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Abstract

Recent text-based causal methods attempt to
mitigate confounding bias by including unstruc-
tured text data as proxies of confounding vari-
ables that are partially or imperfectly measured.
These approaches assume analysts have super-
vised labels of the confounders given text for
a subset of instances, a constraint that is not
always feasible due to data privacy or cost.
Here, we address settings in which an impor-
tant confounding variable is completely unob-
served. We propose a new causal inference
method that splits pre-treatment text data, in-
fers two proxies from two zero-shot models on
the separate splits, and applies these proxies
in the proximal g-formula. We prove that our
text-based proxy method satisfies identification
conditions required by the proximal g-formula
while other seemingly reasonable proposals do
not. We evaluate our method in synthetic and
semi-synthetic settings and find that it produces
estimates with low bias. This combination of
proximal causal inference and zero-shot classi-
fiers is novel (to our knowledge) and expands
the set of text-specific causal methods available
to practitioners.

1 Introduction

Data-driven decision making relies on estimating
the effect of interventions, i.e. causal effect estima-
tion. For example, a doctor must decide which
medicine she will give her patient, ideally the
one with the greatest effect on positive outcomes.
Many causal effects are estimated via randomized
controlled trials—considered the gold standard in
causal inference; however, if an experiment is un-
feasible or unethical, one must use observational
data. In observational settings, a primary obstacle
to unbiased causal effect estimation is confounding
variables, variables that affect both the treatment
(e.g., which medicine) and the outcome.

Recently, some studies have attempted to miti-
gate confounding by incorporating (pre-treatment)

unstructured text data as proxies for confound-
ing variables or specifying linguistic properties as
the confounding variables themselves, e.g., topic
(Veitch et al., 2020; Roberts et al., 2020), tone (Srid-
har and Getoor, 2019), or use of specific word
types (Olteanu et al., 2017). A wide range of
fields have used text in casual estimates, includ-
ing medicine (Zeng et al., 2022), the behavioral
social sciences (Kiciman et al., 2018), and science-
of-science (Zhang et al., 2023). See Keith et al.
(2020); Feder et al. (2022); Egami et al. (2022) for
general overviews of text-based causal estimation.

If all confounders are directly observed, then
causal estimation is relatively1 straightforward with
backdoor adjustment (Pearl, 2009). However, some
applications use supervised classifiers to predict
the confounding variables from text data. Because
text classifiers rarely achieve perfect accuracy, an-
alysts must account for measurement error. To
address this, another line of work has developed
post-hoc corrections of causal estimates in the pres-
ence of imperfect classifiers (Wood-Doughty et al.,
2018; Fong and Tyler, 2021; Egami et al., 2023;
Mozer et al., 2023). Yet, these approaches require
ground-truth labels of the confounding variables
for a subset of instances, a constraint that is not
always feasible due to privacy restrictions, high
costs, or lack of expert labor for labeling.

Our work fills this gap. We address the causal
estimation setting for which a practitioner has spec-
ified a confounding variable that is truly unmea-
sured (we have no observations of the variable), but
unstructured text data could be used to infer prox-
ies. For this setting, our method combines proximal
causal inference with zero-shot classifiers.

Proximal causal inference (Miao et al., 2018;
Tchetgen Tchetgen et al., 2020) can identify the
true causal effect given two proxies for the unmea-
sured confounder that satisfy certain causal identifi-

1Setting aside challenges of high-dimensional covariate
selection for causal estimation, e.g., see Tamarchenko (2023).



cation conditions. A major criticism of this method
is that it can be difficult to find two suitable prox-
ies among the structured variables; however, we
conjecture that unstructured text data (if available)
could be a rich source of potential proxies.

In our proposed method, we estimate two proxies
from text data via zero-shot classifiers, i.e. classi-
fiers that perform an unseen task with no supervised
examples. In subsequent sections, we expand upon
the necessary conditions required for our method
and empirically validate our method on synthetic
and semi-synthetic data with real-world clinical
notes. Since large pre-trained language models
(LLMs) have promising performance on zero-shot
classification benchmarks (Yin et al., 2019; Brown
et al., 2020; Wei et al., 2021; Sanh et al., 2021, inter
alia), we use LLMs for one (or both) of the proxies
in our experimental pipeline. Our combination of
proximal causal inference and zero-shot classifiers
is not only novel, but also expands the set of text-
specific causal designs available to practitioners.2

In summary, our contributions are

• We propose a new causal inference method that
splits pre-treatment text data, infers two prox-
ies from two different zero-shot models on the
separate splits, and applies these in the proximal
g-formula (Tchetgen Tchetgen et al., 2020).

• We provide theoretical proofs that our method
satisfies the identification conditions of proximal
causal inference and prove that other seemingly
reasonable alternative methods do not.

• We propose a falsification heuristic that uses the
odds ratio of the proxies conditional on observed
covariates as an approximation of the (untestable)
proximal causal inference conditions.

• In synthetic and semi-synthetic experiments us-
ing MIMIC-III’s real-world clinical notes (John-
son et al., 2016), our odds ratio heuristic correctly
flags when identification conditions are violated.
When the heuristic passes, causal estimates from
our method have low bias and confidence inter-
vals that cover the true parameter; others do not.

2 Problem Setup And Motivation

To motivate our approach, let us imagine we are an
applied practitioner who is tasked with determin-
ing the effectiveness of thrombolytic (clot busting)
medications relative to blood thinning medications
to treat clots arising from an ischemic stroke. Such

2Supporting code is available at https://github.com/
jacobmchen/proximal_w_text.
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Figure 1: Causal DAGs (a) depicting unmeasured con-
founding and (b) compatible with the canonical assump-
tions used for proximal causal inference.

medications are usually administered within three
hours of the stroke to improve chances of patient
recovery (Zaheer et al., 2011). Given the urgency
and the short treatment window, running a random-
ized experiment to compare these drugs is infeasi-
ble. This leaves us with observational data, so we
examine electronic health records (EHRs) from a
database like MIMIC-III (Johnson et al., 2016).

We formalize our causal estimand as follows: let
A denote a binary treatment variable corresponding
to clot busting (A = 1) or blood thinning medica-
tion (A = 0), and let Y denote measurements of
the D-dimer protein in the patient’s blood which
directly measures how much of the clotting has dis-
solved. In do-calculus notation (Pearl, 2009), the
target causal estimand is the average causal effect,
ACE := E[Y |do(A = 1)]− E[Y | do(A = 0)].

Examining the EHRs, we find structured
variables—variables with defined values in tabu-
lar form—that are potential confounders, includ-
ing biological factors, such as age, sex, and blood
pressure, as well as socio-economic factors, such
as income. We denote the observed confounders
as the set C. However, we are worried about bi-
ased causal effects because atrial fibrillation (ir-
regular heart rhythms) is an important confounder
corresponding to a pre-existing heart condition,
and it is not recorded in the structured data. We
denote this unmeasured confounder as U . Fig-
ure 1(a) depicts this problem setup in the form
of a causal directed acyclic graph (causal DAG)
(Spirtes et al., 2000; Pearl, 2009). In this case, it is
well known that adjusting for just the observed con-
founders via the backdoor formula

∑
C(E[Y |A =

1,C]−E[Y |A = 0,C])× p(C) will give a biased
estimate of the ACE (Pearl, 1995).

In response to this issue, we consider work that
uses proxy variables of the unmeasured confounder.
However, we are subject to the following restric-
tion:

https://github.com/jacobmchen/proximal_w_text
https://github.com/jacobmchen/proximal_w_text


(R1) We do not have access to any rows of data
where U is measured.

This kind of restriction is common in healthcare or
social science settings when data privacy is crucial
and hand labeling of unstructured data is impossi-
ble or infeasible due to high costs or lack of expert
labor; we elaborate in Appendix B.

Under (R1), the classic effect restoration method
developed in Pearl (2010) cannot be applied be-
cause this method requires us to estimate a distribu-
tion P (W |U), where W is the proposed proxy of
U , a task impossible without access to U . Building
from Kuroki and Pearl (2014), a more recent line
of work called proximal causal inference (Miao
et al., 2018; Tchetgen Tchetgen et al., 2020) is able
to identify the true causal effect as long as the ana-
lyst proposes two proxies W and Z satisfying the
following independence conditions

(P1) Independence of proxies: W ⊥⊥ Z | U,C

(P2) One of the proxies, say W , does not depend
on values of the treatment: W ⊥⊥ A | U,C

(P3) The other proxy, Z, does not depend on values
of the outcome: Z ⊥⊥ Y | A,U,C

A canonical example of proxies that satisfy these
conditions is shown in Figure 1(b)3. In addition
to these independence relations that impose the
absence of certain edges in the causal DAG, e.g.,
no edge can be present between Z and W to satisfy
(P1), there is an additional completeness condition
that imposes the existence of U → Z and U →W .
This condition is akin to the relevance condition in
the instrumental variables literature (Angrist et al.,
1996) and ensures that the proxies W and Z exhibit
sufficient variability relative to the variability of U .

(P4) Completeness: for any square integrable func-
tion v(·) and for all values w, a, c, we have

E[v(U) | w, a, c] = 0 ⇐⇒ v(U) = 0, and

E[v(Z) | w, a, c] = 0 ⇐⇒ v(Z) = 0.

Intuitively, these completeness conditions do not
hold unless Z and W truly hold some predictive

3One could also add the edges W → Y and Z → A to
Figure 1(b), but these relations will not show up in our text-
based setting. Shpitser et al. (2023) also propose a general
proximal identification algorithm that is compatible with other
causal DAGs, but we focus on the canonical proximal learning
assumptions stated in Tchetgen Tchetgen et al. (2020).

value for the unmeasured confounder U .4 Under
(P1-P4), each piece of the ACE, E[Y |do(A = a)],
is identified via the proximal g-formula,

E[Y | do(a)] =
∑
w,c

h(a,w, c)× p(w, c), (1)

where h(a,w, c) is referred to as an outcome
confounding bridge function that is a solution
to the equation E[Y |a, z, c] =

∑
w h(a,w, c) ×

p(w|a, z, c) (Miao et al., 2018). The existence of a
solution is guaranteed under (P1-P4), but solving
it can still be difficult. However, there exist simple
two-stage regression estimators for the proximal g-
formula (Tchetgen Tchetgen et al., 2020; Mastouri
et al., 2021) which we make use of in Section 5
once we have identified a valid pair of proxies. This
brings us to the primary issue at hand.

Primary question. In practice, how do we find two
proxies W and Z among the structured variables
such that they happen to satisfy all of (P1-P4)?

Our answer. We cannot, at least not without a high
degree of domain knowledge which is unavailable
in many real-world settings. Additionally, since
these conditions are untestable in the observed data,
empirical verification of (P1-P4) is also impossi-
ble. Instead, in this work, we propose relying on
raw unstructured text data (e.g., clinical notes) in
an attempt to infer proxies that satisfy (P1-P4) by
design.

Returning to our motivating problem, our approach
applies zero-shot models (due to (R1)) to two sepa-
rate splits of the pre-treatment clinical notes of each
patient and then obtains two different predictions,
W and Z, for atrial fibrillation (our U ).

In order to simplify our method and make it
easier to implement, we make two relatively weak
assumptions.

(S1) The unmeasured confounder U between A
and Y can be specified as a binary variable.

(S2) The text only causes W and Z (and no other
variables).

We make (S1) since text classification typically
performs better empirically than text regression
(Wang et al., 2022). Assumption (S2) asserts that
the text data considered serves as a record of events
rather than actionable data.5

4See Miao et al. (2018) for more details on completeness.
5We leave to future work more complicated scenarios, e.g.,

if the reader’s perception of text differs from the writer’s intent
(Pryzant et al., 2021).
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Figure 2: Causal DAGs depicting depicting several different scenarios for inferring text-based proxies. Edges with
different colors and patterns, e.g., T Z and T W , indicate that different zero-shot models were used.

3 Designing Text-Based Proxies

In this section, we describe our method for de-
signing text-based proxies. In doing so, we de-
scribe various “gotchas,” pitfalls in attempting to
use these text-based proxies in causal effect estima-
tion. Later, in Section 5, we explore these pitfalls
empirically and find, as expected, they result in
biased causal effect estimates. Finally, we describe
how exploring these gotchas leads us to our final
recommended design, given by Figure 2(d).

Gotcha #1: Not handling predictions as proxies
Suppose we try to avoid the complications of prox-
imal causal inference by using the predictions from
one of our proxy zero-shot models, say W , as the
confounding variable itself.

Proposition 1. Unless the predicted W is exactly
equal to U , using W as a direct replacement for
U in the backdoor adjustment formula will give
biased estimates of the ACE.

Proof. Suppose for some subset of instances W ̸=
U . Then, the backdoor path through U is not
blocked, and the ACE is biased (Pearl, 1995).

In other words, we would need a zero-shot classi-
fier with 100% accuracy in order to use W directly,
a scenario that is extremely unlikely in the real
world. Further, under (R1)6, we cannot measure
accuracy at inference time since we do not have
any observations of U . As expected, in our semi-
synthetic experiments in Section 5, we find using
predictions of W directly in a backdoor adjustment
formula results in biased estimates; see Figure 3.

Gotcha #2: Using post-treatment text
While it is well-known that adjusting for post-
treatment covariates in the backdoor formula often

6In the absence of (R1), we direct readers to work that
adjusts via measurement error estimates or assumptions that
U is “missing at random” (Wood-Doughty et al., 2018).

leads to bias (Pearl, 2009), it is not obvious what
might go wrong when using post-treatment text to
infer proxies for the proximal g-formula.

Proposition 2. If both W and Z are inferred
from zero-shot models on text that contain post-
treatment information, then the resulting proxies
violate either (P2) or (P3), or both.

Proof. Consider Figure 2(a), where the proxies
are produced using text that is potentially post-
outcome and thus also post-treatment. We show
that this violates both (P2) and (P3). Clearly this
violates (P3)—by a simple d-separation argument
we see that Z ̸⊥⊥ Y | A,U,C due to the open path
Y → T Z. Similarly, (P2) is violated from the
open path A→ Y → T W .

Thus, before performing zero-shot inference, it
is important that the text for each individual is fil-
tered in such a way that it contains only the text
preceding treatment7. In our running clinical ex-
ample, this is easily achieved since clinical notes
have time stamps and information about when the
patient was treated and discharged.

Gotcha #3: Predicting both proxies from the
same passage of text
After filtering to only pre-treatment text, Tpre, for
each individual, the intuitive next step is to use Tpre

to infer W and Z. Yet, we show this will result in
biased estimates.

Proposition 3. If W and Z are inferred via zero-
shot models on the same passage of pre-treatment
text, the resulting proxies violate (P1).

Proof. Consider the causal DAG with proxies W
and Z in Fig 2(b). By d-separation we have W ̸⊥⊥
Z | U,C due to the path Z Tpre W .

7In Appendix A we provide an example where the proxies
could be generated using a mix of pre and post-treatment text
while satisfying (P1-P3). However, the pre-treatment rule is
simpler so we recommend it for our method.



As expected, in our synthetic experiments in Sec-
tion 5, we find inferring proxies from the same text
results in biased estimates; see Table 1.

Gotcha #4: Using a single zero-shot model
To avoid Gotcha #3, we split8 the pre-treatment
text into two halves, Tpre

1 and T
pre
2 . Now, should

we apply the same zero-shot model to these two
passages of text to infer the proxies W and Z, as
in Figure 2(c), or should we apply two separate
zero-shot models as in Figure 2(d)?

We find different answers in theory and practice.
Proposition 4 shows that, in theory, both are valid
as long as T

pre
1 ⊥⊥ T

pre
2 | U,C.9 However, we

later describe how our semi-synthetic experiments
demonstrate the need for two different models in
practice in Section 5. We first establish the theoret-
ical validity of both strategies.

Proposition 4. If W and Z are inferred using zero-
shot classification on two separate splits of pre-
treatment text such that Tpre

1 ⊥⊥ Tpre
2 | U,C, then

these proxies satisfy (P1-P3). Additionally, if the
proxies are predictive of U , i.e., Z ̸⊥⊥ U | C and
W ̸⊥⊥ U | C, then (P4) holds.

Proof. Suppose we apply zero-shot classification
models to two splits of pre-treatment text in a way
that results in causal DAGs shown in Figure 2(c) or
(d), depending on whether we use one or two mod-
els, respectively. Applying d-separation confirms
that the conditions (P1-P3) hold in both cases.

Let |XV | denote the number of categories of a
variable V . Kuroki and Pearl (2014); Tchetgen Tch-
etgen et al. (2020) state that when W and Z are
predictive of U (as stated in the proposition), a
sufficient condition for (P4) is min(|XZ |, |XW |) ≥
|XU |. Since U is binary under (S1) and since W
and Z are inferred from classifiers, they are discrete
variables, and this condition is satisfied. Hence,
(P4) is satisfied.

Our Final Design Procedure
Based on the suggestions accumulated in this sec-
tion, our design procedure is summarized by the
causal DAG in Figure 2(d)—obtain pre-treatment

8While there exist many strategies to split the text, we find
simply splitting in half works well in practice. For concerns
regarding settings with short texts, we direct the reader to our
odds ratio heuristic in Section 4.

9Note this independence condition does not imply the two
pieces of text are completely uncorrelated. Since the text
is written based on observations of the same individual we
certainly expect Tpre

1 ̸⊥⊥ Tpre
2 ; we simply require that the two

pieces are correlated only due to C and U .

text, split it into two halves, and apply two distinct
zero-shot models to obtain W and Z.

In Proposition 4, we formalized how this pro-
cedure can be used to design proxies that sat-
isfy the proximal identification conditions (P1-P4).
However, this result relied on two important pre-
conditions: (1) the conditional independence of the
two splits of the text, and (2) W and Z being (at
least weakly) predictive of U . Yet, both of these
conditions are untestable. This motivates our falsi-
fication heuristic in the next section.

4 Falsification: Odds Ratio Heuristic

In practice, a major challenge for our procedure—
and indeed all causal methods—are its assumptions.
Sometimes, causal models imply testable restric-
tions on the observed data that can be used in falsifi-
cation or confirmation tests of model assumptions,
see Wang et al. (2017); Bhattacharya and Nabi
(2022); Chen et al. (2023) for tests of some popular
causal models. In our case, the proximal model
implies no testable restrictions (Tchetgen Tchetgen
et al., 2020), so the best we can do is provide a
falsification heuristic that allows analysts to detect
serious violations of (P1-P4) when using the in-
ferred proxies. We design our heuristic based on
the odds ratio function described below.

Given arbitrary reference values w0 and z0, the
conditional odds ratio function for W and Z given
covariates X is defined as (Chen, 2007),

OR(w, z | x) = p(w | z,x)
p(w0 | z,x)

p(w0 | z0,x)
p(w | z0,x)

.

This function is important because W ⊥⊥ Z | X
if and only if OR(w, z | x) = 1 for all values
w, z,x. We summarize this odds ratio as a single
free parameter, γWZ.X, and, for the simplicity of
our pipeline, we estimate it under a parametric
model for p(W |Z,X).10

Now, we describe our proximal conditions in
terms of odds ratio parameters. If (P1-P3) are sat-
isfied, then W ⊥⊥ Z | U,C and γWZ.UC = 1.
Further, if the zero-shot models are truly predictive
of U , then (P4) is satisfied and W ̸⊥⊥ Z | C which
means γWZ.C ̸= 1. Ideally, we would want to esti-
mate both of these odds ratio parameters to confirm
(P1-P4) empirically; however, γWZ.UC cannot be
computed from observed data alone due to (R1).

10More generally, the odds ratio can also be treated as a
finite p-dimensional parameter vector γ and estimated under
parametric or semi-parametric restrictions on p(W |Z,X) and
p(Z|W,X) (Chen, 2007; Tchetgen Tchetgen et al., 2010).



Using a parameter we can estimate from ob-
served data, γWZ.C, we propose an odds ratio
falsification heuristic in lines 6-10 of Algorithm 1.
Now, we explain why, if this heuristic holds, an
analyst can be reasonably confident in using their
inferred text-based proxies for estimation.

First, we examine a lower bound on γWZ.C.
Based on our previous discussion, if γWZ.C is close
to 1, then we should suspect that one or both of
our zero-shot models failed to return informative
predictions for U . Next, let us treat γWZ.C as an
imperfect approximation of γWZ.UC. Let W,Z,U
be binary with reference values w0 = z0 = u0 = 0.
VanderWeele (2008) proposed the following three
conditions under which an odds ratio γWZ.C that
fails to adjust for an unmeasured confounder U
is an overestimate of the true odds ratio γWZ.UC:
(i) {U} ∪ C satisfies the backdoor criterion with
respect to W and Z; (ii) U is univariate or consists
of independent components conditional on C; (iii)
E[W |z, u, c] is non-decreasing in U for all z and
c and E[Z|u, c] is non-decreasing in U for all c.
Condition (i) is satisfied from Graph 2(d), and con-
dition (ii) is satisfied by assumption (S1). Finally,
condition (iii) is satisfied when our zero-shot mod-
els are reasonable predictors of the unmeasured
confounder U by the following argument. Notice
that E[W |z, u, c] = E[W |u, c] = p(W = 1|u, c),
where the first equality follows from d-separation
in Graph 2(d) and the second follows from defini-
tion of expectation for binary W . Then we should
expect, if the zero-shot models are reasonably ac-
curate, that p(W = 1|U = 1, c) > p(W = 1|U =
0, c). Therefore, the first part of condition (iii) is
satisfied. Similar logic holds for E[Z|u,x].

Hence, we have shown that under ideal con-
ditions that satisfy (P1-P4), we should expect
γWZ.C > γWZ.UC = 1, and we should reject prox-
ies W and Z if we get an odds ratio γWZ.C ≤ 1.
Next, we examine the upper bound on γWZ.C.

Consider the extreme case where γWZ.C =∞.
This corresponds to a situation where W = Z, so
(P1) is clearly not satisfied. In general, if γWZ.C is
higher than some threshold γhigh, corresponding to
the maximum association that one could reasonably
explain by a single open path through U , we should
suspect that perhaps the proxies W and Z are as-
sociated with each other due to additional paths
through other unmeasured variables that make it so
that the two halves of text are not independent of
each other, i.e., Tpre

1 ̸⊥⊥ T
pre
2 | U,C.

Algorithm 1 for inferring two text-based proxies

1: Inputs: Observed confounders C; Text T;
Zero-shot modelsM1,M2; Specified γhigh

2: Extract pre-treatment text Tpre from T
3: Split Tpre into two halves Tpre

1 and T
pre
2

4: Z ←M1(T
pre
1 ) and W ←M2(T

pre
2 )

5: // Odds Ratio Falsification Heuristic
6: if 1 < γWZ.C < γhigh then
7: return W and Z
8: else
9: return “stop”

10: end if

Following standard practice in sensitivity analy-
sis, e.g., Liu et al. (2013); Leppälä (2023), we leave
it to the analyst to specify the upper bound γhigh
based on domain knowledge. In our experiments
in Section 5, we found that, when the proximal
conditions are not satisfied, γWZ.C far exceeds any
reasonable setting of γhigh. Hence, our heuristic
works quite well in practice even with a generous
suggestion for an upper bound. We describe our
full design procedure with the diagnostic in Al-
gorithm 1. We now evaluate its effectiveness for
downstream causal inference.

5 Empirical Experiments and Results

In this section, we explore the following empirical
research questions:

RQ: How does Algorithm 1 compare to other
alternatives in terms of bias and confidence interval
coverage of the estimated causal effects? Does our
odds ratio heuristic effectively flag when to stop or
proceed?

In causal inference, empirical evaluation is dif-
ficult because it requires ground-truth labels for
counterfactual outcomes of an individual under
multiple versions of the treatment, data that is gen-
erally impossible to obtain (Holland, 1986); see
Gentzel et al. (2019); Keith et al. (2024). Thus, we
turn to synthetic data and semi-synthetic data so
we have access to the true ACE and U to evaluate
methods. We describe the experimental set-ups,
the causal estimation procedure used by all experi-
ments, and finally, the results to our RQ.

5.1 Fully Synthetic Experiments
We create our fully synthetic DGP based on the
DAG in Figure 2(d); see Appendix C for full de-
tails. To summarize, A and U are binary, and Y
and C are continuous. We generate (very simple)



Estimation Pipeline γWZ.C Est. ACE Bias Conf. Interval (CI) CI Cov.

P1M 2.799✓ 1.332 0.032 (1.285, 1.379) Yes
P1M with Gotcha #3 4.795× 1025 1.509 0.209 (1.475, 1.545) No
P2M 3.761✓ 1.315 0.015 (1.268, 1.358) Yes
P2M with Gotcha #3 1.047× 102 1.464 0.164 (1.430, 1.498) No

Table 1: Fully synthetic results with the true ACE equal to 1.3. Here, ✓ distinguishes settings that passed the odds
ratio heuristic from those that failed it, with γhigh = 5.

synthetic text data with four continuous variables,
X1, X2, X3, X4, as functions of U and C. For
training, we generate two realizations of these vari-
ables, which we call Xtrain

1 and Xtrain
2 , and likewise

two realizations for inference time, Xinf
1 and Xinf

2 .
At inference time, we explore four different

strategies for inferring proxies. First, we explore
using one or two distinct models, which we re-
fer to as Proximal 1-Model (P1M) and Proximal
2-Model (P2M), respectively. For one model,
we train a logistic regression classifier to predict
the true U from an aggregated variable X̃train =
(Xtrain

1 +Xtrain
2 )/2 as Pθ(U = 1|X̃train).11 For the

other model, we use the following heuristic: pre-
dict 1 if X1 > 1.1 else 0. P1M uses the logistic
regression model and P2M uses both the logistic
regression and heuristic models. Next, we vary
whether Gotcha #3 holds at inference time for both
P1M and P2M, i.e. whether the models infer Z and
W from only Xinf

1 or both Xinf
1 and Xinf

2 .

5.2 Semi-Synthetic Experiments

For our semi-synthetic data, we use real-world clin-
ical notes and structured variables from MIMIC-
III, an anonymized dataset of patients admitted
to critical care units at a large tertiary care hos-
pital (Johnson et al., 2016). We provide full
details of pre-processing steps and the DGP in
Appendix D. To summarize, we use the follow-
ing real data from MIMIC-III: we choose age
and gender of patients as C; we create three
different settings for U : patients’ binary diag-
nostic status of atrial fibrillation (Afib),
congestive heart failure (Heart), or acute
kidney failure (Kidney). As Tpre, we use
clinician notes and (to avoid Gotcha #2) explic-
itly exclude discharge summaries which are post-
treatment. We split at the middle character index

11Of course, having access to the true U may not qualify as
“zero-shot” in the strict sense of the term, but we complement
this idealized scenario with the difficult true zero-shot scenario
in semi-synthetic experiments.

to create T
pre
1 and T

pre
2 . Then, consistent with the

DAG in Figure 2(d), we synthetically generate bi-
nary A and continuous Y . In total, we use 29,451
patient records.

P1M and P2M. For one of our zero-shot models,
we use Flan-T5 XXL, an instruction-tuned large
language model, (Chung et al., 2022). Following
Ziems et al. (2023), we use the prompt template
Context: {Tpre

1 } Is it likely the patient has {U}?
Constraint: Even if you are uncertain, you must
pick either ‘Yes’ or ‘No’ without using any other
words. We assign 1 when Flan-T5 outputs “Yes”
and 0 otherwise. For the other zero-shot model, we
use keyword matching. The model outputs 1 if the
text contains one of the following keywords: “atrial”
for U=Afib; “family” for U=Heart; and “liver” for
U=Kidney;12 otherwise it outputs 0. P1M uses
Flan-T5 for both Z and W and P2M uses Flan-T5
for W and keyword matching for Z.

Baselines. We compare P1M and P2M to two
baselines. First, we randomly generate W and Z
from the distribution p(W = 1) = p(Z = 1) =
0.5. Second, we use the inferred W from Flan-T5
on T

pre
1 directly in a backdoor adjustment formula,

corresponding to Gotcha #1.

5.3 Estimation of Proximal g-formula

For all experiments, we estimate the ACE by us-
ing the inferred W and Z in a two-stage linear
regression estimator for the proximal g-formula
provided by Tchetgen Tchetgen et al.. Although
the linearity assumption is restrictive, it allows us
to focus on evaluating the efficacy of our proposed
method for inferring text-based proxies as opposed
to complications with non-linear proximal estima-
tion (Mastouri et al., 2021). Briefly, we first fit
a linear regression E[W |A,Z,X]. Next, we infer
Ŵ , continuous predictions for W , using the fitted
model. For the second stage, we fit a linear model
for E[Y |A, Ŵ ,X]. The coefficient for A in this

12Justifications for these keywords are in Appendix D.



γWZ.UC γWZ.C

U P1M P2M P1M P2M

Afib 4.655 1.071 7.753 1.719✓

Heart 28.327 1.513 37.852 2.836✓

Kidney 55.907 3.31× 107 56.366 3.44× 107

Table 2: Semi-synthetic odds ratio heuristic calcu-
lated with γWZ.C as well as the oracle γWZ.UC. Here,
✓ distinguishes settings that passed the heuristic from
those that failed it, with γhigh = 5.

Figure 3: Semi-synthetic results for ACE point esti-
mates (dots) and confidence intervals (bars). Here, ✓
distinguishes settings that passed the odds ratio heuristic
from those that failed it, with γhigh = 5.

second linear model is the estimated ACE. We cal-
culate 95% confidence intervals for the ACE via the
bootstrap percentile method (Wasserman, 2004).

5.4 Results

Results for synthetic experiments are in Table 1 and
for semi-synthetic experiments are in Tables 2, 3, 4
and Figure 3. In short, our empirical results corrob-
orate preference for Algorithm 1 over alternatives.

Gotchas. First, we discuss the “gotcha” meth-
ods we showed to be theoretically incorrect in Sec-
tion 3. Regarding Gotcha #1, Figure 3 shows that,
across all settings of U , using the inferred W di-
rectly in the backdoor adjustment formula results
in estimates with large bias. Regarding Gotcha #3,
using the same realization Xinf

1 results in high bias—

0.209 and 0.164 for P1M and P2M, respectively,
in Table 1—whose CIs do not cover the true ACE.
Regarding Gotcha #4, as in Proposition 4, using a
single zero-shot model (P1M) results in low bias in
the idealized setting of the synthetic DGP (Table
1; first row). However, using real clinical notes
and Flan-T5, the third column of Figure 3 shows
that P1M has estimates with high bias across all
three settings of U . We hypothesize this is due
Flan-T5 predicting Z and W with raw agreement
rates higher than 0.9 for all three Us (Table 3).

Odds ratio heuristic. For all experiments we
set γhigh = 5.13 Even with this liberal setting, we
find low bias and good CI coverage for scenarios
that pass our heuristic (P1M and P2M for synthetic
and P2M for U equal to Afib and Heart for semi-
synthetic) and poor estimates in all other cases.
Examining Table 2, we see that γWZ.C > γWZ.UC

for all settings, which corroborates the discussion
in Section 4. This gives us confidence that Algo-
rithm 1 appropriately flags when to stop or proceed.

6 Conclusion and Future Work

In this work we proposed a novel causal inference
method for estimating causal effects in observa-
tional studies when a confounding variable is com-
pletely unobserved but unstructured text data is
available to infer potential proxies. Our method
splits the pre-treatment text data, infers two proxies
using two zero-shot models on the separate splits,
and applies these proxies in the proximal g-formula.
We have shown why one should prefer our method
to alternatives, both with theory and the results of
synthetic and semi-synthetic experiments.

Although we use a clinical setting as our running
example, our method is applicable to many other
domains where it is infeasible to obtain ground-
truth U labels due to privacy constraints, e.g., social
media or education studies with private messaging
data or sensitive student coursework. Possible di-
rections for future work include incorporating non-
linear proximal estimation strategies, expanding
beyond text to learned proxies from other modal-
ities (see Knox et al. (2022)), more guidance for
setting γhigh in our odds ratio heuristic, extending
our method to incorporate categorical U,W,Z, and
evaluating the efficacy of using soft probabilistic
outputs from the zero-shot classifiers.

13This means, conditional on C, we would expect the odds
of W to be able to increase 5-fold for every increase in Z, an
extremely liberal constraint given W and Z are binary.
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A Using Post-Treatment Text

Here, we describe a scenario for which we may in-
fer valid proxies using both post-treatment and pre-
treatment text. In Figure 4, Tpost is post-treatment
text whereas Tpre is pre-treatment text. Through
simple d-separation arguments, we can see that
each of (P1-P3) are fulfilled. Hence, it is still pos-
sible to use post-treatment text to generate a valid
proxy as long as we use pre-treatment text to gen-
erate the other proxy. However, the pre-treatment
rule is simpler to implement and validate, so we
recommend it in our final method.

A Y

U

C TpostTpre

ZW

Figure 4: Using both pre-treatment and post-treatment
text to generate valid proxies.

B Elaboration on Problem Restriction

Restriction (R1) is clearly present in settings for
which we need to adjust for a confouding variable
that is impossible or difficult to measure—for ex-
ample, atrial fibrillation can go undiagnosed for
years. A logical first attempt to mitigate this con-
straint is to train a supervised classifier on a subset
of the data to create proxies for the rest of the
dataset, as explored in Wood-Doughty et al. (2018).
This, however, requires humans to hand-label large
amounts of text data. If labeling takes place on
a crowd-sourcing platform, e.g., Amazon’s Me-
chanical Turk, crowd-sourcing costs can quickly
sky-rocket and often exceed tens of thousands of
dollars, even for small datasets. Furthermore, many
datasets—particularly those in clinical settings—
require domain expertise (e.g., trained medical doc-
tors) which will likely increase costs significantly
and limit the availability of labelers.

Cost and expertise of labelers aside, the possi-
bility of supervised learning is further restricted
by patient privacy legislation. We typically can-
not transport sensitive data regarding patients’ per-
sonal data to platforms such as Amazon’s Mechan-
ical Turk for labeling due to the Health Insurance
Portability and Accountability Act (HIPPA)14 in

14https://www.hhs.gov/hipaa/index.html

the United States. In addition, legal acts such as the
General Data Protection Regulation (GDPR)15 in
the European Union and the California Consumer
Privacy Act (CCPA)16 restrict the movement and
repurposing of user data across platforms. Our
proposed method overcomes restriction (R1) by us-
ing zero-shot learners that do not require labeled
examples.

C Fully Synthetic Data-Generating
Process

The DAG representing the fully synthetic data-
generating process is shown in Figure 5. We simu-
late U , a binary variable, as follows

U ∼ Bernoulli(0.48)

Next, we simulate baseline confounders and syn-
thetic ”text” X1, X2, X3, X4 as follows:

C ∼ N (0, 1)

X1 ∼ N (0, 1) + 2 ∗ U + 1.5 ∗ C
X2 ∼ N (0, 1) + exp(X1) + U + 1.5 ∗ C
X3 ∼ N (0, 1) + 1.3 ∗ U + 1.5 ∗ C
X4 ∼ N (0, 1) +X3

2 + 0.5 ∗X3
3

+ U + 1.5 ∗ C

Finally, the treatment and outcome variables are
generated via

p(A = 1) = expit(0.8 ∗ U + C − 0.3)

A ∼ Bernoulli(p(A = 1))

Y ∼ N (0, 1) + 1.3 ∗A+ 1.4 ∗ U + 1.2 ∗ C

A Y

U

C X1 X2X3X4

Figure 5: DAG showing the fully synthetic data-
generating process.

15https://tinyurl.com/europegdpr
16https://oag.ca.gov/privacy/ccpa

https://www.hhs.gov/hipaa/index.html
https://tinyurl.com/europegdpr
https://oag.ca.gov/privacy/ccpa


D Creating Semi-Synthetic Data

MIMIC-III pre-processing. In the MIMIC-III
dataset (Johnson et al., 2016), data is organized into
multiple tables where each patient is assigned an
anonymized identifier and each hospital admission
for each patient is also given a unique identifier.
Our first pre-processing step was to find a clini-
cian’s note for each patient that was not a discharge
summary, and we dropped patients if they did not
have any clinician’s notes. Next, we selected the
date of the hospital admission corresponding to
each clinician’s note for each patient. We also se-
lected each patient’s gender and date of birth. We
inferred a patient’s age by subtracting the date of
their hospital admission by their date of birth. Note,
the precise date of birth and hospital admission date
for each patient are anonymized in MIMIC-III by
shifting both dates by some amount of time un-
known to us. We drop patients younger than 18
and those who have invalid age values, such as
negative integers.

In MIMIC-III, each diagnosis corresponds to an
ICD-9 Code: a unique numerical identifier. We
select the diagnoses of the following conditions
from MIMIC-III: (i) Atrial fibrillation; ICD-
9 Code: 42731, (ii) Congestive heart failure,
unspecified; ICD-9 Code: 4280, and (iii) Acute
kidney failure, unspecified; ICD-9 Code:
5849. If the patient has the code in MIMIC-III, we
set U = 1, otherwise we set U = 0.

Semi-synthetic DGP. The DAG representing the
semi-synthetic data-generating process is shown
in Figure 6. The variable U represents atrial
fibrillation, congestive heart failure, or
acute kidney failure, depending on the setting.
We simulate draws of the binary variable A via

p(A = 1) = expit(0.8 ∗ U + 0.8 ∗ Gender

+ 0.8 ∗ (Age− 67))

A ∼ Bernoulli(p(A = 1))

Next, we simulate draws of the continuous variable
Y from:

Y ∼ N (0, 1) + 1.3 ∗A+ 1.4 ∗ U
+ 0.8 ∗ Gender + 0.5 ∗ Age

When estimating the ACE using the two-stage lin-
ear regression described in Section 5, we condition
on the baseline covariates age and gender.

Keywords Matching. Here, we provide brief
justifications for the keywords we chose for the

A Y

UAge Gender

Figure 6: Causal DAG showing the semi-synthetic data-
generating process.

matching algorithm used by P2M. As a review, we
used the following keywords: “atrial” for U=Afib;
“family” for U=Heart; and “liver” for U=Kidney.
Empirically, we found that the appearance of the
keyword “atrial” in a clinician’s note is a strong
indication that the patient indeed suffered from
atrial fibrillation. Similarly, we found empirically
that the appearance of the keyword “family” was a
strong predictor for congestive heart failure. After
reading some clinicians’ notes from which keyword
matching correctly predicted patients’ congestive
heart failure statuses, we suspect that this is be-
cause congestive heart failures are often serious
and warrant family visits for the patient. Finally,
we also found that the keyword “liver” was empiri-
cally a strong predictor of acute kidney failure. We
suspect that this is because acute kidney failure of-
ten occurs in patients that are already hospitalized
for another condition, such as liver failure.

E Additional Results from
Semi-Synthetic Simulations

In Tables 3 and 4, we provide additional results
from the semi-synthetic experiments.



Oracle? Proxies Metric U=Afib U=Heart U=Kidney

Yes – 1 - p(U = 1) 0.721 0.736 0.796

Yes W from Flan-T5 on T
pre
1

γWU.C 17.609 7.521 2.022
Accuracy 0.766 0.782 0.795
p(W = 1) 0.062 0.169 0.002
Precision 0.861 0.635 0.318
Recall 0.191 0.408 0.002

Yes Z from Flan-T5 on T
pre
2

γZU.C 3.965 5.930 1.054
Accuracy 0.731 0.768 0.794
p(Z = 1) 0.050 0.170 0.003
Precision 0.595 0.595 0.203
Recall 0.108 0.383 0.002

No Z,W Raw Agreement Rate; p(W = Z) 0.918 0.901 0.996

Table 3: Additional metrics for P1M on semi-synthetic experiments. The first column indicates whether the
metric requires access to the oracle variable U variable (which is not available at true inference time). Precision,
Recall, and Accuracy are calculated in reference to U .

Oracle? Proxies Metric U=Afib U=Heart U=Kidney

Yes – 1− p(U = 1) 0.721 0.736 0.796

Yes W from Flan-T5 on T
pre
1

γWU.C 17.609 7.521 2.022
Accuracy 0.766 0.782 0.795
p(W = 1) 0.062 0.169 0.002
Precision 0.861 0.635 0.318
Recall 0.191 0.408 0.002

Yes Z from Keyword Matching on T
pre
2

γZU.C 2.569 12.326 1.287
Accuracy 0.683 0.283 0.205
p(Z = 1) 0.261 0.981 0.999
Precision 0.427 0.269 0.204
Recall 0.399 0.998 0.999

No Z and W Raw Agreement Rate; p(W = Z) 0.723 0.186 0.003

Table 4: Additional metrics for P2M on semi-synthetic experiments. The first column indicates whether the
metric requires access to the oracle variable U variable (which is not available at true inference time). Precision,
Recall, and Accuracy are calculated in reference to U .


