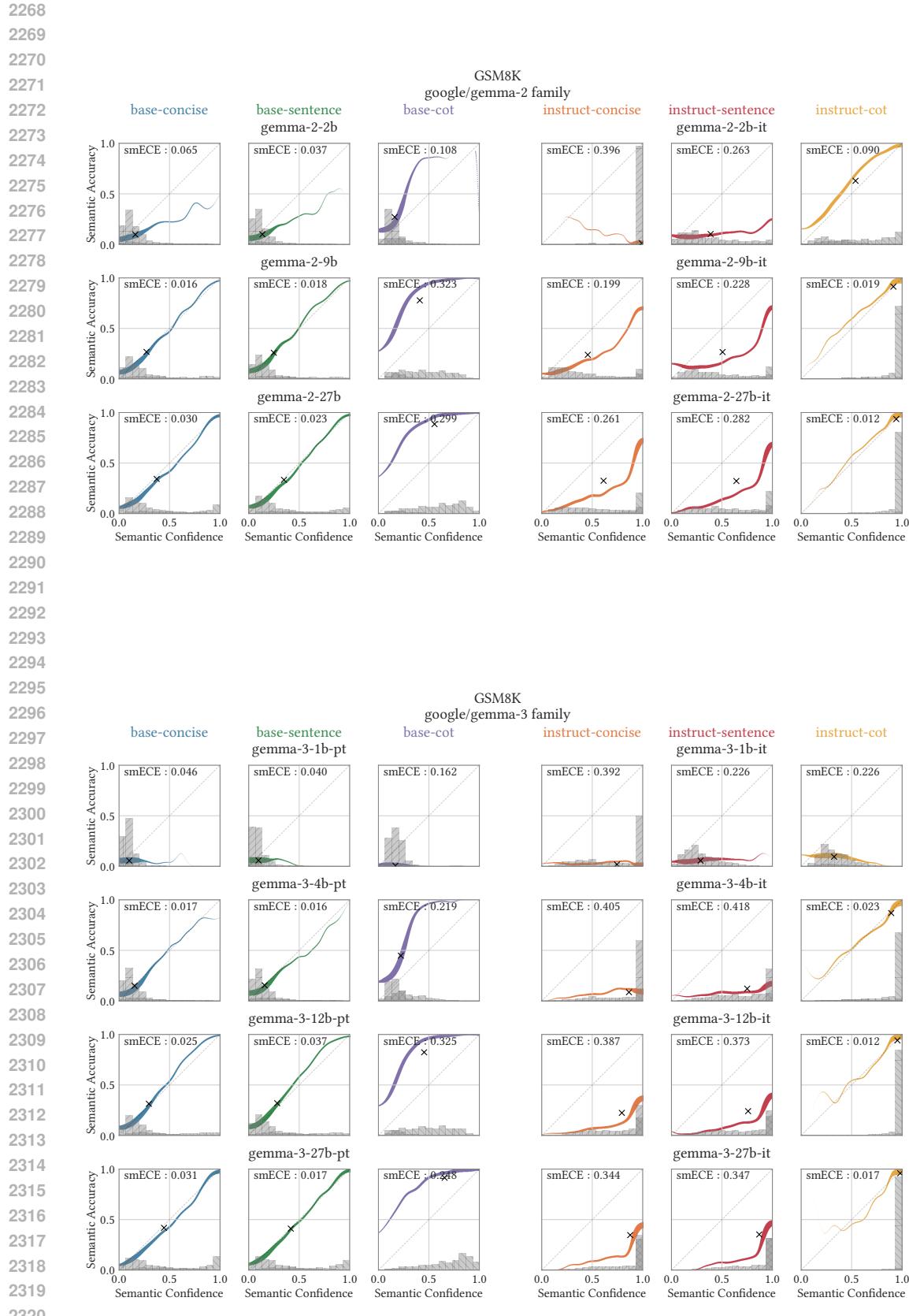
2211

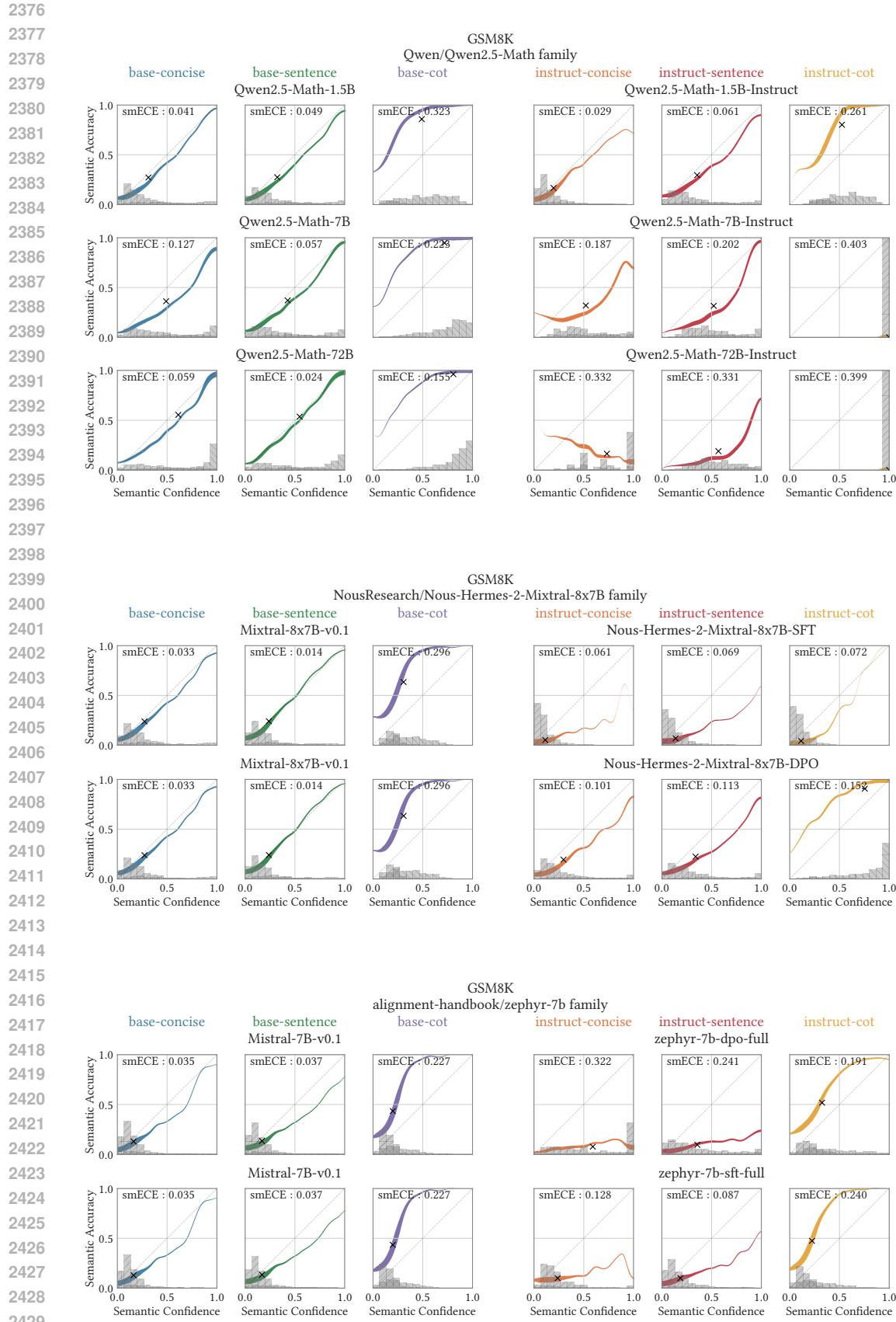
2212

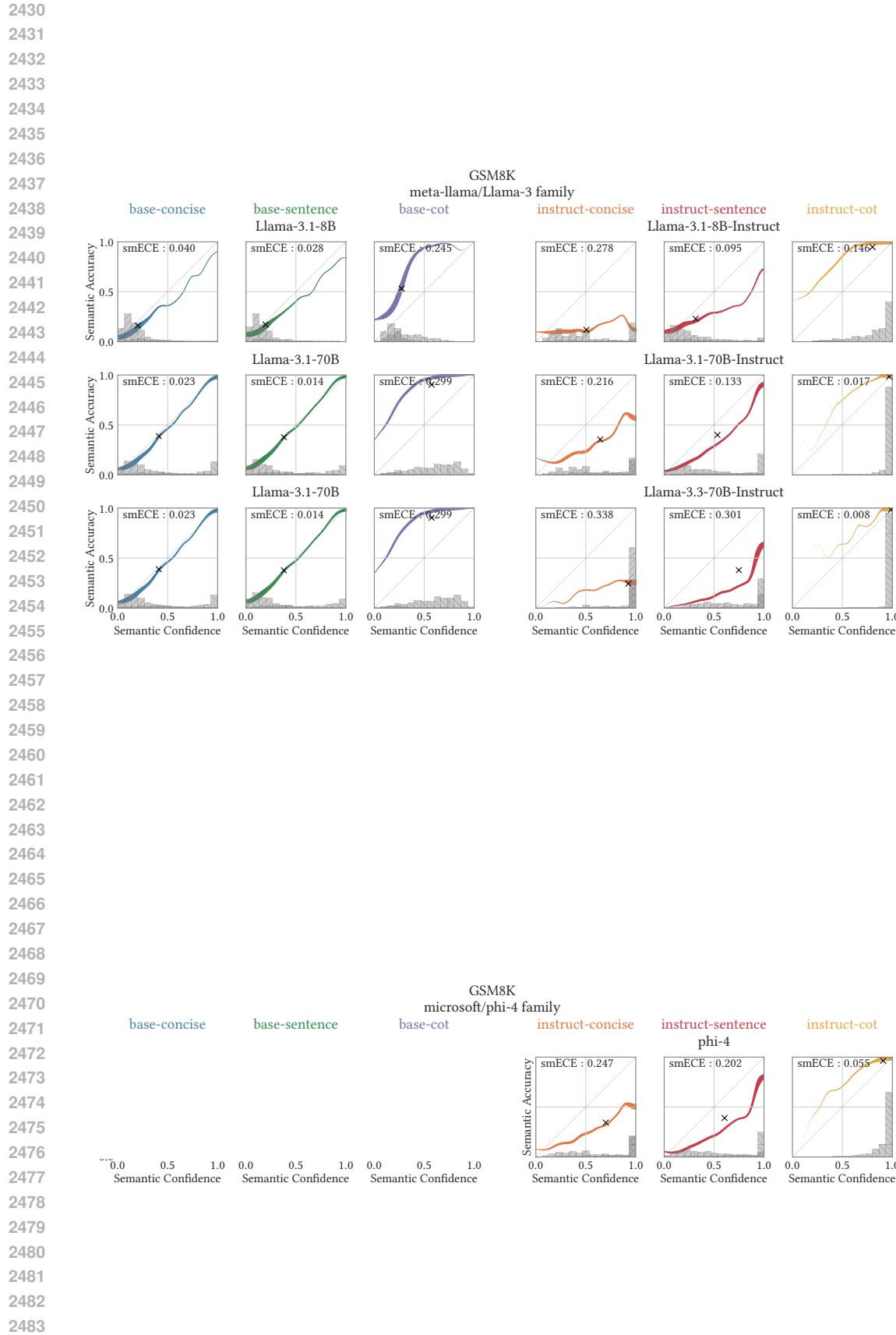
2213



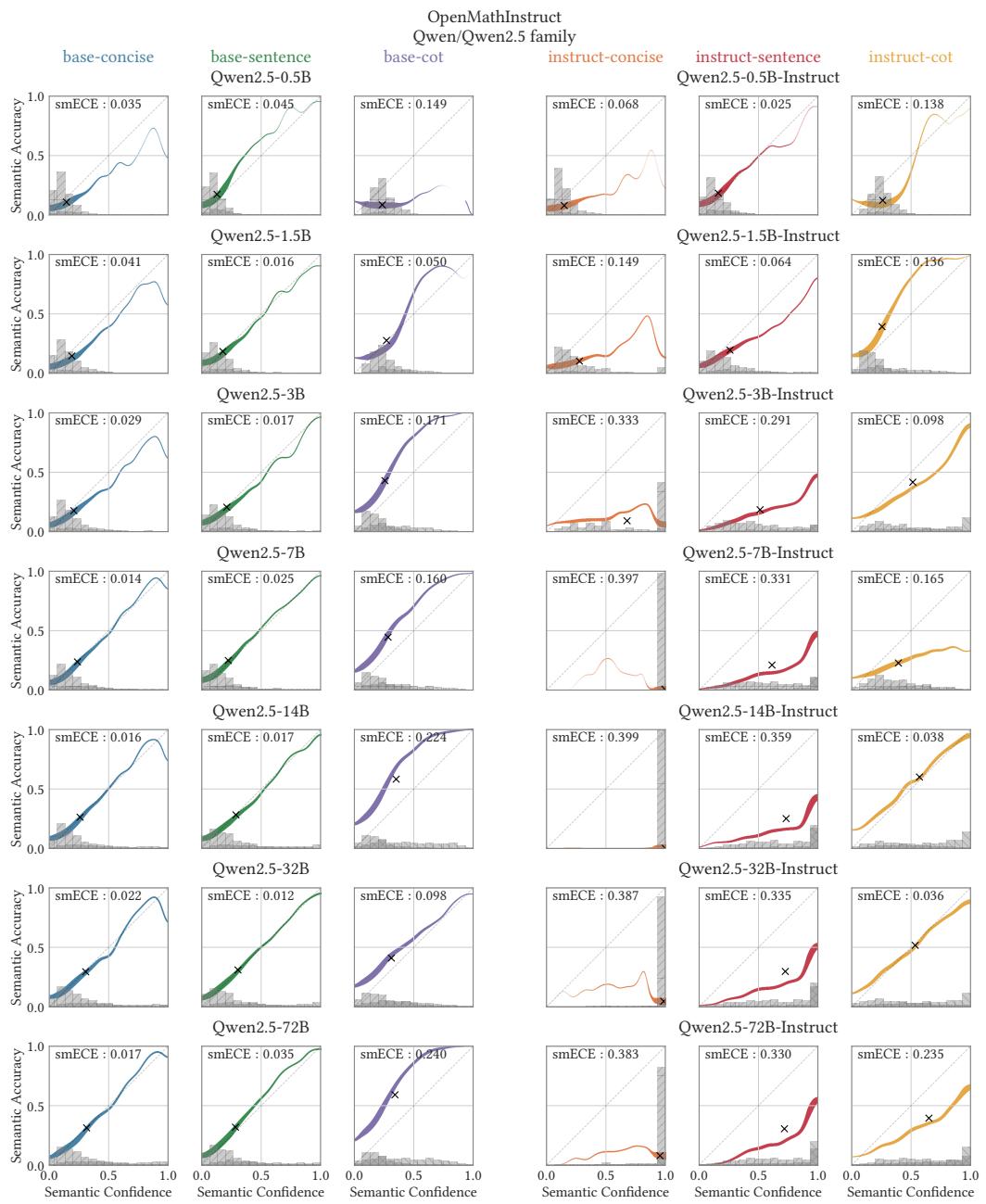


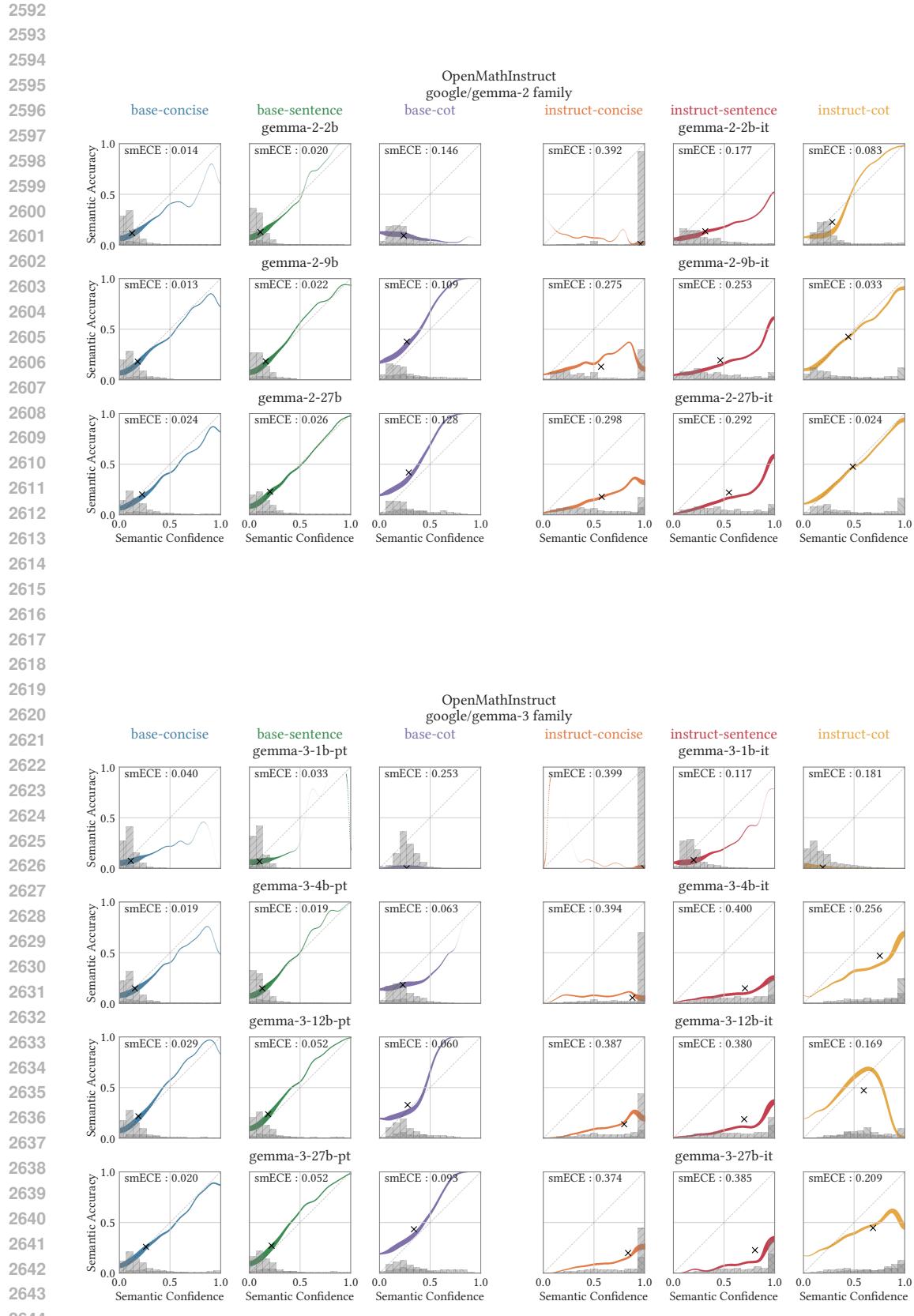


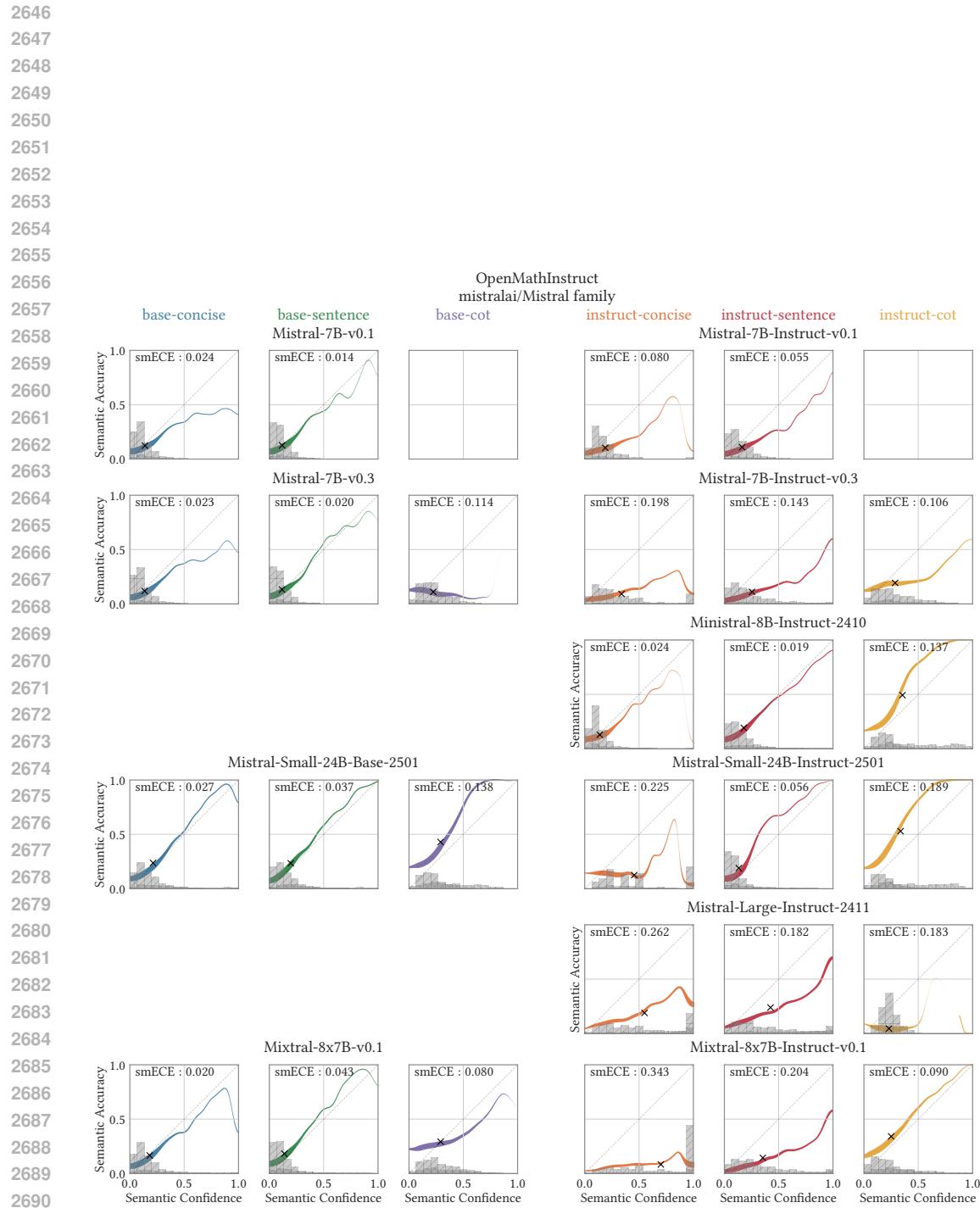


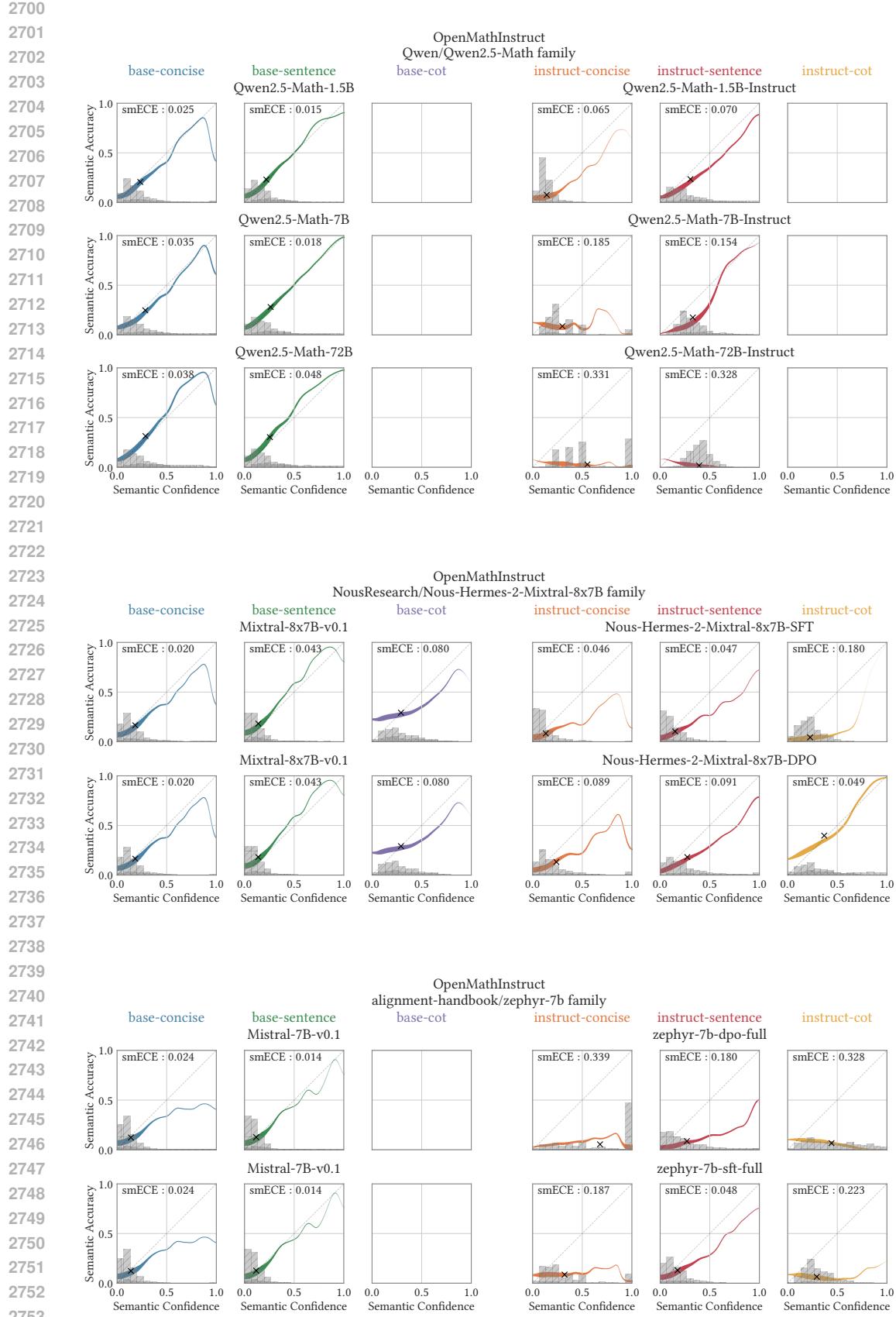


2484
2485 F.2 OPENMATHINSTRUCT
2486
2487









2808 F.3 TRIVIAQA
2809

2810

2811

2812

2813

2814

2815

2816

2817

2818

2819

2820

2821

2822

2823

2824

2825

2826

2827

2828

2829

2830

2831

2832

2833

2834

2835

2836

2837

2838

2839

2840

2841

2842

2843

2844

2845

2846

2847

2848

2849

2850

2851

2852

2853

2854

2855

2856

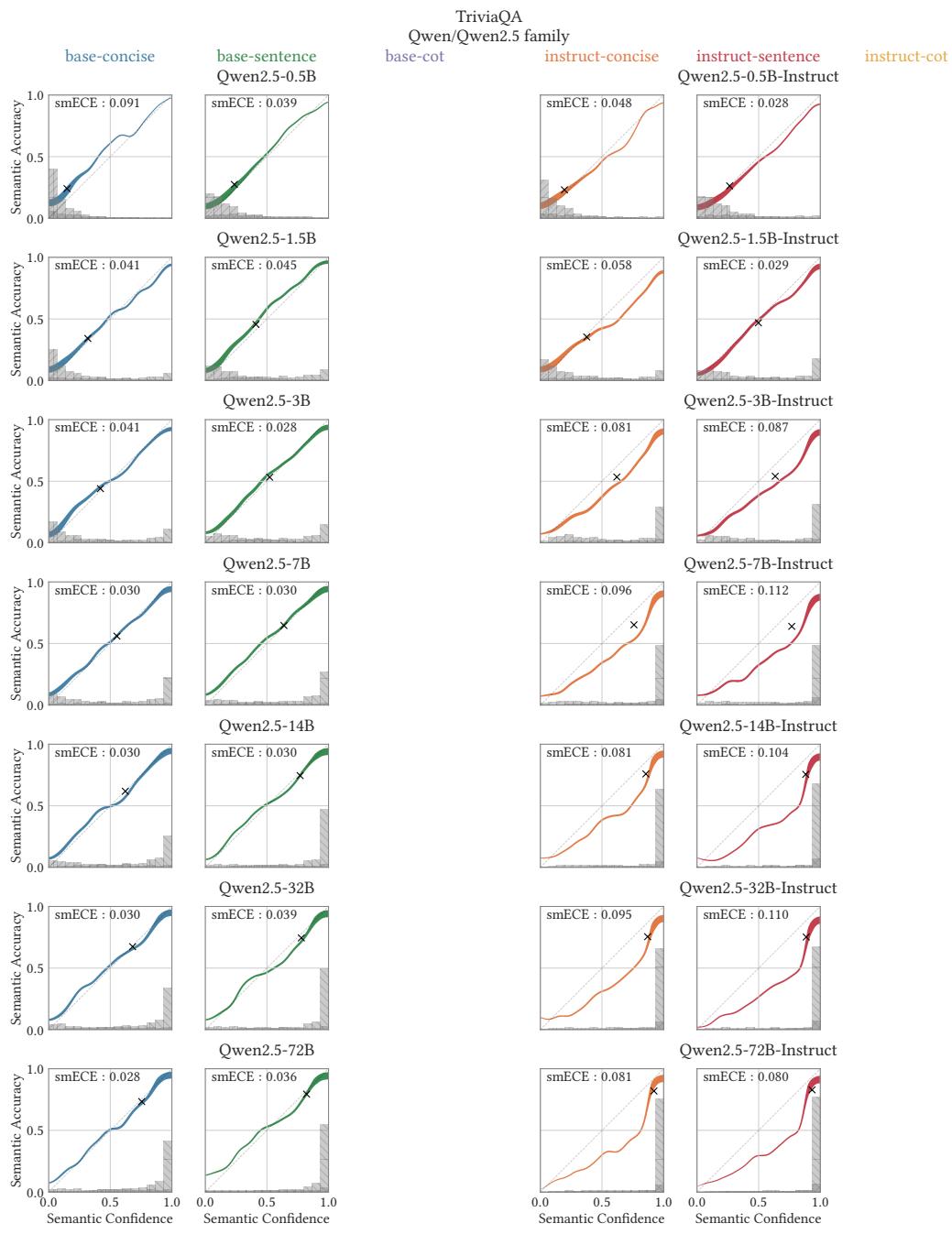
2857

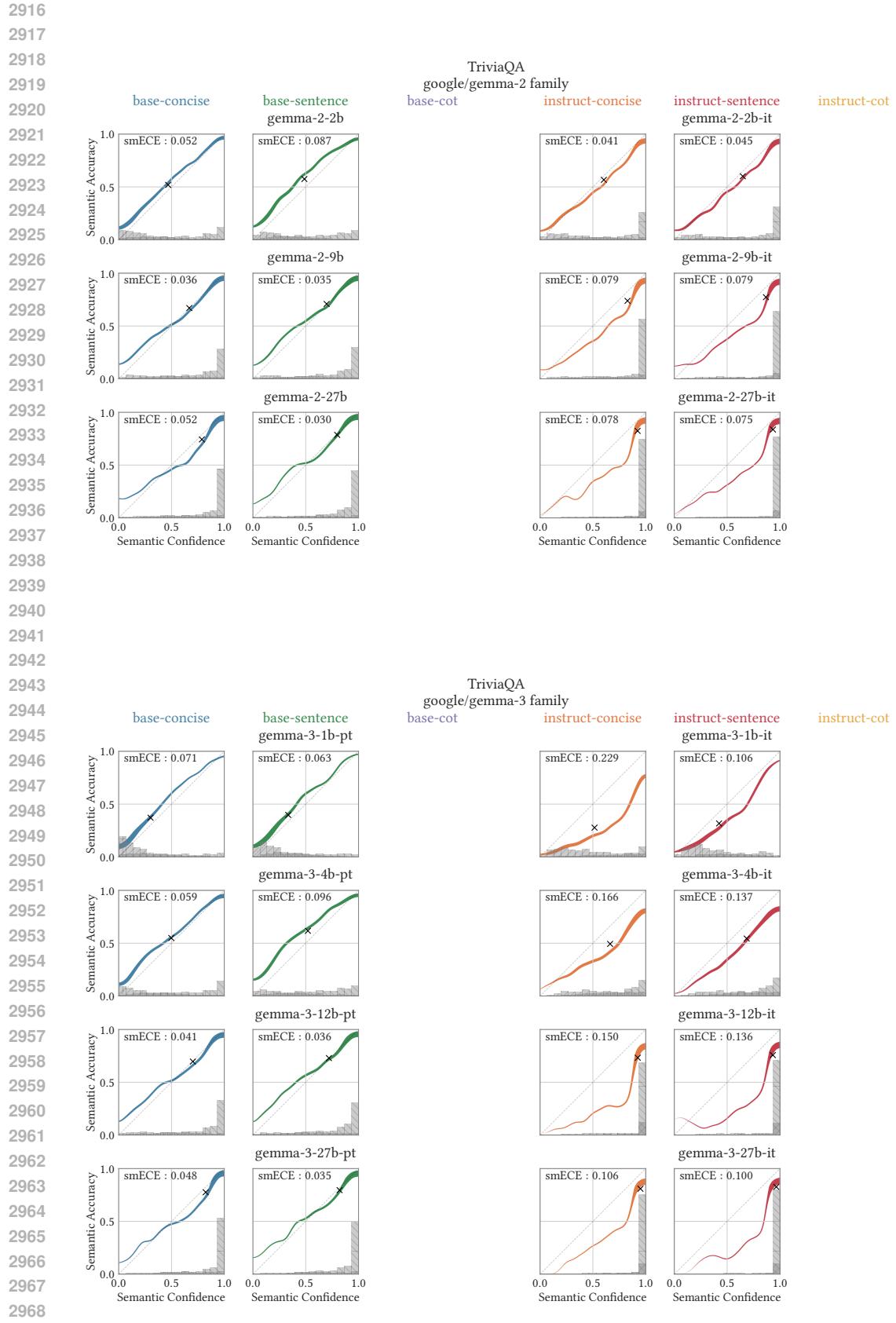
2858

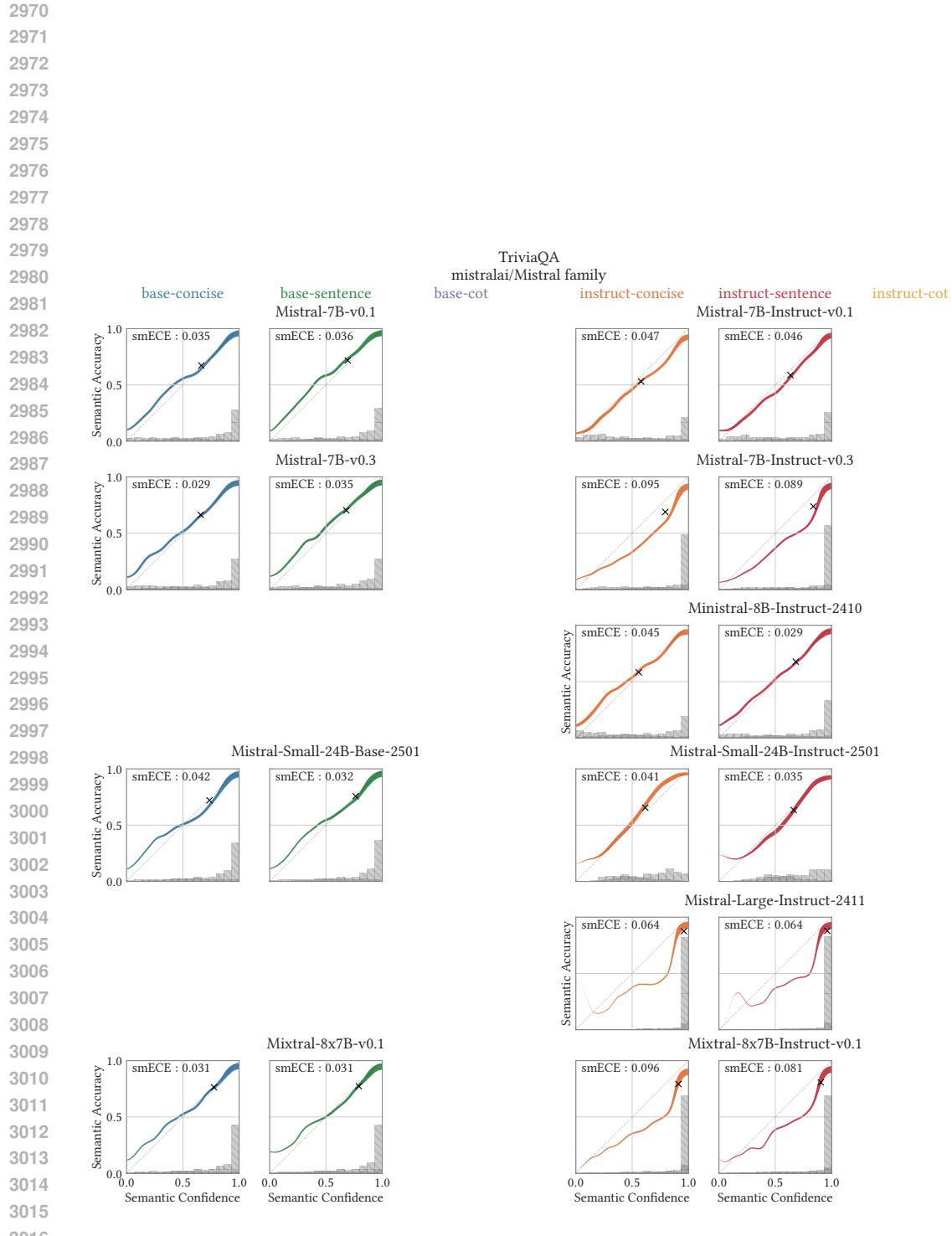
2859

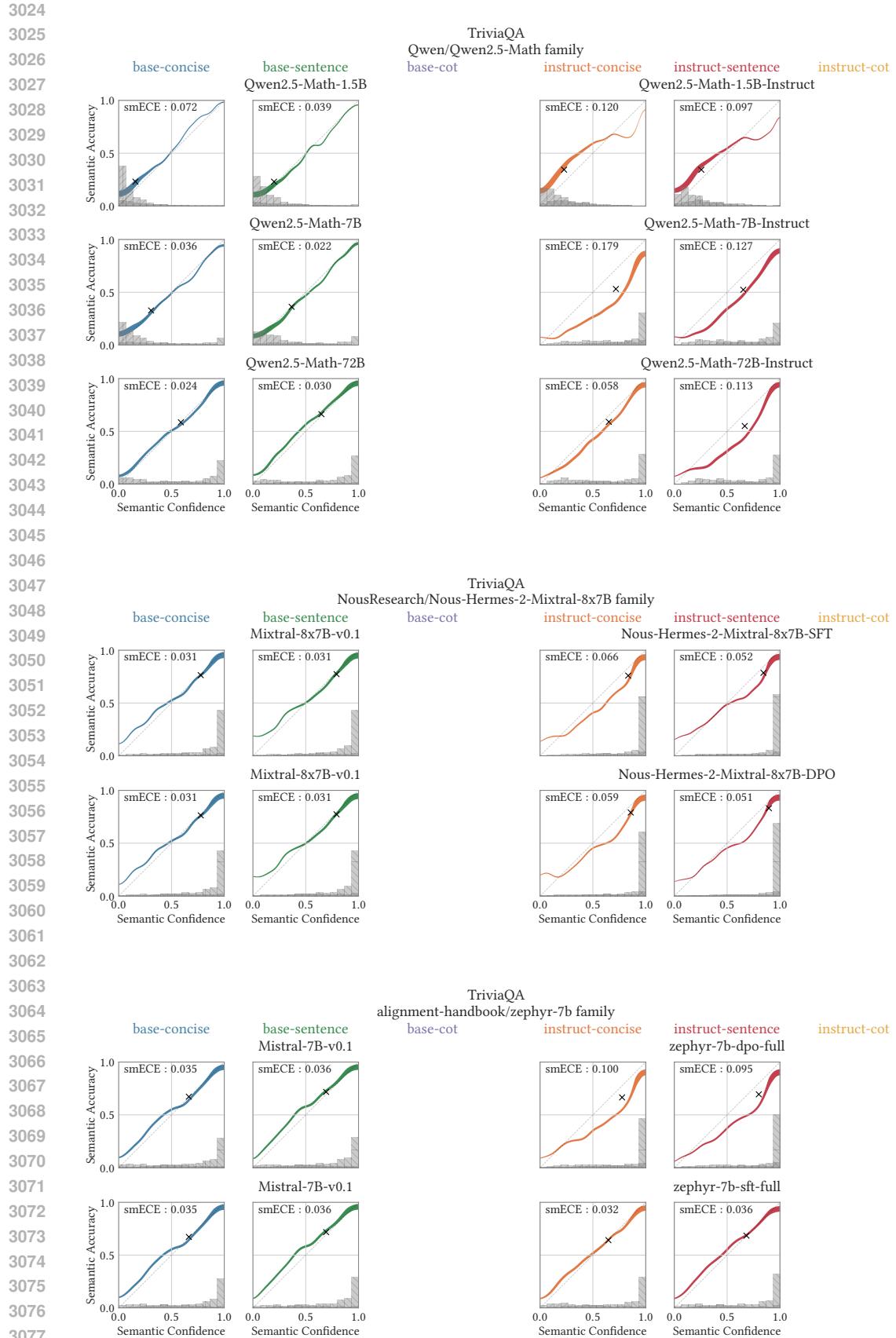
2860

2861









3132
3133

F.4 SIMPLEQA

3134

3135

3136

3137

3138

3139

3140

3141

3142

3143

3144

3145

3146

3147

3148

3149

3150

3151

3152

3153

3154

3155

3156

3157

3158

3159

3160

3161

3162

3163

3164

3165

3166

3167

3168

3169

3170

3171

3172

3173

3174

3175

3176

3177

3178

3179

3180

3181

3182

3183

3184

3185

