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Abstract

Forecasting the income from milk sales can be addressed
as a time-series problem since the sequence of multiple
dairy attributes during lactation cycles are inter-related and
temporally dependent. In this paper, we provide a frame-
work to forecast the income from milk sales during the
third lactation of the dairy cows based on dairy attributes
recorded through the first and second lactation. We mod-
eled the problem as univariate and multivariate time-series
predictions. We propose several state-of-the-art implementa-
tions with ARIMA, N-BEATS, transformer and an original
method, MuMu+attention, that combines Long-Short Term
Memory neural network and attention mechanism to capture
the temporal dependencies. To benchmark the implemented
methods, we curated data from 147,749 dairy cows from
5,844 Canadian herds. The monthly income from milk sales
($CAD) measured at each cow during their third lactation was
treated as the prediction target. The dataset was composed of
dairy attributes of milk quality, production, season, year, and
health recorded over the first and second lactation of the dairy
cows. The results highlighted that most of the methods can
achieve relative good performance with the best prediction
accuracy obtained by MuMu+attention. MuMu+attention re-
sults were 43% better over the classic ARIMA model. By
forecasting the income from milk sales, our model could help
farmers to early identify less profitable animals and better al-
locate resources.

Introduction
Dairy farming is one of the largest sectors in agriculture
that has been under study through data-driven and machine
learning methodologies. Promising results were obtained in
automatic cropping of the cow’s body region and cow’s pat-
tern identification for individual animals (Zin et al. 2018).
In another work, deep convolutional neural networks were
used for detection of the key parts of a dairy cow’s body, re-
sulting in an accurate detector (Jiang et al. 2019). Promising
results were obtained by exploiting a deep learning model
for calving prediction from activity, lying, and ruminating
behaviors of dairy cattle (Borchers et al. 2017). Therefore,
the use of machine learning and deep learning based models
lead to promising results and its application to predict dairy
production could yield satisfying results (Frasco et al. 2020).

Income from milk sale is the main factor associated with
the profitability of a dairy farm. A forecasting tool would al-

low farmers to optimize the allocation of resources by early
identifying and removing less profitable animals from the
herd. The problem of forecasting income from milk sales
can be modeled as a univariate time-series task since the
lactation cycles are inter-related and temporally dependent,
or multivariate since milk production, the consequently in-
come, is affected by heath, productivity, environmental, and
management conditions. Among the classical time-series
prediction methods, Autoregressive Integrated Moving Av-
erage (ARIMA) has shown a good performance in univari-
ate time-series prediction tasks (Contreras et al. 2003). Re-
cently, deep learning models have been exploited in time-
series prediction domain. N-BEATS (Oreshkin et al. 2019)
is one of the well-known deep prediction models, in which
residual connections are used for univariate time-series pre-
diction and the model’s architecture is based on a very deep
stack of fully-connected layers. In MuMu (Frasco et al.
2020), Long-Short Term Memory (LSTM) network was ex-
ploited in the dairy forecasting field and gave rise to auspi-
cious results.Recently, Transformer models (Vaswani et al.
2017) got more attention of researchers due to their abil-
ity to represent the long-term temporal dependencies effi-
ciently by incorporating multi-head self attention in their
structure. The efficacy of the self-attention layers gave us
the hint about using an attention module in our prediction
framework.

The objective of this paper is twofold: first, we pro-
pose an extension of MUMU using LSTM and an attention
mechanism to forecast the income from milk sales; second,
we benchmark univariate models against multivariate ones
in predicting future profit using a well curated data from
147,749 dairy cows.

Preliminary
The problem of lifetime milk revenue prediction can be
posed as follows. For each input example (ith cow sample)
of length T, i.e. xi = (x1

i , ..., x
T
i ) ϵ ℜp×T with p as the num-

ber of input dairy factors and T the length of the time-series
(total length of the first and second lactation fixed for all the
cow samples), a prediction model forecasts the upcoming
milk revenues of M steps (months) ahead in third lactation,
r̂i ϵ ℜM . Therefore, the goal is to learn a function f which
maps the input multivariate time-series X ϵ ℜs×T×p to the
estimated milk income values in the future lactation months



Figure 1: Univariate and multivariate statement of our dairy
prediction problem.

r̂ ϵ ℜs×M , with s being the number of the cow samples pre-
sented to the model as the training set: r̂ = f(X).

Methodology
Prediction of dairy income can be stated as four different
cases (Figure 1): univariate or multivariate inputs, single or
multiple outputs. In the first case, the input is a sequence
of input dairy incomes during the early lactation cycles and
the output is the value of the next income in the next lac-
tation. The second case is similar to the first one, with the
difference that the output is multiple dairy incomes. In the
third case, the input window consists of multivariate series
associated with the multiple dairy factors through the early
lactation and the output window corresponds to a single in-
come in the next lactation. Finally, the input window in the
fourth case contains multivariate series of multiple dairy at-
tributes similar to the latter case, and have a sequence of
dairy incomes as its outputs.

Model Architecture
Here we propose MuMu+Attention, which builds on top of
the MuMu model (Frasco et al. 2020). It implements time-
series of the individual dairy attributes corresponding to ear-
lier lactations. It consists of two LSTM layers stacked on top
of each other and one attention layer, followed by a linear
layer acting as a decoder. The architecture of the proposed
framework is illustrated in Figure A1.

For the purpose of using all the hidden states and tempo-
ral feature selection, an attention layer (Vaswani et al. 2017)
has been embedded on top of the last LSTM layer in our
model. The attention layer consisted of two linear layers and
one tanh activation function in between. The final attention
weights were the result of applying a softmax function to
the output of the second linear layer to normalize the at-
tention scores. These weights were multiplied by the corre-
sponding hidden states and a weighted hidden vector was
calculated in order to be fed into the final linear layer which
generates the final prediction over the target window.

The corresponding formulas describe the components of
the attention layer:

L1 = tanh(W1x+ b1) (1)

Attention Outputs = Softmax(W2L1 + b2) (2)

In the above formulas, x represents the output of the last
LSTM layer with the shape of (batch size, sequence length,

hidden size). W1, W2, b1 and b2 are learnable parameters
which have been trained in an end to end manner together
with the other parameters of the model.

The major advantage of using the attention layer is that
the information in all of the hidden states has been exploited,
rather than using only the output of the last LSTM cell and
this can be referred to as a temporal feature selection step
which learns and assigns the importance weights to the se-
quence of the hidden states associated with the input window
(input time steps). A dropout layer is used in the output of
the second LSTM layer in order to avoid over-fitting. The
value of the dropout rate hyper-parameter determines the ra-
tio of the hidden states whose outputs are dropped out and
this hyper-parameter is set to 0.5 in our model. Finally, the
decoder in our model, which is a linear layer with no acti-
vation function, generates the output predictions by one for-
ward pass instead of the time consuming dynamic decoding
used in the conventional architectures. In our work, the mean
squared error was used as the loss function while training the
model.

Experimental settings
Data
The input to our prediction model was a multivariate time-
series containing a set of dairy attributes, including metrics
of milk quality, seasonality, year, health, and management
factors, recorded during the first and second lactation of
147,749 dairy cows from 5,844 Canadian dairy farms over
the years of 2006 to 2017. The prediction targets were the
monthly income from milk sales ($CAD) measured at each
cow during their third lactation.

Data Pre-processing
In the experiments, lactation length was fixed to 11 months
for first, second, and third lactation based on the mean +
one standard deviation of the lactation lengths related to
the training cow samples. For cows with lactation lengths
shorter than 11 months, additional data rows were created
in the missing months and imputed through linear interpo-
lation based on the two closest months. The following steps
were taken to clean the data: 1- Keeping only animals having
test records in the first, second and third lactations, 2- Delet-
ing the records from the dry period: dry period is defined
as the months in which a cow doesn’t produce milk (which
mostly occurs between two lactation cycles) and milk value
(income) is almost zero. Since there is no income from sales
during the dry period, records associated with these months
were deleted, 3- Removing the animals who left their herd
before and during the third lactation, 4- Deleting duplicate
records, 5- Deleting the records with negative milk value
and cumulative milk value: The reason for removing such
records, which constituted a small percentage of the data,
was to remove the inconsistencies in the data set, as the milk
value is the income from milk sale (CAD) and negative val-
ues of dairy income could be accounted for as an inconsis-
tency due to the errors in data acquisition steps., 6- Deleting
the records which included contradictions, e.g., rows indi-
cating the cow was milking, while the milk yield of those



records was equal to zero, 7- Outlier removal (their cor-
responding rows): The values outside the range of Mean -
/+ 2.5 × standard deviation were specified as outliers for
a given dairy attribute and were deleted. All the dairy at-
tributes used as input to our model and their descriptions are
shown in Tables A1 and A2 (Appendix).

Among the 147,749 dairy cows, 100,000 were selected to
train and the remaining 47,749 cow samples to test the mod-
els. Missing data was imputed after train-test split to avoid
information leakage (Thomas et al. 2020). In our work,
missing value imputation were performed in 7 consecutive
steps: first the cow samples were grouped based on their herd
ID, season and year, then the missing values within each
group were imputed using the average of non-missing sam-
ples within the same group. The imputation process in the
remaining six steps was similar as in the first one, with the
following attributes used for grouping, respectively: (herd
ID, season), (herd id, year), (herd id), (season, year), (sea-
son), (herd id).

Experimental Details
Baselines We choose five forecasting methods as com-
parison models: two univariate ( ARIMA (Contreras et al.
2003) and N-BEATS (Oreshkin et al. 2019)) and two mul-
tivariate models (MuMu (Frasco et al. 2020) and a stan-
dard Transformer model (Vaswani et al. 2017) adapted for
time-series prediction. Most of the above methods are well
known in the time-series domain. The ARIMA model is
chosen as a baseline method as it is a classic statistical ap-
proach in time-series analysis. The parameters used in the
ARIMA are taken from (Frasco et al. 2020) which used a
stepwise algorithm to determine p, q, P and Q parameters.
The N − BEATS model (Oreshkin et al. 2019) had four
blocks. The first two blocks had a trend basis function in
their outputs, and the other two contained a seasonality ba-
sis. The number of fully-connected layers inside each block
was fixed to 4 with hidden-size of 128. As the N-BEATS
model is designed to receive a univariate sequence, we fed
the sequence of milk incomes in 22 months as its input.
The parameters for the MuMu model are: 2 LSTM layers,
one linear layer (without an activation function) and the hid-
den size is fixed to 32 in all layers. The Transformer model
which was used as another baseline method in our exper-
iments, was composed of two encoders and one decoder
layer, in which the input of the decoder was the last time
step of the input window.

Grid Search for Hyper-parameters determination Grid
search was conducted to determine the hyper parameters
(batch size, learning rate and hidden size of the LSTMs)
due to its common usage in other related works and
satisfying results (Zhou et al. 2021). Our proposed model
was optimized with Adam optimizer and learning rate of
1e−4. The total number of epochs was set to 20 with an
early stopping based on the validation loss. Setup: All the
numerical inputs were standardized with zero mean and unit
standard deviation. At the same time, categorical variables
were normalized to the range between 0 and 1. The above
transformation was applied to each dairy feature, separately.

RMSE results
Univariate Multivariate

ARIMA N-BEATS Transformer MuMu MuMu+Attention
7.094 4.198 4.064 4.082 4.052

Table 1: Prediction results in terms of RMSE (teste dataset).

MAE results
Univariate Multivariate

ARIMA N-BEATS Transformer MuMu MuMu+Attention
5.560 3.256 3.178 3.175 3.143

Table 2: Prediction results in terms of MAE (test dataset).

The input window was set to 22 (with the length of 11
for both of the first and second lactation). The prediction
(target) window size (length of the third lactation) was
fixed as 11 in our experiments according to the mean of the
lactation lengths corresponding to all the cow samples. We
evaluated our prediction framework using the RMSE =√

1
Ncows×Nmonths

∑
mϵmonths

∑
cϵcows(p̂c,m − pc,m)2 and

the MAE = 1
Ncows×Nmonths

∑
mϵmonth

∑
cϵcows |p̂c,m − pc,m|

on the forecasting window. All the models were trained and
tested on 4 NVIDIA T4 Turing GPUs with 16 GB GDDR6
memory. Additionally, multiple pairwise Wilcoxon tests,
with Bonferroni p-value adjustment, were used to compare
models.

Results and Discussion
Tables 1 and 2, summarize the forecasting accuracy of all
the methods on the test dataset. The best results are high-
lighted in boldface in each setting. We also reported the cho-
sen hyper-parameters (the best combination), including hid-
den size, learning rate and batch size after performing the
grid search in Table A3 (Appendix).

MuMu+Attention model was able to forecast the income
with the highest accuracy based on the RMSE (Table 1)
and MAE (Table 2) measures. The LSTM layers included
were able to represent and capture the long-term temporal
dependencies (Gers, Schmidhuber, and Cummins 2000) by
exploiting the input, forget, update, and output gates in its
structure. Those gates help the LSTM to select the most rel-
evant information and update the previous state using the
current input at each time step. At the same time, forget and
update elements give the LSTM the capability of remem-
bering the long-range dependencies and making use of such
relationships in the prediction process.
Among the baseline methods, the classical ARIMA fore-
casts had the highest error. The linear nature of this model
hinders its ability to capture more complex and non-linear
temporal correlations. The N-BEATS model had a relatively
higher error compared to the multivariate approaches, which
is likely because it does not have a sequential module in its
structure to represent the temporal dependencies. Capturing
long-range dependencies is a key factor in time-series pre-
diction (Zhou et al. 2021) and all the LSTM or Transformer
based approaches try to represent such relations by captur-



Figure 2: Monthly Errors (MAE) of different methods and
our proposed framework on prediction of the milk incomes.

ing the impact of different time steps on each other, which
seems to be a dominant factor for the success of those meth-
ods. The reason behind the relatively lower performance of
the Transformer model might be due to the lack of sufficient
and enough data for training of this model, which has more
parameters than the other models (Table A7). As the errors
related to different deep learning models are in the same
range, the training and inference time of the MuMu+Atten
and other models are reported in table A4 to give an insight
on the time complexity of the deep learning based meth-
ods. Based on the results, the N-BEATS model needs more
training and inference time than the MuMu+Atten, despite
its lower performance compared to the multivariate mod-
els. We further conducted other experiments to predict the
milk value in a single month after the first and second lac-
tation (input window). The results indicate that the model
nearly gave the same results as the prediction of the multiple
months (Table A5).
Figure 2 depicts the forecast accuracy of the proposed
framework in comparison to the other models over each
month of the third lactation. Except for the ARIMA model,
the best forecasts occurred in the middle of lactation (month
5) compared to the beginning and the end. This is likely be-
cause there is a great variability among cows in the amount
of milk produced and consequently sold during these steps,
making it more difficult to forecast. The distribution of MAE
for all models at the herd level is plotted in Figure 3. There
was no strong evidence of herd-bias as the distributions were
visually similar. The MAE, at the herd level, was not statis-
tically different between the multivariate models (p ≥ 0.05)
and it was lower than both univariate models (p < 0.05; Ta-
ble A6). This indicated that the proposed framework could
also capture the long-range temporal dependencies in in-
put and output windows by processing the input sequence
using the LSTM layers and representing the importance of
each time step through the attention weights. Furthermore,
the generative style decoder (the output linear layer in our
framework) acquired the output predictions in one forward
pass and avoided the error accumulation during the testing
phase.

Figure 3: Herd-based Error (MAE) distribution of different
methods.

Conclusion
In conclusion, we studied the problem of forecasting the in-
come from milk sales by designing a framework and com-
paring univariate and multivariate approaches. We enriched
our framework with the MuMu+Attention model that com-
bines LSTM and attention mechanism. The experimental re-
sults showed that multivariate models tend to perform better
even though the performance of NBEAST can be an impor-
tant way of approximating the profit just using a univari-
ate time-series. However, we showed that MuMu+Attention
provided the highest accuracy.
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Appendix

Figure A1: Architecture of the proposed prediction frame-
work.



Variable Missing % Min Max Mean Std
Milk produced in 24 hours (Kg) 1.4 0.20 61.40 29.60 9.25
Milk income (CAD) 0.002 0.09 42.95 21.21 5.94
Somatic Cell Count (1000/mL) 17.62 1 1754 156.59 254.87
Milk Urea Nitrogen 56.04 2.10 19.80 10.91 3.27
Lactose yield (Kg) 37.63 0 6.30 4.55 0.22
Fat yield in 24 hours (Kg) 1.64 0 2.40 1.19 0.38
Protein yield in 24 hours (Kg) 1.64 0 1.94 1.00 0.30
Number of days cow has been in milking 0 0 517 169.56 99.39
Fat to protein ratio 1.64 0.73 1.67 1.20 0.16

Table A1: Numerical dairy variables used in our framework.

Categorical variables
Variable Missing % Levels Number of observations % of each level
Lactation Number 0 1 1625239 33.33

2 1625239 33.33
3 1625239 33.33

Number of milking per day 0 1 163201 3.33
2 4650067 95.37
3 62449 1.28

Test season 0 1 1235340 25.33
2 1226102 25.14
3 1220232 25.03
4 1194043 24.49

Birth season 0 1 1109460 22.75
2 1325577 27.18
3 1274922 26.14
4 1165758 23.91

Animal condition 0 2 4846703 99.40
4 29014 0.06

Test year 0 6 155074 3.18
7 304329 6.24
8 443724 9.10
9 486607 9.98
10 472280 9.68
11 479705 9.83
12 498897 10.23
13 511067 10.48
14 521706 10.70
15 486234 9.97
16 331883 6.81
17 170715 3.50

Table A2: Categorical dairy variables used in our framework.

Hyper-parameter Selected value
Hidden size 32
Learning rate 1e−4

Batch size 1
Epochs 20

Table A3: The selected hyper-parameters in training of our proposed model

ARIMA N-BEATS Transformer MuMu MuMu+Atten
> 12 hours 4 hours, 7 mins 2 hours, 34 mins 1 hour, 36 mins 2 hours
O(L ∗ p3) O(c ∗ L ∗ d) O(L2 ∗ d) O(L ∗ d2) O(L ∗ d2)

Table A4: Running time of different models (Training + Inference time). In this table, L is the length of the time series, d in the
model’s dimensionality, c is a multiplier, and p is the order of the ARIMA model.



One month RMSE One month MAE
N-BEATS 4.72 3.72
Transformer 4.58 3.60
MuMu 4.57 3.62
MuMu+Attention 4.56 3.61
ARIMA 13.53 11.81

Table A5: RMSE and MAE of the forecasting the milk income (value) in a single month ahead of the input window (first and
second lactation)

ARIMA N-BEATS Transformer MuMu
N-BEATS < 0.001
Transformer < 0.001 < 0.001
MuMu < 0.001 < 0.001 0.05
MuMu+Attention < 0.001 < 0.001 0.05 1.00

Table A6: Pairwise comparisons of the mean absolute errors for all models at the herd level using the Wilcoxon rank sum test.
The Bonferroni method was used to adjust the p-values for multiple comparisons.

Model Name Number of parameters
N-BEATS 109325
Transformer 276587
MuMu 15339
MuMu+Attention 16428
ARIMA 3

Table A7: Number of parameters of different models


