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Abstract

Pre-trained models have achieved excellent001
performance on the dialogue task. However,002
for the continual increase of online chit-chat003
scenarios, directly fine-tuning these models for004
each of the new tasks not only explodes the005
capacity of the dialogue system on the em-006
bedded devices but also causes knowledge for-007
getting on pre-trained models and knowledge008
interference between diverse dialogue tasks.009
In this work, we propose a hierarchical in-010
ductive transfer framework to learn and de-011
ploy the dialogue skills continually and effi-012
ciently. First, we introduce the adapter mod-013
ule into pre-trained models for learning new014
dialogue tasks. As the only trainable mod-015
ule, it is beneficial for the dialogue system on016
the embedded devices to acquire new dialogue017
skills with negligible additional parameters.018
Then, for alleviating knowledge interference019
between tasks yet benefiting the regularization020
between them, we further design hierarchical021
inductive transfer that enables new tasks to use022
general knowledge in the base adapter with-023
out being misled by diverse knowledge in task-024
specific adapters. Empirical evaluation and025
analysis indicate that our framework obtains026
comparable performance under deployment-027
friendly model capacity.028

1 Introduction029

Neural dialogue models (Shang et al., 2015; Serban030

et al., 2016) have drawn increasing attention due to031

their high commercial value. Previous work usually032

makes efforts to improve the diversity and coher-033

ence of the responses (Li et al., 2016; Serban et al.,034

2017; Shen et al., 2018; Zhang et al., 2018a,c).035

Recently, a lot of work tries to enable models to036

express empathy (Zhou et al., 2018; Rashkin et al.,037

2019), be knowledgeable (Ghazvininejad et al.,038

2018; Dinan et al., 2019), and demonstrate con-039

sistent personalities (Qian et al., 2018; Zhang et al.,040

2018b, 2019). Specifically, the dialogue model is041

trained on a task-specific dataset to learn the cor- 042

responding conversation skill. However, with the 043

increasing number of online chit-chat scenarios, 044

the dialogue system is further expected to contin- 045

ually specialize in new tasks without sacrificing 046

the performance on old tasks. Meanwhile, the di- 047

alogue system must keep its capacity as small as 048

possible for the deployment on the computation 049

resource–limited embedded devices. 050

Pre-trained models (Radford et al., 2018; Devlin 051

et al., 2019) have successfully facilitated the learn- 052

ing of the downstream tasks in various fields. To 053

address the challenge of continual dialogue learn- 054

ing, directly fine-tuning pre-trained models on each 055

of the new dialogue tasks is a straightforward way 056

to equip the dialogue system with new conversa- 057

tion skills continually. However, it explodes the 058

capacity of the dialogue system because knowledge 059

of new tasks need to be stored in new pre-trained 060

models to avoid erasing knowledge of old tasks. A 061

more advanced approach is to multi-task one pre- 062

trained model on all old tasks and then fine-tune 063

it on new tasks, which can alleviate the capacity 064

problem and use general knowledge between old 065

tasks to improve the model performance on new 066

tasks (Smith et al., 2020). Nonetheless, these ad- 067

vantages come at the cost of performance decline 068

on some old tasks due to knowledge interference 069

between diverse tasks. 070

To tackle these problems, we propose a hierar- 071

chical inductive transfer framework to construct 072

and deploy the dialogue system with fewer com- 073

putational resources. The framework is inspired 074

by the fact that the conversational skills are multi- 075

layered, and while general skills, e.g., uttering flu- 076

ent sentences, are necessary for all scenarios and 077

the requisite for sophisticated skills, specialized 078

skills, such as negotiating and debating, work for 079

fewer occasions. In the hierarchy of conversational 080

skills, the later skills could be efficiently built upon 081

the former skills if they are well-learned. However, 082
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considering it is difficult to determine the proper083

order of the skills and the skills needs for a dataset,084

we take the following practical approach.085

We first introduce the adapter module, consist-086

ing of a small sub-net, into the pre-trained model.087

Each block of the pre-trained model is assigned two088

adapters inserted after the self-attention layer and089

the feed-forward layer. During training, adapters,090

as the only trainable parameters, learn knowledge091

of dialogue tasks, which avoids knowledge forget-092

ting on pre-trained models and therefore keeps the093

capacity of the dialogue system almost constant094

as the number of dialogue tasks increases. Then,095

we separate the adapter into the base adapter and096

the task-specific adapter to avoid the performance097

decline of models on old tasks caused by knowl-098

edge interference between diverse tasks. The for-099

mer is multi-tasked with old tasks to obtain gen-100

eral knowledge by regularization between diverse101

tasks, which facilitates the learning of new tasks.102

The latter is further fine-tuned on any dialogue103

task to learn the corresponding task-specific knowl-104

edge, which maintains the model performance on105

old tasks. Finally, the proposed framework signifi-106

cantly enhances the training efficiency due to the107

learning of dialogue tasks only being conducted108

via adapters.109

2 Method110

In this section, we first describe the vanilla adapter111

and how to apply it to the dialogue tasks and then112

present the hierarchical inductive transfer to learn113

general knowledge and task-specific knowledge.114

2.1 Adapter for Continual Dialogue Learning115

Directly fine-tuning pre-trained models for each116

of the new dialogue tasks will cause knowledge117

forgetting, and therefore each task requires a large118

set of parameters for maintaining the model per-119

formance on both old and new tasks. Compared120

with it, we keep the parameters of the pre-trained121

model fixed and use the adapter to learn new tasks.122

Adapters are inserted after the self-attention layer123

and the feed-forward layer of each block of the124

pre-trained model, illustrated in Figure 1:125

hl+1 = LN
(
hl + Ada

(
Fun

(
hl
)))

, (1)126

where hl and hl+1 represent the input and the out-127

put of sub-blocks, and Fun(·), Ada(·), and LN(·)128

represent the function layer (i.e., the self-attention129
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Figure 1: An overview of the hierarchical inductive
transfer framework.

layer or the feed-forward layer), the adapter, and 130

the layer norm, respectively. 131

Each adapter consists of a bottleneck module 132

with a skip-connection. Concretely, the bottleneck 133

module first down-projects the do-dimension out- 134

put of the previous layer into features with a smaller 135

dimension, da, followed by a nonlinearity, and then 136

up-projects to the original dimension. Formally, it 137

can be expressed as: 138

Ada(o) = o +WUa
(
WDo

)
, (2) 139

where WD (do × da) and WU (da × do) are the 140

parameters of the down- and the up-projections, 141

and a(·) is the activation function. By adjusting the 142

value of da, we can control the number of parame- 143

ters of adapters to a deployment-friendly range. 144

For each new task, only a few parameters need to 145

be trained on the cloud servers and delivered to the 146

embedded devices, which significantly improves 147

the training efficiency and reduces the size of the 148

dialogue system. Please refer to Appendix B for a 149

more detailed discussion. 150

2.2 Hierarchical Inductive Transfer 151

In continual dialogue learning, the old tasks usually 152

contain useful knowledge for the learning of new 153

tasks. But they may also have knowledge interfer- 154

ence with new tasks. To alleviate this issue, one can 155

multi-task the adapters with all old tasks and find 156

general knowledge for new tasks. However, the 157

regularization between diverse tasks also causes 158

the performance decline of multi-tasked models 159

on some old tasks due to knowledge interference 160

among old tasks. Therefore, we further design a 161

hierarchical inductive transfer framework that con- 162

sists of two kinds of adapter, the base adapter and 163

the task-specific adapter. 164

Specifically, we take the vanilla adapters as the 165

base adapters and introduce a set of new adapters 166
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Method Θ θ∆ ConvAI2 WoW ED BST Average
FE + 0.216× 5.4 % 0.8698 0.9129 0.6255 0.7413 0.7874
FT + 4.0 × 100 % 0.8855 0.917 0.6267 0.7838 0.8032
MT+FT + 2.0 × 100 % 0.8878 0.9274 0.6241 0.8241 0.8158
Ada + 0.075× 1.87% 0.888 0.9177 0.6204 0.7662 0.7981
AdaHIT + 0.112× 4.2 % 0.8914 0.9193 0.6358 0.8167 0.8158

Table 1: Comparison in terms of total number of additional parameters (Θ), trainable parameters per task (θ∆), and
performance on tasks. The proposed AdaHIT achieves performance competitive with the state-of-the-art (MT+FT)
with far fewer total parameters to be stored and parameters to be trained.

inserted before the feed-forward layers of each base167

adapter as the task-specific sub-adapters, shown in168

Figure 1. It can be formulated as:169

Adabs(o) = o +WUAdats

(
a
(
WDAdats (o)

))
, (3)170

where Adabs(·) and Adats(·) represent the base171

adapter and the task-specific adapter. Each task-172

specific adapter also consists of a bottleneck mod-173

ule and a skip-connection.174

During training, we first multi-task the base175

adapters with all old tasks to find general knowl-176

edge and then fine-tune a set of task-specific177

adapters for each task, including old tasks and new178

tasks, which enables the new task to benefit from179

the knowledge of old tasks without sacrificing the180

model performance on some old tasks.181

3 Experiment182

3.1 Datasets and Baselines183

Datasets To evaluate the proposed framework,184

we take ConvAI2 (an extension of the PersonaChat185

dataset (Zhang et al., 2018b)), Wizard of Wikipedia186

(WoW) (Dinan et al., 2019), Empathetic Dialogues187

(ED) (Rashkin et al., 2019), and Blended Skill Talk188

(BST) (Smith et al., 2020) as an instance of contin-189

ual dialogue learning. The first three tasks are the190

old tasks and the last task represents the new task.191

Baselines Four methods of inductive transfer are192

used to compare with our framework (AdaHIT),193

including feature extraction (FE), which adds and194

optimizes a classification layer on the top of the pre-195

trained model (Vaswani et al., 2017), fine-tuning196

(FT), which updates all parameters of the pre-197

trained model for each task, multi-tasking with198

fine-tuning (MT+FT), which first multi-tasks the199

entire pre-trained model with all old tasks and then200

fine-tunes it on the new task, and vanilla adapter201

(Ada), which trains a set of adapters for each task.202

3.2 Experimental Settings203

Following Smith et al. (2020), we use the poly-204

encoder with 256M parameters (Humeau et al.,205

2019) as the underlying model, pretrain it on the 206

pushshift.io Reddit dataset, and then conduct in- 207

ductive transfer on the downstream tasks. We also 208

truncate the length of label and text to 72 and 360, 209

and set the embedding size to 768 as Smith et al. 210

(2020). The batch size is 128 and the other re- 211

sponses in a batch are set as negatives for training. 212

The dimension of adapters da is 64. We adopt 213

AdaMax (Kingma and Ba, 2015) as the optimizer 214

throughout the experiments, and the learning rates 215

are 9e-4, 2.5e-3, 1e-3, and 4e-4 for ConvAI2, WoW, 216

ED, and BST. The total training epochs are 8 with 217

linear warm-up for 10% and linear decay for the 218

rest. All experiments are conducted using ParlAI1. 219

3.3 Experimental Results 220

For the retrieval-based dialogue scenarios, we mea- 221

sure hits@1/K2 on the validation set of each task 222

for automatic evaluation. The number of candi- 223

dates is 20 for ConvAI2 and 100 for other tasks. 224

The results reported in Table 1 show that AdaHIT 225

achieves the best average performance, the same 226

as MT+FT, at the cost of far fewer parameters to 227

be trained and stored, indicating the superiority of 228

deployment on embedded devices. AdaHIT sig- 229

nificantly outperforms Ada in both old tasks and 230

new task with a slight regression of computational 231

efficiency, which demonstrates that the hierarchical 232

inductive transfer can extract general knowledge to 233

facilitate the learning of the new task while boost- 234

ing the model performance on old tasks effectively. 235

3.4 Ablation Study and Analysis 236

Effect of Base Adapter To analyze the effect of 237

the base adapter, we train it with different tasks, 238

and then test it on BST in a zero-shot manner, 239

or a fine-tuning manner which is the same with 240

AdaHIT. From the results in Table 2, we can ob- 241

serve that the base adapter with multi-tasking ob- 242

tains the best performance under both the zero-shot 243

1https://parl.ai/
2hits@1/K represents recall@1 when choosing the gold

response from K candidates.
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Dataset for Adapter BST (Zero-Shot) BST (Fine-Tuning)
ConvAI2 0.753 0.8039
WoW 0.6222 0.7751
ED 0.6349 0.7846
MT 0.768 0.8167

Table 2: Effect of training datasets for the base adapter.

Number of Layers 1 2 3 4 5 6
AdaHIT 0.809 0.807 0.796 0.785 0.762 0.734
Position of Layers 0 2 4 6 8 10
AdaHIT 0.809 0.808 0.809 0.801 0.793 0.763

Table 3: Ablation Study in terms of number and posi-
tion of removed adapters on BST.

and the fine-tuning setting, indicating that multi-244

tasking provides more general knowledge for the245

learning of BST. It is also worth mentioning that the246

base adapter trained on ConvAI2 achieves better247

performance than adapters on other tasks, because248

ConvAI2 contains more useful information, e.g.,249

persona, that also exists every sample of BST.250

Visualization To verify whether AdaHIT helps251

task adaption, we visualize the representations252

from models with different base adapters, i.e.,253

trained on MT and ConvAI2, the result of which254

is shown in Figure 2. As we can see, the two mod-255

els can both adjust to specific downstream tasks256

but representations with MT are better distributed257

and more tightly clustered. It is also interesting to258

see that the model with MT may implicitly distin-259

guish the skills for each task, because while ED260

and ConvAI2 share more common skills, they are261

quite different from WoW, and such difference is262

evidently reflected by the visualization.263

Ablation Study We further investigate the im-264

pact of adapters on model performance quantita-265

tively. First, we gradually remove each trained266

adapter from the bottom layer, and then increase267

the number of removed adapters. As shown in268

Table 3, the adapters of higher layers have more269

significant effects than the adapters of lower layers,270

indicating that we can only insert the adapters into271

the higher layers to improve the training efficiency.272

4 Related Work273

Continual Dialogue Learning Neural dialogue274

models (Mou et al., 2016; Xing et al., 2017; Zhao275

et al., 2017) can acquire various kinds of conversa-276

tion skills from corpora, such as characterizing per-277

sonalities (Qian et al., 2018; Zhang et al., 2018b),278

expressing emotion and empathy (Zhou et al., 2018;279

Rashkin et al., 2019), and retrieving knowledge280

Figure 2: Visualization of learned sentence repre-
sentations from AdaHIT with differently-trained base
adapters. MT is on the left and ConvAI2 is on the right.

(Ghazvininejad et al., 2018; Dinan et al., 2019). 281

Unlike existing work on enhancing a particular con- 282

versation skill, we work towards a new dialogue 283

learning paradigm, where conversation skills are 284

gradually embedded into a single model by mutual 285

reinforcement instead of interference. 286

Inductive Transfer Continual learning in terms 287

of transferring inductive knowledge from pre- 288

trained models to downstream tasks can be cat- 289

egorized into feature-based, fine-tuning–based, and 290

adapter-based (Ruder, 2019). We adopt the adapter- 291

based approach that benefits from both pre-trained 292

models and a small set of extra parameters for task- 293

specific knowledge. Unlike conventional adapters 294

(Houlsby et al., 2019; Poth et al., 2021; Pfeiffer 295

et al., 2021), knowledge in the proposed adapters 296

will be used to further boost the learning of new 297

dialogue tasks, whereas knowledge of each task 298

is separated into general and task-specific parts 299

to avoid knowledge interference. Madotto et al. 300

(2020) also uses the adapters to acquire the conver- 301

sation skills, but it does not consider knowledge 302

transfer and interference between adapters. 303

5 Conclusion 304

In this work, we propose a hierarchical inductive 305

transfer framework to efficiently train and deploy 306

the pre-trained models for growing numbers of new 307

dialogue tasks requiring diverse skills. Consider- 308

ing the computation resource–limited embedded 309

devices, we first adopt the adapter module, a small 310

plug-in sub-net, as the only incremental and train- 311

able parameters for learning each of the new dia- 312

logue tasks. To take advantage of knowledge in old 313

tasks to facilitate the learning of new tasks, we fur- 314

ther propose the hierarchical inductive transfer to 315

alleviate knowledge interference between tasks and 316

provide general knowledge for new tasks. Exten- 317

sive experiments and analysis demonstrate that the 318

proposed framework achieves high computational 319

efficiency with competitive performance. 320
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A Structure of Adapters517

We have designed and evaluated diverse structures518

of adapters for continual dialogue tasks, such as519

the self-attention structure and the convolutional520

structure. However, there is no significant effect521

on performance, which is in line with previous522

adapter-based work. For the basic bottleneck struc-523

ture, there are two advantages. First, it can limit524

the number of parameters per adapter by setting the525

bottleneck dimension da � do. Second, it also pro-526

vides a flexible way to trade-off model performance527

with parameter efficiency.528

B Training Efficiency of Adapters529

Compared with the traditional fine-tuning method,
our framework conducts the learning of dialogue
tasks only by adapters, which reduces the mem-
ory requirements and the computing operations of
each batch and therefore trains more samples with
the same time. For example, there is a two-layer
network, and only the first layer is trainable:

y1 = f(w1 ∗ x+ b1)

y2 = f(w2 ∗ y1 + b2)

Although we still need to calculate ∂y2

∂y1
due to the530

chain rule, we do not calculate ∂y2

∂w2
and ∂y2

∂b2
(i.e.,531

reducing the computing operations) and do not save532

them (i.e., reducing the memory requirements) for533

the parameter update. Considering the number of534

parameters of Transformer, the proposed frame-535

work indeed improves the training efficiency. More-536

over, we can only insert the adapters in the top lay-537

ers because the adapters in the bottom layers have538

a weaker effect on the model performance, indi-539

cated by Table 3, which limits the chain derivative540

to the top layers and further reduces the computing541

operations.542

C Knowledge Forgetting of FT543

In order to demonstrate knowledge forgetting of544

the traditional fine-tuning method, we evaluate the545

performance of the multi-tasking model (MT) on546

the old tasks before and after being fine-tuned on547

the new task. As shown in Table 4, the model548

fine-tuned on the new task (BST) shows consistent549

performance degradation on the old tasks.550

For a fair comparison, both our method551

(AdaHIT) and MT+FT are multi-tasked on the old552

tasks and then fine-tuned on the new task. We also553

Method ConvAI2 WoW ED
MT (B-FT) 0.8878 0.9274 0.6241
MT (A-FT) 0.8767 0.9094 0.6136

Table 4: Results on the old tasks. MT (B-FT) and MT
(A-FT) represent the multi-tasking model before and
after being fine-tuned on the new task, respectively

ConvAI2 WoW ED BST Average
0.8833 0.9233 0.6288 0.8342 0.8174

Table 5: Results of the model that is first pre-trained on
the old tasks and then multi-tasked on all tasks.

provide the results of a stronger model that is first 554

pre-trained on the old tasks and then multi-tasked 555

on all tasks (i.e., both the old and the new tasks). 556

The results of Table 5 show that AdaHIT still 557

achieves comparable performance but consumes 558

less computational cost. 559
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