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ABSTRACT

Transformers have showcased superior performances across a variety of real-
world applications, particularly leading to unparalleled successes of large “foun-
dation” models. However, since these models are usually trained on web-scale
datasets, the overall computation and memory loads are considerably increas-
ing, calling for more efficient methods in machine learning. In this work, we
step towards this direction by exploring the architectural limitation and redun-
dancy of Transformers via investigating the ranks of attention score matrices. On
one hand, extensive experiments are conducted on various model configurations
(model dimensions, heads, layers, etc) and data distributions (both synthetic and
real-world datasets with varied sequence lengths), uncovering two key proper-
ties: although the attention rank increases with the head dimension dh, as ex-
pected, the rank is eventually upper bounded (limitation) and gets saturated (re-
dundancy). We call them the low-rank barrier and model-reduction effect, respec-
tively. On the other hand, we provide rigorous demonstrations for these observa-
tions through a fine-grained mathematical analysis, highlighting (i) a consistent
theoretical upper bound (≈ 0.63n, n: the sequence length) of the attention rank
regardless of the head dimension dh, and (ii) a critical position of the rank sat-
uration (dh = Ω(log n)). These results shed light on the inductive biases and
internal dynamics of Transformers, contributing to the theoretical understanding
and assessment of the model capacity and efficiency in practical applications.

1 INTRODUCTION

In recent years, Transformer-based neural network models have reshaped the landscape of machine
learning, demonstrating unparalleled successes across a myriad of applications including natural
language processing (NLP) (Vaswani et al., 2017; Devlin et al., 2019; Raffel et al., 2020; Radford
et al., 2018; Rae et al., 2021; Dehghani et al., 2023; Touvron et al., 2023; Liu et al., 2019; Hao et al.,
2020; Liu et al., 2021; Yuan et al., 2022), computer vision (CV) (Chen et al., 2021b; Wang et al.,
2022; Liang et al., 2021; Lu et al., 2022; Zhu et al., 2021; Wang et al., 2021), audios (Sung et al.,
2022; Tsimpoukelli et al., 2021; Li et al., 2022), interdisciplinary sciences (Jumper et al., 2021),
and so on. The core architecture module, anchored by the so-called attention mechanism, has been
proved as a cornerstone particularly in capturing relationships with intricacies and nuances.

Mathematically, the central attention mechanism is designed to weigh the significance and correla-
tions of input sequences via, e.g. inner products between trainable transformations on inputs (e.g.
tokens), which is formulated as the attention score matrices. As a fundamental algebra concept, the
matrix rank is supposed to impact the capacity (expressive ability) and learning performance of the
attention mechanism and hence Transformer models. Particularly, an important phenomenon called
the low-rank bottleneck is uncovered by numerous recent works (Kanai et al., 2018; Bhojanapalli
et al., 2020; Dong et al., 2021; Lin et al., 2022), and several Transformer-based variants aim to re-
duce the computational and memory bottlenecks of modeling long sequences from the perspective
of attention ranks (Chen et al., 2021a; Wang et al., 2020; Hu et al., 2022; Guo et al., 2019; Lin
et al., 2022). However, these studies in general (i) are insufficient to quantitatively characterize the
attention rank’s limitation (i.e. low-rank upper bounds); (ii) lack theoretical analysis of the atten-
tion rank’s redundancy (i.e. model-reduction). Based on (i), (ii) is straightforwardly applicable in
practice, particularly in the current era of “foundation” models, where the pre-training efficiency on
notable large models and web-scale datasets turns out a remarkable problem.

1



054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2025

Figure 1: A typical phenomenon of the attention rank of an initialized Transformer model for
different head dimensions dh. Here, we evaluate a standard one-layer Transformer encoder
block with dmodel = 384 and the feed-forward hidden dimension of 512. We select dh ∈
{2, 4, 8, 16, 32, 64, 96, 192}. The model weights are i.i.d. initialized using a standard normal distri-
bution N (0, 1). The entries of input sequences are also independent N (0, 1) random variables, with
a shape of (n, b, d), where the sequence length n is 100, the batch size b is 32 and the data dimension
d = dmodel = 384. See details in Section 3.1.

In this work, we make an initial step towards this direction by studying the limitation and redun-
dancy of general Transformers from the perspective of attention ranks. Figure 1 shows a typical
experimental observation in the present work, focusing on the variation of attention ranks with re-
spect to the pivotal head dimension (dh). We observe that: (i) The attention rank increases with the
head dimension. As dh increases within relatively small values, the increment of attention ranks
is significant; (ii) For appropriately large values of dh, further increases in dh lead to a diminish-
ing return in the enhancement of attention ranks, with an ultimate upper bound of approximately
0.63n, which is away from the full rank n (n: sequence length and attention matrix size). Exten-
sive experiments are performed, which consistently demonstrate these observations across various
model and data settings, including varied model dimensions, different heads and layers, a variety
of data distributions with increasing sequence lengths for both synthetic and real-world datasets.
Theoretically, a fine-grained mathematical analysis is provided to rigorously support these experi-
mental observations in a quantitative manner, including that (i) the attention rank has a consistent
theoretical upper bound (≈ 0.63n) for any dh, which shows the existence of the low-rank barrier (n
is the full-rank); (ii) when dh = Ω(log n), the attention rank gets saturated in the sense that further
increasing the head dimension leads to diminishing rank enhancement. This study focuses on the
model biases inherently in Transformer models, and the developed results not only shed light on the
internal dynamics of Transformers, but also provide new insights to evaluate the model capacity and
efficiency.

Our main contributions are summarized as follows:

1. Empirically, under extensive settings for the most general Transformer models and real-
world datasets, it is shown that as the head dimension dh increases, the attention rank
rises as expected, but the increment slows down significantly and eventually gets saturated,
without reaching the full-rank (for appropriately large dh).

2. Theoretically, mathematical estimates are established on the barrier of attention ranks, with
an upper bound of approximately 0.63n (aligned with experimental observations). More-
over, after the critical position dh = Ω(log n) (also numerically verified), the attention
rank gets saturated with negligible increments even by significantly increasing the head
dimension.

The rest of this paper is organized as follows. In Section 2, we formulate the problem by reviewing
the common Transformer architecture with the multi-head attention mechanism. Section 3 provides
fundamental observations with various experiments and ablation studies. Section 4 includes the fine-
grained mathematical analysis on the attention rank. Section 5 further verifies the developed results
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on real-world datasets. Discussions on the related work, all the details of proofs and supplementary
experiments can be found in the appendix.

Notations Throughout this paper, we use normal letters to denote scalars. Boldfaced lower-
case/capital letters are reserved for vectors/matrices. Let [n] := {1, 2, . . . , n} for n ∈ N+.
Let ∥x∥p := (

∑n
i=1 |xi|p)

1/p be the ℓp-norm for x ∈ Rn and p ∈ [1,∞], and ∥A∥F :=(∑m
i=1

∑n
j=1 a

2
ij

)1/2
be the Frobenius norm for A ∈ Rm×n. Denote the standard basis of Rn

by {ei}ni=1, i.e., ei is the vector of all zeros except that the i-th position is 1. Let 0n ∈ Rn be
the vector of all zeros. For a probability space (Ω,F ,P), the probability of a measurable event
E ∈ F is P(E). Let N (µ,Σ) be the multivariate normal distribution defined on Rn, where
µ ∈ Rn is the expectation and Σ ∈ Rn×n is the covariance. We use the big-O/big-Omega notation
f(n) = O(g(n))/f(n) = Ω(g(n)) to represent that f is bounded above/below by g asymptotically,
i.e., there exists c > 0, n0 ∈ N+ such that f(n) ≤ cg(n)/f(n) ≥ cg(n) for any n ≥ n0.

2 PROBLEM FORMULATION

Consider the input sequence X := [x1,x2, . . . ,xn]
⊤ ∈ Rn×d, where n is the sequence length

and d is the data dimension. The Transformer utilizes a multi-head attention mechanism to process
this sequential input, allowing the model to learn correlations between different parts of the input
sequence using trainable representations.

(i) In the multi-head attention framework, the input sequence X is first, for example, linearly trans-
formed into h different sets of keys, queries, and values, corresponding to h attention heads. Specif-
ically, for each head i ∈ [h], we have K(i) = XW

(i)
k ,Q(i) = XW

(i)
q ,V(i) = XW

(i)
v ∈ Rn×dh ,

where W(i)
k ,W

(i)
q ,W

(i)
v ∈ Rd×dh are trainable weight matrices for each head. Here, dh is the head

dimension, and it typically holds that d = dh × h.

(ii) Then, for each head i ∈ [h], the self-attention score and subsequent output are computed as

Attn(i)(X) := softmax

(
Q(i)K(i)⊤

T

)
∈ Rn×n,Output(i) = Attn(i)(X)V(i).

(iii) Next, all heads’ outputs are concatenated and linearly transformed to yield
the output of one multi-head attention layer, i.e. MultiHeadAttn(X) =

Concat(Output(1), · · · ,Output(h))Wo, where Wo ∈ Rhdh×d is another trainable weight
matrix.

(iv) Finally, the above output MultiHeadAttn(X) is passed through subsequent layers, includ-
ing e.g. normalization layers and feed-forward neural networks, to produce the final output of the
Transformer model.

3 FUNDAMENTAL SIMULATIONS

In this section, we provide detailed experiments on the most general Transformers in various settings
to examine the rank of attention matrices. To facilitate comparisons and analysis, we report the
ratio of attention ranks over sequence lengths (rank/seq len) rather than the absolute rank values
to eliminate the interference caused by varied sizes of attention matrices across different sequence
lengths.

3.1 BASIC PHENOMENA

First, we test for the most general Transformer models to examine the attention ranks under various
head dimensions.

Model We use a standard one-layer Transformer encoder block with dmodel = d = 384 and a
feed-forward hidden dimension of 512. We select the head dimension dh ∈ {2, 4, 8, 16, 32, 64, 96}.
The trainable weights are i.i.d. initialized using a standard normal distribution N (0, 1).
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Data We generate random matrices with i.i.d. entries following the standard normal distribution
N (0, 1) with a shape of (n, b, d), where the sequence length n is set as 100, the batch size b is 32
and the data dimension d is 384. Subsequently, we record the mean and standard deviation of all hb
attention matrices for every dh.

Rank calculation There are several equivalent definitions of the matrix rank in algebra. For nu-
merical computation, the rank is usually calculated via the singular value decomposition (SVD), i.e.,
the rank equals to the number of non-zero singular values. In practice, due to the numerical preci-
sion limitation and round-off errors, this procedure often requires a relaxation, where a tolerance
threshold ϵ is applied to yield the so-called numerical matrix rank. That is, rank(A, ϵ) equals to the
number of singular values no less than ϵ. Here, we set the tolerance threshold as ϵ = 10−8.

Table 1: Fundamental experimental results. The column labeled dh contains different head dimen-
sions. The “Rank / Seq Len” represents the ratio of attention ranks over sequence lengths, with the
standard deviation denoted by ±. The “Improvement” column summarizes the successive increases
in the “Rank / Seq Len” column compared to the previous row.

dh Rank / Seq Len Improvement

2 0.115 ± 0.024 -
4 0.255 ± 0.032 + 0.140
8 0.404 ± 0.035 + 0.149

16 0.508 ± 0.039 + 0.104
32 0.569 ± 0.033 + 0.061
64 0.603 ± 0.031 + 0.034
96 0.622 ± 0.034 + 0.019
192 0.632 ± 0.028 + 0.010

Observations The experimental results summarized in Table 1 illustrate a clear relationship be-
tween the head dimension dh and Rank / Seq Len.

(i) For relatively small values of dh, the attention matrix exhibits a low rank. As dh increases,
significant increments of ranks are observed: when dh = 2, Rank / Seq Len is around 0.11. When
dh increases to 4, there is a notable increase in Rank / Seq Len to around 0.25.

(ii) For appropriately large values of dh, further increases in dh lead to diminishing increments of
attention ranks, with a final barrier of approximately 0.63n ≪ n (n: the full-rank).

(iii) Although Rank / Seq Len increases with the head dimension dh, the rate of this increment
gradually decreases. For instance, Rank / Seq Len increases from around 0.40 at dh = 8 to around
0.51 at dh = 16, with an increment of 0.11. However, as dh further rises to 32, 64 and 96, the
increments in Rank / Seq Len reduce to 0.06, 0.03 and 0.01, respectively. This suggests a more
significant plateauing effect at higher dh levels.

(iv) The variances in Rank / Seq Len exhibit slight fluctuations across different dh values but remain
relatively low, showing the stability of our experimental results.

The observations are summarized as follows.

• The attention rank increases with the head dimension dh. When dh increases within rela-
tively small values, there is a notable rise in the attention rank.

• When dh is appropriately large, further increases in dh result in only marginal increments
of attention ranks, which is capped at around 0.63n ≪ n (the full-rank).

3.2 ABLATION STUDIES ON MODELS

Model dimensions We start by investigating the effect of different model dimensions dmodel ∈
{384, 768, 1152, 1536}, maintaining other configurations specified in Section 3.1. The results (pro-
vided in Appendix C.1) align with the phenomena observed in Figure 1 and Table 1, indicating a
robust and consistent pattern of attention ranks across varied model dimensions.
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Softmax temperatures We test for the softmax temperature T ∈ {10−5, 10−3, 10−1, 1} to assess
its effect on the attention rank. Similarly, the outcomes (detailed in Appendix C.2) also exhibit a
robust and consistent pattern of attention ranks across different softmax temperatures.

Transformers’ layers To study the attention ranks in different layers, we test for a 8-layer Trans-
former. The results (elaborated in Appendix C.3) reveal a consistent pattern across different layers,
with deeper layers appearing more pronounced low ranks.

3.3 ABLATION STUDIES ON DATASETS

Sequence lengths We examine the influence of sequence lengths on attention ranks by varying
the sequence lengths in {25, 50, 100, 200}. To ensure a comprehensive investigation, we employ
a refined partition over the head dimension (dh ∈ {2, 4, 8, 16, 32, 48, 64, 80, 96}) and increase the
model dimension to dmodel = 960. The other configurations remain the same as those outlined in
Section 3.1. The results summarized in Table 2 imply a consistent pattern of attention ranks across
various sequence lengths, confirming the robustness of our findings in Section 3.1 and Section 3.2.
Notably, as is highlighted in Table 2, the required head dimensions for the saturation of attention
ranks exhibit a linear increase with doubling sequence lengths, suggesting a potential logarithmic
dependency.

Data distributions We also investigate attention ranks under different types of data distributions,
including N (0, 1), N (0, 100), U(−1, 1) and U(−100, 100), and consistent phenomena irrespective
of data distributions are observed. For comprehensive discussions and detailed experimental re-
ports, refer to Appendix C.4. These results, aligning with those in previous sections, underscore the
robustness of our findings with respect to data distributions.

Table 2: The attention ranks for different sequence lengths. Here, dh represents the head dimension.
The highlighted boldface statistics are selected according to the “Improvement” column: when the
improvement drops less than or around 0.01 for the first time at a certain row, we select the above
one row as the critical position of dh where the saturation of attention ranks begins to occur. One
can observe that as the sequence length doubles, the required head dimension to reach the saturation
increases linearly, which potentially implies certain log-dependence.

Seq Len = 25 Seq Len = 50 Seq Len = 100 Seq Len = 200

dh Rank/Seq Len Improvement Rank/Seq Len Improvement Rank/Seq Len Improvement Rank/Seq Len Improvement

2 0.250± 0.051 - 0.158± 0.029 - 0.096± 0.019 - 0.055± 0.011 -
4 0.422± 0.061 +0.172 0.324± 0.044 +0.166 0.240± 0.032 +0.144 0.172± 0.019 +0.117
8 0.530± 0.068 +0.108 0.459± 0.047 +0.135 0.391± 0.035 +0.151 0.323± 0.025 +0.151
16 0.606± 0.055 +0.076 0.536± 0.052 +0.077 0.498± 0.029 +0.107 0.443± 0.026 +0.120
32 0.612± 0.066 +0.006 0.593± 0.045 +0.057 0.571± 0.031 +0.073 0.525± 0.023 +0.082
48 0.618± 0.048 +0.006 0.601± 0.033 +0.008 0.594± 0.034 +0.023 0.554± 0.018 +0.029
64 0.621± 0.060 +0.003 0.612± 0.057 +0.011 0.606± 0.038 +0.012 0.579± 0.021 +0.025
80 0.623± 0.071 +0.002 0.615± 0.054 +0.003 0.609± 0.049 +0.003 0.592± 0.018 +0.013
96 0.625± 0.058 +0.002 0.622± 0.058 +0.007 0.611± 0.034 +0.002 0.597± 0.020 +0.005

For more general cases, such as real-world datasets, more types of distributions and non-i.i.d. data,
one can check Figure 2 for details. It is observed that the above phenomena still hold in general.

4 THEORETICAL ANALYSIS

In this section, we provide the fine-grained mathematical analysis to demonstrate rigorously the
experimental results reported in Section 3, i.e. the existence of the low-rank barrier and model-
reduction effect.

4.1 PRELIMINARIES

For clarity, we restate the requisite notations here. Recall that X = [x1,x2, . . . ,xn]
⊤ ∈ Rn×d is

the input sequence, where n denotes the sequence length and d is the input dimension. Without
loss of generality, we focus on one head. Let (K,Q) = (XWk,XWq) be the key-query pair with
trainable parameters θ := (Wk,Wq) ∈ Rd×dh × Rd×dh (dh is the head dimension), i.e., K :=

5
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Figure 2: Left: We conduct experiments on the CIFAR-10 dataset to verify the effect of sequence
lengths. By adjusting the patch size, we can accordingly change the input sequence length. It is
observed that even with extended sequence lengths (from 256 to 1024), analogous patterns remain
evident. Right: Similar patterns hold for more distributions and non-i.i.d. data. The rand randn
line represents tensors where half of the elements are sampled from a uniform distribution and the
other half from a Gaussian distribution. The rand double exponential line denotes tensors
where half of the elements are sampled from a uniform distribution and the other half from a double
exponential distribution.

[k1,k2, . . . ,kn]
⊤ ∈ Rn×dh , Q := [q1,q2, . . . ,qn]

⊤ ∈ Rn×dh with k⊤
i = x⊤

i Wk, q⊤
i = x⊤

i Wq ,
i = 1, 2, . . . , n. The basic form of the self-attention score matrix is defined as

Attn(X;θ) := softmax
(
QK⊤/T

)
= softmax

(
XWqW

⊤
k X

⊤/T
)
, (1)

where T > 0 is the temperature. By convention, for any A = [aij ] ∈ Rn×n, e⊤i softmax(A)ej :=
exp(aij)∑n

j=1 exp(aij)
with {ei}ni=1 as the standard basis of Rn.

Since K,Q ∈ Rn×dh , we get QK⊤/T ∈ Rn×n, and hence the trivial upper bound
rank (Attn(X;θ)) ≤ n. We further deduce that

rank
(
QK⊤/T

)
= rank

(
QK⊤) ≤ min{rank(Q), rank(K⊤)} ≤ min{n, dh} = dh, (2)

with the typical configuration n > dh in practice. Intuitively, one may expect that for any (or most)
dh, rank

(
softmax

(
QK⊤/T

))
≫ dh, even rank

(
softmax

(
QK⊤/T

))
≈ n due to the injection

of nonlinearity. The experimental results in Section 3 also support this intuition for relatively small
dh. However, this is not the case when dh is appropriately large. In the following section, we provide
theoretical results to rigorously analyze these phenomena.

4.2 MAIN RESULTS

In this section, we give a fine-grained theoretical characterization of the low-rank barrier and
model-reduction effect. That is, (i) there exists a non-trivial upper bound (≈ 0.63n) of the at-
tention rank (i.e. rank (Attn(X;θ))) in expectation regardless of the head dimension dh; (ii)
rank (Attn(X;θ)) gets saturation when dh = Ω(log n).

For convenience, we focus on the low-temperature case (T > 0 appropriately small) associated with
the “hardmax” activation. Note that although this setup is established for theoretical simplicity, the
hardmax activation is occasionally used in applications for computational efficiency. See computer
vision (CV) examples in Elsayed et al. (2019); Papadopoulos et al. (2021) for more details.

For the low-temperature case with T > 0 appropriately small, the right hand side of (1) is approxi-
mately

hardmax
(
XWqW

⊤
k X

⊤) , (3)

where the maximum is also taken in a row-wise sense: for a matrix A = [aij ] ∈ Rn×n,
e⊤i hardmax(A) := eki

with ki := argmaxj∈[n] aij . Note that the hardmax(·) operator is posi-
tively scaling-invariant, i.e. hardmax(cA) = hardmax(A) for any c > 0.

6
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Remark 1. Numerically, we have demonstrated in Figure 6 that the attention rank of Transformers
is robust to variations in softmax temperatures, as least in the range between low temperatures
(hardmax) and normal temperatures (softmax). In this work, all the experiments are performed for
normal temperatures, obtaining consistent results with the following theories.

We have the following main theorem to estimate the (averaged) rank of (3). The derived upper
bound (proofs deferred in Appendix B) coincides perfectly with the experimental results (see details
in Figure 1 and Table 1).
Theorem 1. Let the parameters Wq,Wk be Gaussian random matrices, i.e., the entries of Wq,Wk

are independent N (0, 1) random variables. Assume that the input sequence X satisfies XX⊤ = In.
Then for any n ∈ N+ appropriately large, we have

EWk,Wq

[
rank

(
hardmax

(
XWqW

⊤
k X

⊤))] ≤ (1− exp(−1))n+O(1) ≈ 0.63n. (4)

Remark 2. Theoretically, the (exact) orthonormality assumption of input sequences in Theorem 1
can be relaxed to the almost orthonormality via approximation procedures and stability/perturbation
analysis. See details in Section B.1.

Remark 3. The assumption that the input sequence is (almost) orthonormal might seem stringent at
the first glance. However, in practical scenarios, particularly in high-dimensional spaces (d ≫ 1),
the (embedding) vectors (denoted as xi) representing different tokens are often almost orthogo-
nal, since they are typically modeled using independent, isotropic Gaussian random vectors.1 This
assumption is also proposed by Tian et al. (2024) (a theoretical paper to analyze the training dynam-
ics of Transformers). According to Tian et al. (2024), the almost orthogonality even holds during
the training process (for large pre-trained models such as Pythia, BERT, OPT, LLaMA and ViT
of different sizes, see details in Tian et al. (2024), Appendix B.1). We also numerically verify the
orthonormality by ourselves in Appendix C.5 (Figure 8) on both synthetic and real-world datasets.

Remark 4. Recall that the hardmax operator is invariant under the positive scaling. Consequently,
Theorem 1 remains valid even in cases where input sequences are not normalized. This property
underscores the robustness of the hardmax operation in various input conditions.

The low-rank bottleneck on approximation According to Eckart–Young theorem (Eckart &
Young, 1936), there exists a lower bound corresponding to the spectral regularity of approxi-
mated (target) matrices for the low-rank approximation problem. For instance, given the tar-
get matrix A ∈ Rn×n with singular values σ1 ≥ · · · ≥ σn′ > σn′+1 = · · · = σn = 0
(i.e. rank(A) = n′ ∈ [0.64n, n]), based on Eckart–Young theorem and Theorem 1, we

have
∥∥hardmax

(
QK⊤)−A

∥∥2
F

≥
n′∑

i=rank(hardmax(QK⊤))+1

σ2
i

e
≥

n′∑
i=(1−exp(−1))n+O(1)

σ2
i ≈

n′∑
i=0.63n

σ2
i > 0 for any n ∈ N+ appropriately large, where

e
≥ represents “no less than” in ex-

pectation. One can expect that this lower bound implies a large gap if {σi}ni=1 (the spectrum of A)
decays slowly (e.g. A has a full rank n).

The model-reduction effect In fact, the above rank (the left hand side of (4)) reaches satura-
tion when continuously increasing the head dimension dh, provided an appropriate scaling (e.g.
1/

√
dh). Recall that the rows of XWqW

⊤
k X

⊤ = QK⊤ are independent and identically distributed
as N (0n,KK⊤), according to Johnson–Lindenstrauss lemma (Johnson & Lindenstrauss, 1984), we
have

e⊤i KK⊤ej = k⊤
i kj = x⊤

i WkW
⊤
k xj ≈ dhx

⊤
i xj (5)

with high probabilities when dh = Ω(log n), which gives

e⊤i QK⊤/
√

dh ∼ N (0n,KK⊤/dh) ≈ N (0n,XX⊤), dh = Ω(log n). (6)

1As is shown in Vershynin (2018) (specifically, Lemma 3.2.4 and Remark 3.2.5), these vectors exhibit
near-orthogonality after an appropriate scaling such as normalization.
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Due to the (positive) scaling-invariant property of hardmax, we approximately deduce that the
above rank (the left hand side of (4)) only depends on X (and hence n, d), i.e.

rank
(
hardmax

(
XWqW

⊤
k X

⊤)) = rank
(
hardmax

(
QK⊤/

√
dh

))
(7)

d
≈ rank

(
hardmax

(
rows of N (0n,XX⊤)

))
, (8)

when dh = Ω(log n), where
d
≈ represents the approximation in distribution. That is, increasing the

head dimension beyond a certain threshold, specifically after d∗h = Ω(log n), results in a limited
impact on the attention rank, which is eventually influenced by n and d. This phenomenon can be
understood as a manifestation of the model-reduction effect: selecting the critical configuration d∗h =
Ω(log n) achieves optimal model efficiency, since further increasing parameters leads to diminishing
marginal utility.

Remark 5. For the constants involved in dh = Ω(log n), according to Johnson–Lindenstrauss
lemma, it is of order 1/ϵ2, where ϵ is the gap tolerance between the products of projected vectors
and original vectors (i.e. the error of “≈” in (5)). Additionally, there are universal constants
related to δ (probability tolerance) and methods of projections. That is, for requirements of higher
probabilities (smaller δ), the universal constants are larger; for nonlinear projections instead of
linear random projections used here, the universal constants can be potentially smaller.

4.3 DISCUSSIONS

In this section, we revisit the experimental results in Section 3, and compare them with the developed
theoretical results in Section 4.2. Comparing the estimates (4) and (8) (with dh = Ω(log n)) with the
observations in Section 3, we obtain the consistency between our theoretical results and simulation
outcomes.

First, considering Figure 1, 5, 6, 7 and Table 1, 2, 3, we note that under various settings (such as
the model dimension, softmax temperature, model depth, sequence length and data distribution), the
attention rank increases with the head dimension dh, yet it converges towards the upper bound pre-
dicted by the estimates (4). Furthermore, the incremental growth of the attention rank significantly
diminishes with a uniform increase in dh, indicating an obvious trend towards the saturation.

Second, we focus on Table 2, which not only facilitates a detailed analysis of the rank saturation
point, but also quantitatively corroborates the estimate (8) with dh = Ω(log n). Based on the high-
lighted boldface statistics, it is evident that for doubled sequence lengths, a distinct linear increment
trend of head dimensions is observed in the saturation positions. For instance, at the sequence length
of 25, the saturation occurs at dh = 16. As a comparison, for sequence lengths of 50, 100 and 200,
the critical positions of saturation are identified at dh = 32, 48 and 64, respectively. This finding
aligns with the theoretical estimate (8) with dh = Ω(log n): the critical saturation position (d∗h)
exhibits a linear escalation corresponding to the exponential increase in the sequence length n.

5 REAL-WORLD EXPERIMENTS

In this section, we further verify our previous findings through simulations on real-world datasets.
In theory, the upper bound is derived for every single head (with randomly initialized parameters).
For the multiple heads case, we aim to emphasize the saturation effect via numerical simulations.
That is, despite that one can increase the overall rank by concatenation, the low-rank saturation of
every single head still leads to an inefficiency issue: As is shown later, both the attention rank and
model performance consistently get marginal enhancements when increasing parameters, implying
the model redundancy. This gives chances for the optimal configuration of hyper-parameters: In
practical applications, one may check the saturation situation of attention ranks before training, and
set the optimal number of parameters as where the rank first gets saturated.

5.1 LOW-RANK BARRIER VERIFICATIONS

Setup The experiments focus on evaluating the performance of Vision Transformers (ViTs; Doso-
vitskiy et al. (2021)) on image classification tasks, e.g. using the CIFAR-100 dataset. We perform
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the train-validation-test split on the datasets following official guidelines. Here, we set the model
dimension dmodel = 384, and also the feed-forward hidden dimension as 384. The model depth is 7.
For the learning, the batch sizes are 128 for training and 1024 for evaluation. The initial learning rate
is set as 10−3. To align with real-world applications, various techniques are integrated, including
label smoothing and auto-augmentation. Moreover, the experiments also involve advanced regular-
ization methods (specifically, CutMix (Yun et al., 2019) and MixUp (Zhang et al., 2018) to enhance
the models’ generalization performance.

Analysis In this series of experiments, we fix the input/model dimension d = dmodel, and vary
the number of heads h, the head dimension dh following the equation d = h × dh, which is de-
fault in practical applications. With this constraint, a smaller number of heads h results in a larger
head dimension dh, potentially exceeding the necessary head dimensions to get the rank saturation
for each head. Equivalently, most of heads may have reached the saturation point, leading to the
parameter redundancy. However, as the number of heads increases, the Transformer model with re-
duced head dimensions gradually avoids the rank saturation (and potential parameter redundancy),
leading to more portions of “effective” ranks for modeling, which yields improved experimental
results. Figure 3a shows that increasing the number of heads (h = 1, 2, 4, 8) benefits the model’s
performance in general, and the corresponding attention ranks in Figure 3b are already saturated (for
dh = 384, 192, 96, 48), aligning with the above arguments.

In addition, there are also analogous observations on the CIFAR-10 and SVHN dataset under differ-
ent input/model dimensions (see more details in Appendix D.1).

(a) (b)

Figure 3: Real-world experiments on the CIFAR-10 dataset. (a): The validation accuracy across
training epochs for different numbers of heads (h) with a fixed input/model dimension (d = dmodel =
384). The inset provides a magnified view of the first 250 epochs to emphasize the early training
dynamics. (b): The corresponding attention ranks, which are calculated for the first-layer atten-
tion matrices on a mini-batch of CIFAR-10 images (averaged over both all heads and multiple
repeated random seeds) under different numbers of heads. For h = 1, 2, 4, 8, the corresponding
dh = 384, 192, 96, 48. It is observed that under these configurations, the mean attention matrix
ranks are saturated, hence decreasing dh will not affect the expressive ability of each head, and the
model performance will instead improve from an increase in the number of heads.

5.2 MODEL-REDUCTION EFFECT VERIFICATIONS

In this section, the primary setup of experiments is the same as that of Section 5.1. This allows us to
scrutinize the effect of reducing the model’s dimension on performance metrics. Figure 4a illustrates
the experiments conducted on the CIFAR-10 dataset, particularly with the number of heads h = 8. It
is shown that although the initial improvement in the validation accuracy is pronounced as the head
dimension dh increases within relatively small values, this improvement plateaus for appropriately
large values of dh, showcasing diminishing returns with further increments in model parameters.
This observation corroborates our theoretical justifications on the model-reduction effect, suggesting
an optimal range of head dimensions that balance the model performance with parameter efficiency.
In Figure 4a, the optimal d∗h = 16, since dh = 32 yields marginal improvements in accuracies.
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Notably, the corresponding attention ranks in Figure 4b also appear the saturation when dh ≥ d∗h =
16, which aligns with the marginal performance improvements (i.e. dh = 16, 32 in Figure 4a).

Additionally, there are also similar results on the CIFAR-100, SVHN and IMDB dataset under
various head dimensions and different input sizes. See more detailed experimental outcomes in
Appendix D.2 and Appendix D.3.

(a) (b)

Figure 4: Real-world experiments on the CIFAR-10 dataset. (a): The validation accuracy across
training epochs for different head dimensions (dh) with a fixed number of heads (h = 8). The inset
provides a magnified view of the first 250 epochs to emphasize the early training dynamics. (b): The
corresponding attention ranks, which are calculated for the first-layer attention matrices on a mini-
batch of CIFAR-10 images (averaged over both all heads and multiple repeated random seeds) under
different head dimensions (and hence different model dimensions). We test for 5 different values
of dh: dh = 2, 4, 8, 16, 32. We observe a similar pattern with Figure 1, where smaller values of dh
lead to significant improvements in attention ranks as dh increases. However, when the values of dh
become larger (dh ≥ 16), its further increases have marginal effects on attention ranks. Additionally,
the variation trend of attention ranks aligns with that of model performance in Figure 4a. That is,
although an increase in attention ranks positively correlates with improved model performance, both
of the ranks and performance get saturated simultaneously (i.e. at d∗h = 16), implying the optimal
parameter efficiency around d∗h.

6 CONCLUSION

In this research, we present an extensive investigation into the rank of the attention matrix in Trans-
former architectures, drawing insights from both theoretical analysis and empirical observations.
From a theoretical perspective, we derive a clear upper bound on the attention rank, approximately
≈ 0.63n, which is notably lower than the full rank n, revealing the existence of a low-rank constraint.
Furthermore, we quantitatively show that for relatively small head dimensions dh = Ω(log n), the
attention rank approaches saturation, implying that further increases in model parameters provide
diminishing returns in performance (model-reduction effect). From an experimental perspective,
we validate these theoretical insights by conducting a comprehensive set of tests involving various
model architectures and diverse real-world datasets. These experiments confirm the validity and
robustness of our theoretical insights, demonstrating their applicability to a wide array of scenarios.
This developed relationship between head dimensions and attention ranks provides deeper under-
standings and valuable insights into the evaluation of general Transformer models’ capacity and
efficiency.
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A RELATED WORK

The exploration of the rank of the Transformer attention matrix has been a focus in previous research
(Kanai et al., 2018; Bhojanapalli et al., 2020; Dong et al., 2021; Lin et al., 2022). Bhojanapalli et al.
(2020) unveiled a restriction associated with the low-rank bottleneck in attention heads, attributed
to the proportional relationship between the number of heads and the size of each head in prevailing
architectures. Dong et al. (2021) introduced an innovative perspective of interpreting self-attention
networks. Their study elucidated that the networks’ output is an amalgamation of lesser compo-
nents, or pathways. In the absence of skip connections and multi-layer perceptrons (MLPs), they
established that the output gravitates towards a rank-1 matrix at a doubly exponential rate.

On the other hand, a suite of Transformer-based adaptations (Chen et al., 2021a; Wang et al., 2020;
Hu et al., 2022; Guo et al., 2019; Lin et al., 2022) has emerged to mitigate the inherent bottlenecks,
notably computational and memory constraints. For instance, Wang et al. (2020) ascertained that the
self-attention mechanism’s complexity is reducible, attributing this to its low-rank matrix approxi-
mation. The innovative self-attention mechanism they introduced marked a reduction in complexity.
Meanwhile, Guo et al. (2019) incorporated low-rank constraints, a modification that manifested im-
provements in specific tasks. In a parallel vein, Chen et al. (2021a) noted the prowess of sparse
and low-rank approximations in distinct scenarios. Their efficacy was found to be contingent on the
softmax temperature in attention, with a combined sparse and low-rank approach superseding indi-
vidual performances. Another line of work focuses on the computation efficiency of Transformer
models, e.g. KDEformer (Zandieh et al., 2023) and HyperAttention (Han et al., 2024). These works
studied the approximate calculation problem of attention matrices (with direct applications in model
compression), with the fundamental approach to reduce the full matrix multiplication to sub-matrix
multiplications, and relate to attention ranks through the size of sub-matrices, which is typically
lower bounded by measures depending on (stable) ranks of attention matrices. It would be interest-
ing to further develop these works with the inductive biases established here, i.e. explore potentially
more efficient algorithms given the low-rank barrier and rank saturation of attention matrices.

As a comparison, this study explores the ranks of attention score matrices in Transformers, and
reveals two main insights: although the attention rank grows with the head dimension, it has an upper
limit (low-rank barrier). Additionally, a model-reduction effect is uncovered. These phenomena
are consistent across different configurations for both models and (real-world) datasets, and also
rigorously proved with aligned theoretical characterizations.

B PROOFS

In this section, we provide all the missing proofs. The proof entails a detailed analysis of matrix op-
erations, probability transforms, and infinitesimal order estimation. Specifically, the proof proceeds
as follows:

1. Given the orthonormal nature of input sequences, according to Lemma 4, one can derive
that different rows of XWqW

⊤
k X

⊤ are independent, and these rows are identically dis-
tributed as N (0n,KK⊤), conditioned on any fixed Gaussian random matrix Wk.

2. Note that applying the hardmax operation to individual rows is analogous to solving an
elementary birthday problem (refer to Lemma 3), which reduces the original problem as
counting columns with all zeros.

3. The estimate is further refined based on Lemma 2, and completed by applying the AM-GM
inequality, which indicates the equality when all probabilities are equal.

To begin with, the key approximation (3) is due to the following lemma, which characterizes the gap
between the softmax function and its “hard” version.
Lemma 1. Let a = [a1, a2, · · · , an]⊤ ∈ Rn with i∗ := argmax

i∈[n]
ai and i′∗ := arg max

i∈[n],i̸=i∗
ai, and

hardmax(a) := ei∗ . Assume that δ := ai∗ − ai′∗ > 0 (i.e., the maximum is unique). Then for any
T > 0, we have

∆n,δ(T ) := ∥softmax(a/T )− hardmax(a)∥1
≤ 2(n− 1) exp(−δ/T ). (9)
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That is, ∆n,δ(T ) converges to 0 exponentially fast as T → 0+.

Proof. It is straightforward to have

∆n,δ(T ) =
∑

i∈[n],i̸=i∗

exp(ai/T )∑n
j=1 exp(aj/T )

+ 1− exp(ai∗/T )∑n
j=1 exp(aj/T )

= 2

∑
i∈[n],i̸=i∗ exp(ai/T )∑

i∈[n],i̸=i∗ exp(ai/T ) + exp(ai∗/T )

≤ 2
∑

i∈[n],i̸=i∗

exp((ai − ai∗)/T )

≤ 2(n− 1) exp((ai′∗ − ai∗)/T )

= 2(n− 1) exp(−δ/T ). (10)

This gives limT→0+ ∆n,δ(T ) = 0, and the rate is exponentially fast. The proof is completed.

Before we prove the low-rank barrier and model-reduction effect of (3), the following lemmas are
useful.
Lemma 2. For any n ∈ N+, define δn(p) := exp(−pn)− (1− p)n, p ∈ [0,+∞). Then we have

δn(p) ≤
1

2
p2n exp(−p(n− 1)) (11)

≤

{
1
2p

2, n = 1,

2 exp(−2)
(

1
n−1 + 1

(n−1)2

)
, n ≥ 2.

(12)

Proof. Note that an1 − an2 = (a1 − a2)
∑n−1

k=0 a
n−1−k
1 ak2 for any a1, a2 ∈ R, we have

δn(p) = (exp(−p))n − (1− p)n = [exp(−p)− (1− p)]

n−1∑
k=0

(exp(−p))n−1−k(1− p)k. (13)

Let g1(p) := exp(−p)−(1−p), g2(p) := exp(−p)−(1−p+p2/2) = g1(p)−p2/2, p ∈ [0,+∞),
we get

g′1(p) = − exp(−p) + 1 ≥ 0 ⇒ g1(p) ≥ g1(0) = 0, (14)

g′2(p) = − exp(−p) + 1− p = −g1(p) ≤ 0 ⇒ g2(p) ≤ g2(0) = 0, (15)

which gives

δ1(p) = g1(p) ≤ p2/2, (16)

δn(p) ≤
1

2
p2

n−1∑
k=0

(exp(−p))n−1−k(exp(−p))k =
1

2
p2n(exp(−p))n−1, n ≥ 2. (17)

For any n ∈ N+, n ≥ 2, let hn(p) := p2(exp(−p))n−1, p ∈ [0,+∞), we get h′
n(p) =

p(exp(−p))n−1(2− p(n− 1)), hence

h′
n(p) = 0 ⇒ p = 0 or p = 2/(n− 1) ⇒ hn(p) ≤ hn(2/(n− 1)) =

4 exp(−2)

(n− 1)2
. (18)

Therefore

δn(p) ≤
1

2
nhn(p) ≤

2 exp(−2)n

(n− 1)2
= 2 exp(−2)

(
1

n− 1
+

1

(n− 1)2

)
, n ≥ 2, (19)

which completes the proof.

Lemma 3. For a random matrix A = [aij ] ∈ Rn×n with independent rows, let pij := P({aij =
maxj′∈[n] aij′}). Then the expectation number of columns with all zeros in hardmax(A) is

n∑
j=1

n∏
i=1

(1− pij). (20)
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Proof. For j = 1, 2, . . . , n, define the random variable

Xj =

{
1, hardmax(A)ej = 0n,

0, hardmax(A)ej ̸= 0n.
(21)

By independence, we get

P({Xj = 1}) = P

(
n⋂

i=1

{
e⊤i hardmax(A)ej = 0

})

=

n∏
i=1

P
({

e⊤i hardmax(A)ej = 0
})

=

n∏
i=1

(1− pij). (22)

Therefore, the expectation number of columns with all zeros is

E

 n∑
j=1

Xj

 =

n∑
j=1

E [Xj ] =

n∑
j=1

P({Xj = 1}) =
n∑

j=1

n∏
i=1

(1− pij), (23)

which completes the proof.

The required independence in Lemma 3 is provided by the following lemma.

Lemma 4. (Vershynin (2018), Exercise 3.3.6) Let G ∈ Rm×n be a Gaussian random matrix, i.e.
the entries of G are independent N (0, 1) random variables. Let u,v ∈ Rn be unit orthogonal
vectors. Then, Gu and Gv are independent N (0m, Im) random vectors.

Proof. First, we show that Gu,Gv are both N (0m, Im) random vectors. This is straightforward
since Gej ∼ N (0m, Im) gives ujGej ∼ N (0m, u2

jIm), and {ujGej}nj=1 is a collection of inde-
pendent Gaussian vectors. Hence Gu =

∑n
j=1 ujGej ∼ N (0m, ∥u∥22Im).

Next, we show the independence of Gu and Gv. Equivalently, we are supposed to prove that e⊤i Gu
and e⊤i′Gv are independent random variables for any i, i′ ∈ [n]. For i ̸= i′, (e⊤i G)u and (e⊤i′G)v
are independent random variables since G has independent rows. Therefore, the problem is reduced
as the independence of g⊤u and g⊤v for g ∼ N (0n, In). Notice that

[u,v]⊤g ∼ N (02, [u,v]
⊤In[u,v]) = N (02, I2), (24)

which completes the proof.

Now we are ready to prove the main theorem, which provides the estimate on the rank of (3).

Theorem 2. (A detailed version of Theorem 1) Let the parameters Wq,Wk be Gaussian random
matrices, i.e., the entries of Wq,Wk are independent N (0, 1) random variables. Assume that the
input sequence X satisfies XX⊤ = In. Then for any n ∈ N+, n ≥ 2, we have

EWk,Wq

[
rank

(
hardmax

(
XWqW

⊤
k X

⊤))] (25)

≤ (1− exp(−1))n+ 2 exp(−2)[1 + 1/(n− 1)]2 (26)
≈ (1− exp(−1))n ≈ 0.63n, n appropriately large. (27)

Proof. According to Lemma 4, since x⊤
i xj = δij (Kronecker symbol), i, j = 1, 2, · · · , n, one can

deduce that {qi}ni=1 = {W⊤
q xi}ni=1 is a collection of independent N (0dh

, Idh
) random vectors.

For any fixed Gaussian random matrix Wk,

(e⊤i XWqW
⊤
k X

⊤)⊤ = Kqi ∼ N (0n,KK⊤), (28)
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which is also independent across different i’s. That is to say, the rows of XWqW
⊤
k X

⊤ are indepen-
dent and identically distributed as N (0n,KK⊤). Therefore, according to Lemma 3, the expectation
number of columns with all zeros in hardmax(XWqW

⊤
k X

⊤) is
n∑

j=1

n∏
i=1

(1− pij) =

n∑
j=1

n∏
i=1

(1− pj) =

n∑
j=1

(1− pj)
n. (29)

Hence, we have

1

n
EWq

[
rank

(
hardmax

(
XWqW

⊤
k X

⊤))] ≤ 1− 1

n

n∑
j=1

(1− pj)
n. (30)

Note that [p1, p2, · · · , pn] is a probability vector, i.e.
∑n

j=1 pj = 1, pj ≥ 0 for any j ∈ [n], and
exp(−p) ≥ 1 − p ≥ 0 for any p ∈ [0, 1], we get δn(p) = exp(−pn) − (1 − p)n ≥ 0 for any
p ∈ [0, 1]. Therefore, by Lemma 2, we have

1

n

n∑
j=1

|(1− pj)
n − exp(−pjn)| =

1

n

n∑
j=1

δn(pj) ≤ 2 exp(−2)

(
1

n− 1
+

1

(n− 1)2

)
, n ≥ 2,

(31)

which gives

1

n

n∑
j=1

(1− pj)
n =

1

n

n∑
j=1

exp (−pjn) +
1

n

n∑
j=1

[(1− pj)
n − exp (−pjn)]

≥

 n∏
j=1

exp (−pjn)

 1
n

− 2 exp(−2)

(
1

n− 1
+

1

(n− 1)2

)

=

exp

−n

n∑
j=1

pj

 1
n

− 2 exp(−2)

(
1

n− 1
+

1

(n− 1)2

)

= exp (−1)− 2 exp(−2)

(
1

n− 1
+

1

(n− 1)2

)
, n ≥ 2, (32)

where the AM-GM inequality is applied, and the equality holds if and only if p1 = p2 = · · · = pn.
Hence, the right hand side of (30) ≤ 1− exp (−1)+ 2 exp(−2)[1/(n− 1)+ 1/(n− 1)2]. Since the
estimate holds for any fixed Gaussian random matrix Wk, the proof is completed.

B.1 EXTENSIONS

In this subsection, we extend Theorem 2 to the almost orthonormality setting, where the input se-
quence X̃ ∈ Rn×d satisfies X̃X̃⊤ = In +E, with E = [Eij ] ∈ Rn×n satisfying |Eij | ≤ ϵ ≪ 1 for
any i, j ∈ [n], we adopt the following approximation procedure:

1. Approximate the almost orthonormal input sequence with the exactly orthonormal se-
quence.

2. Bound the difference between attention products.
3. The desired results follow based on the stability and perturbation analysis.

(i) The first step is to approximate X̃ with orthonormal matrices:2

min
P∈Rd×n:P⊤P=In

∥P− X̃⊤∥F , (33)

which can be explicitly solved in a closed form as follows.
2This is also called the orthogonal procrustes problem (Gower & Dijksterhuis, 2004).
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Lemma 5. Assume d ≥ n. Let X̃⊤ = UΣV⊤ be the singular value decomposition (SVD) of
X̃⊤, where U ∈ Rd×d and V ∈ Rn×n are orthonormal and collect the singular vectors, Σ =[
Σr 0
0 0

]
∈ Rd×n with Σr = diag(σ1, σ2, · · · , σr) collecting the singular values (σ1 ≥ σ2 ≥

· · · ≥ σr > 0, r = rank(X̃) ≤ n). Then we have

arg min
P∈Rd×n:P⊤P=In

∥P− X̃⊤∥F = U1V
⊤, (34)

where U1 := U

[
In
0

]
∈ Rd×n denotes the first n columns of U. Furthermore, if the input sequence

X̃ ∈ Rn×d is almost orthonormal such that X̃X̃⊤ = In + E with E = [Eij ] ∈ Rn×n satisfying
|Eij | ≤ ϵ = o(1/n

3
2 ) (∀i, j ∈ [n]), then r = rank(X̃) = n, and we have the following estimate

∥U1V
⊤ − X̃⊤∥F ≤ ϵn

3
2 = o(1). (35)

Proof. First, we can derive that

arg min
P∈Rd×n:P⊤P=In

∥P− X̃⊤∥2F = arg min
P∈Rd×n:P⊤P=In

trace((P− X̃⊤)⊤(P− X̃⊤))

= arg min
P∈Rd×n:P⊤P=In

trace(P⊤P−P⊤X̃⊤ − X̃P+ X̃X̃⊤)

= arg max
P∈Rd×n:P⊤P=In

trace(X̃P)

= arg max
P∈Rd×n:P⊤P=In

trace(Σ⊤ ·U⊤PV). (36)

Let S := U⊤PV = [Sij ] ∈ Rd×n, then S⊤S = V⊤P⊤UU⊤PV = In, which yields 1 =∑d
j=1 S

2
ji ≥ S2

ii for any i ∈ [n]. Therefore, note that

trace(Σ⊤ · S) =
r∑

i=1

σiSii ≤
r∑

i=1

σi|Sii| ≤
r∑

i=1

σi, (37)

and the equality holds when Sii = 1 for any i ∈ [r], we deduce that

arg max
S∈Rd×n:S⊤S=In

trace(Σ⊤ · S) =
[
In
0

]
. (38)

Combining with (36), we equivalently obtain

arg min
P∈Rd×n:P⊤P=In

∥P− X̃⊤∥2F = arg max
P∈Rd×n:P⊤P=In

trace(Σ⊤ ·U⊤PV)

= U

[
In
0

]
V⊤ = U1V

⊤, (39)

which proves (34). To prove (35), note that σ2
i is the i-th eigenvalue of X̃X̃⊤, according to Weyl’s

theorem, we have

|σ2
i − 1| ≤ ∥X̃X̃⊤ − In∥2 = ∥E∥2, i ∈ [n]. (40)

Since

∥E∥22 = max
z∈Rn: ∥z∥2=1

∥Ez∥22 = max
z∈Rn: ∥z∥2=1

n∑
i=1

|Ei,: · z|2 (41)

≤ max
z∈Rn: ∥z∥2=1

n∑
i=1

∥Ei,:∥22∥z∥22 = ∥E∥2F ≤ ϵ2n2, (42)

where Ei,: denotes the i-th row of E, we get

|σ2
i − 1| ≤ ϵn = o(1/

√
n), i ∈ [n], (43)
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leading to σi > 0 for any i ∈ [n], and hence X̃ has the full rank r = rank(X̃) = n. Therefore

∥U1V
⊤ − X̃⊤∥2F =

∥∥∥∥U [In0
]
V⊤ −UΣV⊤

∥∥∥∥2
F

=

∥∥∥∥[In0
]
−
[
Σn

0

]∥∥∥∥2
F

=

n∑
i=1

|1− σi|2 =

n∑
i=1

|1− σ2
i |2

|1 + σi|2
≤

n∑
i=1

ϵ2n2 = ϵ2n3 = o(1), (44)

which completes the proof.

(ii) As the second step, the difference between attention products can be further bounded as follows.

Lemma 6. Let X := VU⊤
1 with V,U1 defined in Lemma 5. Under the same conditions in Lemma

5, and further assume ϵ = o(1/(n
3
2 (d+ dh))) we have the following estimates:

1. For any t > 0, with probability at least (1− 2 exp (−t2))2, it holds that

∥XWqW
⊤
k X

⊤ − X̃WqW
⊤
k X̃

⊤∥2 ≲ ϵn
3
2 (d+ dh + t2) = o(1). (45)

2. EWk,Wq∥XWqW
⊤
k X

⊤ − X̃WqW
⊤
k X̃

⊤∥2 ≲ ϵn
3
2 (d+ dh) = o(1).

Here, ≲ hides positive absolute constants.

Proof. Let P := X̃ − X. According to Lemma 5, we have ∥P∥F ≤ ϵn
3
2 = o(1). Then, we can

derive that

∥XWqW
⊤
k X

⊤ − X̃WqW
⊤
k X̃

⊤∥2 = ∥XWqW
⊤
k X

⊤ − (X+P)WqW
⊤
k (X+P)⊤∥2

= ∥PWqW
⊤
k X

⊤ +XWqW
⊤
k P

⊤ +PWqW
⊤
k P

⊤∥2
≤ 2∥P∥2∥Wq∥2∥Wk∥2∥X∥2 + ∥P∥22∥Wq∥2∥Wk∥2. (46)

Note that ∥P∥2 ≤ ∥P∥F ≤ ϵn
3
2 = o(1), ∥X∥2 = ∥U1∥2 = ∥In∥2 = 1, the remaining task is to

estimate ∥W∥2 for any Gaussian random matrix W (i.e., the entries of W are independent N (0, 1)
random variables). According to Vershynin (2018) (Theorem 4.4.5, Exercise 4.4.6 and Example
2.5.8), we have for any t > 0,

∥W∥2 ≲
√
d+

√
dh + t, with probability at least 1− 2 exp (−t2), (47)

where ≲ hides positive absolute constants, and

E ∥W∥2 ≲
√
d+

√
dh. (48)

Combining with (46), we have for any t > 0,

∥XWqW
⊤
k X

⊤ − X̃WqW
⊤
k X̃

⊤∥2
≤ 2∥P∥2∥Wq∥2∥Wk∥2∥X∥2 + ∥P∥22∥Wq∥2∥Wk∥2
≲ (ϵn

3
2 + ϵ2n3)(

√
d+

√
dh + t)2

≲ ϵn
3
2 (d+ dh + t2) = o(1), with probability at least (1− 2 exp (−t2))2, (49)

and

EWk,Wq
∥XWqW

⊤
k X

⊤ − X̃WqW
⊤
k X̃

⊤∥2
≤ 2∥P∥2∥X∥2 · EWq

∥Wq∥2 · EWk
∥Wk∥2 + ∥P∥22 · EWq

∥Wq∥2 · EWk
∥Wk∥2

≲ (ϵn
3
2 + ϵ2n3)(

√
d+

√
dh)

2 ≲ ϵn
3
2 (d+ dh) = o(1), (50)

which completes the proof.

(iii) The third step is to apply the stability and perturbation analysis.
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Proposition 1. (Stability of numerical ranks) Let σmin ̸= 0 denote the minimal non-zero sin-
gular value of a matrix A. Then for any perturbation P with ∥P∥2 ≤ σmin/3 and any δ ∈
(σmin/3, 2σmin/3], we have

rank(A, δ) = rank(A+P, δ). (51)

Proof. By definition, the numerical rank rank(A, δ) equals to the number of singular values (of A)
no less than δ. Therefore, for any δ ∈ (0, σmin], rank(A, δ) equals to the number of non-zero singu-
lar values of A. Let {σi} and {σ̃i} be the singular values of A and A+P, respectively. According
to Weyl’s theorem, we have |σi − σ̃i| ≤ ∥P∥2 ≤ σmin/3. Then for any δ ∈ (σmin/3, 2σmin/3], the
perturbation of non-zero singular values satisfies σ̃i ≥ σi − σmin/3 ≥ σmin − σmin/3 ≥ δ, which
is selected for counting the numerical rank, and the perturbation of zero singular values satisfies
σ̃i ≤ σmin/3 < δ, which is not selected for counting the numerical rank. That is, rank(A + P, δ)
still equals to the number of non-zero singular values of A, hence the desired result follows.

Further perturbation analysis The subsequent analysis is similar, since all the remaining op-
erations (activation, numerical rank and expectation) are stable. In fact, both the activation and
expectation are continuous with respect to perturbations of inputs, and so does the numerical rank
due to Proposition 1. Therefore, the derived upper bounds in Theorem 1 or Theorem 2 still hold for
almost orthonormal input sequences.
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C FURTHER DETAILS OF ABLATION STUDIES

C.1 EFFECT OF MODEL DIMENSIONS

In this section, we study the effect of model dimensions on the attention rank of Transformers.
We test for different dimensions dmodel ∈ {384, 768, 1152, 1536}, maintaining other configurations
specified in Section 3.1. The results illustrated in Figure 5 align with the phenomena observed in
Figure 1 and Table 1, indicating a robust and consistent pattern of attention ranks across varied
model dimensions.

Figure 5: The attention ranks across different model dimensions.

C.2 EFFECT OF SOFTMAX TEMPERATURES

In this section, we investigate the impact of softmax temperatures on the attention rank of Trans-
former models. We test for different temperatures T ∈ {10−5, 10−3, 10−1, 1}, and all the other
configurations remain the same as those of Section 3.1.

The softmax temperature is an important factor that influences the sharpness of the attention distri-
bution. Lower temperatures lead to more concentrated attention distributions, effectively pushing
the softmax activation towards the hardmax activation. Conversely, higher temperatures yield more
uniform attention distributions. Despite of these differences, our results show consistent patterns of
attention ranks across all tested temperatures. This consistency, as is depicted in Figure 6, suggests
that the attention rank of Transformers is robust to variations in softmax temperatures.

C.3 EFFECT OF TRANSFORMERS’ LAYERS

In this section, we detail the influence of Transformers’ layers on the attention rank. The experiment
utilizes a model configuration with 8 layers to examine the attention rank’s behavior across layers,
and the other configurations are consistent with Section 3.1.

The results shown in Figure 7 exhibit a noticeable trend: with the increase of depth, the attention
mechanism tends to show a more pronounced low-rank behavior. This trend is particularly evident
in the deeper layers of the Transformer, suggesting that the model depth significantly influences the
dynamics of attention ranks.

C.4 EFFECT OF DATA DISTRIBUTIONS

For a comprehensive analysis of the impact of data distributions on the attention rank of Transform-
ers, we numerically study a range of data distributions including normal distributions N (0, 1) and
N (0, 100), as well as uniform distributions U(−1, 1) and U(−100, 100). These distributions are

21



1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187

Under review as a conference paper at ICLR 2025

Figure 6: Attention ranks across various softmax temperatures.

Figure 7: Attention ranks across different Transformer layers.

selected to mimic common scenarios in NLP applications, where input tokens are typically embed-
ded using Gaussian distributions. The model configurations used in these experiments are consistent
with Section 3.1. Our findings reveal the remarkable robustness of the attention rank with respect to
data distributions, as is evidenced by consistent patterns of attention ranks across all tested data dis-
tributions in Table 3. It is particularly notable for the normal distributions (N (0, 1) and N (0, 100)),
which show similar patterns of attention ranks and imply that the initial Gaussian embeddings of
input tokens do not significantly influence the attention mechanism’s efficacy. The uniform distri-
butions U(−1, 1) and U(−100, 100) follow the same trend, reinforcing the model’s insensitivity to
the nature of data distributions. These results underscore the robustness of Transformer models to
variations in data distributions, which is a crucial factor for real-world applications.

C.5 NUMERICAL VERIFICATIONS ON THE ORTHONORMALITY

D FURTHER DETAILS ON REAL-WORLD EXPERIMENTS

D.1 ADDITIONAL VERIFICATIONS ON LOW-RANK BARRIER

Additional datasets. In this section, we present supplementary results on the performance of Vi-
sion Transformers (ViTs) under varied model dimensions on the CIFAR-10, CIFAR-100 and SVHN
dataset. In these experiments, we maintain the relationship d = dmodel = h× dh. These results fur-

22



1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241

Under review as a conference paper at ICLR 2025

Table 3: The attention ranks for different data distributions: N (0, 1), N (0, 100), U(−1, 1) and
U(−100, 100). Note that the normal distributions correspond with the practical NLP applications
where input tokens are initially embedded with Gaussian distributions. Here, dh represents the head
dimension. The “Rank / Seq Len” is the ratio of attention ranks over sequence lengths, with the
standard deviation denoted by ±. The “Improvement” column summarizes the successive increases
in the “Rank / Seq Len” column compared to the previous row.

N (0, 1) N (0, 100) U(−1, 1) U(−100, 100)
dh Rank / Seq Len Improvement dh Rank / Seq Len Improvement dh Rank / Seq Len Improvement dh Rank / Seq Len Improvement
2 0.11± 0.023 - 2 0.10± 0.014 - 2 0.17± 0.039 - 2 0.09± 0.016 -
4 0.25± 0.032 +0.14 4 0.23± 0.029 +0.12 4 0.30± 0.038 +0.13 4 0.23± 0.027 +0.14
8 0.40± 0.035 +0.15 8 0.41± 0.034 +0.18 8 0.45± 0.036 +0.15 8 0.38± 0.028 +0.15

16 0.51± 0.033 +0.11 16 0.52± 0.036 +0.11 16 0.56± 0.033 +0.11 16 0.49± 0.035 +0.11
32 0.57± 0.033 +0.06 32 0.57± 0.038 +0.05 32 0.63± 0.028 +0.07 32 0.56± 0.031 +0.07
64 0.60± 0.032 +0.03 64 0.61± 0.032 +0.04 64 0.64± 0.028 +0.01 64 0.59± 0.012 +0.03
96 0.61± 0.036 +0.01 96 0.61± 0.018 +0.00 96 0.64± 0.008 +0.00 96 0.60± 0.050 +0.01

Figure 8: The orthogonality measure across different dimensions for Gaussian random and CIFAR-
10 data (after an initialized embedding layer). Here, we use the mean Frobenius norm as the orthog-
onality measure for tensors with various dimensions. The x-axis represents the (head) dimension
dh (ranging from 8 to 512), while the y-axis indicates the mean Frobenius norm: 1

n2 ∥Q − I∥F ,
where n is the sequence length, Q denotes the cosine similarity matrix, and I is the identity matrix.
Certainly, lower mean Frobenius norms lead to more orthonormal tokens in the tensor. We observe
that both Gaussian random data and CIFAR-10 data exhibit relatively small mean Frobenius norms,
indicating that they are nearly orthonormal.

ther corroborate and align with the findings discussed in the main text, demonstrating the existence
of the low-rank barrier.

Final accuracy. To further demonstrate the impact of the low-rank barrier, we also summarize
the final accuracy achieved by each experiment. These results indicate that with the constraint
d = dmodel = h× dh, a smaller number of heads h results in a larger head dimension dh, potentially
exceeding the necessary head dimensions to approach the low-rank barrier (i.e. exceeding the critical
point where the attention rank gets saturated) for each head. Equivalently, most of heads may have
reached the low-rank barrier, leading to the parameter redundancy. However, as the number of
heads increases, the Transformer model avoids the potential parameter redundancy and obtains more
“effective” ranks for modeling, hence yields improved experimental results.

D.2 ADDITIONAL VERIFICATIONS ON MODEL-REDUCTION EFFECT

In this section, we present a detailed set of experimental results to elucidate the model-reduction
effect on various datasets under different configurations. Here, we do not maintain the constraint
d = h × dh, but fix the number of heads as h = 4, 8 and vary the head dimension dh (and hence
the model dimension dmodel ̸= d). Notably, although the initial improvement in the validation ac-
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Figure 9: The validation accuracy of ViTs on the CIFAR-10 dataset with the model dimensions 192
(left) and 384 (right).

Figure 10: The validation accuracy of ViTs on the CIFAR-100 dataset with the model dimensions
192 (left) and 384 (right).

curacy is pronounced as the head dimension dh increases within relatively small values, this im-
provement plateaus for appropriately large values of dh, indicating diminishing returns with further
increments in model parameters. These observations align with our theoretical justifications on the
model-reduction effect, suggesting an optimal range for head dimensions that balance the model
performance with parameter efficiency.

D.3 ADDITIONAL EXPERIMENTS ON TEXT CLASSIFICATION TASKS

This section provides a detailed examination of the experimental results illustrating the model-
reduction effect on the IMDB dataset for text classification tasks. Notably, we deviate from the
conventional constraint d = h × dh by fixing the number of heads as h = 1 while varying the
head dimension dh. Consequently, the model dimension dmodel ̸= d. The results are presented in
Figure 15. Consistent with the phenomena from image tasks, the validation accuracy on text classi-
fication tasks increases significantly as the head dimension dh grows within a relatively small range;
however, this improvement plateaus once dh becomes appropriately large, reflecting diminishing
returns from further expansions in model parameters (Figure 15, left). Also, the attention rank ap-
pears aligned “plateauing” dynamics with the same critical point of saturation (Figure 15, right),
i.e., both the performance gains and attention ranks get saturated at around d∗h = 8. These results
underscore the presence of optimal ranges for head dimensions that balance performance gains and
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Figure 11: The validation accuracy of ViTs on the SVHN dataset with the model dimensions 192
(left) and 384 (right).

Table 4: The final accuracy for different models on varied datasets.

Configurations Final accuracy

Datasets dmodel Head = 1 Head = 2 Head = 4 Head = 8 Head = 16

Cifar-10 192 0.8836 0.8981 0.9004 0.9013 0.8932
Cifar-10 384 0.8795 0.8924 0.8977 0.9000 0.8997
Cifar-100 192 0.6316 0.6435 0.6454 0.6470 0.6378
Cifar-100 384 0.6280 0.6497 0.6685 0.6680 0.6671
SVHN 192 0.9684 0.9717 0.9737 0.9739 0.9724
SVHN 384 0.9721 0.9723 0.9713 0.9730 0.9757

parameter efficiency effectively. Furthermore, to study the effect of input sizes on attention ranks,
we also test for different values of (input) embedding dimensions within {32, 128, 256, 512} on the
IMDB dataset. The experimental results are shown in Figure 16. It is similarly observed that the
rank saturation phenomenon still appears as the input size varies.

Broader Impacts This paper presents studies with the goal to advance the field of machine learn-
ing. There are many potential societal consequences of our work, none of which we feel must
be specifically highlighted here. As far as we know, our paper has no potential negative societal
impacts.
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Figure 12: The validation accuracy of ViTs on the CIFAR-10 dataset with 4 heads (left) and 8 heads
(right).

Figure 13: The validation accuracy of ViTs on the CIFAR-100 dataset with 4 heads (left) and 8
heads (right).

Figure 14: The validation accuracy of ViTs on the SVHN dataset with 4 heads (left) and 8 heads
(right).
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Figure 15: Experimental results of text classification tasks on the IMDB dataset. Left: Learning
accuracies of different head dimensions along the training. Right: Attention ranks corresponding
to the first-layer attention matrices, computed on mini-batches of IMDB tokens and averaged over
multiple runs using varied random seeds. Here, five distinct head dimensions are evaluated: dh =
2, 3, 4, 8, 16. The observed pattern of attention ranks aligns with Figure 1, where smaller values
of dh result in notable increases in attention ranks as dh grows; however, when dh ≥ 8, further
increases in dh lead to marginal changes in attention ranks. Importantly, the trends in attention
ranks closely parallel the trends of model performance, which is consistent with the image setting
(Figure 4). In fact, both attention ranks and model performance improve with increasing the head
dimension dh but plateau at dh ≥ d∗h = 8, indicating d∗h as the optimal configuration to trade-off
between model efficiency and learning performance.

Figure 16: Rank saturation phenomenon across different input embedding dimensions on the IMDB
dataset.
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