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Figure 1. We present UrbanIR (Urban Scene Inverse Rendering), a novel, realistic, and relightable neural scene model. UrbanIR concurrently
infers shape, albedo, visibility, and more from a single video of large-scale, unbounded scenes. The resulting representation facilitates
realistic and controllable editing, delivering photorealistic free-viewpoint renderings (last column) of relit scenes (top row), inserted objects
(middle row), and nighttime simulation (bottom row).

Abstract

We present UrbanIR (Urban Scene Inverse Rendering),001
a new inverse graphics model that enables realistic, free-002
viewpoint renderings of scenes under various lighting condi-003
tions with a single video. It accurately infers shape, albedo,004
visibility, and sun and sky illumination from wide-baseline005
videos, such as those from car-mounted cameras, differ-006
ing from NeRF’s dense view settings. In this context, stan-007
dard methods often yield subpar geometry and material008
estimates, such as inaccurate roof representations and nu-009
merous ‘floaters’. UrbanIR addresses these issues with novel010
losses that reduce errors in inverse graphics inference and011
rendering artifacts. Its techniques allow for precise shadow012
volume estimation in the original scene. The model’s outputs013
support controllable editing, enabling photorealistic free-014
viewpoint renderings of night simulations, relit scenes, and015
inserted objects, marking a significant improvement over016
existing state-of-the-art methods. Our code and data will be017
made publicly available upon acceptance.018

1. Introduction019

We show how to build a model that allows realistic, free-020
viewpoint renderings of a scene under novel lighting condi-021

tions from a video. So, for example, a sunny afternoon video 022
of a large urban scene can be shown at different times of day 023
or night (as in Fig. 1), viewed from novel viewpoints, and 024
shown with inserted objects. Our method — UrbanIR (Ur- 025
ban Scene Inverse Rendering) — computes an inverse graph- 026
ics representation from the video. UrbanIR jointly infers 027
shape, albedo, visibility, and sun and sky illumination from 028
a single video of unbounded outdoor scenes with unknown 029
lighting. The resulting representations enable controllable 030
editing, delivering photorealistic free-viewpoint renderings 031
of relit scenes and inserted objects, as demonstrated in Fig. 1. 032

UrbanIR obtains its intrinsic scene representations from 033
a video under a single illumination condition, but producing 034
realistic novel views requires accurate inferences of physi- 035
cal parameters. UrbanIR uses a novel visibility rendering 036
scheme and loss to make precise estimates of shadow vol- 037
umes in the original scene and so control albedo errors. Ur- 038
banIR combines monocular intrinsic decomposition and in- 039
verse rendering with other key contributions to control errors 040
in renderings. To our knowledge, UrbanIR is the first in its 041
class capable of performing inverse rendering and relighting 042
applications from a single monocular video in large-scale 043
scenes, without requiring multiple illumination conditions, 044
depth sensing, or both. 045

UrbanIR representations are constructed from cameras 046
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Figure 2. Rendering Pipeline. UrbanIR retrieves scene intrinsics
(normal N , semantics S, albedo A) from camera rays, and estimate
visibility V from tracing rays to the light source. The shading
model computes diffuse and specular reflection and adds ambient
sky light Lsky for the final shading map. We multiply shading &
albedo, and render the sky appearance for final rendering.

mounted on cars with a narrow range of views of each scene047
point. Typical NeRF-style systems yield poor geometry es-048
timates (for example, roofs) and numerous “floaters” under049
these conditions; they are usually trained with a wide range050
of views. Our experiments showcase that UrbanIR outper-051
forms these baselines with significantly reduced artifacts052
in our sparse view setting. Finally, we also show how to053
use UrbanIR to simulate night scenes from a single daytime-054
captured video, producing a controllable, realistic, physically055
plausible, and consistent simulation. In summary, our key056
contributions are:057

• We present UrbanIR for recovering a relightable neural058
radiance field in a constrained setting of an unbounded059
scene, using a single monocular video captured under a060
single illumination condition.061

• We describe a novel inverse rendering framework that062
builds precise shadow volumes in large outdoor scenes063
with heavy shadows, resulting in significant improvements064
in inverse graphics estimates and relighting.065

• We demonstrate a new physics-informed night simulation066
framework. To our knowledge, UrbanIR is the first sim-067
ulation to offer realistic, free-viewpoint night simulation068
from a single daytime video capture.069

2. Method070

The illustration of the rendering pipeline is shown in Fig. 2.071
Please refer to our supplementary materials for the complete072
method description.073

3. Experiment Results074

3.1. Datasets075

We evaluate UrbanIR on two datasets: the KITTI-360076
dataset [3] and the Waymo Open Dataset [8]. The KITTI-077
360 dataset [3] consists of 9 stereo video sequences show-078
casing urban scenes. For our analysis, we selected 7 non-079
overlapping clipped sequences, each containing around 100080
images. These sequences cover various light directions, vehi-081

cle trajectories, and layouts of buildings and vegetation. The 082
dataset includes RGB images from stereo cameras, semantic 083
labels, camera poses, and RTK-GPS poses. On the other 084
hand, the Waymo Open Dataset (WOD) [8] captures driving 085
sequences from five cameras and one 64-beam LiDAR sen- 086
sor at 10 Hz. However, we only used the single camera from 087
the front view and did not use any LiDAR information for 088
our evaluation. 089

Quantitative evaluation of relighting sequences is difficult 090
as most datasets only capture the same location under a 091
single illumination, and no ground truth for relighting is 092
available. Therefore, we recorded a scene at different times 093
of the day, covering different illuminations. The images were 094
captured by a stereo camera, and the poses were estimated 095
using RTK-GPS information. 096

3.2. Baselines 097

We compare UrbanIR with scene relighting and editing meth- 098
ods: FEGR [9], Colmap MVS [7], Instruct NeRF2NeRF [2], 099
NeRF-OSR [5], RelightNet [10]. Implementation details are 100
in supplementary. 101

3.3. Decomposition Quality 102

We evaluate intrinsic decomposition on the Waymo Open 103
Dataset [8] and present the comparison in Fig 3. NeRF- 104
OSR [4] requires multi-illumination as input and fails to 105
decompose albedo and shadow, leaving severe artifacts due 106
to noisy normal estimation. FEGR [9] uses five cameras and 107
LiDAR for reconstruction but still bakes shadow patterns 108
into the albedo and normal. However, UrbanIR only requires 109
a single camera as input without any LiDAR information. By 110
integrating monocular prior in the optimization process, it 111
successfully decomposes clean albedo, normal, and shadow 112
maps under single illumination. 113

3.4. Relighting Quality 114

Relighting under various sunlight conditions is evaluated in 115
Fig. 5, ??. NeRF-OSR [5] cannot simulate shadows under 116
novel light conditions. While Blender [1] can change the 117
lighting parameters explicitly, they either cast bad shadows 118
due to incomplete geometry or do not cast new shadows 119
at all; further, the original shadow remains unchanged in 120
the image. We implement a mesh-based visibility baseline 121
which extracts mesh with marching cubes for visibility cal- 122
culation. It generates different shadows according to light 123
conditions, but the mesh on the edges of and outside the 124
training views is poor because there are few observations. 125
This leads to noisy geometry and incomplete shadows on 126
the ground. In contrast, UrbanIR synthesizes sharp shadows 127
and varying surface shading following the sun’s direction. 128
Further, the original scene shadows are largely absent. This 129
allows synthesizing images at night (Fig. ??) by inserting 130
car headlights and streetlights, without distracting effects 131
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Figure 3. Intrinsic Decomposition of Waymo Open Dataset [8]. FEGR does not release code, so we directly use the images from their
paper, and the shadow map of this viewpoint is not available.

Input Relight 1 Relight 2 Relight 3 Relight 4

Figure 4. Controllable Relighting of Waymo Open Dataset [8].The first row shows different lighting during a day, and the second
row changes the input image into night-time with different lighting configurations.

from the original shadows. Moreover, the relighting results132
obtained from UrbanIR are highly controllable, as demon-133
strated in Fig. 4. Different light directions and intensities134
were used to adjust the relighting outcomes. Light sources135
were also added and turned on and off.136

3.5. Quantitative Evaluation137

The results of the quantitative evaluation can be found in138
Tab. 1. We tested the novel view synthesis on KITTI-360 [3]139
using 10 images as the novel views for all 7 sequences. Ur-140
banIR is better than NeRF-OSR in all metrics, indicating that141
our model can decompose intrinsic well and produce high-142
quality images. To evaluate the relighting in novel views,143
we captured videos of the same scene in the morning and144
afternoon. After optimizing models at both sequences in-145
dividually, we performed relighting by exchanging lighting146
parameters and calculating image metrics with the ground147
truth capture. Our method also outperformed NeRF-OSR in148

all metrics significantly. The qualitative results can be seen 149
in Fig. 7. UrbanIR was successful in removing existing shad- 150
ows, changing the shading on the building, and modifying 151
the sky texture during different times of the day. 152

3.6. Object Insertion 153

The object insertion pipeline is described in Sect. ??. In 154
Fig. 6, we compare with baselines by inserting a yellow 155
cube and moving along the road. Mesh+Blender cannot 156
synthesize complete geometry and shadow. Without visibil- 157
ity optimization in row (B), the scene shadow on objects is 158
noisy. Our complete model has an accurate shadow volume 159
so that shadows cast on the object by the environment are 160
well represented. 161

4. Discussion 162

In this work, we investigated the task of inverse rendering of 163
unbounded outdoor scenes under single illumination. This 164

3



CVPR
#

CVPR
#

CVPR 2024 Submission #. CONFIDENTIAL REVIEW COPY. DO NOT DISTRIBUTE.

(A
)

(B
)

O
ur

s

Reconstruction(Original lighting) Novel sunlight direction 1 Novel sunlight direction 2

Figure 5. Rendering and relighting comparison. We show a set of two scenes comparing different methods. Each column shows a different
sun position, the first column showing original images. For each set and from top to bottom, we have (a) COLMAP [7] + Blender [1] (b)
Mesh-based visibility (NeRF-Mesh) and (c) UrbanIR (Ours). In COLMAP, Shadows are present in the scene; however, they are “baked-in”
and cannot be manipulated or relit independently. For NeRF-Mesh, weak observations of the scene geometry result in poor quality visibility
estimation during direct observation-based reconstruction. In contrast, for our approach, UrbanIR, our visibility optimization enables realistic
and controllable relighting effects.
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Figure 6. Dynamic Object Insertion with Shadow Volume. Our method produces accurate estimates of shadow volumes where others
cannot. This can be visualized by inserting a simple object into the scene, and then looking at shadows cast onto that object. (A) COLMAP
dense reconstruction [6, 7] + Blender [1] (B) Ours without visibility optimization and (C) Ours with visibility optimization improves
shadows.

Novel View Synthesis NVS + Novel light
PSNR ↑ SSIM↑ LPIPS↓ PSNR ↑ SSIM↑ LPIPS↓

NeRF-OSR [5] 18.66 0.527 0.388 12.49 0.543 0.459
Ours 22.95 0.796 0.135 17.43 0.683 0.218

Table 1. Quantitative evaluation.
GT Ours Recon Ours Relighting NeRF-OSR [4] Relighting

A Ground Truth (9am) A Model + A Light (Ours) B Model + A Light (Ours) B Model + A Light (NeRF-OSR)

B Ground Truth (3pm) B Model + B Light (Ours) A Model + B Light (Ours) A Model + B Light (NeRF-OSR)

Figure 7. Novel view and novel light synthesis.

task is ill-posed and extremely challenging due to the spar-165
sity of observations across space and time. To overcome166
this challenge and successfully decompose various scene167
intrinsic properties, we utilized prior knowledge such as pre-168
trained networks and regularization to reduce the uncertainty169

space and improve the performance of downstream applica- 170
tions like relighting and object insertion. However, there are 171
limitations. Our optimization process can be affected by the 172
noisy predictions from prior models and requires careful tun- 173
ing of our losses. Sometimes, shadows cannot be removed 174
entirely in the albedo field, and they may still appear in the 175
final images. Additionally, the visibility optimization refines 176
only the geometry along the light direction, which means 177
that large changes in the sun’s direction can lead to poor 178
shadows when the geometry estimates are not accurate. 179
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