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(a) Visualization and performance of our framework  (b) Performance and runtime comparison

Figure 1: Our method delivers state-of-the-art surface reconstruction with ultra-fast inference speed.
(a) Framework visualization: Given an image pair, our approach regresses Gaussian radiance fields
capturing fine geometric details in just 1 second. (b) Quantitative comparisons: Our method achieves
superior reconstruction accuracy while maintaining the fastest runtime among existing approaches.

Abstract

3D Gaussian Splatting (3DGS) has demonstrated impressive performance in 3D
scene reconstruction. Beyond novel view synthesis, it shows great potential for
multi-view surface reconstruction. Existing methods employ optimization-based
reconstruction pipelines that achieve precise and complete surface extractions.
However, these approaches typically require dense input views and high time
consumption for per-scene optimization. To address these limitations, we propose
SurfelSplat, a feed-forward framework that generates efficient and generalizable
pixel-aligned Gaussian surfel representations from sparse-view images. We observe
that conventional feed-forward structures struggle to recover accurate geometric
attributes of Gaussian surfels because the spatial frequency of pixel-aligned primi-
tives exceeds Nyquist sampling rates. Therefore, we propose a cross-view feature
aggregation module based on the Nyquist sampling theorem. Specifically, we first
adapt the geometric forms of Gaussian surfels with spatial sampling rate-guided
low-pass filters. We then project the filtered surfels across all input views to ob-
tain cross-view feature correlations. By processing these correlations through a
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Figure 2: Experimental Observation. (a) Current feed-forward networks generate geometrically
inaccurate Gaussian radiance fields. (b) The correlated image regions of pixel-aligned Gaussian surfels
exhibit rotation invariance, limiting the network’s ability to accurately infer surface orientations.

specially designed feature fusion network, we can finally regress Gaussian surfels
with precise geometry. Extensive experiments on DTU reconstruction benchmarks
demonstrate that our model achieves comparable results with state-of-the-art meth-
ods, and predict Gaussian surfels within 1 second, offering a 100× speedup without
costly per-scene training.

1 Introduction

Reconstructing accurate surfaces from multi-view images remains a fundamental challenge in
computer vision. Previous methods focus on Multi-View Stereo [1, 2] techniques to capture
geometric details from multi-view images. Recent advancements of neural implicit representa-
tions [3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13] have demonstrated significant progress in recovering smooth
and complete surface. However, these approaches typically struggle to extract precise surfaces in
terms of sparse viewpoints. While following works [6, 7, 14, 15] have shown promise in sparse-view
reconstruction, they generally require per-scene optimization with high time consumption. More
recently, 3D Gaussian Splatting (3DGS) [16] has recently drawn increasing attention due to its rapid
rendering speed and high visual fidelity. To enhance the surface alignment capabilities of Gaussian
primitives, recent approaches [17, 18, 19, 20, 21] have modified the geometric shape of Gaussian
representations to better conform to actual surfaces. For instance, 2D Gaussian Splatting (2DGS) [18]
transforms 3D Gaussian primitives into 2D Gaussian surfels to maintain improved view-consistent
geometry. While 3DGS-based methods succeed in precise surface extraction, they tend to overfit to
the camera when presented with limited viewpoint information (i.e., as few as two images), resulting
in geometric collapse.

To circumvent per-scene optimization while ensuring generalizable and efficient scene reconstruction,
several feed-forward networks [22, 23, 24, 25, 26, 27, 28, 29] have been proposed to directly regress
3D Gaussian parameters from sparse-view input images. These approaches predict the depth map and
appearance attributes of pixel-aligned Gaussian primitives from cross-view image features. Current
feed-forward frameworks achieve superior performance in fast and generalizable scene reconstruction
for novel view synthesis. Therefore, an intuitive approach is to apply the current feed-forward
networks for parameter prediction of 2D Gaussian surfels. However, as shown in Figure 2, typical
methods such as MVSplat [24] fail to generate surfels with accurate geometry, where the normal
vectors of surfels cannot be precisely recovered. The Gaussian surfels tend to orient parallel to
the image plane rather than aligning with the actual surface geometry. As shown in Figure 2(b),
Gaussian surfels predicted by these networks only cover the area of a single pixel. Consequently,
the corresponding image regions relevant to surfel attributes cannot provide sufficient supervisory
information to accurately learn the covariance of Gaussian surfels.

2



In this paper, we first analyze this phenomenon from the perspective of the Nyquist sampling
theorem. Our key insight is that the failure to generate surface-aligned primitives is because the
spatial frequency of pixel-aligned Gaussian surfels exceeds the Nyquist sampling rate, thus violating
the fundamental signal processing principles. To trackle this challenge, we introduce SurfelSplat, a
novel feed-forward framework to regress 2D Gaussian radiance field with precise geometry guided by
Nyquist theorem. Our method dynamically modulates the geometric forms of diverse Gaussian surfels
in the frequency domain and correlates pixel regions across multiple input views that effectively
contribute to Gaussian geometric feature learning. We subsequently develop a feature aggregation
network that leverages image features from these identified regions to enhance the original Gaussian
image features, thereby yielding accurate Gaussian surfel representations with improved geometric
fidelity. Our contributions are summarized as follows:

• We propose SurfelSplat, a feed-forward framework that regresses 2D Gaussian surfels directly
from sparse-view images for surface reconstruction.

• We conduct a detailed analysis of why current feed-forward frameworks fail to generate
geometrically-accurate Gaussian primitives and introduce Nyquist theorem-guided Gaussian surfel
adaptations and feature aggregations to achieve superior geometric properties of the scene.

• Experimental results demonstrate the effectiveness of our method. SurfelSplat generates surface-
aligned Gaussian radiance fields with high efficiency and accurate geometry.

2 Related Work

2.1 Neural Implicit 3D Representation

Neural Radiance Fields (NeRF) represent scenes through implicit radiance fields, with optimization
processes dependent on volumetric rendering [30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43,
44, 45, 46, 47, 48, 49]. For surface reconstruction, NeuS [3] pioneered scene representation using
implicit Signed Distance Functions (SDFs) [5, 11, 12, 50]. The inherent continuity of MLP-based
SDFs ensures smooth and accurate extracted meshes. Subsequent research has enhanced performance
in sparse-view settings: VolRecon [51] integrates multi-scale feature extraction with geometry-aware
regularization to recover 3D surfaces from limited viewpoints; NeuSurf [6] combines differentiable
rendering with adaptive surface extraction techniques, enabling high-fidelity recovery of complex
geometries; and UFORecon [8] employs an uncertainty-aware fusion optimization framework that
leverages probabilistic feature correspondence and adaptive confidence weighting for robust surface
reconstruction. However, the inherent complexity of volumetric rendering typically requires several
hours of computation per scene.

2.2 Neural Explicit 3D Representation

Beyond neural implicit representations, 3D Gaussian Splatting (3DGS) has achieved remarkable
progress in 3D scene reconstruction, delivering photorealistic rendering quality with high rendering
speed [16, 52, 53, 54, 55, 56, 57, 58]. Two primary approaches have emerged for accurate surface
extraction. The first enhances primitives to better fit surfaces: SuGaR [17] models 3D Gaussians as
2D pieces by incorporating flat and signed-distance regularization terms; 2DGS [18] and Gaussian
Surfels [19] transform 3D Gaussian primitives into 2D surfels, with 2DGS proposing depth and
normal consistency constraints to align surfels more accurately with surfaces. The second approach
combines implicit representations to guide 3DGS training: NeuSG [59] integrates NeRF and 3DGS
to recover complex 3D surfaces through differentiable optimization that preserves both local details
and global structure; GSDF [21] employs a two-branch framework to simultaneously optimize SDF
and Gaussian fields, allowing mutual enhancement to capture better geometric details. However,
these methods require dense views to obtain smooth and complete surfaces due to the lack of scene
data priors.

2.3 Generalizable Feed-forward Networks

The aforementioned optimization-based approaches have demonstrated strong performance in 3D
reconstruction tasks, yet they typically require expensive per-scene training. More recently, feed-
forward networks have emerged as a promising paradigm for generalizable 3D scene reconstruction.
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Figure 3: Pipeline. Given an image pair, our method first extracts initial image features using a
backbone image encoder. We then predict Gaussian features and depth maps of the scene. Since 2D
radiance fields are geometrically inaccurate, we apply Nyquist theorem-guided surfel adaptation to
each surfel. In the feature aggregation module, we project the adapted surfels across views to identify
image regions containing relevant geometric information. After refining the image features with these
related regions, we regress the Gaussian radiance fields again to obtain accurate representations.

These models learn rich priors from large-scale datasets, enabling the reconstruction process to be
accomplished through a single feed-forward inference. pixelNeRF [47] pioneered a feature-based
framework that leverages encoded features to render novel views. Building upon Gaussian primitives
as the fundamental representation, Splatter Image [22] and GPS-Gaussian [53] have achieved notable
progress by predicting Gaussian parameters for object-level reconstruction. pixelSplat [23] further
advanced this direction by regressing pixel-aligned Gaussian primitives, effectively incorporating
epipolar geometry and depth estimation. MVSplat [24] enhances geometric quality by extracting
cost volumes as cross-view features, which facilitates fast and accurate depth prediction. However,
existing feed-forward methods predominantly target 3D reconstruction tasks such as novel view
synthesis. Their potential for surface reconstruction—where significantly higher precision in Gaussian
primitives is required—remains largely unexplored.

3 Methods

We present SurfelSplat, a feedforward framework for predicting 2D Gaussians with accurate geometric
reconstruction, principled by the Nyquist sampling theorem (Figure 3). Our approach begins by
predicting Gaussian centers and their associated attributes, followed by a surfel adaptation module
that optimizes Gaussian primitives in the frequency domain. We then introduce a feature aggregation
module that refines Gaussian representations by exploiting cross-view feature correlations. These
refined features are subsequently utilized to regress surface-aligned 2D Gaussian radiance fields. In
Section 3.1, we present a comprehensive analysis of spatial frequency characteristics and sampling
rates for Gaussian surfels. Section 3.2 details our Nyquist-guided surfel adaptation and image feature
aggregation modules, along with their corresponding network architectures. Our SurfelSplat is
illustrated in Algorithm 1.

3.1 Sensitivity to Sampling Rates for Pixel-Aligned Gaussian Surfels

To overcome the limitations inherent in current pixel-aligned feedforward approaches, we initially
examine the spatial sampling frequency within multi-camera systems and establish a methodology
for computing the spatial frequency of individual 2D Gaussian primitives.
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Algorithm 1 SurfelSplat: Nyquist Sampling-Guided Gaussian Feature Aggregation

1: Input: Multi-view images I = {Ii}Ni=1, camera parameters P = {Pi}Ni=1, fx and fy
2: Output: Gaussian parameters {µk, rk, sk, σk, ck} for each primitive k
3: F ← Φimage(I,P)
4: µi ← ψunproj(Φdepth,Pi), fi ← Φattr(Fi) i = 1, 2, · · · , N
5: for i← 1 to N do
6: dik ← ψproj(Gk,Pi)

7: ν̂ik ←
fxfy
(di

k)
2

8: end for
9: ν̂k ← max

i
ν̂ik

10: Glowk ← exp(− ν̂2
ku

2

2s2 −
ν̂2
kv

2

2s2 ), Ĝadaptedk ← Gk ⊗ Glowk

11: Fgeo
k ← ψproj(F ,P, Ĝadaptedk )

12: Frefined
k ← Φrefine(Fgeo

k ) + Fk

13: f̂k ← [ŝk, r̂k, σ̂k, ĉk] = Φattr(F
refined
k )

3.1.1 Nyquist Sampling Theorem

The Nyquist Sampling Theorem [60] represents a cornerstone principle in signal processing. For
precise reconstruction of a continuous signal from its discrete samples, the following criteria must be
met:

Nyquist Conditions The continuous signal must be band-limited with bandwidth ν, and the spatial
sampling rate ν̂ must be at least twice the signal bandwidth:ν̂ ≥ 2ν.

The Nyquist sampling theorem establishes the fundamental relationship between spatial signals and
their corresponding sampling frequencies. In this work, we exploit the Nyquist criterion to learn local
image features that significantly improve the reconstruction of fine-grained geometric scene details.

3.1.2 Spatial Sampling Rates in Multi-Camera Systems

For a single-camera system, the sampling interval in the image plane is determined by the pixel area.
When projected into 3D space, this sampling interval corresponds to the area occupied on the surface
manifold. For an image with focal lengthsfx and fy(expressed in pixel units), the sampling interval
in screen space is unity. Consider a unit area element dAxy in screen space and its corresponding
surface area coverage dAuv . The sampling rate in 3D space can then be derived as:

ν̂sampling =
dAxy

dAuv
(1)

The relationship between these two parameter spaces is given by dAxy = |J|du · dv, where |J|
represents the determinant of Jacobian matrix: J =

∂Pimage(x,y)
∂Xcamera

· ∂Xcamera

∂Xworld
· ∂Xworld

∂(u,v) . By evaluating
the spatial projection relationship that governs the projection process, we obtain the sampling
frequency for a given spatial primitive:

ν̂sampling = |J| = fxfy
d2

(2)

where d denotes the corresponding depth value. The detailed mathematical derivation is provided in
the Appendix B.1. For a multi-camera system, the spatial sampling frequency is computed across
all cameras. We define the overall sampling frequency for a Gaussian primitive pk as the maximum
frequency among all views:

ν̂k = max
(
{Vi(pk) · |Ji|}Ni=1

)
(3)

where N represents the number of cameras and Vi denotes the visibility function. If the primitive is
visible to the i-th camera, Vi returns 1, otherwise 0. Specifically, our choice of using the maximum
sampling frequency as the overall frequency (Equation 3) is motivated by Equation 7 of Mip-Splatting
[54]. The key insight of Mip-Splatting is that for accurate reconstruction, we need to ensure that each
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3D Gaussian primitive satisfies the Nyquist sampling criterion for at least one camera view where it
is visible. This is because if a primitive can be accurately reconstructed from at least one view, we
have captured its essential geometric information.

3.1.3 Spatial Frequency of 2D Gaussian Primitives

Given a spatial surfel, the spatial frequency can be calculated through spatial Fourier transform
derivation |Ĝ(k)|. Since the Gaussian function contains over 95% of its energy within ±2 standard
deviations, when considering a Gaussian with two standard deviations as the surfel size, we can
obtain the frequencies along the tangent vector directions tu and tv in the 2D Gaussian surfel via
|Ĝ(tu)| and |Ĝ(tv)|, respectively. The detailed derivation can be found in Appendix B.2.

Consequently, along the tu direction, the frequency is ωu = 2
su

(and analogously, ωv = 2
sv

for the
tv direction). Accounting for the 2π periodic normalization of the Fourier transform, the spatial
frequency of the Gaussian primitive along each tangent vector can be expressed as:

νu =
1

πsu
, νv =

1

πsv
(4)

For Gaussian primitives that fail to satisfy the Nyquist criterion, the spatial signal cannot be perfectly
reconstructed. In such cases, the network tends to predict spatial parameters (e.g., covariance) with
considerable stochasticity, resulting in surfels that are misaligned with the actual surface geometry.

3.2 Surfel Prediction with Nyquist Theorem-Guided Feature Aggregation

Having established the methodology for calculating sampling rates and spatial primitive frequencies,
we proceed to design modules that enable Gaussian primitive predictions to adhere to the Nyquist
sampling criterion. Specifically, we perform Gaussian surfel adaptation in the frequency domain and
employ cross-view feature aggregation to regress primitives with enhanced geometric detail fidelity.

3.2.1 Nyquist Theorem-Guided Gaussian Surfel Adaptation

We aim to constrain the maximum frequency of Gk according to the spatial sampling rates. We
propose an adaptive surfel adaptation module operating in the frequency domain. Specifically, we
achieve this by passing 2D Gaussian primitives through an adaptive Gaussian low-pass filter:

Ĝadapted
k (x) = (Gk ⊗ G low

k )(x), G low
k (x) = e−

ν̂2
ku2

2s2
− ν̂2

kv2

2s2 (5)

Here, s is a scalar hyperparameter (default value is 1), and each Gaussian filter is designed according
to the specific frequency bound ν̂k. We then adaptively modify the transformation matrix of the 2D
Gaussian primitive Hadapted

k as the scaling matrix changes:

Hadapted
k =

[
su
√
1 + s2

ν̂2
k
tu sv

√
1 + s2

ν̂2
k
tv 0 pk

0 0 0 1

]
=

[
RSadapted

k pk

0 1

]
(6)

where Sadapted
k is the adapted scaling matrix, and the transformation matrix Hadapted

k completely
characterizes the 2D Gaussian representation, incorporating the effects of the low-pass filter.

Theoretical Nyquist Criterion Verification Prior to adaptation, whether all primitives satisfy the
Nyquist criterion cannot be determined. After adaptation, the spatial frequency can be constrained by
setting su > 2

π :

νk =
1

suπ
√
1 + 1

ν̂2
k

<
ν̂k
suπ

<
ν̂k
2

(7)

Regardless of how the spatial sampling rates vary, the Nyquist criterion is consistently satisfied.

3.2.2 Nyquist Theorem-Guided Gaussian Feature Aggregation

Gaussian Parameters Initialization Given N input images I = {Ii} ∈ RN×H×W×3 and cor-
responding camera parameters P = {Pi},Pi = Ki[Ri|ti], we first use epipolar transformers to
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extract rough image features, and use cost volumes between perspective pairs to extract geometric
interrelationships. We then concatenate these features to obtain our initial image features:

F = Φinitial(I),F = {Fi} ∈ RN×W×H×C (8)
where Φinitial is the image feature extraction backbone. In conventional feedforward frameworks,
cross-view features are fed into two distinct regression networks Φdepth and Φattr to predict depth
di and Gaussian attributes fi = [si, ri, σi, ci]:

di = Φdepth(Fi) ∈ RHW , µi = ψunproj(di,Pi) ∈ RHW×3, fi = Φattr(Fi) ∈ RHW×Cattr (9)
where ψunproj denotes the unprojection process.

Cross-view Gaussian Feature Aggregation Given the frequency distribution in space, we perform
Gaussian surfel adaptations for each primitive Ĝadapted

k (x) = (Gk ⊗ G low
k )(x). Within our framework,

we project 2D Gaussian primitives back to all viewpoints to extract the set of image features required
for refinement. With lower frequency, primitives tend to occupy more pixels related to Gaussian
attributes regression. The image regionsRk associated with Ĝadapted

k are defined by:

Ri
k = {x = (i, j) ∈ Z2 : Ĝadapted

k (i, j;m) > ϵ}, Rk =

N⋃
i=1

Ri
k (10)

where Ĝadapted
k (i, j;m) represents the Gaussian value of primitive Ĝadapted

k splatted onto the mth view
at pixel (i, j).

We can then identify image features associated with the geometric information of primitive Gk:

Fgeo
i,k = {Fi

k(i, j), (i, j) ∈ Ri
k}, Fgeo

k =

N⋃
i=1

Fgeo
i,k (11)

Gaussian Prediction with Refined Feature As features in Fgeo
k are essential for accurate geometry

learning of our Gaussian representation Gk, we implement a feature refinement architecture with
cross-attention transformations to enhance the initial image feature Fk. The query, key, and value
composition is specifically designed to enable cross-attention interaction for a Gaussian primitive Gk
as F̂k = ΦAtt(Q,K, V ):

Q = hQ(Fk), K = hK(Fgeo
k ), V = hV (Fgeo

k ) (12)

We then employ a standard feed-forward architecture in the transformer:

Frefined
k = ΦFFN(F̂k) + Fk (13)

Finally, we predict geometry-aware pixel-aligned 2D Gaussian primitives with the refined feature per
view Frefined

i = {Frefined
k ,Gk ⊂ Ii} using the same Gaussian head as in Equation 9:

f̂i = [ŝi, r̂i, σ̂i, ĉi] = Φattr(F
refined
i ) ∈ RHW×Cattr (14)

3.3 Loss Design

Our loss function comprises two parts: rendering loss and geometric loss. The rendering loss
Lrender = LRGB + λLPIPSLLPIPS employs mean square error along with LPIPS loss. For
geometric loss, we use depth and normal continuity functions to align surfels to the surface: Lalign =∑

i ωi(1 − nTi N). Furthermore, we incorporate depth and normal mean square error: Lgeo =
λalignLalign + λdLd + λnLn. Our complete loss function is formulated as:

L = Lrender + λgeoLgeo (15)

4 Experiments

To demonstrate the effectiveness of our method, we conduct experiments on DTU benchmarks [61]
and compare the reconstruction accuracy and evaluation efficiency with state-of-the-art methods.
Additionally, we provide a detailed analysis of the geometric properties from the perspective of the
Nyquist sampling criterion to further validate our approach. In the ablation study, we analyze the
effectiveness of each component of our method.
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Figure 4: Qualitative Comparison of Surface Reconstruction with Sparse Views on DTU Benchmarks.

4.1 Experimental Setup

Datasets. We evaluate our method on the DTU dataset. DTU consists of 128 scenes, with 15 scenes
designated for testing. We assess reconstruction accuracy using Destination to Source (D2S) Chamfer
Distance as the evaluation metric. The investigated experimental setting is sparse-view reconstruction
with 2 input views. Input images are downsampled to a resolution of 256× 320 pixels.

Implementation Details. Our implementation is built upon the pixelSplat [23] framework. The
training process consists of two stages: first, we train our model on RealEstate10K [62] for 300,000
iterations, followed by fine-tuning on the DTU dataset for 2,000 iterations. The hyperparameter s in
Equation 5 is set to 1. All experiments reported in this paper were conducted on a single NVIDIA
RTX A6000 GPU using the Adam optimizer.

4.2 Comparisons

Sparse view surface reconstruction. As shown in Table 1, our SurfelSplat exhibits the best mean
D2S reconstruction Chamfer distance (CD) performance compared to other state-of-the-art surface
reconstruction methods. As illustrated in Figure 4, our method presents superior global geometry
and exhibits enhanced surface details. In contrast to UFORecon [8], which can only produce coarse
global geometry, our method demonstrates improved global surface smoothness. We can also refine
local details that would be ignored by methods like 2DGS [18], which delivers coarse and incomplete
surfaces. Additional experimental results on the BlendedMVS [63] dataset are presented in Appendix
C.4.

Efficiency. We conduct efficiency studies on all tested scenes for the sparse-view reconstruction
methods mentioned above. As highlighted in Table 2, we compare the mean inference time on DTU
benchmarks. All experiments are conducted on the same device.

For neural implicit methods that require per-scene training, convergence requires significantly long
training times. Neural explicit training methods greatly reduce training time consumption, but still
require approximately 10 minutes to obtain the Gaussian radiance fields. Most recent implicit methods
have successfully compressed the inference time to the 1-minute level. However, our method shows
the best efficiency with a single feed-forward process that takes only seconds.
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Table 1: The quantitative comparison results of Chamfer Distance (CD↓) on DTU dataset. The best
results are in bold, the second best are underlined.
ID 24 37 40 55 63 65 69 83 97 105 106 110 114 118 122 Mean
NeuS [3] 4.69 4.72 4.03 4.58 4.71 2.01 4.83 3.94 4.31 2.61 1.63 6.48 1.44 5.69 6.34 4.13
NeuSurf [6] 1.96 3.73 2.35 0.82 1.07 2.51 0.87 1.21 1.15 1.13 1.06 1.23 0.41 0.92 1.13 1.44
VolRecon [51] 1.41 3.24 1.76 1.43 1.66 2.25 1.42 1.81 1.54 1.26 1.52 1.53 0.99 1.54 1.75 1.67
UFORecon [8] 1.15 2.42 1.67 2.55 1.90 2.73 1.55 1.49 2.16 0.95 2.22 1.98 1.40 2.11 2.32 1.91
2DGS [18] 2.29 2.63 2.33 1.23 3.69 4.71 2.64 3.94 3.55 3.92 3.95 2.68 2.37 3.15 2.21 3.02
GausSurf [19] 4.22 5.69 4.32 3.98 4.93 2.81 4.67 5.52 4.98 3.61 4.11 5.43 2.98 3.66 4.55 4.36
FatesGS [64] 0.77 2.35 1.43 1.00 1.31 2.06 0.85 1.24 1.06 0.83 1.22 0.58 0.64 0.99 1.32 1.18
Ours 1.23 2.64 1.63 0.90 1.24 1.14 1.12 1.18 1.13 0.79 0.84 0.54 0.51 0.84 1.04 1.12

Table 2: Comparisons with recon-
struction efficiency.

Method Interference Time

NeuS 10±0.5 hours
NeuSurf 14±0.5 hours
VolRecon 60±5 seconds
UFORecon 100±5 seconds
2DGS 10±0.5 minutes
GauSurf 2±0.2 hours
FatesGS 14±0.5 minutes
Ours 1±0.05 second

Figure 5: Visualization of Nyquist Theorem Verification

4.3 Experimental Nyquist Theorem Verifications

In Section 3.1, we analyze in detail how to derive the Nyquist sampling rates and spatial frequency
of a Gaussian primitive. In our theoretical analysis, we prove that our surfel adaptation module can
adjust the spatial frequency within Nyquist thresholds. To further demonstrate the effectiveness of
our method, we conduct experiments on evaluated scenes for Nyquist criterion verification. We
record the rendered depth maps and scale factor distributions from all tested scenes, and calculate
the corresponding sampling rates and spatial frequencies. From the Nyquist criterion, we know that
νk and ν̂Nyquist =

ν̂sampling

2 must satisfy νsurfel

ν̂Nyquist
< 1, so we summarize the normalized frequency

ratio νsurfel

ν̂Nyquist
across all Gaussian surfels.

As illustrated in Figure 6, we can see that before surfel adaptation, almost all Gaussian primitives
exceed the Nyquist threshold. The network cannot obtain sufficient information during the backprop-
agation stage and thus is unable to recover precise geometry. After the surfel adaptation module, all
Gaussian primitives fall within the Nyquist frequency boundary. As shown in Figure 5, the rendered
normal maps before and after the surfel adaptation module show significant differences, which further
validates our method.

4.4 Ablation Studies

To demonstrate the necessity and effectiveness of our proposed components, we conducted ex-
periments on DTU evaluation scenes to measure the impact of individual technical designs on
reconstruction performance. The proposed modules are tested for ablation: the surfel adaptation
module and the feature aggregation module. As shown in Table 3, in addition to the mean Chamfer
Distance values, we also evaluate the normal rendering errors. For ground truth normal vectors, we
utilize the normal maps provided by Gaussian Surfel [19]. We conduct experiments with 2 input
views and render the normal maps on the same views. The results demonstrate that removing any of
the proposed modules results in different performance degradation, confirming the effectiveness of
each proposed component.
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(a) Spatial Frequency Before Adaptions (b) Spatial Frequency After Adaptions

Nyquist Threshold Nyquist Threshold

Figure 6: Nyquist Theorem Verification: (a) Before adaptation, most surfels exceed the Nyquist
threshold, resulting in inaccurate geometry prediction. (b) After the adaptation module, all Gaussian
primitives fall within the Nyquist threshold, ensuring accurate geometric feature learning.

Table 3: Ablation study of surfel adaption and feature aggregation module on DTU benchmarks.

Method CD↓ Normal MSE↓
w/o Adaption. 2.56 0.135

w/o Aggre. 1.96 0.115
Ours 1.12 0.060

5 Conclusion and Discussion

In this paper, we propose SurfelSplat to predict surface-aligned Gaussian surfel representations
from sparse-view images. To regress geometrically precise surfels, we apply Nyquist sampling
criterion-guided surfel adaptation and feature aggregation modules to make the spatial frequency
conform to the frequency constraints. Experimental results demonstrate that our method generates
Gaussian radiance fields with more precise geometry and higher efficiency.

Although SurfaceSplat outperforms prior works, it has limitations. Since we predict pixel-aligned
Gaussians for each view, the radiance fields are sensitive to image resolution. With higher resolutions
such as 1024× 1024, over 1 million Gaussian surfels would degrade both rendering and inference
speed. Moreover, the unseen parts of the scene limit reconstruction performance, suggesting that
generative models such as diffusion models could be introduced into our framework. Consequently,
several promising directions remain to be explored.

We also acknowledge that the efficiency of our method benefits from the feed-forward architecture.
However, integrating surface reconstruction effectively into feed-forward networks presents significant
challenges: the orientations of Gaussian primitives cannot be correctly recovered due to insufficient
spatial sampling frequency. To address this, we adopt surfel adaptation modules that enable each
Gaussian primitive to acquire adequate geometric information, guided by the Nyquist sampling
theorem, thereby achieving geometrically fine Gaussian radiance fields within the feed-forward
framework.
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NeurIPS Paper Checklist

The checklist is designed to encourage best practices for responsible machine learning research,
addressing issues of reproducibility, transparency, research ethics, and societal impact. Do not remove
the checklist: The papers not including the checklist will be desk rejected. The checklist should
follow the references and follow the (optional) supplemental material. The checklist does NOT count
towards the page limit.

Please read the checklist guidelines carefully for information on how to answer these questions. For
each question in the checklist:

• You should answer [Yes] , [No] , or [NA] .
• [NA] means either that the question is Not Applicable for that particular paper or the

relevant information is Not Available.
• Please provide a short (1–2 sentence) justification right after your answer (even for NA).

The checklist answers are an integral part of your paper submission. They are visible to the
reviewers, area chairs, senior area chairs, and ethics reviewers. You will be asked to also include it
(after eventual revisions) with the final version of your paper, and its final version will be published
with the paper.

The reviewers of your paper will be asked to use the checklist as one of the factors in their evaluation.
While "[Yes] " is generally preferable to "[No] ", it is perfectly acceptable to answer "[No] " provided a
proper justification is given (e.g., "error bars are not reported because it would be too computationally
expensive" or "we were unable to find the license for the dataset we used"). In general, answering
"[No] " or "[NA] " is not grounds for rejection. While the questions are phrased in a binary way, we
acknowledge that the true answer is often more nuanced, so please just use your best judgment and
write a justification to elaborate. All supporting evidence can appear either in the main paper or the
supplemental material, provided in appendix. If you answer [Yes] to a question, in the justification
please point to the section(s) where related material for the question can be found.

IMPORTANT, please:

• Delete this instruction block, but keep the section heading “NeurIPS Paper Checklist",
• Keep the checklist subsection headings, questions/answers and guidelines below.
• Do not modify the questions and only use the provided macros for your answers.

1. Claims
Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?
Answer: [Yes]
Justification: We provide the main claims in the abstract and introduction.
Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: We discuss our limitations in the Appendix.
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Guidelines:
• The answer NA means that the paper has no limitation while the answer No means that

the paper has limitations, but those are not discussed in the paper.
• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?
Answer: [Yes]
Justification: We provide assumptions and part of the proof in Section 3. The full proof can
be found in the Appendix.
Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?
Answer: [Yes]
Justification: We provide a detailed analysis of the theory and propose the network design
and experimental details in Section 3, 4 and Appendix.
Guidelines:

• The answer NA means that the paper does not include experiments.
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• If the paper includes experiments, a No answer to this question will not be perceived
well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer: [No]

Justification: We would like to release the codes if the submission is accepted.

Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

18

https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy


• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental setting/details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]

Justification: We introduce the detailed experimental setup in Section 4.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.

7. Experiment statistical significance
Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [Yes]

Justification: We report 1-sigma error bars in Section 4.2 when comparing efficiency.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments compute resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]

Justification: We provide the information in Section 4.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
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• The paper should provide the amount of compute required for each of the individual
experimental runs as well as estimate the total compute.

• The paper should disclose whether the full research project required more compute
than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code of ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?
Answer: [Yes]
Justification: We reviewed the NeurIPS Code of Ethics carefully.
Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).
10. Broader impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?
Answer: [Yes]
Justification: We discuss potential social impacts in Appendix.
Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
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Answer: [NA]
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• Released models that have a high risk for misuse or dual-use should be released with
necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [NA]

Justification: Our paper does not use existing asserts.

Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the

package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [NA]

Justification: Our paper does not release new asserts.

Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and research with human subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [NA]

Justification: Our paper does not involve crowdsourcing nor research with human subjects.
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Guidelines:
• The answer NA means that the paper does not involve crowdsourcing nor research with

human subjects.
• Including this information in the supplemental material is fine, but if the main contribu-

tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional review board (IRB) approvals or equivalent for research with human
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Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
Answer: [NA]
Justification: Our paper does not involve crowdsourcing nor research with human subjects.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.
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Appendix

A Preliminaries

A.1 Surfels: Surface Elements

Surface elements, commonly referred to as surfels, constitute a point-based representation paradigm
for modeling three-dimensional surfaces without explicit connectivity information. Originally intro-
duced by Pfister et al. [65], surfels have emerged as a powerful alternative to traditional mesh-based
representations in various surface reconstruction applications.

A surfel s is formally defined as a tuple:

s = p,n, r, c, σ (16)

where:

• p ∈ R3 denotes the 3D position vector of the surfel
• n ∈ S2 represents the unit normal vector (S2 being the unit sphere in R3)
• r ∈ R+ specifies the radius (or size) of the surfel
• c ∈ R3 or R4 encodes color information (optional)
• σ ∈ R+ indicates the confidence or uncertainty measure (optional)

Each surfel can be geometrically interpreted as a local surface approximation, typically visualized as
a oriented disk centered at p with radius r and orientation defined by n. Collectively, a set of surfels
S = s1, s2, ..., sN forms a discrete sampling of the underlying continuous surfaceM.

A.2 2D Gaussian Splatting

2D Gaussian splatting (2DGS) has demonstrated remarkable efficacy in achieving accurate and
smooth surface extraction. Each 2D Gaussian primitive represents a tangent plane in 3D space
characterized by three key parameters: a central position pk, two orthogonal tangential vectors tu
and tv , and a scaling vector s = (su, sv) that determines the covariance of the 2D Gaussian primitive.

The normal vector of the surfel is computed as tw = tu × tv. The rotation matrix is defined
as R = [tu, tv, tw] ∈ R3×3, while the scaling vector is arranged into a diagonal scaling matrix
S ∈ R3×3 with its last diagonal entry set to zero.

A point P in world space on the 2D Gaussian surfel pk is defined in the local tangent space and
parameterized by:

P (u, v) = pk + sutuu+ svtvv = H(u, v, 1, 1)T (17)

H =

[
sutu svtv 0 pk

0 0 0 1

]
=

[
RS pk

0 1

]
(18)

where H ∈ R4×4 denotes the homogeneous transformation matrix. For a point u = (u, v) on the
tangent plane, its Gaussian value is defined by: G(u) = exp

(
−u2+v2

2

)
.

In this paper, we adopt the 2D Gaussian primitive as the fundamental surfel representation. The
surfel attributes mentioned in Equation 16 can be mapped as follows: the center p corresponds to the
central position pk; the normal vector is defined by tw = tu × tv; the radius r is represented by the
scaling vector s = (su, sv); and the color c and uncertainty σ correspond to the spherical harmonic
coefficients and opacity, respectively.

A.3 Spatial Fourier Transform

The Spatial Fourier Transform (SFT) provides a framework for analyzing spatial frequency compo-
nents in multidimensional signals. For a continuous function f(x) where x ∈ Rd represents spatial
coordinates in a d-dimensional space, the SFT is defined as:

F{f(x)} = F (k) =

∫
Rd

f(x)e−ik·xdx (19)
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where ω ∈ Rd denotes the spatial frequency vector and i is the imaginary unit. Correspondingly, the
inverse SFT is expressed as:

F−1{F (k)} = f(x) =

∫
Rd

F (k)eik·xdk (20)

A.4 Basic Assumptions on the surface manifold

In the main body of our paper, the real signal we aim to recover is the 3D surface manifold of the
scene. However, we only have access to discrete 2D image observations of this continuous 3D signal.
And 2D Gaussian surfels are our chosen representation to approximate this surface.

Specifically, we model the real signal using a collection of 2D Gaussian primitives (following the
foundation established by 2DGS [18] and Gaussian Surfels [19]). The problem of reconstructing the
surface from discrete 2D sampling is thus reformulated as reconstructing the Gaussian primitives
from the 2D image data.

B Mathematical Derivations

B.1 Spatial Sampling Rates in Multi-Camera Systems

In this paper, we provide a comprehensive derivation of the spatial sampling rates for a single-camera
system. Intuitively, the spatial sampling interval in image space is unity, and the width and height of
the sampling area are f

d times larger than the spatial sampling interval of the image space. Therefore,
we can readily derive the sampling frequency as fxfy

d2 .

Specifically, the spatial sampling rate ν̂sampling is determined by ν̂sampling =
dAxy

dAuv
= |J|, where J

denotes the Jacobian matrix of the projection process. The projection process can be characterized by
the following Jacobian matrix:

J =
∂Pimage(x, y)

∂Xcamera
· ∂Xcamera

∂Xworld
· ∂Xworld

∂(u, v)
(21)

First, a point in camera space XC is derived from its corresponding point in world space X through
the transformation: XC = RX + t.

Subsequently, we project XC onto the image plane, establishing the relationship between the point
on the image plane x and XC :

x =

(
x
y

)
=

(
fx

XC

ZC
+ cx

fy
YC

ZC
+ cy

)
(22)

The corresponding Jacobian matrix can then be calculated as:

J2×3 =
∂x⃗

∂X
=

∂x⃗

∂XC

∂XC

∂X
=

1

ZC

(
fx 0 − fx

ZC
XC

0 fy − fy
ZC
YC

)
R (23)

where ZC represents the depth value D(x, y) at the corresponding image coordinates. Analogously,
the inverse transformation yields:

J3×2 =
∂X

∂XC

∂XC

∂(u, v)
= RT ∂XC

∂(u, v)
= RT

1 + u−cx
fx

∂ZC

∂u
u−cx
fx

∂ZC

∂v
v−cy
fy

∂ZC

∂u 1 +
v−cy
fy

∂ZC

∂v
∂ZC

∂u
∂ZC

∂v

 (24)

The overall Jacobian matrix is obtained through composition:

J =
1

ZC

(
fx 0 − fx

ZC
XC

0 fy − fy
ZC
YC

)
RRT

1 + u−cx
fx

∂ZC

∂u
u−cx
fx

∂ZC

∂v
v−cy
fy

∂ZC

∂u 1 +
v−cy
fy

∂ZC

∂v
∂ZC

∂u
∂ZC

∂v

 =

(
fx
ZC

0

0
fy
ZC

)
(25)
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Therefore, at point (x, y) on the image plane, the sampling rate for a single-camera system is:

ν̂sampling = |J | = fxfy
d2

(26)

where d = ZC(x, y). The overall sampling rate for a Gaussian primitive pk is given by:

ν̂k = max
(
{Vi(pk) · |Ji|}Ni=1

)
(27)

where N represents the number of cameras and Vi denotes the visibility function.

B.2 Spatial Frequency of a 2D Gaussian Primitive

Given a spatial geometry with an analytic mathematical expression, the spatial frequency can be
computed through the Spatial Fourier Transform (SFT).

The three-dimensional Fourier transform of a 2D Gaussian basis element is given by:

G(k) =
∫
R3

G(u, v)δ(p− (pk + sutuu+ svtvv))e
−ik·pdp (28)

Since the Gaussian primitive is confined to the tangent plane, the integral can be simplified to a
two-dimensional parameter space:

G(k) = susve
−ik·pk

∫ ∞

−∞

∫ ∞

−∞
exp

(
−u

2 + v2

2

)
e−i(sutu·k·u+svtv·k·v)du dv (29)

Applying the two-dimensional Gaussian integral formula:∫ ∞

−∞

∫ ∞

−∞
e−

1
2 (u

2+v2)−i(au+bv)dudv = 2πe−
a2+b2

2 (30)

where a = sutu · k and b = svtv · k. Substituting these values yields:

G(k) = 2πsusve
−ik·pk exp

(
−s

2
u(tu · k)2 + s2v(tv · k)2

2

)
(31)

The spatial frequency spectrum of a 2D Gaussian surfel is therefore determined by:

|Ĝ(k)| = 2πsusv exp

(
−s

2
u(k · tu)2 + s2v(k · tv)2

2

)
(32)

We define the projection of the wave vector k onto the tangent vector tu as the spatial frequency νu
in that direction. Since the Gaussian function contains over 95% of its energy within ±2 standard
deviations, when considering a Gaussian of two standard deviations as the effective surfel size, the
spatial frequency in the direction of tu can be determined by the following condition:

−s
2
u(k · tu)2 + s2v(k · tv)2

2
= −2, k · tv = 0 (33)

Thus, we obtain tu · k = 2
su

. Consequently, in the direction of tu, the angular frequency is
ωu = tu · k = 2

su
(and analogously, ωv = 2

sv
for the tv direction).

Accounting for the 2π normalization convention of the Fourier transform, the spatial frequency of the
Gaussian primitive along each tangent vector can be expressed as:

νu =
1

πsu
, νv =

1

πsv
(34)

C More Implementation Details and Experiments

C.1 Network Design

In the initial feature extraction network Φimage, we implement a cross-view epipolar transformer and
DINO feature backbones to extract preliminary image features F . Subsequently, we employ the depth
prediction network Φdepth to regress per-view depth maps from the above image features. For the
Gaussian feature prediction head Φattr, we utilize a 2D convolutional network. The feature refinement
network Φrefine is implemented via a cross-attention network as described in the original paper.
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Figure 7: Visual comparison of 2-view reconstruction on BlendedMVS dataset.

C.2 Baselines

We compare our method with SOTA methods with 2 categories. i. Neural implicit methods: NeuS [3],
VolRecon [51], UFORecon [8], NeuSurf [6]. ii. Neural Explicit methods: 2DGS [18], GausSurf [19],
FatesGS [64]. For mesh extraction, we employ the TSDF depth fusion approach [66] utilized in
2DGS to ensure fair comparison.

C.3 Training Strategy

To progressively extract Gaussian features, we implement a two-phase curriculum learning-
based training framework. During the initial phase, we leverage diverse scene datasets such as
RealEstate10k [62]. Subsequently, in the refinement phase, we fine-tune the model on test sets
from datasets such as DTU [61] that contain ground truth depth and surface measurements, thereby
enhancing the precision of depth estimation and the characterization of geometric details.

C.4 Experiments on BlendedMVS

We conduct experiments on the BlendedMVS dataset [63] and visualize the qualitative results in
Figure 7. Given a pair of images, our method exhibits consistent and stable performance across
all tested scenes after fine-tuning. In contrast, methods such as UFORecon [8] cannot maintain
consistent performance across different scenes and may produce significant geometric collapse in
certain scenarios. FatesGS [64] and 2DGS [18] achieve stable performance, but they tend to suffer
from insufficient geometric consistency and fail to converge to a complete and smooth surface.

C.5 Experiments on Novel View Synthesis

As shown in Figure 8, we further evaluate our approach through novel view synthesis experiments
on the DTU dataset. Given a pair of input images, we synthesize intermediate viewpoints between
the provided views and assess the quality of the generated novel views. We compare our method’s
visual fidelity against pixelSplat [23] and MVSplat [24]. To ensure a fair comparison, we fine-tune
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Figure 8: Visual comparison of novel view synthesis on DTU dataset.

all baseline methods on the DTU training dataset and evaluate their performance on the designated
test scenes. As demonstrated in Figure 8, our method achieves superior novel view synthesis quality
compared to existing approaches. This improvement can be attributed to our method’s ability to
capture fine-grained geometric details that are not preserved by alternative techniques.

C.6 More Experimental Details

We constrain the Gaussian primitives to be either fully transparent or fully opaque, rather than semi-
transparent. Consequently, the opacity attributes of 2D Gaussian Surfels are set to values approaching
either 1 or 0 to facilitate clean surface extraction. The time consumption statistics reported in this
paper represent the average inference time. The meshing process requires additional computational
resources. On our hardware configuration, the meshing process consumes approximately 30 seconds.
The primary computational bottleneck is attributed to the TSDF fusion method implemented in 2DGS,
which is expected to be mitigated by advancements in graphics processing techniques.

D Broader Impacts

The proposed Gaussian feed-forward network approach for fast surface reconstruction carries several
notable societal implications. First, the acceleration of reconstruction processes may democratize
access to high-quality 3D modeling capabilities across resource-constrained environments, potentially
reducing technological disparities between well-funded research institutions and those with limited
computational infrastructure. We also recognize the environmental impact dimension. While our
method reduces computational requirements per reconstruction task, the aggregate environmental
effect depends on whether this efficiency leads to reduced energy consumption or, conversely, to
increased utilization through rebound effects. Future work should quantify these energy consumption
patterns to better understand the net environmental impact.
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E Limitations and Future Works

Camera Pose Configuration. It is challenging for our approach to predict credible depth when
input views only have small overlap regions. Our training data is relatively limited. We pretrain our
method on Re10K dataset (about 10,000), and subsequently perform fine-tuning on the DTU dataset.
Methods such as VGGT [67] and Dust3R [68] demonstrate robust depth prediction capabilities
across a wide range of camera configurations, benefiting from extensive training data (more than
1,000,000) with explicit depth regularization. The generalizability of our method is not enough.

Efficiency. The cost-volume techique predicts depth by computing correspondence between pairs of
images, which indicates that processing images requires computational operations. Additionally, our
methodology directly combines Gaussian groups derived from different viewpoints to construct scene
representations, resulting in redundant representations particularly in overlapping regions where
similar Gaussian primitives are predicted from multiple source images. Besides, the pixel-aligned
Gaussians are sensitive to the resolution of input images. For high resolution inputs, e.g. 1024×1024,
we generate over 1 million Gaussians for each view, which will significantly increase the inference
and rendering time. The consumption of computational resources and time grows rapidly with more
views or higher resolutions.
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