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ABSTRACT

Large Language Models (LLMs) often lack meaningful confidence estimates for
their outputs. While base LLMs are known to exhibit next-token calibration, it re-
mains unclear whether they can assess confidence in the actual meaning of their re-
sponses beyond the token level. We find that, when using a certain sampling-based
notion of semantic calibration, base LLMs are remarkably well-calibrated: they
can meaningfully assess confidence in various open-ended question-answering
tasks, despite being trained on only next-token prediction. To formalize this phe-
nomenon, we introduce “B-calibration,” a notion of calibration parameterized by
the choice of equivalence classes. Our main theoretical contribution establishes
a mechanism for why semantic calibration emerges in base LLMs, leveraging a
recent connection between calibration and local loss optimality. This theoretical
mechanism leads to a testable prediction: base LLMs will be semantically cali-
brated when they can easily predict their own distribution over semantic answer
classes before generating a response. We state three implications of this predic-
tion, which we validate through experiments: (1) Base LLMs are semantically
calibrated across question-answering tasks, (2) instruction-tuning procedures sys-
tematically break this calibration, and (3) chain-of-thought reasoning breaks cali-
bration (intuitively because models cannot predict their final answers before com-
pleting their generation). To our knowledge, our work provides the first principled
explanation of when and why semantic calibration emerges in LLMs.

1 INTRODUCTION

As Large Language Models (LLMs) become increasingly capable, it is important to understand the
nature and extent of their uncertainty. Addressing this is an active research question: can we extract
a meaningful notion of confidence in an LLM’s answers? This question is scientifically interesting
even aside from applications: it is a way of asking, informally, do LLMs “know what they don’t
know”? (Kadavath et al.,[2022)

In the classification literature, one well-understood criterion for uncertainty quantification is calibra-
tion: do the predicted probabilities reflect empirical frequencies? For example, if an image classifier
is 80% confident on a set of inputs, then it should be correct on 80% of those predictions. To apply
this definition to LLMs, one approach is to treat the LLM as a classifier that predicts the next-token,
given all previous tokens. There is strong empirical and theoretical evidence that base LLMs, which
are only pre-trained with the maximum likelihood loss, are typically next-token-calibrated (OpenAll,
2023; [Zhang et al.| 2024; |Desai & Durrett, |2020). Next-token calibration is a meaningful notion of
calibration in certain settings like True/False or multiple choice questions, where a single token en-
capsulates the entire response (Kadavath et al.,|2022; Plaut et al., 2025). However, when the model
produces long-form answers to open-ended questions, we desire a notion of uncertainty with respect
to the semantic meaning of the response, which next-token calibration does not directly capture.

Prior works have proposed a variety of notions of semantic confidence for long-form text, including
verbalized measures and sampling-based measures (e.g. semantic entropy of Farquhar et al.| (2024)).
See |Vashurin et al.| (2025) for a comprehensive overview. However, from the empirical data it is
unclear whether LLMs are naturally calibrated with respect to any of these notions of confidence,
without being specifically trained for calibration (Kadavath et al.|[2022;|Yin et al.,|2023;Band et al.,
2024} |[Kapoor et al.l 2024} [Yoon et al., 2025 | Mei et al.,|2025). Empirically, calibration may depend
on many factors: the test distribution (math, trivia, etc.), the post-training procedure (RLHF, DPO,
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Figure 1: Semantic calibration refers to calibration of an LLM-induced semantic classifier (dashed
box): the classifier induced by post-processing LLM outputs with a given semantic collapsing func-
tion, which we refer to as B throughout. To measure semantic confidence calibration: for a given
question, sample multiple temperature 7'= 1 generations, and extract semantic answers by applying
the collapsing function B (e.g. a strong LLM prompted to extract one-word answers). This yields
an empirical distribution over semantic classes (above: Paris, Rome, Berlin), which we treat as the
classifier output. This classifier output defines a semantic prediction (=argmax probability) and a
semantic confidence (=max probability). Semantic confidence calibration means, over all questions,
these predictions are confidence-calibrated in the standard classification sense.

RLVR, none, etc.), the inference-time procedure (few-shot examples, chain-of-thought (CoT), best-
of-K, etc.), the model size, the model architecture, the sampling temperature, etc. All of these factors
have been posited to affect calibration, for reasons that are not yet well understood (Kadavath et al.,
2022; OpenAlL 2023} |Leng et al., 2025; Xiao et al., [2025}; Zhang et al., [2024}; [Wang et al., 2025)).

A priori, there is no reason to expect emergence{ﬂ of any of these forms of semantic calibration as
a product of standard pre-training with the maximum likelihood loss. In this work, we show both
theoretically and empirically that a particular type of sampling-based semantic calibration actually
does emerge for a large class of LLMs. Our definition is closely related to semantic entropy (Far-
quhar et al., |2024)), as well as the sampling-based definitions of confidence in |Wang et al.| (2023)),
Wei et al.|(2024])), and [Lamb et al.[(2025). At a high level, our approach involves treating the LLM as
a standard multi-class classifier (by collapsing outputs with the same semantic meaning), and then
applying recent theoretical results from the literature on classifier calibration (Gopalan et al.| | 2024;
Btasiok et al.; 2023} 2024). Fig. E]illustrates the overall setup, described in detail in the next section.
To our knowledge, our work is the first to propose a theoretically plausible mechanism for semantic
calibration in LLMs, and we validate the predictions of this theory empirically.

Summary of Contributions. We empirically show that LLMs are semantically-calibrated surpris-
ingly often, for certain settings and types of questions. We offer a candidate theoretical mechanism
to explain how this calibration emerges from standard LLM training (that does not explicitly encour-
age it), and discuss under which settings and for which questions we expect it. The basic prediction
of our theory is that semantic calibration is likely to hold when (1) the model is a base LLM, and (2)
the model is able to directly predict the probability that its answer will land in a given semantic class,
even before it has started to generate it. Intuitively, in order to be semantically calibrated, the model
must “know” how likely it is to generate a ‘“Paris”’-type answer, before it has determined exactly how
it will phrase its answer. This theoretical insight leads to a number of practical predictions about
which models and tasks should be semantically calibrated, which we then test experimentally.

Organization. We start by formally defining the notions of calibration we consider in Sec. 2| In
Sec. 3] we introduce our proposed theoretical mechanism for emergent calibration, and state our
formal results. In Sec.[d] we apply the theory to make three concrete predictions about when LLMs
are semantically calibrated, and in Sec. [5] we experimentally test these predictions.

"We use emergent here to mean a structural regularity that arises implicitly (“for free”) due to system
dynamics, not as a result of explicit external constraints. That is, “Emergence Through Compression” in the
terminology of Krakauer et al.[(2025). We do not mean to discuss changes as a result of model scaling, which
is another common use of the term emergence (Wei et al.;[2022).
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Figure 2: Reliability diagrams demonstrating semantic confidence-calibration of base (pretrained-
only) LLMs across various combinations of datasets, models, and prompts. Calibration error mea-
sured with SmoothECE (smECE), average confidence and accuracy marked with a black cross, and
density of semantic confidences shown in gray histogram; details in Appendix [D.T]

2 SEMANTIC CALIBRATION AND B-CALIBRATION

We now informally describe our framework; formal definitions follow in Sec. @ The core of our
approach is a collapsing function B which post-processes the LLM’s raw text outputs, mapping each
generation to one of a finite set of classes. Of particular interest are semantic collapsing function
which we focus on now. As illustrated in Fig.[I] a semantic collapsing function implicitly transforms
the LLM into an LLM-induced semantic classifier: For a given question, the classifier’s output is
a distribution over semantic classes, whose probabilities can be empirically estimated by sampling
multiple generations from the LLM and applying B to each. From this distribution, we define the
semantic confidence as the probability of the most-likely semantic class, and the semantic accuracy
as whether the most-likely semantic class matches the ground truth’s semantic class. The LLM
is semantically confidence-calibrated if these confidences and accuracies are calibrated across a
dataset—e.g., among questions with 70% semantic confidence, the average semantic accuracy is
also 70%. This definition coincides with |Lamb et al.[ (2025)’s definition of “Empirical Semantic
Confidence” when applied to the full distribution. For example, Fig. [2] measures calibration of
several models using this approach (full experimental details in Sec. [3).

2.1 NOTATION AND SETUP

We now establish the notation used throughout the paper. We assume that our semantic collapsing
function outputs at most X' € N classes, which we represent by the set of indices [K] = {1,..., K}.
We allow K to be arbitrarily large. We identify these classes with the set of standard basis vectors
Ex C RE. The set of probability distributions over a finite set .S is denoted A(.S). For convenience,
we use the shorthand A i = A([K]) for the probability simplex over the K classes.

Language Model and Data. Let V be the model’s vocabulary. We assume throughout that the
evaluation data comes from a ground-truth distribution D over prompt-completion pairs (z,y) €
V* x VNV where N is a maximum generation length. An LLM is a function pg : V* — A(VY) that
maps a prompt z to a distribution over output strings. We use conventional notation: p, = pg(- | )
is the entire distribution over sequences for a given prompt, so we can denote p,(z) = py(z | z)
as the probability of a specific sequence z. The conditional probability of the next token is denoted
po(2i | 7, 2<;). To distinguish model outputs from the dataset, we use z € V' for generated strings
and y € V" for ground-truth completions from D.

Collapsing function. The core of our framework is the collapsing function B : V* x V¥ — [K]
that classifies a given prompt-completion pair into one of K categories. In our theory, B is allowed
to be arbitrary, but we often will think of it as a “semantic collapsing” function, grouping many
different strings into a single semantic class, as visualized in Fig.[I] An example of such a function
is described in App. [D] For convenience, we write B, (z) = B(z,z) to emphasize its role as a
classifier for outputs 2z given a fixed prompt x.

To implement this function, we use a strong auxiliary LLM prompted to extract a canonical short answer
from a long-form string. Details in App. P}
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2.2 CONFIDENCE CALIBRATION

We first recall the relevant definitions of calibration in the multi-class setting (for a unified treatment,
see |Gopalan et al.| (2024, Section 2)). In the K -class setting, classifiers output values ¢ € A and
the true labels take values y € £k (one-hot encodings). Calibration is a property defined for any
joint distribution of prediction-label pairs (¢, y) € Ax x Ek, regardless of whether it was generated
by a classifier. We will focus primarily on confidence calibration, which only considers the proba-
bility assigned to the predicted class; however, we provide analogous results for full calibration in
App. [E.3] The following definition is standard:

Definition 1 (Confidence-calibration). A distribution D over prediction-output pairs (c,y) € A X
Ex is perfectly confidence-calibrated if

E  [ykr — i+ | cir] = 0 where k* < argmax cy,.
(c,y)~D ke[K]

The definition depends crucially on the distribution D. In this work we take D to be the evaluation
distribution of interest (e.g. TriviaQA, GSMSK, etc), unless otherwise specified.

From Language Model to Categorical Predictor For a given prompt x, we obtain a distribution
over K categories by pushing—forwarcﬂ the LLM’s output distribution py(- | ) via the function B,.
Specifically, the distribution over categories 7, := B,fip, = B.ips(- | x) assigns to each category
k € [K] the sum of probabilities of all strings z that B,, maps to that category:

(Butps)(k) = Pr [Bu(2)=kl= > polz]|a) (1)

=~po(le) 2: By (2)=k

This process transforms the original prompt-answer pair (x, y) from the dataset D into a pair suitable
for calibration analysis: (B.ip., B:(y)), where B.tip, is the model’s predicted distribution over
categories and B, (y) is the ground-truth category. Now, we say that the model py is B-confidence-
calibrated if the induced distribution over (B,fp., B.(y)) is confidence-calibrated. That is, B-
confidence-calibration means if the generated and ground-truth answers are both post-processed by
B, then the resulting K -way-classifier is confidence-calibrated.

Definition 2 (B-confidence-calibration). The model py is B-confidence-calibrated with respect to
distribution D if the induced distribution over pairs (Byfps, B:(y)) € Ak x [K] is perfectly
confidence-calibrated (per Definition|[I)).

Our entire framework is well-defined for any arbitrary computable function B, though we usually
choose B to be a semantic-collapsing function. In general, an LLM might be B-calibrated for some
choices of B, but not others—one goal of our theory is to understand why.

3 THEORETICAL MECHANISM

Our proposed mechanism for emergent calibration connects the statistical property of calibration
to the optimization property of local loss optimality, extending the results of Btasiok et al.| (2023
2024) to our LLM setting. The core intuition is that a miscalibrated model implies the existence
of a “simple” perturbation that would reduce its test loss. For instance, an overconfident model
could improve its test loss simply by down-weighting the probability mass on all strings within its
top semantic class. We argue that base LLMs, trained to minimize cross-entropy loss, should not
leave such “easy wins” on the table, and thus should be well-calibrated. The primary challenge is
formalizing how an autoregressive model can implement such a sequence-level perturbation. To
do so, the model must implicitly “know” its semantic confidence. This requirement is key, as its
difficulty varies by task (e.g., it is easier for trivia than for chain-of-thought math), allowing our
theory to make fine-grained, testable predictions. A technical overview is in Sec. [3.1] followed by
formal theorem statements in Sec. [3.2]and Sec. All proofs are deferred to App.
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Figure 3: Proposed Mechanism for Semantic Calibration in LLMs.

3.1 PROPOSED MECHANISM: OVERVIEW

Fig.B]illustrates our proposed mechanism. There are three steps; two of them we prove and the third
is an existing heuristic. We outline each step below, following Fig. [3| from right-to-left.

The first step of our argument, outlined in Sec. is a general equivalence, building on the work
of |Bfasiok et al.| (2023)) which established a link between calibration and local loss optimality. We
prove in Thm. [6] that for any choice of collapsing function B, B-calibration is equivalent to local-
loss-optimality with respect to a corresponding family of local perturbations, denoted WWg. That is,
an LLM is perfectly B-calibrated on distribution D if and only if its cross-entropy loss on D cannot
be improved by perturbing the LLM’s output distribution (on entire sequences) via some function in
the family Wp. Thus, Thm. []tells us that if we want to understand when LLMs are B-calibrated,
we can equivalently understand which types of perturbations LLMs are loss-optimal with respect to.

M At this point, we invoke an informal assumption proposed in Btlasiok et al.| (2023)), and likely
folklore much earlier: we assume that base LLMs are nearly locally-loss-optimal on their pretraining
distribution, w.r.t. any perturbation that is “simple” for the LLM to implement. The intuition here
is that since base LLMs are trained explicitly to minimize cross-entropy loss, they should not leave
any easy wins on the table: if such simple perturbations could have improved the test loss, the
training procedure would already have incorporated them. We agree with [Btasiok et al.| (2023) that
this assumption is plausible, because it is fairly weak; it does not require that models are globally
optimal in any sense.

M From the above two points, we can conclude that a base LLM will be B-calibrated if the corre-
sponding perturbation family Wg is simple for the LLM to implement. But when is WWg simple to
implement? This is subtle because the perturbations Wp are defined over the sequence-level prob-
ability distribution, but LLMs must implement perturbations by modifying nexz-token probabilities.
We bridge this gap in Thm. [} we show that if the LLM is able to “autoregressively-estimate” B —
that is, estimate its own induced distribution over B-classes at each point during autoregressive gen-
eration — then the associated family of perturbations Vg has a simple autoregressive representation.
Roughly-speaking, the autoregressive-estimation requirement says that the model must “know” how
likely it is to generate an answer of a given B-class at every point during generation (even the very
beginning). Notably, this does not require the model to know the correct answer’s B-class.

Putting everything together, this mechanism predicts that a base LLM will be B-calibrated if B
is easy for the LLM to autoregressively estimate. When B is a semantic collapsing function, this
theory naturally suggests a number of practical predictions about which models and tasks should
be semantically calibrated, which we explore and test experimentally in Sec.[5] The next several
sections give the formal theory supporting the mechanism we have just outlined.

3.2 B-CALIBRATION AND LOCAL LOSS OPTIMALITY

We now setup and establish the equivalence between calibration and local loss optimality (Thm. [6).
We use the sequence-level cross-entropy loss, which decomposes into the standard autoregressive

next-token log-10ss: Bz, )~ [l(¥,P2)] = E(zy)~p [— Ziem log po(y; | y<i,x)} . We will use

3We use “f” as the standard notation for the mathematical pushforward of a measure by a function. E.g. for
a function B and distribution p, the notation Bfp denotes the distribution of { B(z)}z~p

“Technically, we need local-loss-optimality not only for the overall pretraining distribution, but also for each
evaluation distribution individually (TriviaQA, GSM&K, etc), since we are evaluating calibration on individual
distributions. We will however assume that the latter holds (which is plausible if each evaluation distribution is
a reasonably-sized sub-distribution of the pretraining distribution on which local-loss-optimality holds).
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the following notion of perturbing a distribution, known as exponential tilting (Cover & Thomas,
1999| Chapter 11), which turns out to be the appropriate notion for the cross-entropy loss.

Definition 3 (Perturbation operator). Given a distribution f € A(V™N) over sequences, and a signed
measure w € RIV"|, define the perturbed distribution (f xw) € AWN) as:

Vze VN1 (f xw)[z] := softmax(w[z] + log f[2]). (2)

Next we define a specific class of perturbations which characterize B-confidence-calibration. In-
tuitively, these perturbations modify the probability of the most-likely B-class, by modifying the
probability of each string z according to (only) its B-class B, (z). The formal definition is some-
what technical, based on the language of weighted calibration developed in|Gopalan et al.|(2024).

Definition 4 (Semantic Perturbation Function Classes). Given an arbitrary collapsing function

B.(z) € [K], we define the class Wg of perturbation functions w(x,p;) € RV as follows.
These functions w(x,p,) generate a perturbation vector based on the prompt x and the model’s
predictive distribution p,.

Wp ={w|37:[0,1] = [-1,1]Vz € VN : w(x,p,)[z] = T(?Tz[k*]) -1{B.(2) = k*}},

where 7, := B.fp,, and k¥ + argmaxm,[k].
kE[K]

Finally, we define local loss optimality with respect to an arbitrary perturbation class W.

Definition 5 (VV-local loss optimality). We say that py is VV-locally loss-optimal if

Yw e W : E [ly,p)] < E [ly,pz*w,)] wherew, = w(z,pz), pe = pol- | ).
(z,y)~D (z,y)~D

We can now state the main result of this section (see App. [E|for all proofs).

Theorem 6 (Equivalence of Calibration and Local Loss Optimality). Given a model pg, a collapsing
function B, and a distribution D, the model py is perfectly B-confidence-calibrated on D if and only
if po is Wp-locally loss-optimal on D.

Remark 7. Thm. [6]states a simplified version of our full theoretical results, for the sake of clarity.
Thm. [6] only characterizes perfect confidence-calibration, but it is possible to show a much more
robust equivalence: it turns out that a model is “close to” B-calibrated if and only if it is "close
to” locally-loss-optimal in the appropriate sense. We state and prove this generalized version as
Thm.[36)in App.[E} where we also generalize to allow any arbitrary proper-loss {, and any notion of
weighted-calibration (including canonical calibration and confidence calibration).

Remark: Technical Tools and Prior Work The connection between local-loss-optimality and
calibration was formally studied in (Btasiok et al., [2023)), which proved a version of Thm. |§|for bi-
nary classifiers, and was our inspiration for this work. Moving from binary classifiers to LLMs posed
three main technical challenges. First, in binary classifiers there is essentially only one canonical
notion of calibration, and so Btasiok et al.|(2023)) only required one notion of local-loss-optimality.
However in our LLM setting, there are many notions of calibration (parameterized by functions B),
and so we needed to identify the “right” notion of local-loss-optimality that is also parameterized by
B. To do this we observed that B-calibration can be written as a type of “weighted calibration,” a
notion introduced in |Gopalan et al.| (2024). Second, we needed to generalize the 1-dimensional re-
sults of Bfasiok et al.| (2023)) to higher dimensions, to handle multi-class settings. This turned out to
be a straightforward though somewhat technical generalization, using the Savage representation of
proper losses (Savage, |1971). Third, and most significantly: unlike classifiers, LLMs do not output
their predicted probabilities explicitly. Rather, they implicitly define a probability distribution via
their next-token predictions. This difference between implicit and explicit probability distributions
required a number of conceptual adaptations to the theory of Btasiok et al.|(2023)), which guided our
definitions of the perturbation operator and W-local-loss-optimality (Definition [3)).

3.3 SPECIALIZING TO AUTOREGRESSIVE MODELS

It remains to understand when the perturbation class W is easy for an LLM to implement (Thm. 9]
from Fig. [B). The challenge is that these perturbations are defined over entire sequences, while
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autoregressive models operate token-by-token. Thus, for a perturbation to be easy for an LLM to
implement, the perturbed next-token probabilities (p, * w,)(z; | z<;) must be some simple mod-
ification of the original probabilities p,(z; | z<;). It turns out that for perturbations in Wpg, the
perturbed next-token distribution can be expressed as a simple re-weighting of the original distri-
bution. This re-weighting is governed by a set of scalar-valued functions {g;}, defined below. We
call these functions “autoregressive B-confidences”, because g;(z<;; ) is the probability mass the
model places on its most-likely B-class, given both the question = and the response prefix z<; gen-
erated so far. Thus, the difficulty of implementing the sequence-level perturbation reduces to the
difficulty of representing these intermediate confidence values during generation.

Definition 8 (Autoregressive B-Confidences). For a given function B : V* x VN — [K| and model
P, we define the autoregressive B-confidences as the scalar-valued functions {g; }ic{o.1,... .N}:

gi(z<iyx) := Pr [B.(z) = k*] where k* + argmax(B,fp.)[k].
ke[K]

zevpo (l2,2<4)

We will informally say that B is “easy to autoregressively represent” if the autoregressive B-
confidences g; have a simple representation (e.g. each g; is computable by a small circuit). In
that case, we show in Thm. [9] that the perturbed model py * w has an only-slightly-more-complex
representation than the original model pg. Specifically, the perturbed model can be computed by
composing a circuit Cy, with the functions g;. Explicit formulas are provided in App.[E.6.3]

Theorem 9. For all functions B : V* x VN — [K| and all perturbations w € Wp, there exists a
small circuif| C., such that for all models pg : V* — A(VN), all x € V*,z € VN, all i € [N), and
with p,, = pg(- | ©), wy := w(x,py), the perturbed model x — p,, * w,, satisfies

(pz *wx)(zi | Z<i) X Cw(avgi(zﬁi;m)7go($)) 3)

where the constant of proportionality is independent of z;, a ‘= p.(z; | 2<;) is the original next-
token probabilities, and g, g; are the autoregressive B-confidences of Definition |8

Putting all the theory together, the message is: if B is easy for the LLM to autoregressively represent,
then perturbations Wgp are easy to implement, and we should expect emergent B-calibration.

4 EXPERIMENTAL PREDICTIONS: WHEN ARE LLLMS CALIBRATED?

Our main empirical question is: Under what conditions and for which functions B should we expect
a pretrained LLM to be B-confidence-calibrated?

The theory of the previous section suggests an answer: we should expect emergent B-calibration
when the autoregressive B-confidences (Definition[8)) are easy for the LLM to learn. We can simplify
this into an experimentally-testable heuristic: for a given question z, is it easy for the LLM to predict
(i.e. does it “know”) the distribution B, fp,. of its answers post-processed by B? Practically, we can
operationalize “easy for the LLM to predict” by training a small LoRA on top of the base LLM to
predict the B-class of the answer.

Claim 10 (Main, heuristic). Ler (x,y) ~ D be a distribution on question-answer pairs, let B :
V* x VN — [K] be a collapsing function, and let py(z | ) be an autoregressive language model
trained on D with cross-entropy loss. Then, pg will be B-confidence-calibrated on D if the function
G : V* — Ak defined as

G :x — B.lip, is “easytolearn” for the LLM (e.g. with a LoRA adapter)

Inwords: the LLM should be able to accurately estimate the distribution over semantic labels B, (z),
under its own generative process, given the question .

Finally, we specialize Claim [I0|to the practical case of semantic calibration—that is, we let B be a
function that collapses long-form answers into semantic equivalence classes, yielding the following:

Corollary 11 (Main, heuristic). LLMs trained autoregressively with cross-entropy loss will be se-
mantically calibrated on in-distribution data if: the model can easily predict its own output distri-
bution over semantic answers, given only the question.

>Specifically, an arithmetic circuit of constant depth and ©(K) width.
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Corollary [IT]leads to the following predictions, which we verify experimentally in Sec. [5]

Prediction 1: Semantic calibration emerges from standard pretraining. When B is a semantic-
collapsing function, we expect it to be easy-to-predict in many settings: Claim [I0] only requires
that the LLM intuitively “knows” what types of semantic-answers it is likely to output for a given
question. Thus, we should expect emergent semantic calibration for a large class of pretrained
LLMs, a remarkable fact not previously understood.

Prediction 2: Instruction-tuning can break calibration. We only theoretically predict calibration
in models trained autoregressively with cross-entropy loss, that is, standard pretraining or SFT.
(Cross-entropy loss is required to connect calibration with local-loss-optimality in Thm. [6]) We
have no reason to expect calibration in models trained in other ways, including Instruct models
post-trained with RLHF, DPO, or RLVR - although our theory does not preclude it.

Prediction 3: Chain-of-thought reasoning (CoT) can break calibration. To satisfy the conditions
of our theory, the distribution over semantic classes must be easy for the model to estimate, even be-
fore generating the first token. In hard CoT setting such as math problem-solving, the model usually
does not know what its answer will be until it has finished “thinking”. Therefore, CoT is expected
to break our mechanism for calibration. Notably, what makes CoT powerful (allowing the model
to leverage more compute to produce a better answer than it could have produced immediately) is
exactly what makes our mechanism of calibration fail.

5 EXPERIMENTS

In this section, we experimentally test the predictions of our theory on real models and datasets.
All of our experiments include 5-shot examples in the prompt, and use temperature 7' = 1 sam-
pling. We compare three different prompts, designed to elicit different styles of responses from the
model: “concise” (answer in a single word/phrase), “sentence” (answer in a complete sentence),
and “chain-of-thought (cot)”. The few-shot examples are formatted in the desired style (e.g. for the
“sentence” type, the few-shot examples have complete sentence answers). To measure calibration
error, we use the SmoothECE metric introduced by |Btasiok & Nakkiran|(2024). For lack of space,
full experimental details are in App.

5.1 EXPERIMENTAL RESULTS

We evaluate semantic calibration of Qwen, Gemini, Mistral, and Llama-family models, of varying
sizes from 0.5B to 72B, for base and instruct variants, using each of the 3 response styles, on 6
open-ended question-answer datasets: GSMS8K (Cobbe et al., [2021), OpenMathInstruct-2 (Toshni-
wal et al.l2025), TriviaQA (Joshi et al.| 2017), SimpleQA (Wei et al., [2024), MATHS00 (Lightman
et al.,[2023)), and Truthful QA (Lin et al., 2022b)). This yields over 650 evaluation experiments, which
we compile into Fig. @] by overlaying their reliability diagrams. The box-plots in the bottom row of
Fig. @] show the distribution of calibration errors in aggregate for each dataset and configuration.
We will use this condensed figure to discuss our experimental predictions. We expect our theory to
apply on all datasets except, notably, Truthful QA: This dataset contains common human miscon-
ceptions, and thus violates our in-distribution assumptions (see Remark[T2). The full list of models
is in App. and disaggregated results are reported in App. [F}

Prediction 1: Semantic calibration emerges from standard pretraining. Our theory predicts
that base models, in non-CoT settings, should be semantically calibrated. The top row of Fig. [
shows reliability diagrams for all such models we evaluated (configurations base-concise and base-
sentence), and we observe nearly all of these experiments are well-calibrated. Notably, semantic
calibration does not depend significantly on model size for base models: even small models (< 1B)
are remarkably calibrated; see App. [C] for a more in-depth look at this aspect. Models are also
well-calibrated regardless of the response style (“sentence” vs. “concise”), supporting our theory
that semantic calibration depends not on the specific phrasing of the answer, but rather on whether
the model “knows” its semantic class distribution before starting to generate.

Prediction 2: Post-training can break calibration. The middle row of Fig. 4] includes reliability
diagrams for instruct post-trained models, for all three response types. Many of these settings are
miscalibrated, typically overconfident (i.e. a curve below the diagonal), as expected from a reward-
maximizing RL objective. Fig. 5] takes a closer look at the effect of different types of instruction-
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Figure 4: Semantic Calibration of LLMs. We evaluate Qwen, Gemini, Mistral, and Llama-
family models, with 6 configurations for each model: (model-variant, response-style) € {Base,
Instruct} x {Concise, Sentence, CoT}. First row (predicted calibrated): Reliabil-
ity diagrams of all configurations predicted to be confidence-calibrated according to our theory:
base models with concise or sentence response types. TruthfulQA, a dataset of common miscon-
ceptions, is the exception: it violates the in-distribution assumptions of our theory, and is poorly
calibrated. Second row (not predicted calibrated): Configurations which need not be calibrated
according to our theory: post-trained instruct models with any response type: concise, sentence,
; and base models with chain-of-thought. Third row: Box plots summarizing the
distribution of calibration errors for each of the 6 configurations. Only the first two configurations
(base-concise and base-sentence) are reliably well-calibrated, as predicted by our theory. Note, we
only consider chain-of-thought for the math datasets. Truthful QA reference answers are available
only in the sentence-length form, which is why we only report results for sentence response-style.
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Figure 5: Calibration error for three models based on Mistral-7B-v0.1: pretrained-only, instruction-
supervised-finetuned, and DPO-finetuned. Here, “sentence” response style, see Fig. [8]for others.

tuning on calibration. We compare three models from the same lineage: a base model (Mistral-7B-
v0.1), a version of it post-trained via instruction supervised finetuning (SFT, zephyr-7b-sft-full), and
a version post-trained via both SFT and Direct Preference Optimization (DPO, zephyr-7b-dpo-full)
(Rafailov et al.|[2024). The DPO model (not trained with a proper loss) is significantly miscalibrated,
while the SFT-only model and the base model (both trained with proper losses) are better calibrated.

Prediction 3: CoT reasoning can break calibration. The middle row of Fig. ] shows CoT with
both base and models, which are poorly calibrated in the math settings (GSM8K, OpenMath-
Instruct, MATHS500). Base-cot responses are underconfident (above the diagonal), while

are underconfident for GSMS8K, but overconfident for OpenMathInstruct, see Fig.[9] Notably, this
miscalibration is not inherent to math: base models are calibrated when asked to provide the answer
immediately (base-concise and base-sentence), but become miscalibrated when allowed to reason.
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Quantitative Learnability Probe. Claim |10] suggests an explicit
experiment to predict when a base model will be B-confidence-
calibrated for a given choice of B: can the model “easily learn”
the function G : « — B,f#p, mapping a question z to the distri-
bution over the model’s own semantic answers for that question? We
can test this by training a small LoRA (Hu et al., 2022) on top of
the model, to directly generate the semantic class distribution B, fip,
when prompted with the question z. For example, in CoT settings,
this would require the LoRA to “short-circuit” the reasoning steps, Figure 6: Testing Claim [10]
and immediately generate the final answer that the model would have ~across Qwen2.5 models.
produced with CoT. Notably, this does not require the model to produce the correct semantic answer,
but just match its own generative distribution. In Fig.[6] we train rank-8 LoRAs on Qwen2.5 models
of varying sizes, on GSM8K.

et
)
o)

Calibration Error
(=1
[ X J

[ 3N} 5
e ¢

e
=

0 1 2 3
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We then compare each LoRA’s KL gap to optimality (x-axis) to the underlying model’s calibration
error (y-axis). The correlation agrees with our theory: models which can easily predict their own
semantic class distribution (low KL gap) are also well-calibrated. Full details in App.[D.2]

6 CONCLUSION

We find that base LLMs, despite being trained with a token-level syntactic objective, are remarkably
calibrated with respect to the sequence-level semantics of their generations. Our central contribu-
tion is a principled mechanism behind this emergence, building on recent theoretical connections be-
tween calibration and loss-optimality (Btasiok et al.,2023;/2024)). This theory provides a unified lens
through which to understand the nuanced calibration behavior of models in practice, distinguishing
settings which are calibrated from those which are not. Among limitations, we only propose one
possible mechanism for calibration; it is possible that other types of calibration (e.g. verbalized cal-
ibration) emerge for yet-undiscovered reasons; other limitations discussed in Appendix More
generally, our work can be seen as a step towards understanding the formal structure of LLMs’
output distribution.
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A ADDITIONAL RELATED WORKS

Recalibration Methods. A number of prior works study methods to improve the calibration of
LLMs, ranging from temperature-scaling at inference-time (e.g., Xie et al.,2024; [Shen et al., [2024)
to training calibration-specific probes that predict correctness (Mielke et al.| [2022) or training with
calibration-improving regularization terms (Wang et al., 2025). Other approaches attempt to cluster
questions and predict per-cluster accuracy (Lin et al., 2022a; [Ulmer et al.| [2024), or make use of
the fact that ensembling models tends to improve calibration (Jiang et al.| 2023b} |[Hou et al., [2024).
Probabilistic approaches (such as Bayesian deep learning, or evidential deep learning) have been
found to often yield better calibration (e.g., L1 et al.| [2025; [Yang et al., [2024a).

Sampling-based Confidences. A number of prior works have proposed sampling-based ap-
proaches to defining LLM uncertainty. Both Wang et al.| (2023) and [Wei et al,| (2024) sample
multiple answers per-question, and define confidence as the frequency of the most-common an-
swer. [Wei et al.| (2024)) additionally groups answers together by string-matching, which allows for
some degree of semantic equivalence. This approach was extended and popularized by the notion
of semantic entropy (Farquhar et al.| 2024)). Semantic entropy clusters sampled answers together by
semantic content, and then measures the empirical entropy of clustered answers. Recently, [Lamb
et al.| (2025) define Empirical Semantic Confidence, which is essentially an empirical version of our
notion of semantic confidence. Note that one distinguishing aspect of our formalism is, we param-
eterize the notion of calibration by the choice of collapsing function B. This allows us to develop
somewhat more general theoretical insights, which are not tied to a fixed notion of semantics.

Factors which Harm LLM Calibration. Various factors have been observed in prior work to
harm LLM calibration. It is well-known that RLHF often harms calibration in multiple-choice QA
settings (Kadavath et al., [2022} |OpenAlL 2023). Other RL post-training methods such as DPO have
also been observed to harm calibration (Leng et al., 2025} |Xiao et al.,|2025). Some studies have also
found chain-of-thought responses to harm calibration, agreeing with our results (Zhang et al.,[2024).
However, we warn that not all of these works use the same notion of confidence and calibration as
we do, and so are not directly comparable.

B EXTENDED DISCUSSION AND REMARKS

B.1 LIMITATIONS

Types of Calibration. One limitation of our paper is that we focus on a very specific type of
calibration, which is essentially a sampling-based notion (B-confidence-calibration). It is possible
that other types of calibration (e.g. verbalized calibration) also emerge for certain types of LLM
training; we consider this possibility interesting but out-of-scope for the current work.

Practical Implications. Our work is primarily scientifically motivated, and so we do not fully ex-
plore practical considerations or implications. For example, we do not consider the computational
efficiency of our confidence measurements. This is a limitation to using such measures in practice,
since computing semantic confidence requires sampling an LLM multiple times for the same ques-
tion. We consider translating our scientific results into real-world improvements to be an important
direction for future work.

Datasets. Although we evaluate on a variety of different models, we only evaluate on 6 selected
datasets. We chose these datasets to cover a diversity of domains and problem difficulties, from
questions about world-knowledge to mathematical reasoning problems. Further, we chose datasets
with open-ended answers, since calibration of multiple-choice datasets is already extensively studied
(Kadavath et al.l |2022; [Zhu et all [2023). Although we do not expect our results to depend signif-
icantly on the choice of dataset, it is possible that certain other datasets have different calibration
behavior; this is a limitation of our experiments.

Remark 12. Notably, there are some datasets which we would expect to behave differently, such as
Truthful QA (Lin et al.| |2022b), which is a dataset containing common human misconceptions. This
dataset fails to satisfy the “in-distribution” requirement of our results (e.g. Claim[I0), and so it is
consistent with our theory for models to be miscalibrated.
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B.2 POTENTIAL EXTENSIONS

The theoretical framework described here is fairly general, and extends beyond the setting of
confidence-calibration in LLMs. Briefly, since most of our theory is stated in the language of
weighted calibration (Gopalan et al.,[2024)), it applies to any property that can be written as weighted
calibration. This includes slightly stronger notions of calibration, such as top-label calibration, and
also includes conformal-prediction type of guarantees (more details in App.[E.8.1] See/Gopalan et al.
(2024) for a number of properties which can be expressed as weighted calibration, and App. [E.8|for
the connection to conformal prediction. Our general theoretical results appear in App. [E]

Intuitively, the high-level message of our results is that if a model is trained with a max-likelihood /
log-loss objective, then we should expect it to satisfy weighted calibration for a “simple” family of
weight functions. The appropriate notion of simplicity depends on the model architecture; simple
weight functions should roughly correspond to easy-to-learn perturbations to the model’s output
distribution. At this level of generality, we expect some version of our results to apply even for real-
valued density models, such as continuous normalizing flows (e.g. |Zhai et al.|(2025))), which are also
trained with the log-likelihood objective. That is, we should expect such normalizing flows to also
exhibit certain (weak) types of calibration. We believe this is a promising avenue for future work.

B.3 TECHNICAL REMARKS

We collect several technical remarks regarding the theory of Sec. 3

Remark 13 (Heuristic Simplifications). In translating the theoretical results of Sec.3|to the practi-
cal heuristic of Claim[I0] we took several steps which we describe more explicitly here. First, Thm.[9]
is about ease of representation, but in Claim[I0we chose to use ease of learning. This is both more
practical (since learning can be directly tested) and, we believe, more natural (since then both the
premise and conclusion of Claim[I0]involve the learning procedure of the LLM).

Now, Thm. |9] suggests that for B-confidence-calibration, it is sufficient for the functions {g;} of
Definition |8 to be “easy to learn” for the LLM, for all prefix lengths i € [N]. Claim|10|deviates
from this in two ways. First, instead of considering all prefix lengths i, we only consider the empty
prefix (1 = 0) i.e. the model’s distribution given only the question. Intuitively, the prediction from
the empty prefix is likely the most challenging, and practically, this simplification means that only
one simple-to-implement probe is required. Second, instead of considering learnability of only the
semantic confidence function (go), Claim[I0|considers learnability of the entire semantic distribution
(Bips). Practically, this improves robustness of the empirical estimator, since the KL divergence
can be estimated from samples. Empirically, we did not find these simplifications to significantly
affect the conclusions.

Remark 14 (Multicalibration). One detail of the theory worth discussing further is the role of the
distribution D. For clarity of exposition, we described the theory as if there is only one distribu-
tion D of interest, but in reality, we evaluate calibration across multiple distributions (TriviaQA,
GSMSK, etc), and we pretrain on yet another distribution. Moreover, we find that a single model
can be simultaneously calibrated across many evaluation distributions. We touched upon this issue
in Footnote[d) but there is a theoretically cleaner (though more involved) way to think about multiple
distributions, which we outline now.

Formally, requiring B-calibration across multiple distributions simultaneously can be thought of as
a multi-calibration property (Hébert-Johnson et al.| | 2018)). Suppose for example that the pretraining
distribution D is some mixture of disjoint sub-distributions: D = a1 D1 + ag Do + . ... Suppose we
are interested in B-calibration simultaneously for distributions D1 and Ds. Then, it is possible to
show a generalization of Thm. 6}

A model is B-confidence-calibrated across both D; and D- if and only if it is
locally-loss-optimal on D w.r.t. an expanded class of perturbations W5,.

Informally, the class of perturbations Wy, is essentially the usual class Wg (of Definition [4)) aug-
mented by indicator functions 1{x € D1}, 1{x € Ds} for membership in each sub-distribution.

We will not get into the technical details, but using this version of Thm.[6] it is possible to carry out
the remaining steps of the argument from Sec. [3|and Fig.[3| Applying the same heuristics, for exam-
ple, we would conclude: an LLM will be simultaneously B-confidence-calibrated on distributions
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D1, D, if it is easy for the LLM to (1) estimate its own distribution on B-classes and (2) identify
samples as either x € Dy or x € Ds.

The second condition is likely to be satisfied in all our experiments, since all our evaluation datasets
are distinct and easy to identify. Thus, the predictions of our theory remain unchanged, justifying
our choice to avoid discussing multicalibration in the main body.

Remark 15 (Full calibration). At first glance, it may seem that a minor generalization of our mech-
anism (Fig. B) would also imply full B-calibration (i.e., canonical calibration of the B-induced
classifier), rather than just confidence-calibration. After all, Thm. [6] formally generalizes to arbi-
trary weight families W (see Thm. [27), including the family corresponding to full B-calibration
(defined as Wgun) in Definition |20). However, full B-calibration is too strong a property to hold
in genemﬁ So, which part of our argument in Fig. breaks for full calibration? The culprit is the
heuristic step in Fig.|3| The weight family Wgun)
“too large” for the same heuristic to hold.

relevant for full calibration is, roughly speaking,

To better understand why the heuristic fails, here is more general version of the heuristic step in
Fig.[B] which we believe is plausible for arbitrary weight families V.

Claim 16 (heuristic, informal). If a perturbation family YV is easy-to-learn for a
pretrained LLM, meaning: for all perturbations w € W, the LLM pg : V* —
A(VN) can be easily LoRA-fine-tuned to match the distribution of a perturbed-
model G : V* — A(VN),

G:prm*wxEPG('|x)*w(‘xapm) (4)
then pg will be VW-locally-loss-optimal w.r.t. its pretraining loss.

In other words, if all perturbations in the family VV can be “easily learnt,” then we should expect the
LIM to be loss-optimal w.r.t. W. Claim|l0|is essentially a special case of this more general claim,
for the specific class WWpg relevant to B-confidence-calibration.

Ifwe believe Claim[I6] we can see why our mechanism would apply to confidence-calibration but not
to full-calibration: For confidence-calibration, the perturbation class Wg (Definition [)) is simple

enough to be learnable, while for full calibration, the corresponding perturbation class Wgun)
(Definition 20) is too large to be efficiently learnable from samples. To gain intuition for this, it
helps to directly compare Definition[20to Definitiond} From this discussion, we can see it is likely
possible to extend our results to certain types of calibration which are weaker than full-calibration,
but stronger than confidence-calibration. We leave this direction for future work.

C ADDITIONAL EXPERIMENTAL RESULTS

Due to their volume, disaggregated reliability diagram results are reported separately in App.[H

Effect of Model Size. Fig.|7|explores the effect of model size on calibration. We plot calibration
error vs. semantic accuracy for all models in the sweep of Fig. ] which includes a range of model
sizes from 0.5B to 72B. For base models without chain-of-thought (top row), we see no correlation
between model capability (semantic accuracy) and calibration error (sSmECE). This is consistent
with our theoretical predictions, which have no explicit dependency on model size or capability.
The bottom row shows the remaining configurations (instruct models, and chain-of-though), where
our theory does not predict calibration. Note that prior works have observed that calibration can
improve significantly with model size (Kadavath et al., 2022; Zhu et al., 2023). We do not find this
to be the case for base models, though it may hold for Instruct models.

SFor example, when K (the number of B-classes) is large, full B-calibration would be computationally
intractable to even estimate (Gopalan et al.| 2024).
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settings our theory applies (top row: base models without chain-of-thought), we see no correlation
between model capability (semantic accuracy) and calibration error. Each dot represents a separate
model, colors as per Fig.[4]
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D ADDITIONAL EXPERIMENTAL DETAILS

Datasets. We focus on open-ended question-answer (QA) settings, since calibration for multiple-
choice QA is already well-studied (Kadavath et al., 2022 Zhu et al., 2023)), and a special case of
our results. We evaluate on: GSM8K (Cobbe et al., |2021), OpenMathInstruct-2 (Toshniwal et al.,
2023)), TriviaQA (Joshi et al., 2017), and SimpleQA (Wei et al., [2024), from Huggingface datasets
(Wolf et al.| 2019; |ILhoest et al.| 2021).

Models. We evaluate on models including the Qwen, Gemini, Mistral, and Llama family, of sizes
from 0.5B to 72B. The full list of models we evaluate is in App.[D.3] We use vLLM (Kwon et al.
2023)) for inference.

Prompt format. See App. for the exact phrasing used in prompts. All of our experiments
include 5-shot examples in the prompt. We use three different prompt types, designed to elicit three
different styles of responses from the model: “sentence”, “concise”, and “chain-of-thought (cot)”.
The few-shot examples are formatted in the desired style (e.g. for the “sentence” type, the few-shot
examples have complete-sentence answers). For instruct models, in addition to formatted few-shot
examples, the prompt also includes explicit formatting instructions. The “concise” prompt type
encourages the model to respond with just the final answer (a single word, phrase, or number). The
“sentence” prompt type asks the model to answer each question in a complete sentence (making it
likely to phrase the same semantic answer in different ways, so the B-collapsing function is essential
for a meaningful notion of semantic calibration). The “cot” prompt type elicits chain-of-thought
reasoning from the model; this prompt type is only used for math datasets.

These prompts are typically successful in eliciting the desired type of responses from the model.
However, in some cases we observed models (especially Qwen models) produce “chain-of-thought”
responses even when prompted to reply in a single word. To exclude such cases, we exclude any
responses for the “concise” prompt on math datasets which are too long (heuristically, more than 15
characters before the first newline).

The semantic collapsing function. Recall, the function B is intended to collapse semantically-
equivalent generations into a single class, an idea proposed by [Kuhn et al.| (2023). We implement
the function B with a two-stage procedure as follows.

The first stage is canonicalization: we extract a short “canonical form” answer from the LLM’s
response. For “concise” and “cot” prompt types, this is done via simple string parsing (for “cot”,
extracting only the final answer). For the “sentence” type, we use a strong LLM (Qwen3-14B-
Instruct) prompted to extract a short-answer from the generation, given the question as context. The
prompts used for canonicalization are in App. Prompt [ for non-math settings, and Prompt 3]
for math settings. We also normalize strings at this stage, converting to lower-case and stripping
spaces, including a math-specific normalization for domains with LaTeX outputs. Specifically, we
use the MATH string-normalization from Minerva, given in Listing 1, Appendix D.1 of |[Lewkowycz
et al.[(2022).

The second stage, used only for non-math settings, is semantic clustering: we prompt an LLM judge
(Qwen3-14B-Instruct) to assess whether two responses to a question are semantically equivalent,
and use the output to cluster responsesﬂ This is necessary for non-math settings to handle irrelevant
differences in canonical forms (e.g. “Seattle, WA” vs “Seattle”). The prompt used for semantic
equivalence is Prompt[6]in App. For math settings, the second stage is unnecessary, since the
first stage already outputs a number or symbol that can be directly compared.

Measuring calibration. We first produce an LLM-induced semantic classifier, following the ex-
perimental procedure described in Sec. [2]and illustrated in Fig.[T} For each dataset, we take 10K ran-
dom evaluation samples (or the entire dataset for those with fewer than 10K total samples). For each
question, we construct the appropriate 5-shot prompt, sample M = 50 responses from the LLM at
temperature 1, and then apply the semantic collapsing function (described above) to each response.
The semantic confidence is defined as the empirical frequency of the plurality semantic class, and
the semantic accuracy is the 0/1 indicator of whether this plurality class matches the ground-truth’s
semantic class. This yields, for each question, a pair of (semantic-confidence, semantic-accuracy)

"This is a slight variation of the two-way entailment method used by [Farquhar et al|(2024).
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€ [0,1] x {0, 1}. We then evaluate the calibration of the resulting classifier over the entire dataset of
questions using SmoothECE (smECE, Btasiok & Nakkiran| (2024)), a theoretically-principled ver-
sion of the Expected Calibration Error (ECE). We use the SmoothECE implementation provided by:
https://github.com/apple/ml-calibrationl

D.1 VISUALIZING CALIBRATION: RELIABILITY DIAGRAMS

We follow the guidance of Bfasiok & Nakkiran| (2024)), and visualize calibration using kernel-
smoothed reliability diagrams.

Reading the Diagram. Fig.[2| gives several examples of reliability diagrams. The solid red line is
the regression line, an estimate of u(c) := [E[semantic accuracy | semantic confidence = ¢|. The
black cross is the point ([ [semantic confidence], E[semantic accuracy]) € [0, 1] x [0, 1], that is, the
average semantic confidence and accuracy. The gray histograms at the bottom of the plot visual-
ize the density of semantic confidences. We plot two overlaid histograms, one for the confidence
distribution of correct predictions (i.e. the confidence of samples where semantic-accuracy=1), and
another for the confidence distribution of incorrect predictions. The width of the red regression line
varies with the overall density of semantic-confidences.

Implementation Details. For reliability diagrams, we use the implementation of relplot
(https://github.com/apple/ml-calibration) with minor modifications: we use a
fixed kernel bandwidth o = 0.05 for the regression line, and we visualize the density of confidences
using histogram binning with 15 constant-width bins.

To compute the scalar SmoothECE (smECE) metric, we use the original implementation of
relplot without modification (including its automatic choice of bandwidth).

D.2 LoORA FINE-TUNING

To test Claim [T0] more quantitatively, we train a LoRA version of the LLM to explicitly learn the
function G defined in Claim We do this as follows. Let pg be the base model. Instantiate a
rank=8 LoRA adapter (Hu et al.}{2022) on top of the original model pg, which we denote py.

We want to train py to behave as the “semantically-collapsed” version of pg. That is, when prompted
with a question x, the model p, should generate a distribution on answers b which imitates the base
model’s semantic answers B, (z):

po(b|x)~ Pr [By(z) =b] = (Bafips)(b) (5)

zrepo (+|z)

Since our implementation of the collapsing function B produces string outputs (canonical answers),
we can train py as a standard autoregressive model. Explicitly:

1. For each question in the dataset z, sample the original model 50 times, and apply the
collapsing function B to each generation. This produces 50 samples {(x, b;)} of question
x and canonical-answer b; for each original question z, effectively expanding the original
dataset size by 50 times.

2. Train p, with the standard autoregressive objective, on the prompt-completion pairs
{(x,b;)} from above. That is, train p4 to complete prompt « with generation b;.

Our training procedure is similar to the procedure used to train “P(IK)” inKadavath et al.|(2022), in
that we also train on an “expanded” training set defined by base model samples. Similar to|Kadavath
et al.[(2022), we do this mainly for convenience.

For GSMS8K, we hold-out 2000 questions for evaluation, and use the remainder for training as
above. We train all models on an 8xA100 node for 1 epoch on the expanded dataset, using the
SFTTrainer implementation from Huggingface TRL (von Werra et al., [2020) with the following
parameters in Table [I] Note, we shuffle the expanded training set manually beforehand, so we do
not ask the dataloader to shuffle.
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Table 1: Hyperparameters for Supervised Fine-Tuning (SFT).

Parameter Value

Training & Hardware
num_train_epochs 1
per_device_train batch_size 4
gradient_accumulation_steps 2

(Effective Batch Size) 64 (4 x 8 GPUs x 2)
bfl6 True

Optimizer & Scheduler
optim adamw_torch_fused
learning._rate 5e-5
weight_decay 0.0
warmup.-ratio 0.05

PEFT (LoRA) Configuration
use_peft True
lora.-r 8
lora_alpha 16
lora_dropout 0.0
lora_-target_modules all-linear
task_type CAUSAL_LM
bias none

Data Handling
packing False
dataloader_shuffle False

After training, we evaluate how closely Eq. (5) holds, by estimating the KL divergence between
RHS and LHS of Eq. (5). This KL measures how well our LoORA p,, matches its training distribution.
Conveniently, the KL can be written as the difference between the negative-log-loss of ps and the
semantic entropy of the original model pg:

Gap to optimality := K L( (B,tps) || pe(-|2)) (6)
= E_ [-logps(B(2) |z)]— H(Bufps) 7
z~D N—_——
z~po(z|z) Semantic entropy of pg

Eval NLL loss of pg

This is particularly convenient because the eval log-loss is a standard metric tracked during training.
Note that for our purposes, it is important to compute the unnormalized log-loss (i.e., not normalized
by sequence-length).

In Fig.[6] we plot the KL gap of Eq. on the x-axis, and the SmoothECE of the original model
pp on the y-axis. We evaluate base models: Qwen2.5-{0.5B, 1.5B, 3B, 7B, 14B}, with all three
response styles: concise, sentence, cot. This results in 15 points plotted in Fig.[6] colored according
to response style using the color scheme of Fig.[df We observe that, consistent with Claim [T0]
configurations where the semantic class distribution is easy-to-learn (low KL gap) also have small
calibration error. The points with high KL (and high calibration error) are the chain-of-thought
experiments, as well as the small 0.5B model with the “sentence” response type.
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D.3 LLMS EVALUATED

Below, we list all models evaluated in this paper. All were obtained from HuggingFace.

Table 2: Pretrained-only base models evaluated in this paper. Models
sharing a prefix and reference are grouped.

Family Prefix

Model Suffix

Reference

google/

gemma-2-2b
gemma-2-9b
gemma-2-27b

(Gemma Team et al., 2024)

gemma-3-1lb-pt
gemma-3-4b-pt
gemma-3-12b-pt
gemma-3-27b-pt

(Gemma Team et al., 2025)

Qwen/

Qwen2.5-0.5B
Qwen2.5-1.5B
Qwen2.5-3B
Qwen2.5-7B
Qwen2.5-14B
Qwen2.5-32B
Qwen2.5-72B

(Yang et al.} 2024c)

Qwen2.5-Math-1.5B
Qwen?2.5-Math-7B
Qwen?2.5-Math-72B

(Yang et al.l 2024b)

Qwen3-0.6B-Base
Qwen3-1.7B-Base
QOwen3—-4B-Base
Qwen3-8B-Base
Qwen3-14B—-Base

mistralai/

Mistral-7B-vO0.1
Mistral-7B-v0.3

Jiang et al., 2023a)

Mistral-Small-24B-Base-2501

Mistral AI Team, 2024b)

Mixtral-8x7B-v0.1

meta-llama/

Llama-3.1-8B
Llama-3.1-70B

24

(
(
(Mistral AI Team, 2023)
(

Grattafiori et al., 2024)
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Table 3: Instruction-tuned models evaluated in this paper. Models shar-
ing a prefix and reference are grouped.

Family Prefix

Model Suffix

Reference

google/

gemma-2-2b-it
gemma-2-9b-it
gemma-2-27b-1it

(Gemma Team et al., [2024)

gemma-3-1b-it
gemma-3-4b-it
gemma-3-12b-it
gemma—-3-27b-1it

(Gemma Team et al., [2025)

Qwen/

5-0.5B-Instruct
5-1.5B-Instruct
5-3B-Instruct
5-7B-Instruct
5-14B-Instruct
5-32B-Instruct
5-72B-Instruct

Qwen?2.
Qwen?2.
Qwen2.
Qwen?2.
Qwen?2.
Qwen2.
Qwen?2.

(Yang et al., 2024c)

5-Math-1.5B-Instruct
5-Math-7B-Instruct
5-Math-72B-Instruct

Qwen?2.
Qwen2.
Qwen?2.

(Yang et al., 2024b)

Qwen3-0.6B
Qwen3-1.7B
Qwen3—-4B
Qwen3—-8B
Qwen3-14B
Qwen3-32B

mistralai/

Mistral-7B-Instruct-v0.1
Mistral-7B-Instruct-v0.3

(Jiang et al.,|2023a)

Ministral-8B-Instruct-2410

(Mistral AI Team, 2024a))

Mistral-Small-24B-Instruct-2501

(Mistral AI Team, 2024b)

NousResearch/

Nous—-Hermes—-2-Mixtral-8x7B-SFT

(Nous Research), 2024b)

Nous—-Hermes-2-Mixtral-8x7B-DPO

(Nous Research, 20244)

alignment-—
handbook/

zephyr—-7b-dpo—-full
zephyr—-7b-sft-full

(Tunstall et al., 2023)

meta—-llama/

Llama-3.1-8B-Instruct
Llama-3.1-70B-Instruct
Llama-3.3-70B-Instruct

(Grattafiori et al., 2024)

microsoft/

phi-4

25
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D.4 PROMPTS

We use 3 different prompt styles: concise, sentence, and chain-of-thought (cot). All prompts use 5
few-shot examples from the dataset. We describe the prompt formatting here by way of example,
using our prompts for the GSM8K dataset. For base models, we use the full prompt text as context,
while for instruct models we format the few-shot examples using the model-specific chat template
(per Huggingface).

Prompt [1|shows the “concise” prompt for GSM8K. This prompt style uses only the final answers
provided by the dataset (excluding any chain-of-thought).

Prompt [2|shows the “sentence” prompt type. This prompt formats the few-shot answers in com-
plete sentences, and also includes instructions to format answers accordingly. Note that we inten-
tionally varied the sentence structure of the few-shot examples, to encourage the model to use a
diversity of phrasings. This makes the “sentence” responses more syntactically complex than the
“concise” responses, though not more semantically complex — thus testing the limits of our theory.

Prompt [3|shows the “cot” prompt type. This includes reasoning and formatting instructions, as
well as few-shot examples that include reasoning-traces (provided by the dataset).

The prompt formatting for other datasets follow the same conventions as these GSM8K examples.
We exclude the “cot” prompt type for non-math datasets.

Prompt 1: GSM8K-concise

Question: Natalia sold clips to 48 of her friends in April, and then she sold half as many clips in
May. How many clips did Natalia sell altogether in April and May?
Answer: 72

Question: Weng earns $12 an hour for babysitting. Yesterday, she just did 50 minutes of babysitting.
How much did she earn?
Answer: 10

Question: Betty is saving money for a new wallet which costs $100. Betty has only half of the money
she needs. Her parents decided to give her $15 for that purpose, and her grandparents twice as much
as her parents. How much more money does Betty need to buy the wallet?

Answer: 5

Question: Julie is reading a 120-page book. Yesterday, she was able to read 12 pages and today, she
read twice as many pages as yesterday. If she wants to read half of the remaining pages tomorrow, how
many pages should she read?

Answer: 42

Question: James writes a 3-page letter to 2 different friends twice a week. How many pages does he
write a year?
Answer: 624

Question: {QUESTION}
Answer:

Prompt 2: GSMS8K-sentence

Answer the following question in a single brief but complete sentence.

Question: Natalia sold clips to 48 of her friends in April, and then she sold half as many clips in
May. How many clips did Natalia sell altogether in April and May?

Answer: Natalia sold 72 clips in April and May combined.

Answer the following question in a single brief but complete sentence.

Question: Weng earns $12 an hour for babysitting. Yesterday, she just did 50 minutes of babysitting.
How much did she earn?

Answer: Weng earned only $10 yesterday.

Answer the following question in a single brief but complete sentence.

Question: Betty is saving money for a new wallet which costs $100. Betty has only half of the money
she needs. Her parents decided to give her $15 for that purpose, and her grandparents twice as much
as her parents. How much more money does Betty need to buy the wallet?

Answer: Betty needs $5 more to buy the wallet.

Answer the following question in a single brief but complete sentence.

Question: Julie is reading a 120-page book. Yesterday, she was able to read 12 pages and today, she
read twice as many pages as yesterday. If she wants to read half of the remaining pages tomorrow, how
many pages should she read?

Answer: She would need to read 42 pages tomorrow.

Answer the following question in a single brief but complete sentence.
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Question: James writes a 3-page letter to 2 different friends twice a week. How many pages does he
write a year?
Answer: James writes 624 pages per year.

Answer the following question in a single brief but complete sentence.
Question: {QUESTION}
Answer:

Prompt 3: GSMSK

Answer the following question. To do that, first reason about it by saying ’‘Reasoning:’ and then
derive the answer. After that, when you are done, write ‘My answer is: ’ and write a short and
concise answer to the question.Last, write <DONE>.

Question: Natalia sold clips to 48 of her friends in April, and then she sold half as many clips in
May. How many clips did Natalia sell altogether in April and May?

Answer: Reasoning: Natalia sold 48/2 = <<48/2=24>>24 clips in May.

Natalia sold 48+24 = <<48+24=72>>72 clips altogether in April and May.

My answer is: 72<DONE>

Answer the following question. To do that, first reason about it by saying ’‘Reasoning:’ and then
derive the answer. After that, when you are done, write "My answer is: ’ and write a short and
concise answer to the question.lLast, write <DONE>.

Question: Weng earns $12 an hour for babysitting. Yesterday, she just did 50 minutes of babysitting.
How much did she earn?

Answer: Reasoning: Weng earns 12/60 = $<<12/60=0.2>>0.2 per minute.

Working 50 minutes, she earned 0.2 x 50 = $<<0.2x50=10>>10.

My answer is: 10<DONE>

Answer the following question. To do that, first reason about it by saying ’‘Reasoning:’ and then
derive the answer. After that, when you are done, write ‘My answer is: ’ and write a short and
concise answer to the question.Last, write <DONE>.

Question: Betty is saving money for a new wallet which costs $100. Betty has only half of the money
she needs. Her parents decided to give her $15 for that purpose, and her grandparents twice as much
as her parents. How much more money does Betty need to buy the wallet?

Answer: Reasoning: In the beginning, Betty has only 100 / 2 = $<<100/2=50>>50.

Betty’s grandparents gave her 15 % 2 = $<<15%2=30>>30.

This means, Betty needs 100 - 50 - 30 - 15 = $<<100-50-30-15=5>>5 more.

My answer is: 5<DONE>

Answer the following question. To do that, first reason about it by saying ’Reasoning:’ and then
derive the answer. After that, when you are done, write "My answer is: ’ and write a short and
concise answer to the question.Last, write <DONE>.

Question: Julie is reading a 120-page book. Yesterday, she was able to read 12 pages and today, she
read twice as many pages as yesterday. If she wants to read half of the remaining pages tomorrow, how
many pages should she read?

Answer: Reasoning: Maila read 12 x 2 = <<12%2=24>>24 pages today.

So she was able to read a total of 12 + 24 = <<12+24=36>>36 pages since yesterday.

There are 120 - 36 = <<120-36=84>>84 pages left to be read.

Since she wants to read half of the remaining pages tomorrow, then she should read 84/2 =
<<84/2=42>>42 pages.

My answer is: 42<DONE>

Answer the following question. To do that, first reason about it by saying ’‘Reasoning:’ and then
derive the answer. After that, when you are done, write ’My answer is: ’ and write a short and
concise answer to the question.Last, write <DONE>.

Question: James writes a 3-page letter to 2 different friends twice a week. How many pages does he
write a year?

Answer: Reasoning: He writes each friend 3%2=<<3%2=6>>6 pages a week

So he writes 6%2=<<6x2=12>>12 pages every week

That means he writes 12x52=<<12x52=624>>624 pages a year

My answer is: 624<DONE>

Answer the following question. To do that, first reason about it by saying ’Reasoning:’ and then
derive the answer. After that, when you are done, write ‘My answer is: ’ and write a short and
concise answer to the question.Last, write <DONE>.

Question: {QUESTION}

Answer:

Prompt 4: Canonicalizat

Question: "{QUESTION}"
Response: "{RESPONSE}"

Your task is to return xxonly** the core answer from this response.

Follow these rules:

— Keep only the core answer (e.g., a number, a name, or a short phrase).

- Remove all extra words and filler.

- Expand all abbreviations to their full form (e.g., ‘USA’ -> ’'United States of America’).

- Write all numbers with digits, not as words (e.g., ’'eight’ -> 787).

- For locations, output only the highest-precision part (e.g. ’'Seattle, Washington’ -> ’Seattle’)
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- For dates, unless otherwise specified, format as YYYY-MM-DD (e.g. "August 1, 1990" -> "1990-08-01")
If only a month or year is specified, leave as-is (e.g. "August" or "2003" or "July, 2000"). Do not

make up unspecified information.

- No explaining or reasoning. Output the core answer only.

- If the response does not address the question, or if you are unsure what to do, return the response

unchanged.

- Never alter the meaning of the response, even if it is incorrect.

- Do not infer missing information; only rephrase what is given in the response.

Prompt 5: Canonicalization (math)

Response: "{RESPONSE}"

Your task is to return **only** the core answer from this response.

Follow these rules:

— Keep only the core answer, as a raw number or LaTeX string (e.g. ’0.5" or ’\frac{l}{2}’).

— If the answer is the value of a variable, only output the value itself (e.g. "x=10" -> ’10’).
- Write all numbers with digits, not as words (e.g., ’‘eight’ -> ’8’).

- Remove all extra words and filler.

- No explaining or reasoning. Output the core answer only.

— If the response does not contain a numeric value, or if you are unsure what to do, return the
response unchanged.

— Never alter the value of the response, even if it is incorrect.

— Do not infer missing information; only extract what is given in the response.

Prompt 6: Semantic Equivalence

You will be given a question, and two possible responses. Your task is to determine whether the two
answers are semantically consistent, i.e., whether the two responses agree on what the answer to the
question is.

Question: {QUESTION}
Response 1: {RESPONSE1l}
Response 2: {RESPONSE2}

Are these two responses semantically aligned responses to the question? Respond only with either the
string "Yes" or the string "No".
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E THEORY

E.1 QUICK REFERENCE

For convenience, we give references to proofs of theorems from the main body.

* Thm. [§]is proved in App.[E.5
¢ Thm.[9]is re-stated and proved as Thm. [31]in App.[E.6.3]

Proving these theorems involves some additional theoretical machinery, which we develop in the
remaining sections. The following sections restate some of the notation and definitions from the
main body for convenience.

E.2 WEIGHTED CALIBRATION

A key object in our theory is the notion of weighted calibration, from |Gopalan et al.[(2024)), which is
capable of expressing many different types of calibration. We use a version of this definition suitable
for our LLM setting, stated below.
Definition 17 (Weighted Calibration, Gopalan et al.| (2024)). For a set W of weight functions w :
V* x A(VN) = RY, and a distribution D over pairs (x,) € V* x VN, a model py is perfectly
W-weighted-calibrated on D if:

(z,y)~D
where py = po(- | z) € AWN) ¢ RV is the model’s output distribution on input x, and
7 € {0, 1}|VN| is the one-hot-encoding of y.

E.3 EQUIVALENCE BETWEEN B-CALIBRATION AND WEIGHTED CALIBRATION

Here we prove that several kinds of B-calibration (including B-confidence-calibration and full B-
calibration) can be characterized in terms of weighted calibration (Definition [I7).

Notation and Setup There are two relevant output spaces: the space VVV of long-form answer
strings, and the space [K|] of semantic answer classes. Let M := [VV|. It will be convenient to
identify strings z € V"' with an index in [M], and we will abuse notation by writing z € [M].

To simplify some of the proofs, we will rely on an explicit one-hot representatlon For a string
y € VY, we denote its one-hot representation as y e {0, /\/}M For a given prompt x € V*, the
model’s d1str1but10n over completions is pg(- | ) € A(VY) C RM, which we treat as a vector
embedded in RM. We write p,. := py(- | x) for convenience.

A collapsing function B : V* x VNV — [K] assigns to each prompt x € V* and long-answer y € VN
a B-class B;(y) € [K]. Moreover, the function B along with the model py induces a distribution
on classes [K] as follows. For a given input = € V*, we take the model’s distribution py (- | =) and
push it forward through B, to obtain a categorical distribution 7, defined as

Ty = Balpo(- | ¥) € Axk. @®)
Explicitly, the probability assigned to a category ¢ € [K] is:
7x(c) = (Balipz) (¢) =  Pr [Bi(z) =] = Z po(z | ). 9)
#po(|2) z:Bg(z)=c

This push-forward operation can be written in matrix form. Define the collapsing matrix B, as:
B, € {0, 1M [Balr: = Lip, )=k} (10)

Then the pushforward distribution and ground-truth semantic class can be expressed as
T = Baps € Ag, B$g=€BI(y) €&k.

Thus, matrix-vector multiplication exactly implements the pushforward operation:

(m)k=>_ po(z|2) = Bupals- (1)

By (2z)=k
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E.3.1 FuULL CALIBRATION

Definition 18 (Full Calibration). A distribution D over prediction-output pairs (¢,y) € Ak X Ek
is perfectly calibrated if the expected error, conditioned on the prediction, is the zero vector:

( )D[yfc\c}zo. (12)
c,y)~

Note that since y and c are both vectors in RX | this subtraction is well-defined.

Now, we apply this template to our setting. We say a model is B-calibrated if the distribution it
induces over the collapsed, semantic categories is itself perfectly calibrated.

Definition 19 (B-Calibration). A model py is B-calibrated on a distribution D if the induced distri-
bution over pairs (., By (y)) is perfectly calibrated according to Definition|18| Here, 7, = By fip.
takes the role of the prediction c, and the ground-truth category B, (y) € [K] takes the role of the
outcome y. Formally:

E [B.(y) — 7y | 7] =0. (13)

(z,y)~D

Following our convention, the scalar B, (y) € [K] is identified with its one-hot vector in Ek to
perform the vector subtraction.

Now, we provide results for B-calibration that are analogous to Definition [4] and Thm. [6| for B-
confidence-calibration.

Definition 20 (Semantic Perturbation Function Classes). Given an arbitrary function B, (z) € [K],
which we think of as a semantic collapsing function, we define the B-induced weighted function
class (a class of perturbation functions w(x,p,) that generate a perturbation vector based on the
context x and the model’s predictive distribution p;):

Wi = {w | w(z,p.)[z] = 7(m2)[Bo(2)] for some 7: AN — [~1,1)} . (14)

Intuitively, every sequence z is assigned a weight based on its semantic category B, (z) € [K], and
the weighting scheme itself can adapt based on the model’s overall categorical prediction 7.

Lemma 21. Let w € Wguu) be a weight function defined by w(x,ps;)[z] = T(75)[Bz(2)]. Its

corresponding vector representation is given by B] 7(7,).

Proof. We will prove the equivalence by showing that for any sequence z € V¥, the 2-th component
of the vector B, 7(r,) is equal to 7(7,. ) [B,(z)]. Let u = 7(m,), which is a vector in R¥.

Now, we want to analyze the components of the vector v = B, u.

For any z € V", the z-th component of v is given by the definition of matrix-vector multiplication:

K K K
[v]. = [BIU}Z = Z[Bmz,k CUR = Z[Br]k,z TUE = Z]I{Bm(Z)ZkJ} Uk
k=1 k=1 k=1
where the last equality is by definition of B,; see Eq. . The indicator function 1yp, (2)=x} 18

non-zero for only one value of k in the sum, namely when % is equal to the category of the sequence
z,1.e., k = B;(z). Therefore, the sum collapses to a single term:

[ =1 up,y+ Y 0-up=up,).
B (2)#k

Substituting back the definition of u = 7(m;), we get: [v], = 7(m;)[By(2z)]. This expression
matches the definition of w(z, p,;)[2] exactly.

Since this holds for all sequences z, the vector B, 7(7,,) is the vector representation of the function
w(z, pg). O

With the definition of the weighted class and its vector representation, we can state the main equiv-
alence theorem.
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Theorem 22 (B-Calibration as Weighted Calibration). A model py is perfectly B-calibrated if and

(full)
B

only if it is perfectly W -weighted-calibrated.

Proof. We start from the definition of B-calibration, which (as established in Definition @ is for-
mally expressed as a vector condition:
Elep. ) =7 | 7] =0.
By the properties of conditional expectation, this holds if and only if for all functions 7 : Ax —
[—1,1]%, it holds
E [(eB, ) — e, 7(m2))] = 0. (15)
Substituting the matrix representation into Eq. (T3):
E [<6Bm(y) - 7Tzﬂ'(”z)>] =0 <= E[(Bsy — Bups, 7(Bzps))] =0
~— E [@ _me;T(Bxpz»] =0

From Lemma the term B 7(B,p,) is precisely the vector representation of the function
w(x, p,) from Definition 20| Thus, the condition is equivalent to:

E[(§ — pa,w(z,p,))] =0, forallw e W™,

ull)

which is exactly the definition of Wg -weighted-calibration ; see Deﬁnition

E.3.2 CONFIDENCE CALIBRATION
We first define the standard notion of confidence calibration, a weaker form of calibration that fo-
cuses only on the model’s top prediction.

Definition 23 (Confidence Calibration). A distribution D over prediction-output pairs (c,y) €
Ag x &k is perfectly confidence-calibrated if, conditioned on the model’s top predicted proba-
bility, that probability matches the expected outcome. Formally,

E  [yrr — g+ | cir] = 0 where k* = argmax cy,. (16)
(e,y)~D ke[K]

Now, we apply this concept to our LLM setting. A model is B-confidence-calibrated if the categori-
cal distribution it induces is confidence-calibrated.

Definition 24 (B-Confidence-Calibration). A model py is B-confidence-calibrated on a distribution
D if the induced distribution over pairs (75, By (y)) is perfectly confidence-calibrated according to
Deﬁnition This requires that, for k* = argmaxy,c(x) 7z (k),

E [U{B.(y) = k*} — 7 (k) | m:(K7)] = 0. (17)
({L’,y)w'D
We re-state Definition [ here for convenience:

Definition 25 (Semantic Perturbation Function Classes). Given an arbitrary collapsing function
By(2) € [K], we define the class Wy of perturbation functions w(z,p,) € RV"! as follows.
These functions generate a perturbation vector based on the prompt x and the model’s predictive
distribution p,:
Wpg = {w ’ I7:[0,1] = [-1,1] Vze VN1 wlz,p,)[z] = 7(m(k¥)) - 1{By(2) = k*}},
where T, := Bgyip,, k*:=argmaxm,(k).
ke[K]

Using this definition, we have the following equivalence.

Theorem 26 (B-Confidence-Calibration as Weighted Calibration). A model pg is perfectly B-
confidence-calibrated if and only if it is perfectly VWg-weighted-calibrated.
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Proof. The model is Wg-weighted-calibrated if, for all w € Wp, the following holds:

E [ — Pz, w(z,ps))] = 0.
(z,y)~D

For a given w defined by a function 7 : [0,1] — [—1, 1], since § is a one-hot vector with a 1 in the
coordinate z = y, the first term evaluates to

(G w(w,ps)) Zy w(@, pe)[2] = w(z, )y, (18)

Substituting the definition of w:
w(z, p2)ly] = 7 (v3) - Ly, (y)=k+} Where v} = m, (k*).

The second term is (p,, w(z, pz)) = >, P=(2)w(x, py)[2]. Substituting the definition of w:

Zpr (,p2)[2] = pr ) LB, (2)=})

= pr 2) 1B, (2)=k*}
=7(v3) -Pr[Bz( ) =k =7(v) v
Putting these together, the weighted calibration condition becomes:

E [7(:) Lp,y=ky —7(03) v;] =0= E [7(v7) (Lin, =k} —v3)] =0
(z)y)'\/D (Ivu)ND

This condition must hold for all functions 7 : [0,1] — [—1,1]. By the properties of conditional
expectation, this is true if and only if the term being multiplied by the arbitrary function of v} has a
conditional expectation of zero. This gives us:

E [1(B, =k —vs | v;] =0,

which is precisely the definition of B-confidence-calibration. O

E.4 EQUIVALENCE BETWEEN WEIGHTED-CALIBRATION AND LOCAL L0OSS OPTIMALITY

For the log-loss £(y, f) := — >, y;1og(fi), we can analyze perturbations more easily through its
dual representation. The dual loss, which operates on a logit vector z is defined as
K
0*(y,z) = log Z e* | —yTzand V_0*(y, z) = softmax(z) —y = f —y
j=1

The primal and dual views are connected by the variable mapping z = log f, which provides the
key equality ¢(y, f) = £*(y,z). This relationship allows us to translate complex perturbations
in the probability space into simple ones in the logit space. A multiplicative re-weighting of the
probabilities, defined as f x w := softmax(log f + w) = softmax(z 4+ w), is equivalent to a simple
additive perturbation w on the logits. Therefore, the loss of the perturbed model can be expressed in
either world:

*
Uy, f>w) =  U(yz+w) (19)
—_—— N———

Loss on perturbed probabilities Loss on perturbed logits

Theorem 27 (Equivalence of Calibration and Local Loss Optimality). Given a model py, a
distribution D, and a family of weight functions W (Definition [I7), the model py is perfectly
W-weighted-calibrated on D if and only if it is VW-locally loss-optimal on D.

Proof. We apply the first-order optimality condition to the dual loss £*(y, z) with a simple additive
perturbation w on the logits z. With the perturbed loss function, for € > 0,

L(e) =" (y,z + ew) and %(5) = (V.0 (y, z + cw), w)
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By local loss optimality

L(e) —L(0) dL o(e) .
0<=———"="(0)+ > — (Vol'(y,2),w)

The same reasoning replacing w by —w, we also have (V,0*(y, z), w) < 0. Thus

(y, 2) < (y,z + ew) = (V. L(y,2),w) =0
The opposite implication follow from convexity, we have:
C(y, 2+ w) 2 0y, 2) + (V27 (y, 2), w).
Thus, if (V.£*(y, z),w) = 0 holds, the inequality simplifies to: £*(y, z + w) > £*(y, 2).

Taking the expectation on both side

E [ly.N)< E [y frw)]<= E [("(y,2)]< E [("(y,z+w)]
(z,y)~D (z,y)~D (z,y)~D (z,y)~D
<~ E (f-yw= E (V.l'(y,2),w)=0
(z,y)~D (z,y)~D

A model is calibrated under the log-loss if and only if its expected prediction error f —1 is orthogonal
to any systematic perturbation w of its logits.

E.5 PROOF OF THM. @

We can now combine the above ingredients to directly prove Thm. [6] from the main body.

Proof. Recall we have a model pg, a collapsing function B, and a distribution D.
We have the following equivalences:

pg is B-confidence-calibrated on D <= py is Wp-weighted-calibrated on D (by Thm.
<= pp is Wp-locally-loss-optimal on D (by Thm.[27)

O
E.6 AUTOREGRESSIVE SETTINGS
Recall the definition of the perturbation operator, Definition [3]
Vze VN (fxw)[z] := softmax(w[z] + log f[z]) = fll exp(wlz]) (20)

> zeyw [l exp(wlz])

highlighting that this transformation is a multiplicative reweighting of the reference distribution f
by e®#], followed by a renormalization to get a valid distribution. Applying it to the next-token
setting, we obtain significant simplifications for both full and confidence calibration.

E.6.1 WEIGHTED CALIBRATION

Lemma 28 (Autoregressive Decomposition of the Perturbation). For any position 1, the perturbed
conditional probability of the next token is the original conditional probability multiplied by a ratio
of “lookahead expectations”:

s impa (lz<i) [0XP(Wa (2<i, 254))]

(P *wz)(2i | 2<i) = pa(2i | 2<i) - (2D
< < E-ooopo(oe) [exp(wy(2<i, 24))
Proof. Let Z :=Y"_ p,(z) ¥=(?). By definition of conditional probability,
x * Wy )(Z2<i
(02 ) | 2s) = Lot )] (22)

(Pe * we)(2<i)
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Expanding the perturbation operator and applying p, (2<i, 2>i) = Pz(2<i)Pz(#>i | 2<i),

1 w, Z<iyR>i
(Po * wz)(2<i) = 7 me(zgi,z>i)e a(2<i2>4)

Z>i
pﬂ?(’z<l) Wy (2<iy2>4)
— = E [6 z(Z2<iZ>i ]
Z z>i~pa (f|2<i)

Similarly,

(pw * w$>(2<z) _ pw(2<z) ]E [€w$(2<17221)]. (23)
Z Zzi"‘p:c('lz<i)

Taking the ratio and canceling Z,

p:r(ZSi) . Ez>z‘~z7z(‘\z§i) [ewm(ziuz>i)]

px(z<i) EzZinz('\z<,y)[ewx(z<i’zzi)]

(Po * we)(2i | 2<i) =

EZ>iNPa:("Z§i) [ewm(zsivzﬂ)]

)[ewm(z<i722i)] ’

= pa(2i | 2<i) -
Ezzi’\“pm("z<i

E.6.2 B-CALIBRATION

The general decomposition in Lemma [28]is insightful but computationally intractable, as it requires
summing over all possible future sequences. We now show that for our specific class of semantic
perturbations g, this complex ratio simplifies dramatically into a small, efficient arithmetic circuit.
The key is to define two “autoregressive B-confidence” vectors that can be tracked during generation.

Autoregressive B-confidence Given a model p, and a semantic mapping B, we define:

1. The initial B-confidence go(x) € Ak, which is the model’s overall predicted distribution
on the K categories before generation begins. This corresponds to the B-induced pushfor-
ward distribution 7, = B fp,:

go(@)b] = Pr [B.(2) =t (4)
2. The conditional B-confidence ¢, (x, z<;) € Ak, which is the model’s predicted distribution
on categories, conditioned on having generated the prefix z<;:
gi(x,2<;)[b] == Pr  [Bu(2<i,?') =0l (25)
Z”"‘px('lzéi)
Theorem 29 (Simple Circuit for B-Perturbations). For any perturbation w € Wpg (defined by a

scaling function T), the perturbed next-token probability is proportional to the original conditional
probability multiplied by a simple circuit C.,:

(Pz > wz)(2i | 2<i) X pa(zi | 2<i) - Cu(go(®), 9i(w, 2<4)), (26)
where the constant of proportionality does not depend on z;, and
K
Cw(90,9i) = Z exp(7(g0)[b]) - gi[b]- @7
b=1

This circuit has constant depth and width linear in K.

Proof. From Lemma 28] we know that
Exmp. (fzcn e 5]

EZNPm(-\z<i) [eww(z<i7z)} :

(pa: *wI)(zi | 2<i) :pm(zi | Z<i) - (28)

For w € Wp, by definition, w,(z) = 7(go(x))[Bz(z)] where go(z) = Byfp..
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Expanding the expectation,

E [ewm(zgi,z)] — E [eT(go(ﬂ)[Bw(zgixz)]}
2 pa (+|2<4) zropa (+12<q)
K
ZPr[BZIZ(’ZSiﬂ z)=1b]- eT(90(2))[0]
b=1

gi(z, z<i)[b] - e7(go(x))[0]

I
M=

S
Il
Ja

The denominator is an expectation over z ~ p;(:|2<;), which depends only on the prefix z; and
not on the choice of z;. Hence it is a constant with respect to z; and can be absorbed into the
proportionality. Therefore, (py * wg) (2 | 2<i) X Pa(2i | 2<i) - (exp(T(g0(2))), gi(x, 2<i)). O

E.6.3 PROOF OF THM. E]: A SIMPLE CIRCUIT FOR B-CONFIDENCE-PERTURBATIONS

The circuit for general B-perturbations involves a K -dimensional inner product. For the more re-
stricted class of B-confidence-perturbations, Wg, the structure simplifies even further to a trivial
scalar arithmetic circuit. First, we define the key scalar quantities needed.

Definition 30 (Autoregressive Top-1 Confidence). Given a model p, and mapping By, let 7, =
B, tps be the initial categorical distribution, and let k* := argmax,c g (72 )k be the single most
likely category. We define:

1. The top confidence value v} € [0, 1], which is the model’s confidence in this top category:
’U; = (71'1)]9*. (29)

2. The conditional probability of hitting the top category, ggconf) (x, 2<;) € [0, 1], which is the

probability of eventually generating a sequence in category k*, given the prefix z<;:

9 (@, 2<) == Pr [Bap(z<i,2) = k¥ (30)
2/ ~pa(c|2<s
With these scalars, the autoregressive update becomes a simple linear transformation.

Theorem 31. For any perturbation w € Wpg (defined by a function T), the perturbed next-token
probability is proportional to the original probability modified by a simple scalar circuit Cy,:

(conf)

(o % w2) (i | 2<0) o€ palei | 2<i) - Cuv, % (2, 25)), (31)
where the circuit Cy, is a linear function of gz(conf):
Cy(v,g) :=1+4 (exp(t(v)) — 1) x g. (32)

Proof. By Lemma 28]
(P xwe)(zi | 2<i) o pe(zi|2<i) - B [exp(wa(2))]. (33)

Z’\‘Ptn('lzgi)

For w € Wpg we have
wy(2) = ¢ - I{Bz(2) = k*},  with ¢, := 7(v]).
exp(wy(2)) = 1+ (exp(cz) — 1) - 1{B,(z) = k*}.

Taking expectation under z ~ p, (- | z<;) yields
Lt (exples) = 1) Pr[By(2) = K | 2] = 1+ (exp(r(e]) = 1) g™ (2, 2<0).  (34)
By Lemma the perturbed conditional probability is the original p,(z; | z<;) scaled by the ratio

of this term to an analogous denominator depending only on the prefix z;. Since the denominator
is independent of z;, it can be absorbed into the overall proportionality constant. [
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E.7 QUANTITATIVE BOUNDS ON MULTI-CLASS CALIBRATION AND POST-PROCESSING GAP

Beyond cross-entropy loss, we provide in this section a generalization for the class of proper loss
functions and quantitative bounds relating post-processing and calibration gap. The main result in
this section, Thm. 36| should be interpreted as a generalization of Theorem E.3 in [Blasiok et al.
(2023) to the multi-class setting, and a robust version of Thm. it essentially states that a model
is “close to” WW-weighted-calibrated if it is “close to” VW-loss-optimal.

First, we recall a standard result on convex representation of proper losses (Savagel |1971};Schervish,
1989; (Gneiting & Raftery, [2007)).

Definition 32 (Savage representation). A loss function € : {e1,...,ex} x Axg — R is proper iff
there exists a convex function ¢ : A — R such that
Uy, v) = =o(v) + (v =y, Vo(v)). (35)

Next, define the convex conjugate ¢ = ¢*, a dual variable, and the dual form of the loss.
Definition 33 (Dual loss). For a proper loss ¢ with potential ¢ as in Definition define:

Convex conjugate: (u) := ¢*(u) := sup ((u,v) — ¢(v)),
VEAK
Dual variable:  dual(v) := V$(v),
Dual loss: (") (y, 2) := ¢(z) — (y, 2).
Remark 34. The dual parameterization of Definition[33|satisfies:
1. Agreement between primal and dual losses: (V) (y, dual(v)) = {(y,v).
2. Probability — dual map: dual(v) = V(v) forallv € Ak.

3. Dual — probability map: v = V(dual(v)) for all v € Ag.
Definition 35 (Generalized dual calibration and post-processing gap). Let W be a class of functions

w: X x RE — RX and let D be a distribution over X x {ey, ..., ex}.
For a predictor f : X — Ak, let g : X — RX be its dual representation such that

f(x) =Vi(g(z)) VreX. (36)
Define for shorthand

A(w) = E@yp [y — f@),w(z, 9(2))],  L(B) :=E@ypll (y,h(z))]. 3BT
* The dual calibration error of g with respect to VV is

CE(g; W) == sup |A(w)]. (38)
wew

* The dual post-processing gap of g with respect to a function class H is
Gap(g; H) := L(g) — inf L(h). (39)
heH
Theorem 36 (General relationship between calibration and post-processing). Let ¢ : RX — R
be differentiable and \-smooth, i.e. V1 is A-Lipschitz. Let VW be a class of bounded functions

w: X x RE — RE with ||w,|| < 1. Forw € Wand 8 € [~1/),1/)], define the perturbed dual
predictor

gu() := g(z) + fuw(z, 9(2))- (40)
Let Gy = {guw : w €W, B € [-1/\,1/A]}. Then, for every g : X — R¥ and distribution D,

2
2 (CBlW))” < A~ Gap(g:Gw) < CE(g:W). 1)

Proof. By the definition of ¢(*),

L(g) = L(gw) = E[y(g(x)) — {y, 9(x)) — ¥ (90 (2)) + (¥, 9 (2))]
= E[v(g(x)) — ¥(gu(2)) + Bly, w(=, g(2)))].
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By convexity and A-smoothness of 1, for z = g(x), 2’ = g, (x) and w, = w(z, g(x))

by 2
Since f(x) = Vip(g(x)) and ||w, || < 1, this yields
hy 2
BAw) ~ 2 < L)~ Ligw) < BAW). 43)
Lower bound. For w € W, set § = A(w)/A (which lies in [-1/A, 1/A]). Then
1
o5 Aw)? < L(9) — L(gw)- (44)
Taking sup yields
weWw 1
5 (CE(g:W))* < - Gap(g; Gw). (45)
Upper bound. For g,, € Gy, since || < 1/A
1
£(9) ~ Llgu) < BAM) < 1 AW)] (46)
Taking sup gives
weWw
A-Gap(g;Gw) < CE(g; W). 47)
Combining the upper and lower bounds proves Eq. @1). O

Remark 37 (Tighter exponent under strong convexity). If, in addition, v is p-strongly convex for

some pu > 0 i.e.

U(2) 2 9(2) +(V(2), 2" — 2) + 52 — 2|,
then one obtains matching upper and lower bounds. In this case, both inequalities in Thm. [36]
become quadratic in the calibration error:

H_(CE(g;W))* < Gap(g; Gw) (CE(g; W))". (48)

_ 1
22 = 2y
0

That is, the dual post-processing gap and the squared dual calibration error are equivalent up to
constants determined by (i, ).

E.7.1 SPECIALIZATION TO CROSS-ENTROPY LOSS

For completeness, we summarize the standard facts about the dual parametrization of the negative
log-loss in Table ]

Table 4: Duality relationships for the Negative Log-Loss (Cross-Entropy) proper scoring rule.

Primal Proper Loss (¢1)  4(y,v) = — Zfil y; log v;

Convex Function (¢) o(v) = Zfil v; log(v;)  (Negative Entropy)
Convex Conjugate (¢*)  ¢*(z) = log (Zf; exp(zi)) (Log-Sum-Exp)
Dual Loss (£%,) 0y, 2) = ¢*(2) —yTz

Dual Mapping (V¢™*) V¢*(z) = softmax(z)

The log-sum-exp function ¢*(z) = log (ZZK=1 exp(zi)) is 1/4-smooth, as shown in Beck &
Teboulle| (2003)) and Nesterov| (2005), so Thm. applies with A = 1/4. Moreover, to translate
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the result into the notation of our main theorems, recall the relationship between the primal predic-
tion f(x) and its dual representation g(x):

f(@) = Vo™ (g(x)) = softmax(g(x))
g(x) = log(f(x))

The perturbed loss can then be expressed in terms of the dual variables. The dual loss on perturbed
logits g + w is equivalent to the primal loss on the perturbed probability distribution f x w:

Gy, 9+ w) = ban(y, softmax(g + w)) = Lu(y, f *w)
where f x w = softmax(log(f) + w).
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E.8 CONFORMAL PREDICTION VIA WEIGHTED CALIBRATION

Here we observe that conformal prediction guarantees can be expressed as a type of weighted cali-
bration (Gopalan et al., 2024), for a particular weight family.

Recall conformal prediction asks for a model F'(x) which outputs a set of labels, with the guarantee
that this set contains the true label with high probability. Specifically, a conformal predictor has
coverage o if:

Pr [ye F(z)]>1—o. (49)
z,y~D

For an introduction to conformal prediction, see |/Angelopoulos et al.| (2023)) or the lecture notes of
Tibshirani| (2023)).

E.8.1 CONFORMAL PREDICTION FROM FULL CALIBRATION

Given a standard predictor f, which outputs a distribution on labels, one natural way to construct a
conformal predictor F,, is: given input z, and prediction f(x), output the set of highest-predicted-
probability labels which sum to total probability 1 — «. This means, outputting the K most-likely
classes according to f(x), where K is chosen per-sample based on the predicted probabilities.

The first observation (which is folklore) is: if the predictor f is perfectly calibrated, in the sense
of full-calibration, then the induced conformal predictor F, is correct (i.e. has coverage «). This
statement is not very relevant in practice, since full calibration is often too strong to hold. However,
we can achieve the same result with a weaker notion of calibration. This is a straightforward result;
we sketch the argument below.

E.8.2 CONFORMAL PREDICTION FROM WEIGHTED CALIBRATION

Lemma 38. Suppose f : X — Ay is perfectly weighted-calibrated (in the sense of|Gopalan et al.
(2024)) with respect to the following family of weight functions w(f) € RN :

W= {w(f) =olqp, 5 | a€0,1],0 € {£1}} (50)

Where 11 € {0, 1} is the indicator-vector for set of indices T, and the set T contains the highest-
probability labels, defined as:

t:(f) = max{t: Z fil{fi>t}] >1—a} (the threshold probability, given f)
€[N
T.(f)={i: fi >t (f)} (The set of top-class indices, for given level a)

That is, suppose:

E [(y—f(x),w(f(z))] =0

(z,y)~D
Then, the induced conformal predictor F,, of f is valid at all coverage levels .

Proof. (Sketch) Notice that by construction, (f, 17, (f)) > 1 — a. Therefore by calibration we must
have: (y, 17, (5)) > 1—a.

Moreover, the set T, (f) is exactly the output of the induced conformal predictor F,,, given base
prediction f. Therefore

Prly € To(f (2))] = E[(y, L1, (4))] (51)
>1—« (52)
O

By the general connection of Theorem [27] if a model f is W-locally-loss-optimal w.r.t. the weight
class of Equation (50}, then the induced conformal predictor F, has coverage « for all « € [0, 1].
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F DISAGGREGATED RELIABILITY DIAGRAM RESULTS

In this section, we report disaggregated reliability diagram results for individual configurations we
evaluated. The plots are displayed as follow:

* the right three columns present results for instruct models,

¢ the left three columns present results for the corresponding base models.
In some cases, there are multiple instruct models trained from a single base models, hence for some
base models, their results are being presented multiple times.

Some instruct models do not have a public corresponding base model—in those cases, the left three
columns of the row are empty.

As discussed in the Sec. [5] TriviaQA and SimpleQA were not evaluated for the CoT response style.

The figures start on the next page. For a quick references:

* GSM8K in App. [F]]

* OpenMathInstruct in App.[F2]
* TriviaQA in App.[E3

* SimpleQA in App.[F4]
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