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ABSTRACT

Large language models (LLMs) excel in complex tasks but often struggle with
inconsistencies in problem framing, a critical skill for real-world scenarios. This
paper introduces SPARK, a novel evaluation framework grounded in the Hierar-
chical Three-Space Theory, to assess LLMs’ ability to identify missing informa-
tion and challenge flawed problem setups. We propose a general framework to
create benchmarks by introducing inconsistencies and misleading cues in diverse
question-answering datasets, covering mathematics, science, and reading compre-
hension. To assist with robust measuring of critical thinking, we employ two key
metrics: problem-solving capability rate and challenge rate. Our experiments with
state-of-the-art LLMs reveal their limitations in critical thinking, particularly in
recognizing inconsistencies. We also explore mitigation strategies, such as modi-
fied prompting and targeted fine-tuning. Furthermore, we conduct comprehensive
experiments to investigate how model and problem properties influence critical
thinking capabilities in LLMs.

1 INTRODUCTION

As large language models (LLMs) become increasingly integrated into decision-making processes,
ensuring they possess robust critical thinking skills is of paramount importance. While significant
attention has been given to LLMs’ ability to generate responses and solve problems, the research
community has also recognized the importance of understanding the limitations and potential risks
associated with these models (Weidinger et al., 2022; Kaddour et al., 2023). A crucial question
arises:

Can LLMs critically assess the very foundation of a problem—its initial framing—
and identify inherent inconsistencies?

Failure to do so could lead to flawed reasoning, inaccurate conclusions, and ultimately, unreliable
performance, especially in complex, real-world scenarios.

Recent research has explored various facets of critical thinking in AI, including handling incomplete
or ambiguous requests (Asai & Choi, 2021; Kamath et al., 2020; Kuhn et al., 2022), discerning truth
from falsehood (Xu et al., 2023; Chen & Shu, 2023), and reconciling contradictory information (Xie
et al., 2023; Zhou et al., 2023). However, the ability to recognize inconsistencies in problem framing
remains under-explored. Current evaluation methods, while providing valuable insights into model
performance on well-defined tasks, often fail to capture the challenges posed by such inconsisten-
cies. This limitation highlights a significant gap in our understanding of LLMs’ capabilities.

This study contributes to the ongoing discussion of LLM capabilities by introducing a novel frame-
work for assessing this specific aspect of critical thinking in problem-solving. We contribute a gen-
eral methodology for creating benchmarks to assess this crucial skill, addressing a significant gap in
current evaluation methods. Our work is grounded in the Three-Space Theory of Problem Solving
(Burns & Vollemeyer, 2000), which describes problem-solving as a process of interacting searches
within three distinct but interconnected spaces: the Problem Framing Space (the general understand-
ing of the task), the Strategy Space (possible solution approaches), and the Implementation Space
(specific applications of those strategies).
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DEFINITION OF CRITICAL THINKING FOR LLMS. Building upon the Three-Space Theory, critical
thinking for LLMs is the ability to analyze the Problem Framing Space and recognize flaws in
its definition, potentially by leveraging the Strategy and Implementation Spaces.

a) EXAMPLE OF FIXED 
            PROBLEM FRAMING
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Figure 1: The Hierarchical Three-Space Theory of Problem-Solving adapted from Burns & Volle-
meyer (2000), illustrating the interplay between Problem Framing, Strategy, and Implementation
Spaces. Critical thinking involves recognizing flaws in one’s understanding of a problem and lever-
aging feedback from the problem-solving process. The multiple-choice example illustrates this:
an LLM, despite possessing relevant knowledge, might be constrained by a flawed problem setup,
leading it to select an incorrect option and fabricate an explanation. However, an LLM with critical
thinking capabilities would identify the issue and challenge the implausible options.

In this paper, we present a series of experiments designed to evaluate critical thinking in LLMs,
focusing on their ability to recognize inconsistencies in problem framing and exploring these incon-
sistencies through the five key aspects outlined in our SPARK framework. These experiments en-
compass various dimensions, including assessing the impact of problem-solving strategies (SSI Hy-
pothesis), examining the effects of problem complexity and misleading information (PSS and RMI
Hypotheses), analyzing cross-domain generalization (ADA Hypothesis), and investigating the role
of in-context learning and model training (KBC Hypothesis). While our study explores a breadth of
problem types, we specifically focus on the LLMs’ capacity to recognize when their initial problem
model is insufficient and how they respond to new information or contradictions that challenge their
initial understanding. This focus allows us to gain a deeper understanding of LLM reasoning and
contribute to the development of models that can reliably handle complex, real-world scenarios.

The rest of this paper is organized as follows: Section 2 reviews related work in problem-solving,
LLM evaluation, and critical thinking in AI. Section 3 details our theoretical framework, and de-
scribes our methodology, including benchmark creation and experimental design. Section 4 presents
our experiments and results. Section 5 discusses the implications of our findings, and Section 6 con-
cludes with a summary and directions for future work.

2 RELATED WORK

Problem-Solving in Cognitive Science The Hierarchical Three-Space Theory of problem-
solving, which underpins our SPARK framework, is grounded in classic cognitive science theories
(Newell, 1972; Stein et al., 1984) and addresses challenges of ill-structured problems (Rittel &
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Webber, 1973; Simon, 1973). Its dynamic Problem Framing Space aligns with metacognitive pro-
cesses (Flavell, 1979) and complex problem-solving research (Dörner, 1986; Funke, 2010; Greiff
et al., 2014), representing interactions between problem framing, strategy development, and imple-
mentation. The theory integrates critical thinking skills (Elder & Paul, 2007; Facione, 1990; Dwyer
et al., 2014) and resonates with current complex problem-solving (CPS) frameworks (Quesada*
et al., 2005; Grable, 2006). SPARK extends these foundations, offering complementary perspec-
tives for evaluating LLMs. It provides a structured approach to assess critical thinking in artificial
agents, introducing quantifiable metrics like correctness, problem-solving capability and challenge
rates. SPARK’s examination of interactions between Problem Framing, Strategy, and Implemen-
tation spaces offers a novel lens for understanding complex problem-solving processes. The LLM
problem-solving strategy is shaped by prompting techniques. Chain-of-Thought (CoT) (Wei et al.,
2022) breaks down problems into intermediate reasoning steps. Tree-of-Thought (Yao et al., 2024)
extends CoT by exploring multiple branches of reasoning through a tree structure. Graph-of-Though
(Besta et al., 2024) extends CoT by structuring the reasoning process as a graph. Algorithm-of-
Thought (Sel et al., 2023) provides well-defined rules to guide the LLMs to reason logically and
effectively. By focusing on LLMs’ robustness to misinformation and the influence of model archi-
tecture on problem-solving capabilities, SPARK addresses contemporary challenges in AI.

Critical Thinking in AI Recent literature explores critical thinking in AI through various lenses,
including LLM noncompliance (Asai & Choi, 2021; Kamath et al., 2020; Brahman et al., 2024),
misinformation susceptibility (Xu et al., 2023; Chen & Shu, 2023), knowledge conflicts (Xie et al.,
2023; Zhou et al., 2023), input perturbations (Jia & Liang, 2017; Zhao et al., 2021), and sycophancy
(Perez et al., 2023; Wei et al., 2023). These studies examine various facets of critical thinking
in LLMs, including their ability to recognize limitations, handle misinformation, resolve contradic-
tions, and resist biases. An emerging trend focuses on evaluating LLMs’ ability to assess and correct
reasoning processes, as exemplified by benchmarks like MR-BEN (Zeng et al., 2024), PRM800K
(Lightman et al., 2023), and MR-MATH (Xia et al., 2024), and others that evaluate higher-order
cognitive skills by examining the reasoning process. Recent work has further explored LLMs’ ca-
pacity for self-correction (Tyen et al., 2023; Huang et al., 2023) and provided metrics for scoring
step-by-step reasoning (Golovneva et al., 2023).

Our work distinguishes itself by focusing on LLMs’ capacity to critique problem formulations across
domains and actively identify flaws in problem setups, a fundamental aspect of critical thinking often
overlooked. Using the Three-Space Theory, we provide a unified framework to evaluate this abil-
ity in multiple-choice, mathematical, and reading comprehension tasks, offering a comprehensive,
cross-domain analysis of this critical thinking skill. Compared with existing benchmarks evaluating
LLM on ambiguous or unanswerable questions (Brahman et al., 2024; Tian et al., 2023; Min et al.,
2020), we create our dataset by modifying the options or context of well-defined questions and pro-
vide a more fine-grained analysis of LLM responses, investigating the factors that influence their
critical thinking capabilities.

3 SPARK FRAMEWORK FOR CRITICAL THINKING IN LLMS

3.1 ADAPTING HIERARCHICAL THREE-SPACE THEORY FOR LLMS AND ESTABLISHING
SPARK HYPOTHESES FOR CRITICAL THINKING

We adapt the Hierarchical Three-Space Theory (visualized in Fig. 1) to the context of language
model processing, reframing the three spaces as:1
Problem Framing Space (Model Space): Represents the LLM’s initial understanding and assump-
tions about the given task/question, derived from the prompt and the model’s pre-trained knowledge.
Strategy Space (Hypothesis Space): Encompasses potential reasoning paths or approaches to ad-
dress the task, manifesting in the model’s generation of intermediate thoughts or steps, such as those
observed in chain-of-thought reasoning. The exploration of this space is influenced by the model’s
training and the specific prompting technique used.
Implementation Space (Experiment Space): Represents the actual output generation process, in-
cluding token-by-token text generation where the model applies its selected strategy to produce a
response. This space is directly observable through the model’s output.

1We have renamed the spaces from the original Three-Space Theory (shown in parentheses) to better reflect
their application to LLMs and avoid terminological confusion (e.g., ‘hypothesis space’ or ‘model’ in ML).
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Grounded in the Three-Space Theory, we analyze LLM critical thinking as an ability to facilitate
feedback from the (Strategy and Implementation Spaces) to enable revisions in the Problem Fram-
ing Space. Building upon this adapted theory and the critical thinking definition, we propose the
SPARK framework to evaluate the five key hypotheses to evaluate the critical thinking in LLMs:

Strategy Space Interaction (SSI) Hypothesis: The way LLMs solve problems (their Strategy Space)
influences their ability to update their Problem Framing Space. To evaluate this hypothesis, we
compare different solving strategies (Strategy Space), in particular original prompting vs chain-of-
thought prompting, and evaluate the effect on the Problem-Solving Space (Section 4.3.
Problem Space Sensitivity (PSS) Hypothesis: LLMs can detect inconsistencies or missing informa-
tion in their Problem Framing Space, but this ability varies based on problem complexity and model
architecture. To study the model’s ability to detect insconsistencies or missing information of the
problem statement, we first design problem setup to incorporate such cases. Then we evaluate the
model’s general ability to challenge the incorrect problem formulation (Section 4.1. We then study
whether the degree of challenging depends on the model’s solving capability for the given problem
(Section 4.2) or the problem’s complexity, where we simulate by increasing the number of missing
constraints (Section 4.4).
Across-Domain Abstraction (ADA) Hypothesis: LLMs’ critical thinking abilities are partly domain-
general, but effectiveness varies across problem types. To find the domain-general critical thinking
ability of an LLM, we search over a wide range of diverse domain datasets to find the clusters of
datasets that share similar critical-thinking patterns between datasets (Section 4.6).
Robustness to Misleading Information (RMI) Hypothesis: LLMs’ Problem Framing Space can be
influenced by misleading or noisy information. To test the robustness of the model to misleading
information, we design experiments with conflicting information as a form of gaslighting hints in
the prompt (Section 4.5).
Knowledge and Behavior Conditioning (KBC) Hypothesis: LLM knowledge and behavior that gov-
erns the dynamic interplay among all three spaces can be shaped or conditioned through fine-tuning
and in-context learning. To investigate the interplay among all spaces, we study how different fine
tuning strategies and datasets condition the model behavior (Section 4.7 and also how different in-
context learning examples can affect the model critical-thinking ability differently (Section 4.8).

This framework with proposed experiments allow us to systematically investigate critical thinking in
LLMs, providing insights into their capabilities and limitations in complex problem-solving scenar-
ios nad how large language models (LLMs) navigate within the spaces of the Three-Space Theory
and interact across them.

3.2 BENCHMARK CREATION OVERVIEW, REPRODUCTION, AND EXPERIMENTAL SETUP

Our work provides a framework to evaluate critical thinking of a large language model by modifying
existing, correctly annotated datasets of interest.

Datasets. In our study, we employ multiple existing datasets covering a range of topics and skills: 8
multiple-choice datasets (QA): Hellaswag (commonsense NLI), TAL (math), OpenBook QA (text
comprehension with commonsense reasoning), ARC Challenge (science), GPQA (domain-specific
science), LSAT (law reading comprehension), MMLU-Math(math subset of general knowledge),
TruthfulQA (human falsehood), 3 free-form generation datasets (FG): GSM8K (math), Quail
(reading comprehension), and HotPotQA (multi-hop reasoning). For each dataset, we sample 300
test queries for evaluation. We refer the reader to Appendix A for further details on the construction
of these datasets.
Dataset Modification. We create two new versions of these datasets to test LLMs’ ability to detect
inconsistencies or missing information in problem setups:
• (Hidden Correct Answer) For 8QA datasets, we remove the correct answer choice from the

multiple answer choices. Here, we study whether the model is able to update its Problem Framing
assumptions that the correct answer choice might actually not be provided within the problem
statement. Thus, requiring the model to change its own initial assumptions about the multiple-
choice problems.

• (Missing Information) For 3FG datasets, we remove the necessary condition from the problem
statement so that the answer cannot be inferred from the provided context, thus, requiring the
LLM to update its Problem Framing Space assumptions that the model cannot arrive at the final
answer due to missing information. The detailed question modifications are explained in A.1.2.
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These modifications allow us to evaluate the model’s ability to recognize inconsistencies and chal-
lenge insufficient problem setups. Crucially, we assess the model’s capacity to self-recognize these
flaws without any additional guidance. These datasets span diverse problem types—including math-
ematics, reading comprehension, domain-specific science, and story completion—each designed to
evaluate specific problem-solving skills. We prioritize reasoning tasks as they align with our defi-
nition of critical thinking, while providing observable intermediate steps that enable us to evaluate
inconsistencies in LLMs’ inference processes. To further evaluate robustness to misleading infor-
mation, we augment the 8QA datasets by creating three versions with different misleading hints:
• (Gaslight Correct): By the end of each problem statement, we add a hint claiming that the correct

answer (e.g., 9) is incorrect (e.g., Hint: 9 is incorrect).
• (Gaslight Wrong): By the end of each problem statement, we add a hint claiming that the wrong

answer (e.g., 8) is correct (e.g., Hint: 8 is correct).
• (Gaslight Both): By the end of each problem statement, we add a hint claiming that the wrong

answer is correct and the correct answer is incorrect (e.g., Hint: 8 is correct and 9 is incorrect).
Models. After building the evaluation datasets, we aim to evaluate LLMs across a range of training
parameter sizes and diverse capabilities. Therefore, we include the following models: Llama-3.1-
8/70B-Instruct (Dubey et al., 2024), Mistral-7B-Instruct-v0.3, and GPT4o (Achiam et al., 2023). We
configure each model with a temperature of 0 and a maximum token limit of 1024 for inference. For
more model, inference, and training details, we refer the reader to Appendix B.

Evaluation Metrics. In all experiments, we measure two key metrics for critical thinking evaluation:
• Problem-Solving Rate: Measures whether the LLM’s incorporates the correct knowledge about

the question We leverage binary correctness label on clear generative tasks corc and modified
questions corm, where the correctness represents whether the response demonstrates the correct
knowledge. To construct clear tasks, we remove options for the multiple-choice problem and use
the original questions for free-form generation problems. Problem-solving capability is measured
by corc ∪ corm, as correct solutions in either scenario indicate the model’s ability to solve the
task.

• Critical-Thinking Rate: Measures the LLM’s ability to identify flaws in the problem setup. We
first identify well-defined questions that the LLM does not challenge the problem setup. Let N1

denote the number of unchallenged clear questions, and N2 denote the number of their corre-
sponding modified versions that are challenged. The ratio N2

N1
measures the LLM’s capability to

identify problem inconsistencies. The detailed explanation is in Appendix C.
We employ off-the-shelf LLMs to measure these two scores for efficient evaluation. Particularly, we
use Llama-3.1-70B-Instruct to measure the correctness of the answer with respect to the ground truth
answer and GPT-4o to measure the challenge rate of the models. Due to high efficacy, we choose
these models as the judges, reaching 100% accuracy in measuring correctness and 92% accuracy in
measuring challenges on our manually curated held-out datasets, respectively. We provide relevant
template judge prompts in Appendix D.

Full Reproduction. To assist readers with reproduction of our study, we publish the codes for
tuning and inference, (hold-out) datasets, and full responses (https://anonymous.4open.
science/r/Critical-Spark-6EE3/).

4 EXPERIMENTS AND RESULTS

Now, we present our analysis on each experiment delineated in Section 3 and study the relation to
critical thinking ability. Due to space limitations, we move most of our figures and numerical tables
to Appendix E, while keeping the summarized results and analysis in the main text.

4.1 ABILITY TO CHALLENGE ASSUMPTIONS

We analyze LLMs’ critical-thinking rate defined in Sec 3.2 using problems lacking the correct op-
tion or key information. Figure 2 shows that all models demonstrate this capability across the stud-
ied datasets. For multiple-choice problems, the highest challenge rates (22-27%) are observed on
MMLU, TAL and TruthfulQA, which are primarily mathematical and factual datasets. For free-
form generation tasks, larger models such as GPT-4o and Llama-70B achieve around a 75% chal-
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lenge rate, indicating their proficiency in identifying inconsistencies in these math problems. Fur-
thermore, Mistral-7B-Instruct-v0.3 and GPT-4o challenge assumptions most often across datasets;
however, since all prompts contain missing information, the current levels of challenge rates are
still far below the expected 100%, indicating that while LLMs possess some critical thinking abil-
ity, there is significant room for improvement. While LLMs demonstrate a capacity to challenge
assumptions, their proficiency appears to be influenced by dataset characteristics, model scale, and
instruction-following training, as suggested by the PSS hypothesis.

4.2 SOLVING VS CHALLENGING CAPABILITY
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Figure 2: Problem-Sovling vs Critical-Thinking Across
Datasets and Models. Each data point represents a
specific dataset (indicated by shape). The performance
is evaluated across GPT-4o, Llama-3.1-7bB, Llama-3.1-
7B and Mistral-v0.3-7B. This visualization highlights the
variation in correctness and challenge rates across differ-
ent tasks

We investigate the relationship between
problem-solving ability (correctness
rate on complete problems) and criti-
cal thinking (challenge rate on incom-
plete problems). Figure 2, 14 reveals
no clear correlation between these two
abilities, suggesting these may be dis-
tinct skills potentially influenced by
factors such as dataset characteris-
tics, model architecture, and prompt-
ing. This aligns with the PSS hypothe-
sis, as it demonstrates that the ability to
challenge inconsistencies is not solely
dependent on problem-solving profi-
ciency. GPT-4o and Llama-70B exhibit
high performance in both problem-
solving rates and critical-thinking rates
on GSM8k. While Llama-70B achieves
better problem-solving performance on
OpenbookQA, it shows lower critical
thinking rates compared to GPT-4o.
Mistral-7B, despite having the lowest
problem-solving rate on TAL, main-
tains a relatively high critical thinking rate. The Problem Framing Space can be updated even when
the model cannot solve it.

4.3 IMPACT OF PROBLEM-SOLVING STRATEGIES
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Figure 3: Impact of CoT Prompting on Challenge and Cor-
rectness Rates. The radar plot shows the difference in challenge
rates(left) and correctness rates(right) between CoT prompting
and original prompting across various datasets and LLMs. Posi-
tive values indicate improvement with CoT.

We investigate the impact of
CoT strategy on critical think-
ing capability. Figure 3 re-
veals mixed results. While CoT
increases critical thinking rates
for Mistral-7B-Instruct-v0.3 in
most cases, other models show
notable decreases on Truth-
fulQA and Quail. On Hy-
potQA, CoT improves problem-
solving performance across all
models, while slightly hindering
problem-solving capabilities on
MMLU. This variation may be
attributed to increased cognitive
load from generating and pro-
cessing intermediate reasoning
steps, or potential bias toward
solution generation induced by
CoT prompting ( see Sweller
(1988); Evans (2003) for some
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cognitive evidence). Additionally, the subtle variation in critical thinking performance on HotpotQA
indicates that better problem-solving capability does not lead to more critical thinking. Dataset char-
acteristics likely influence CoT’s effectiveness, as problem representation affects problem-solving
strategies (c.f., Chi et al. (1981)). These observations highlight the nuanced nature of the SSI hy-
pothesis, demonstrating that while Strategy Space modifications can influence the Problem Framing
Space, the effects are multifaceted and not always predictable.

4.4 EFFECT OF PROBLEM COMPLEXITY
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Figure 4: The impact of varying the num-
ber of missing constraints on the assumption
rate.

We investigate the effect of problem complexity,
specifically the number of missing constraints in the
GSM8K dataset, on LLMs’ ability to challenge as-
sumptions. Figure 4 shows that increasing the num-
ber of missing constraints generally increases the
challenge rate, with Mistral-7B-Instruct-v0.3 reach-
ing 89% when three constraints are missing. When
presented with a clearly stated question, LLMs tend
to frame it as a mathematical problem, approaching
it step-by-step to arrive at a numerical result. How-
ever, as we progressively remove necessary condi-
tions from the question, LLMs increasingly adopt a
more critical approach, focusing on evaluating the
problem’s solvability rather than directly generating
a solution. This shift prompts them to consider the
question’s solvability, leading to an increased rate
of challenge to the problem’s premises. This aligns
with the PSS Hypothesis, which suggests that LLMs’ sensitivity to inconsistencies is influenced by
problem complexity. However, it’s important to acknowledge that our automatic evaluation template
(Appendix D), while achieving 95% accuracy, might not perfectly capture the nuances of LLMs’
challenge responses, potentially contributing to the observed variations.

4.5 ROBUSTNESS TO MISLEADING INFORMATION

Correctness Rate Change Challenge Rate Change
ARC Dataset

Model Original - Original - Original - Gaslight Correct Wrong Both
Gaslight Correct Wrong Both Average -Original -Original -Original Average

Llama-3.1-70B-Instruct 0.42 0.76 0.85 0.68 0.03 0.17 0.05 0.08
Llama-3.1-8B-Instruct 0.16 0.14 0.24 0.18 0.06 0.07 0.09 0.07
Mistral-7B-v0.3-Instruct 0.41 0.51 0.63 0.52 0.03 0.09 0.04 0.05
gpt-4o 0.30 0.70 0.68 0.56 0.09 0.22 0.17 0.16

TAL Dataset

Llama-3.1-70B-Instruct 0.21 0.21 0.31 0.24 0.04 0.08 0.10 0.07
Llama-3.1-8B-Instruct 0.10 0.11 0.21 0.14 0.07 0.07 0.09 0.08
Mistral-7B-v0.3-Instruct 0.16 0.16 0.21 0.18 -0.09 0.05 -0.05 -0.03
gpt-4o 0.17 0.35 0.42 0.31 0.11 0.22 0.32 0.22

Table 1: Impact of Misleading Information on Correctness and Challenge Rates in ARC Challenge.

We study the robustness of LLMs’ critical thinking by introducing misleading information
(“gaslighting”) into the ARC Challenge dataset. We append misleading hints after the problem de-
scription to introduce inconsistency into the original problem setup. We measure both challenge and
correctness rates across three gaslighting conditions (see Table 1). While gaslighting increases the
challenge rate across all models, it simultaneously decreases the correctness rate (Table 1). These
findings are consistent across other datasets (see Appendix E). We observe that misleading hints
can influence LLMs to select incorrect options, decreasing the correctness rate. When generat-
ing inference steps to support their wrong choices, the LLMs produce reasoning paths that contain
counterfactual or flawed statements. The increased challenge rate in these cases suggests that when
reasoning paths contain obvious errors or contradict common sense, LLMs are more likely to iden-
tify inconsistencies and challenge the problem setup. This demonstrates that LLMs exhibit critical
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thinking capabilities when the implausibility of their inference steps is obvious. LLMs can be ro-
bust against misleading hints, as their critical thinking capabilities enable them to challenge provided
information.
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Figure 5: Effect of Warning Hints on LLMs’ Response to Misleading Information. The radar
plot shows the difference in challenge rates (left) and correctness rates (right) when LLMs are pro-
vided with a warning about potential misleading information, compared to no warning. Positive
values indicate improvement with the warning hint.

We investigate whether warning LLMs about potential misleading information can mitigate its neg-
ative effects. Figure 5 shows that adding a warning hint maintains or increases challenge rates in
many cases, while notably improving correctness rates across several datasets (with the largest im-
provement on OpenbookQA). This suggests that warning hints enable LLMs to better discern and
resist misleading information, thereby improving their critical thinking.

4.6 CROSS-DOMAIN ANALYSIS
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Figure 6: Correlation of Critical-thinking Rates
Across Datasets. This correlogram displays the
correlation coefficients between challenge rates
on different datasets, after adjusting for correct-
ness rates. Higher correlation indicates greater
consistency in LLMs’ critical-thinking capability
across those datasets.

We study whether the ability to update the
Problem Framing Space is similar across
datasets or is domain-specific. To do so, we
compare all 8 QA datasets with hidden cor-
rect information and compute the correlation
between them across 4 models using the chal-
lenge rates adjusted by the correctness rate.
From the correlogram in Figure 6, we can find
highly correlated datasets, TAL with MMLU-
Math (0.81) being the most significant, and
OpenbookQA with GPQA (0.58) being the sec-
ond most significant. Since, these datasets are
mathematically and scientifically focused prob-
lems, this demonstrates the cross-domain abil-
ity of the models when the domains share some
similarity. This shows that the ability to up-
date the Problem Framing Space is consistent
across different datasets with similar domains
and aligns with the ADA Hypothesis.

4.7 IMPACT
OF FINE TUNING ON CRITICAL THINKING

We examine how fine-tuning affects the
model’s ability to challenge the problem. In particular, we look at supervised fine-tuned and hu-
man preference-tuned models and measure their challenge rates on the TAL dataset. We observe in
Figure 7 that the safety instruction-following tuned Llama-3.1-8B-Instruct model on HH achieves a
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lower correctness rate than the base model probably due to the HH dataset not being focused on the
maths. Additionally, since the models are trained to follow instructions, they are also less capable of
challenging when misleading information is provided, getting a lower challenge rate than what the
base model achieved.
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Figure 7: Correctness vs Challenge Rates for TAL
across Llama-3.1-8B-Instruct fine-tuned models when
faced with misleading information (gaslight correct).

The LLM directly fine-tuned on the TAL
achieves the lowest correctness, likely due
to overfitting which impairs its ability to
critically handle misleading information.
The Llama-3.1-8B-Cobalt model achieves
the best performance on both correctness
and challenge rates. This success can be
attributed to its training on a dataset five
times larger than GSM8k and including
more detailed and comprehensive reason-
ing steps. This training data encourages
the model to generate logical inference
steps and leverage intermediate reasoning
to update its problem understanding. This
suggests that tuning models with data, rich
in reasoning steps, can improve the critical
thinking ability of the model, demonstrat-
ing the interplay between all three spaces
that agrees with the KBC Hypothesis. We
provide details on the fine-tuned models in
Appendix B.1.1. We report consistent results on remaining gaslighting cases in Appendix E.

4.8 IN-CONTEXT LEARNING AND CRITICAL THINKING
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Figure 8: Correctness vs Challenge Rates for in-context
learning on the TruthfulQA dataset across models. gpt-
4o for GPT-4o, L-8B for Llama-3.1-8b-Instruct, L-70B for
Llama-3.1-70b-Instruct, M-7B for Mistral-7b-v0.3

We explore how in-context learn-
ing prompting affects the ability to
update the Problem Framing Space.
In particular, we measure the cor-
rectness and challenge rates when
the model is provided with 3 exam-
ples in the prompt for 8QA datasets
(QA 3 incorrect or 3-ICL). In Fig-
ure 8, we can observe a trend across
models. In particular, the correctness
rate when provided with in-context
learning examples is similar to or
even better than the correctness rate
when no examples are provided. This
suggests that having similar examples
can better update the Problem Fram-
ing Space to suggest better strategies
focused on similar types of problems
to correctly solve the problems. On the other hand, in-context learning struggles with missing infor-
mation as the challenge rate has decreased across all models, which suggests that in-context learning
can limit the critical thinking ability of the model, which agrees with the KBC Hypothesis. We ob-
serve similar trends on the remaining datasets and report all results in Appendix E.

While we observed that having three in-context learning examples can decrease the challenge rate,
adding more in-context learning examples (from 3 to 5) will not fix that either. As we observe in
Table 2, the challenge rates for three and five in-context learning examples (5-ICL) are close to each
other as well as the correctness rate. One possible way to help the model to challenge assumptions
is to provide examples of such action. Thus, when having examples of challenging assumptions in
the context (5-ICL-C), we observe that for most of the models (gpt-4o, Llama-3.1-8B-Instruct, and
Mistral-7B-Instruct-v0.3), the challenge rate is increased while the correctness rate is preserved.
This experiment suggests ways to help the model improve its critical thinking through in-context
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Table 2: Correctness vs Challenge Rates for in-context learning on the TAL dataset across models
with varying number of examples and varying types of examples, including examples demonstrating
challenging the assumptions. Performance across different ICL formats

Correctness Rate Challenge Rate
Model 3-ICL 5-ICL 5-ICL-C 3-ICL 5-ICL 5-ICL-C

gpt-4o 0.77 0.74 (↓ 0.03) 0.73 (↓ 0.04) 0.03 0.02 (↓ 0.01) 0.06 (↑ 0.03)
Meta-Llama-3.1-8B-Instruct 0.43 0.46 (↑ 0.03) 0.40 (↓ 0.04) 0.03 0.04 (↑ 0.01) 0.02 (↓ 0.01)
Meta-Llama-3.1-70B-Instruct 0.03 0.62 (↑ 0.59) 0.62 (↑ 0.59) 0.37 0.03 (↓ 0.34) 0.03 (↓ 0.34)
Mistral-7B-Instruct-v0.3 0.25 0.26 (↑ 0.01) 0.20 (↓ 0.05) 0.12 0.11 (↓ 0.01) 0.24 (↑ 0.11)

learning examples, which shows that we can condition the LLM knowledge and behavior using
appropriate examples, accepting the KBC Hypothesis.

5 DISCUSSION AND IMPLICATIONS

Key Findings. Our experiments reveal that while state-of-the-art LLMs demonstrate some ca-
pacity for critical thinking, their ability to consistently recognize and challenge inconsistencies in
problem framing remains limited, as evidenced by the generally low challenge rates. These find-
ings offer a nuanced understanding of the SPARK hypotheses. The PSS hypothesis is supported
by the observation that larger models and those with instruction-following training exhibit higher
challenge rates, but the overall low rates highlight the need for further research. The SSI hypothesis
is supported by the mixed effects of chain-of-thought prompting, suggesting a complex interplay
between strategy and problem understanding. The RMI hypothesis is confirmed by the observation
that gaslighting increases challenge rates but reduces correctness, underscoring LLMs’ vulnerability
to manipulation.

Implications for LLM Evaluation and Development. These findings have implications for LLM
development and evaluation. Our research underscores the need to incorporate critical thinking as a
key evaluation criterion, using frameworks like SPARK to systematically assess these capabilities.
For LLM developers, our findings highlight the need to explicitly incorporate critical thinking skills
into model training and design, including enhancing robustness to misleading information, promot-
ing deeper understanding, improving inconsistency detection, and optimizing prompting strategies.

Limitations. Our results span a diverse range of benchmark datasets, yet this selection is not
exhaustive. Researchers can apply our evaluation methodology to their own datasets of interest to
assess an LLM’s critical thinking abilities. While our current evaluations focus on the final response
output generated by LLMs, future work could delve deeper by analyzing model activations. Recent
advancements in LLM reasoning have led to improved capabilities, as demonstrated by the gpt-o1
model. Due to its recent release, we have not had the opportunity to evaluate this model in depth.
However, preliminary results suggest that even this advanced model may also face challenges in
critical thinking tasks.

6 CONCLUSION AND FUTURE WORK

This paper presents a novel framework for evaluating critical thinking in LLMs, grounded in the
Three-Space Theory. Our findings reveal limitations in LLMs’ ability to challenge problem setups
and highlight the influence of various factors (e.g., solving capability, problem complexity, mis-
leading information, fine-tuning, and in-context learning) on their critical thinking capabilities. The
proposed framework is readily adaptable across diverse problem types, providing a key step towards
evaluating and enhancing critical thinking in LLMs.

Future research could extend this framework to more complex, real-world-oriented tasks like di-
alogue generation and code design. Additionally, our observations reveal that various prompting
techniques including gaslight, gaslight with warning, and CoT influence the model performance,
and we noted a trade-off between response correctness and critical thinking capability. Future work
could investigate how to optimize this trade-off.
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Graesser, and Romain Martin. Domain-general problem solving skills and education in the 21st
century. Educational Research Review, (13):74–83, 2014.

Dan Hendrycks, Collin Burns, Steven Basart, Andy Zou, Mantas Mazeika, Dawn Song, and
Jacob Steinhardt. Measuring massive multitask language understanding. arXiv preprint
arXiv:2009.03300, 2020.

Jie Huang, Xinyun Chen, Swaroop Mishra, Huaixiu Steven Zheng, Adams Wei Yu, Xinying Song,
and Denny Zhou. Large language models cannot self-correct reasoning yet. In The Twelfth
International Conference on Learning Representations, 2023.

Robin Jia and Percy Liang. Adversarial examples for evaluating reading comprehension systems.
In Proceedings of the 2017 Conference on Empirical Methods in Natural Language Processing.
Association for Computational Linguistics, 2017.

Jean Kaddour, Joshua Harris, Maximilian Mozes, Herbie Bradley, Roberta Raileanu, and
Robert McHardy. Challenges and applications of large language models. arXiv preprint
arXiv:2307.10169, 2023.

Amita Kamath, Robin Jia, and Percy Liang. Selective question answering under domain shift. In
Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp.
5684–5696, 2020.

Lorenz Kuhn, Yarin Gal, and Sebastian Farquhar. Clam: Selective clarification for ambiguous
questions with generative language models. arXiv preprint arXiv:2212.07769, 2022.

Woosuk Kwon, Zhuohan Li, Siyuan Zhuang, Ying Sheng, Lianmin Zheng, Cody Hao Yu, Joseph E.
Gonzalez, Hao Zhang, and Ion Stoica. Efficient memory management for large language model
serving with pagedattention. In Proceedings of the ACM SIGOPS 29th Symposium on Operating
Systems Principles, 2023.

Hunter Lightman, Vineet Kosaraju, Yura Burda, Harri Edwards, Bowen Baker, Teddy Lee, Jan
Leike, John Schulman, Ilya Sutskever, and Karl Cobbe. Let’s verify step by step. arXiv preprint
arXiv:2305.20050, 2023.

Stephanie Lin, Jacob Hilton, and Owain Evans. Truthfulqa: Measuring how models mimic human
falsehoods. arXiv preprint arXiv:2109.07958, 2021.

matheval.ai. Tal-scq5k. https://github.com/math-eval/TAL-SCQ5K, 2023.

Todor Mihaylov, Peter Clark, Tushar Khot, and Ashish Sabharwal. Can a suit of armor conduct
electricity? a new dataset for open book question answering. arXiv preprint arXiv:1809.02789,
2018.

Sewon Min, Julian Michael, Hannaneh Hajishirzi, and Luke Zettlemoyer. Ambigqa: Answering
ambiguous open-domain questions. arXiv preprint arXiv:2004.10645, 2020.

Allen Newell. Human problem solving. Upper Saddle River/Prentive Hall, 1972.

Ethan Perez, Sam Ringer, Kamile Lukosiute, Karina Nguyen, Edwin Chen, Scott Heiner, Craig
Pettit, Catherine Olsson, Sandipan Kundu, Saurav Kadavath, et al. Discovering language model
behaviors with model-written evaluations. In Findings of the Association for Computational Lin-
guistics: ACL 2023, pp. 13387–13434, 2023.

Jose Quesada*, Walter Kintsch, and Emilio Gomez. Complex problem-solving: a field in search of
a definition? Theoretical issues in ergonomics science, 6(1):5–33, 2005.

David Rein, Betty Li Hou, Asa Cooper Stickland, Jackson Petty, Richard Yuanzhe Pang, Julien Di-
rani, Julian Michael, and Samuel R Bowman. Gpqa: A graduate-level google-proof q&a bench-
mark. arXiv preprint arXiv:2311.12022, 2023.

12

https://github.com/math-eval/TAL-SCQ5K


648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2025

Horst WJ Rittel and Melvin M Webber. Dilemmas in a general theory of planning. Policy sciences,
4(2):155–169, 1973.

Anna Rogers, Olga Kovaleva, Matthew Downey, and Anna Rumshisky. Getting closer to ai complete
question answering: A set of prerequisite real tasks. In Proceedings of the AAAI conference on
artificial intelligence, volume 34, pp. 8722–8731, 2020.

Bilgehan Sel, Ahmad Al-Tawaha, Vanshaj Khattar, Ruoxi Jia, and Ming Jin. Algorithm of thoughts:
Enhancing exploration of ideas in large language models. arXiv preprint arXiv:2308.10379, 2023.

Herbert A Simon. The structure of ill structured problems. Artificial intelligence, 4(3-4):181–201,
1973.

Barry S Stein, Joan Littlefield, John D Bransford, and Martin Persampieri. Elaboration and knowl-
edge acquisition. Memory & Cognition, 12:522–529, 1984.

John Sweller. Cognitive load during problem solving: Effects on learning. Cognitive science, 12(2):
257–285, 1988.

Yufei Tian, Abhilasha Ravichander, Lianhui Qin, Ronan Le Bras, Raja Marjieh, Nanyun Peng, Yejin
Choi, Thomas L Griffiths, and Faeze Brahman. Macgyver: Are large language models creative
problem solvers? arXiv preprint arXiv:2311.09682, 2023.

Gladys Tyen, Hassan Mansoor, Peter Chen, Tony Mak, and Victor Cărbune. Llms cannot find
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A DETAILS ON DATASETS

A.1 DATASETS FOR EVALUATING LLMS

• Free Generation
1. GSM8K (Cobbe et al., 2021) includes multi-step, grade-school-level arithmetic prob-
lems designed to test LLMs’ mathematical reasoning abilities. Each problem contains
multiple necessary conditions, enabling us to quantitatively modify questions by selectively
hiding a certain number of these conditions.
2. HotpotQA (Yang et al., 2018) is a multi-hop reasoning dataset that challenges models
to combine information from multiple documents. It provides several context documents,
with only a few containing relevant information. LLMs must first identify these related
documents before inferring the answer. The dataset includes titles of the related documents,
facilitating quantitative modification by selectively omitting certain documents.
Both GSM8K and HotpotQA require models to infer answers by leveraging multiple con-
ditions in the context and following several reasoning steps. The multi-hop reasoning paths
exhibited in these datasets effectively display LLMs’ problem-solving strategies. Conse-
quently, we can investigate how the LLM updates its Problem Framing Space assumption
according to the feedback from the Implementation Space.

• Multiple-Choice
1. QuAIL (Rogers et al., 2020) is a reading comprehension dataset that includes a variety
of question types to evaluate a model’s ability to evaluate models’ abilities to understand
and reason about complex texts
2. TAL (matheval.ai, 2023) contains mathematical competition questions across primary,
junior high, and high school levels. Each question requires multiple intermediate steps to
solve, thus reflecting logical reasoning and critical thinking capability.
3. TruthfulQA (Lin et al., 2021) is a dataset designed to evaluate an LLM ability to avoid
generating false or misleading responses. It adversarially crafted problems that exploit
common human misconceptions, potentially leading to incorrect answers. The dataset en-
compasses a diverse range of topics, including health, law, finance, and politics. By chal-
lenging models with questions that humans might answer incorrectly, TruthfulQA evaluates
the LLM capacity to avoid generating false and misleading information.
4. OpenBookQA (Mihaylov et al., 2018) includes elementary-level science questions,
which require the LLM to retrieve of factual information and leverage external ”open-book”
knowledge to infer the answer. This dataset evaluates the LLM capability to integrate the
retrieved information and logical inference.
5. MMLU (Hendrycks et al., 2020) includes a wide variety of science questions from
high school to professional difficulty levels. The dataset is designed to evaluate the un-
derstanding and reasoning capability of LLM across different domains of knowledge, thus
displaying the depth and width of LLM understanding.
6. GPQA (Rein et al., 2023) includes highly challenging, domain-specific questions across
scientific fields such as biology, physics, and chemistry. The extremely difficult questions
are used to evaluate the LLM performance on complex scientific inquiries. By using ex-
ceptionally difficult questions that are not tailored to any single discipline, GPQA evaluates
the LLM’s versatility and adaptability.
7. AI2 Reasoning Challenge(ARC) (Clark et al., 2018) contains grade-school level science
exam problems with two components: Easy Set and Challenge Set, where the questions
from Challenge Set cannot be answered using simple fact retrieval or superficial reasoning.
ARC evaluates the LLM’s ability to understand scientific knowledge and integrate multiple
information.
8. LSAT (Zhong et al., 2021) includes standardized questions primarily used for law school
admissions focusing on logical reasoning and reading comprehension skills. These com-
plex tasks, set within law-related contexts, are designed to evaluate an LLM’s analytical
reasoning and cognitive abilities.
9. HellaSwag (Zellers et al., 2019) contains multiple-choice questions that challenge lan-
guage models to select the most plausible continuation of a given scenario. This prediction
task evaluates the LLM capability of commonsense reasoning, context understanding, and
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logical inference. HellaSwag assesses their ability to grasp implicit information, apply
real-world knowledge, and make sensible deductions.
For the multiple-choice dataset, the LLM needs to integrate diverse information and nav-
igate multiple inference steps to arrive at a result. The crafted options in these datasets
provide an effective means to evaluate an LLM’s critical thinking abilities. This format
operates under the initial assumption in the Problem Framing Space that the correct answer
is among the provided options. While removing the ground-truth option, we may observe
the LLM generate the correct answer during its reasoning process, yet still select an incor-
rect option from those provided. Alternatively, it might recognize that all given choices are
unsuitable, but nevertheless feel compelled to choose one. These scenarios clearly demon-
strate how an LLM can be constrained by its initial assumptions, revealing a reluctance or
inability to update its framework when faced with conflicting evidence.

A.1.1 DATASET CONSTRUCTION

We select 300 examples from the training set and 3 from the test set for in-context prompting. For
datasets with fewer than 300 examples, we subtract 3 from the training set to ensure we have the
necessary test examples. This process allows us to maintain a balanced in-context learning setup,
where the model uses the selected examples to infer patterns and generalize to new data points. Even
for smaller datasets, we ensure consistent evaluation by prioritizing a balance between training and
test examples without compromising the in-context learning tasks, such as QA 3 incontext.

A.1.2 MODIFICATION OF GENERATIVE TASKS

We constructed generative tasks using four established datasets: GSM8k, HotpotQA, and QuAIL.
To evaluate critical thinking capabilities, we deliberately introduced inconsistencies that make these
problems unsolvable.

• GSM8k contains arithmetic problems, where the final answer is calculated by all the numer-
ical conditions provided in the context. We design a reliable template to leverage GPT-4o
to rephrase the problem context and remove one provided numerical condition.

• HotpotQA is a multi-hop reasoning task, requiring information extraction from multiple
documents. The dataset provides the indices of related documents and sentences. We
create incomplete tasks by removing one relevant document from the required set

• Quail is a reading comprehension dataset and includes questions whose correct answer is
“not enough information”. We directly sample some questions and corresponding para-
graphs as incomplete reading comprehension tasks

Template for removing numerical conditions from GSM8k questions. The modified questions are
generated by GPT-4o through this template.

Consider this math problem, can you rephrase the problem context and hide one con-
dition, which is provided numerically? Remember only hide one condition and keep the
left numerical values.
Question: John bought a T-shirt for $10, a pair of shoes for 20$. How much does he
spend?
Rephrased Question: John bought a T-shirt for a certain amount of money, a pair of
shoes for 20$. How much does he spend?
Question: (The question requires modification)
Rephrased Question:

A.1.3 MODIFIED MATH PROBLEM

We manually select the validation dataset to test the accuracy of the automatic template. We collect
100 ground-truth responses for each category: 1. response directly saying the answer cannot be
determined. 2. reference answer solving the answer fluently and providing the numerical result. 3.
response assigning a variable for the missing condition and providing the formula. The accuracy for
each type of validation data is 0.971, 1.00, and 0.957.
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Input: Modified math question and LLM response.
We define three categories for the response. Type 1 and Type 3 are considered to show
critical thinking capability.

Prompt:
Consider this modified math problem with one condition removed: Modified Question. Here is
the LLM response: LLM response.
Consider these different categories, which one do you think describes the sampled answer best?
1. The response directly mentions the answer can not be determined due to the missing infor-
mation. The response does not provide the calculation.
2. The response solves the question and provides the numerical result as if all necessary condi-
tions are provided.
3. The response provides a formula including the unknown variable during inference.
Directly answer with your choice number

Template for removing constraints. (Missing Constraints)

Original Question:
Harper drinks a 1/2 bottle of mineral water per day. She buys the mineral water by the
case at a big box store. They come 24 bottles to a case and are currently on sale for
12.00. If she wants to buy enough cases to last her 240 days, howmuch will she spend?

Prompt:
Consider this math problem, can you rephrase the problem context and hide one condition,
which is provided numerically? Remember only hiding one condition and remain the left
numerical values.
Question: Tom has 5 apples. Ann has 4 apples. How many apples in total?
Rephrased Question: Tom has 5 apples. Ann has a certain number of apples. How many apples
in total?
...(simple examples)
Question: (original question)...
Rephrased Question:

Modified Question:
Harper has a daily habit of consuming half a bottle of mineral water. She prefers to purchase
her supply in bulk from a large retailer. The store offers a case of these bottles, each containing
a certain number of bottles, for a price of 12.00. Harper plans to stock up enough cases to last
her for 240 days. How much money will she need to spend?

B DETAILS ON MODELS

B.1 MODEL INFORMATION

We have evaluated on the following LLMs to cover a wide range of training parameter sizes as well
as diverse capabilities: Llama-3.1-8/70B-Instruct (Dubey et al., 2024), Mistral-7B-Instruct-v0.3,
and GPT4o (Achiam et al., 2023).

B.1.1 FINE-TUNED MODELS

In Section 4.7, we evaluate the performance of the Llama-3.1-8B-Instruct on the challenging math-
ematical dataset, TAL, under the gaslighting setting. Observing, low correctness rate of the original
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model on the test TAL dataset, we study how fine-tuning affects the ability of the model. We evaluate
fine-tuned models on four different datasets:

• TAL Test dataset with 2000 samples (denoted as llama31 8bin sft talen2ktest).
• GSM8K, a mathematical dataset with 8790 samples with step-by-step reasoning

(llama31 8bin sft gsm8k ep3).
• Polytope, a mathematical dataset with 42300 samples with more detailed step-by-step

reasoning steps than GSM8K (Llama3.1-8B-Cobalt)https://huggingface.co/
ValiantLabs/Llama3.1-8B-Cobalt.

• Helpfulness and Harmlessness (HH) with 150000 samples for human preference learning
(llama31 8bin dpo hh 150000).

With the first model, we study whether memorizing the test data can help the model be robust to
gaslighting. GSM8K and Polytope are general math datasets with solution steps, where the latter is
larger and has an in-depth solution, and we want to evaluate how tuning on general math datasets can
make the model less prone to misleading hints. Lastly, we study how fine-tuning with instruction-
following preference datasets affects the model’s critical thinking ability.

B.2 DETAILS ON MODEL INFERENCE

We use vLLM default sampling parameters and modify only the temperature to 0 and max tokens
to 1024 for our framework. We provide full hyperparameters and highlight what we changed in red
Table 3.

Parameter Value
n 1
temperature 0.0
top p 1.0
top k -1
min p 0.0
presence penalty 0.0
frequency penalty 0.0
repetition penalty 1.0
max tokens 1024 (larger if needed)
min tokens 0
ignore eos False
detokenize True
skip special tokens True
spaces between special tokens True

Table 3: Hyperparameters for decoding used for all models on vLLM.

B.3 DETAILS ON SUPERVISED FINE-TUNING (SFT) AND DIRECT PREFERENCE
OPTIMIZATION (DPO)

We supervised fine-tuned the Llama-3.1-8B-Instruct model with a maximum learning rate of 1e-5
on two different datasets. For the first training, we trained on the GSM8K and for the second, on the
TAL test set. We set the training epoch to 3. For direct preference optimization (DPO), we set β at
0.1 and learning rate at 5e-6. The full hyperparemeters can be found in Table 4 and in our repository.
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Parameter Value
n examples 150000
lr 5.0e-07
n epochs 1
optimizer AdamW
warmup steps 150
top p 0.95
policy dtype bfloat16
reference dtype bfloat16
maX grad norm 10.0
v head max grad norm 0.1
max length 2048
max prompt length 1024
activation checkpointing true
batch size 16
beta 0.1

Table 4: Hyperparameters for SFT and DPO training on Llama-3.1-8B-Instruct.

C DERIVATION OF CHALLENGE RATE

This project investigates how LLMs challenge problem setups while identifying inconsistencies or
insufficient information in the given context. However, an LLM’s tendency to challenge problems
may stem from factors unrelated to ambiguity or inconsistency in the problem statement. For in-
stance, an LLM could be fine-tuned to challenge all problems indiscriminately, which would not
reflect genuine critical thinking capabilities. To control for such model inherent biases, we leverage
the rate at which models challenge well-defined problems. Based on this approach, we propose a
probabilistic framework to model challenge behavior and develop a metric for evaluating critical
thinking capabilities.

We model an LLM’s challenge behavior as a boolean variable C, which depends on two independent
binary random variables: data inconsistency D and model-inherent challenge tendency M . Here,
M represents causes of challenge behavior unrelated to question inconsistency. D = 1 indicates
the presence of inconsistency in the question, while D = 0 indicates a well-defined question. Sim-
ilarly, M = 1 indicates the presence of model-inherent properties that trigger challenge behavior,
P (C = 1|M = 1) = 1. Additionally for the well-defined questions, if the model inherent challenge
condition is not triggered, LLMs never challenge the problem P (C = 1|D = 0,M = 0) = 0.

Consider for each dataset, we have a N pair of well-defined questions and modified questions,
P (D = 0) = P (D = 1) = 1

2 . Our experimental analysis first examines LLMs’ challenge behavior
on well-defined questions. Since these questions contain no inconsistencies, any challenges must
stem from the model’s inherent tendency M . We assume this inherent tendency is independent
of data inconsistency. To isolate the effect of actual inconsistency detection, we first identify well-
defined questions that the LLM does not challenge. Let N1 denote the number of unchallenged clear
questions, and N2 denote the number of their corresponding modified versions that are challenged.
Assume the model’s inherent challenge tendency remains absent for the corresponding modified
versions, then P (C = 1, D = 1,M = 0) = N2

2N , P (C = 0, D = 0,M = 0) = N1

2N . Therefore,
when the LLM challenges a modified question in these pairs, we can attribute it solely to successful
inconsistency detection. The ratio N2

N1
represents P (C = 1|D = 1,M = 0), which measures

the LLM’s true capability to identify problem inconsistencies, controlled for inherent challenge
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tendency.

P (C = 1|D = 1,M = 0) =
P (C = 1, D = 1,M = 0)

P (D = 1,M = 0)
(1)

P (C = 1|D = 1,M = 0) =
P (C = 1, D = 1,M = 0)

P (D = 1)P (M = 0)
(2)

P (C = 1, D = 1,M = 0) =
N2

2N
(3)

P (C = 0|D = 0) = P (C = 0|D = 0,M = 0)P (M = 0)

+ P (C = 0|D = 0,M = 1)P (M = 1)

= 1 · P (M = 0) + 0 · P (M = 1) (4)

P (M = 0) = P (C = 0|D = 0) =
N1

N
(5)

P (C = 1|D = 1,M = 0) =
N2

N1
(6)

D JUDGE TEMPLATES

Template for the Correctness judge.

Task: Classify a response as "yes" or "no" based on whether
the final answer provided matches the expected correct answer.
Steps:

Read through the entire response carefully.
Focus on the final answer provided near the end of the response.
The earlier parts of the response do not count.
Compare the final answer to the expected correct answer.
Criteria:
Yes: If the final answer at the end of the response matches or
is equivalent to the expected answer.
No: If the response provides the wrong answer at the end
the response, even if earlier parts of the response had the
correct answer.
Response:
<response> %s </response>
Expected Answer:
<expected_answer> %s </expected_answer>
Answer Format:
###reason: [Briefly explain the reasoning, focusing on the
final answer provided in the response.]
###output: [yes/no]

Template for the Assumption judge.
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<solution>
answer solution: "%s".
<end_of_solution>
Check whether in the answer there are statements challenging
the correctness of the problem statement.
We do not care about challenging the solution or thought process
for the problem or correcting the answer solution.
Making a personal error is not challenging the problem but
challenging its own solution, which is not what we are focusing
at.
We are also not looking at challenging personal assumptions,
only problem assumptions.
Check if the challenge is about its own assumptions that was
made earlier during the solution process. If it was, then is
not a valid challenge.
Also checking contraints is not challenging the problem,
only when mentioning possible problem in the constraints is
a challenge.
We only care about the challenge to the problem statement.
If the answer solution has challenged the problem statement
(e.g., missing information, constraints) answer yes and provide
where exactly that happened, otherwise no.
##full search process: If there is a challenge, go through
the answer solution again to see if the assumptions were not
made within the solution earlier.
##location:
##challenged: [yes/no]

E EXPERIMENTAL RESULTS

E.1 FULL RESULTS

Correctness Rate Challenge Rate
Truthful OpenBook MMLU LSAT Hellaswag GPQA Truthful OpenBook MMLU LSAT Hellaswag GPQA

Original
gpt 4o 0.72 0.90 0.97 0.93 0.86 0.84 0.18 0.05 0.01 0.00 0.02 0.03
Meta Llama 3.1 8B 0.69 0.93 0.89 0.83 0.80 0.78 0.07 0.01 0.02 0.00 0.01 0.04
Meta Llama 3.1 70B 0.76 0.92 0.95 0.92 0.92 0.91 0.06 0.02 0.01 0.00 0.00 0.02
Mistral 7B v0.3 0.55 0.73 0.81 0.80 0.65 0.74 0.20 0.09 0.32 0.01 0.11 0.16

Gaslight Both
gpt 4o 0.74 0.93 0.97 0.82 0.66 0.83 0.16 0.10 0.43 0.00 0.01 0.05
Meta Llama 3.1 8B 0.67 0.89 0.86 0.65 0.75 0.85 0.06 0.01 0.21 0.00 0.00 0.04
Meta Llama 3.1 70B 0.64 0.88 0.86 0.64 0.64 0.90 0.06 0.05 0.21 0.00 0.00 0.03
Mistral 7B v0.3 0.59 0.84 0.91 0.64 0.70 0.85 0.17 0.09 0.20 0.02 0.04 0.05

Gaslight Wrong
gpt 4o 0.68 0.86 0.96 0.77 0.71 0.81 0.16 0.16 0.34 0.00 0.07 0.05
Meta Llama 3.1 8B 0.52 0.84 0.90 0.73 0.73 0.81 0.08 0.02 0.11 0.00 0.00 0.03
Meta Llama 3.1 70B 0.59 0.83 0.86 0.62 0.62 0.88 0.15 0.10 0.29 0.00 0.00 0.05
Mistral 7B v0.3 0.45 0.77 0.82 0.68 0.62 0.80 0.23 0.15 0.36 0.02 0.13 0.19

Gaslight Correct
gpt 4o 0.72 0.91 0.96 0.88 0.66 0.85 0.14 0.07 0.17 0.01 0.00 0.05
Meta Llama 3.1 8B 0.71 0.89 0.86 0.75 0.75 0.82 0.07 0.03 0.12 0.00 0.01 0.04
Meta Llama 3.1 70B 0.73 0.90 0.90 0.73 0.73 0.90 0.06 0.04 0.15 0.00 0.01 0.03
Mistral 7B v0.3 0.55 0.84 0.89 0.63 0.66 0.84 0.19 0.11 0.26 0.02 0.02 0.05

Table 5: We compare four models: GPT-4o, and Meta LLama 3.1 8B and 70B, and Mistral 7B v0.3.
We examine their correctness rates and challenge rates are compared across 6 datasets: TruthfulQA
OpenBook QA, MMLU, LSAT, Hellaswag QA, and GPQA. We show this for 4 QAs: Original,
Gaslight Both, Gaslight Wrong, and Gaslight Correct.
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Figure 9: (Left/Right) The radar plot showing the difference between the challenge/correctness rates
of Gaslight Warning Hint and Gaslight Both. We see a negligible difference between these two QA
formats suggesting that giving a model a hint about the gaslight barely changes the model’s ability
to challenge the problem setting. The correctness is partially higher than if we didn’t have a hint.
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Figure 10: (Left/Right) The radar plot showing the difference between the challenge/correctness
rates of the Gaslight Warning Hint and Gaslight Wrong. Given this information, we see negligible
differences in the model’s ability to challenge. The correctness is improved thanks to the hint.
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Figure 11: Correctness vs Challenge Rates for TAL across Llama-3.1-8B-Instruct fine-tuned models
when faced with misleading information (gaslight both)
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Figure 12: Correctness vs Challenge Rates for TAL across Llama-3.1-8B-Instruct fine-tuned models
when faced with misleading information (gaslight wrong)
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Figure 13: Correctness vs Challenge Rates for in-context learning on the QA datasets across models.
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Figure 14: Correctness vs Challenge Rates for in-context learning on the QA datasets across models.
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Figure 15: Comparison of Correctness and Challenge Rates Across Datasets and Models. Each
data point represents a specific model (indicated by shape). This visualization highlights the varia-
tion in both correctness and challenge rates across different model architectures.
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E.2 EXAMPLES

Response examples restricted by the problem setup

Question: Which would a scientist use in trying to model the cause of planetary years?
A. planetary mass
B. planetary color
C. planetary’s core

Correct answer: a planet’s distance from the Sun

Response: A scientist would use **A) planetary mass** in trying to model the cause of plan-
etary years. Planetary years, or the time it takes for a planet to complete one orbit around the
Sun, are primarily determined by the planet’s distance from the Sun and the gravitational forces
involved, which are influenced by the mass of the planet and the Sun. The mass of the planet
affects its gravitational interaction with the Sun, which in turn influences its orbital period. Plan-
etary color and a planet’s core temperature are not directly relevant to the orbital mechanics that
determine the length of a planetary year.

Question: Consider this math problem, can you provide me with the answer and calcu-
lation steps? Show your final answer at the last.
Question: A vehicle is navigating a labyrinthine tunnel filled with twists and turns. It en-
counters a circular path that necessitates making four right-hand turns. Post the initial
turn, it covers a distance of 5 meters. Following the second turn, it moves 8 meters. Af-
termaking the third turn, it goes a bit further and uponmaking the fourth turn, it promptly
leaves the tunnel. If the vehicle has covered a total distance around the circular path,
how much distance did it cover post the third turn?
Answer:

Response: To find the total distance covered after the third turn, we need to find the total
distance covered and subtract the distance covered before the third turn.
The vehicle covers 5 meters after the first turn, 8 meters after the second turn, and an unknown
distance after the third turn.
Since the vehicle makes four right-hand turns, it essentially ends up back where it started. This
means the distance covered after the third turn is the same as the distance covered after the first
turn, which is 5 meters.

Response examples representing critical thinking

Question: How many times does Earth rotate on its axis in one day?
A. twice
B. 24 times
C. 365 times

Correct answer: once

Response: The correct answer is none of the options listed. Earth rotates on its axis once in one
day. So, the correct answer should be:D. once
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Question: Consider this math problem, can you provide me with the answer and calcu-
lation steps? Show your final answer at the last.
Question: Ann spent $75 at her preferred shop during a summer sale. She purchased 5
shorts at $7 per piece and 2 shoes at $10 each. She also bought a few tops, all priced
the same. Can you determine the cost of each top?
Answer:

Response: To determine the cost of each top that Ann bought, we need to break down her total
expenditure and account for the known costs of the shorts and shoes.
First, let’s calculate the total cost of the shorts:
5 times $7 = $35
Next, let’s calculate the total cost of the shoes:2 shoes times $10 = $20
Now, let’s add the costs of the shorts and shoes together:$35 + $20 = $55
Ann’s total expenditure was $75. To find out how much she spent on the tops, we subtract the
cost of the shorts and shoes from her total expenditure:$75 - $55 = $20
Let x be the cost of each top. If she bought n tops, then the total cost of the tops is:
n times x = $20
Since we don’t know the number of tops n she bought, we can only express the cost of each top
in terms of n:
x = 20/n

E.3 HARDWARE AND SOFTWARE

We have run our experiments on H100 using VLLM (Kwon et al., 2023) for efficient inference. We
provide our codes and responses in an anonymous repository: link. We will release a pip package
for simplified implementation of our evaluation framework for the dataset of interest.
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