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Abstract

In this paper, we analyze the behavior of existing techniques and design new
solutions for the problem of one-shot visual imitation. In this setting, an agent
must solve a novel instance of a novel task given just a single visual demonstration.
Our analysis reveals that current methods fall short because of three errors: the
DAgger problem arising from purely offline training, last centimeter errors in
interacting with objects, and mis-fitting to the task context rather than to the actual
task. This motivates the design of our modular approach where we a) separate out
task inference (what to do) from task execution (how to do it), and b) develop data
augmentation and generation techniques to mitigate mis-fitting. The former allows
us to leverage hand-crafted motor primitives for task execution which side-steps the
DAgger problem and last centimeter errors, while the latter gets the model to focus
on the task rather than the task context. Our model gets 100% and 48% success
rates on two recent benchmarks, improving upon the current state-of-the-art by
absolute 90% and 20% respectively. 1
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Figure 1: One-shot Visual Imitation

Consider a single video, demonstrating the task depicted
in Figure 1 (left). Given just this input, as humans we can
reliably execute the demonstrated task in the novel situation
shown in Figure 1 (right). This is in spite of the differences
in the task instance (location of relevant objects are different
from where they were in the demonstration), embodiment
(e.g. robot hand in demonstration vs. human hand), and the
large ambiguity in what precisely the task was (was it to
move the hand through those locations or was it to move the
object). In this paper, we seek to imbue robotic agents with
a similar capability: given a single visual demonstration of
a novel task, the robot should execute the demonstrated task
on a novel instance of the task. We refer to this problem as
one-shot visual imitation.

While humans are adept at this form of one-shot visual
imitation, machine performance in this setting lacks considerably. For instance, the recent method
from Dasari et al. [11] obtains a 10% success rate on a harder version of their pick-and-place task-set,
and 28% on a one shot visual imitation benchmark constructed using Meta-world [46]. In this paper,
we investigate what causes recent methods to underperform and develop algorithms to bridge this
performance gap.

1Project website with additional details: https://matthewchang.github.io/awda_site/
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We start by analyzing the behavior of current methods. Current works on this problem [11, 15, 29]
cast it as a conditional policy learning problem (i.e. predict the next action conditioned on the
demonstration and the execution so far) using meta-learning [15] or expressive neural network
models [11, 29]. Models are trained on offline datasets of video demonstrations paired with expert
executions. This immediately reveals two issues that hinder the performance of these past works.
Purely offline and non-interactive training causes the learned policies to suffer from a form of
distribution shift known as the DAgger problem, (going off-distribution due to compounding errors
while imitating long-horizon behaviors) and near misses while executing fine motor control, or last
centimeter errors (prior work has shown that learning generalizable polices for fine-motor control
requires specialized architecture or thousands of online samples).

When we try to extend current methods to more diverse collection of tasks, a third, more subtle
mis-fitting issue comes to light. As tasks are often contextual (i.e. one only interacts with a given
object in limited number of ways), current models tend to make predictions based on the objects in
the scene rather than the motion depicted in the demonstration. This causes them to generalize poorly
to novel tasks.

These insights motivate the design of our method. To circumvent the first two problems, we employ
a hierarchical and modular approach that separates out the task execution (how to do it) from task
inference (what to do). This separation enables us to use robust and high-performing, hand-crafted
motor primitives for task execution, while the use of learning for task inference allows the system to
interpret the intent depicted in the provided demonstration, and synthesize a solution for the novel
instance at test-time. More concretely, given the video demonstration and just a single image of the
current scene, our learned model predicts a sequence of attributed waypoints that outline a trajectory
to achieve the task. These attributed waypoints represent the 3D motion of the arm, along with
additional attributes of the robot’s state (such as “an object is in the gripper”) at those waypoints. The
predicted attributed waypoints are achieved using motor primitives (based on kinematic planning or
classical grasping primitives using depth images from hand-in-eye cameras).

While this seemingly simple model works well for pick-and-place tasks (achieving 100% success rate
on the task-set from Dasari et al. [11]), it still underperforms on the diverse tasks in Meta-world [46],
due to the mis-fitting issue described above. To mitigate this, we propose novel demonstration
augmentation schemes that generate training samples to break the correlation between tasks and their
contexts.

We evaluate our proposed method on 4 benchmarks, representing a wide range of diverse tasks
in simulation, and evaluation on real-world data [20]. In comparisons against 3 past methods
(DAML [45], T-OSVI [11], and MOSAIC [29]) our model achieves strong results, surpassing all
baselines. Notably, our method makes large improvements on two benchmarks, reaching success
rates of 100% and 48%. These represent absolute improvements of 90% and 20% respectively, over
the current state-of-the-art.

2 Related Work

Learning from demonstrations in robotics has taken many different forms over the years. One such
setting is behavior cloning (BC), in which one is given many paired sensor and action trajectories
for a single task, and the goal is to obtain a policy for this task [37]. Purely training on offline
datasets of expert behavior is known to suffer from compounding errors at execution time, motivating
improvements like DAgger [38]. Recent approaches to this problem have considered BC using only
one trajectory with action labels [12, 13], and using meta-learning to adapt to novel tasks at test
time [15].
One-shot visual imitation takes this problem a step further, where only a video (i.e. with no
associated actions) of the expert’s execution is available [15, 45, 34]. Researchers have explored
many different variants, with demonstrations differing in embodiment [13, 45], viewpoint [41], or
using natural language [20, 1]. Researchers have also pursued many different solutions: conditioning
on task embeddings [19, 5], using meta-learning [13, 45], predicting sub-goals [34, 41], using
expressive transformer architectures [11, 29], and contrastive training of visual features [29]. Huang
et al. [18] and Sharma et al. [41] follow a hierarchical design similar to ours for one-shot visual
imitation. However, our formulation can deal with tasks involving arbitrary objects and motions,
unlike the method from [18] which only operates within a pre-defined set of discrete symbols and
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motions. [41] synthesizes images to use as sub-goals, while our use of generalized waypoints
sidesteps the need for image generation, which can be challenging for novel objects in complex
environments.

We distinguish from another related line of work on inverse reinforcement learning (IRL) [42, 48, 21,
44, 17, 2]. IRL assumes interactive access to the underlying environment to learn policies, which our
setting does not.
Hierarchical policies have been found to useful in many settings, indoor navigation [3, 6, 30],
self-driving [31], drone control [24, 23], and manipulation [32, 14, 8, 10, 22, 36] among many others.
In reinforcement learning settings, motion primitives have been incorporated as additional actions
to speed up learning [33, 10, 8]. Instead, our work develops techniques to use motor primitives
for one-shot visual imitation. While we found hand-designed primitives effective in our work, our
method is agnostic to the form of motor primitives, and could benefit from the many recent works on
discovering motor primitives from diverse trajectories [26, 40, 39, 25, 16].
Data augmentation techniques have been found to be effective in improving the generalization of
learned models [7]. They have also been effective at improving generalization in robot learning,
e.g. when learning policies via RL [43], or for pre-training representations [27, 29]. Our work also
employs data augmentation techniques, inspired from mixup [49, 47, 4] for improving generalization.
However, the specific form of overfitting in our one-shot visual imitation problem motivates the need
for asymmetrical mixing of samples to decorrelate tasks from tasks contexts.

3 Diagnosing Errors Made by Current One-shot Visual Imitation Methods

The problem we are interested in is that of one-shot visual imitation. At test time, our agent will be
given a video demonstration of a task not seen during training, and must perform the depicted task
with no additional experience in the environment. Note that, the environment configuration may be
different from that depicted in the example video, but the overall semantic task will be the same.

Samples in one-shot visual imitation learning datasets consist of: a) the video demonstration v; and b)
a robotic trajectory, {(o1, s1, a1), . . .} that conducts the same task in a potentially different situation.
These video demonstrations are not the same trajectory as the robotic trajectory and may differ in
embodiment, or solution method, but they must be solving the same high-level task. In fact, the
pairing of video demonstrations to robotic trajectories is what defines the notion of a task for the
model being trained.

This is commonly cast as a supervised learning problem [11, 29, 15, 45], where a model is learned
on demonstration-trajectory pairs, to predict the action at a given timestep, conditioned on the
demonstration, and previous frames, π(at|v, o1:t, s1:t). However, this approach can lead to unde-
sirable behaviors on novel tasks. In this section, we characterize the failure modes of T-OSVI, the
transformer-based per-time-step action prediction model from Dasari et al. [11] as a representative
recent method. Specifically, we highlight 3 different failure modes that arise in this standard approach:
the DAgger problem arising from purely offline training, last centimeter errors in interacting with
objects, and mis-fitting to the task context rather than the depicted task.
Experimental Setting. We consider a harder version of the 4 object and 4 bin pick-and-place task
family proposed in [11] (visualized in Figure 1), that has been modified to hold out tasks as opposed
to task instances as originally done in [11]. That is, of the 16 possible tasks (picking one of the four
objects and placing it in one of the four bins), we use 14 for training and hold out 2 for testing. In this
modified setting, the success rate for T-OSVI [11] drops to 10% from the 88% reported in their paper.
In this setting, we identify two consistent failure modes: a) failure to reliably reach the target object
(about 88% trials) and often times (35% of trials) reaching a non-target object due to what we believe
to be a version of the DAgger problem, and b) near misses in grasping the object (about 10% of all
trials in which it reached any object).
DAgger problem. T-OSVI can be viewed as a conditional policy of the form π(at|v, o1:t, s1:t),
trained through behavior cloning on an offline dataset of expert executions. Behavior cloning on
expert data is known to suffer from poor execution performance due to compounding errors [38].
While this may explain the low reaching success rate for the target object, it doesn’t explain the
relatively high rate with which the policy reaches and attempts to grasp a non-target object.

Our belief is that this is a task execution error. The policy is trained with memory of its execution over
the last 6 frames, and often it relies more on these recent execution frames, than the demonstration.
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Figure 2: Example of mis-fitting in Meta-world (Section 3): During training there is a task depicting
the window being closed (top left). When presented with a novel task demonstration, opening the
window (top right), action-prediction methods repeat the motion on the most similar training setting,
trying to close the already closed window (bottom left). Our method successfully opens the window
(bottom right). Predicted waypoints (red dots) correctly move to the right side of the handle and push
left.

Consequently, we find that if the agent makes small errors early during execution, subsequent
behavior is more in line with the current execution, at the cost of being inconsistent with the given
demonstration.

We empirically verify this by keeping the demonstration fixed but guiding the policy at test time
towards the target object (positive guidance) or towards a distractor non-target object (negative
guidance), by taking steps with an oracle policy. Even 1 step of guidance drastically improves the
reaching rate from 12% to 58% ± 2% for the target object, and from 27% to 50% ± 2% for the
distractor object. Note that it takes on average 12 steps to reach the object, so 1 step of guidance is
not much. The increase in success rate for both target and distractor objects reveals the preference of
the policy towards past execution frames over the demonstration.
Last centimeter errors in grasping. Next, we discuss the second substantial error mode of T-OSVI
on this task. While 12% of executions reach the correct object, only 10.5% of executions successfully
lift the object, meaning 10% of attempted grasps fail. This is because the gripper grasps near the
object, but misses, or acquires an unstable grasp. This is not surprising as we are attempting to
learn a grasping policy from as few as 1400 training samples. Past works have shown that without
specialized architectures or sensing, many thousands of trials are necessary to learn grasping policies
that generalize [28, 35]. Other recent works [20, 29] also noted these fine-grained errors in one-shot
visual imitation.
Mis-fitting to Task Context. In the harder, more diverse set of 50 tasks from Meta-world [46], a
new failure mode of one-shot visual imitation methods arises. We find that, if the novel evaluation
task involves objects that are visually similar to those seen in training tasks, models trained with
T-OSVI perform the motion from the training task, not what is seen in the demonstration (visualized
in Figure 2). We believe that this is because the model is predicting actions based on the task context
(objects visible in the scene) as opposed to the task depicted in the demonstration.

Tasks are contextual, i.e. there are really only a few different things that one can do with a given
object (e.g. opening a closed door). Besides, collecting training data for one-shot visual imitation is
challenging as it requires paired demonstrations and trajectories. Thus, training datasets are small
and don’t showcase diverse interactions with the manipulated objects. Models can easily satisfy the
training objective by fitting to the task context and ignoring the motion depicted in the demonstration.
This causes problems when we seek to imitate a novel task which bears visual similarity to a training
task. As depicted in Figure 2, existing methods will attempt to perform the task seen in training
instead of that depicted in the demonstration.

The analysis of these three failure modes motivates the design of our method, as detailed in the next
section. We address task execution errors (i.e. the DAgger problem and the last centimeter problem)
through the use of hand-crafted motor primitives, and present data augmentation strategies that break
the correlation between tasks and task contexts, mitigating mis-fitting.
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Figure 3: Bottom: AWDA is a modular approach for one-shot visual imitation that separates task
inference and task execution. Task inference function f(v, o1) predicts a sequence of attributed
waypoints (red points) that are achieved using hand-defined motion primitives (colored solid lines).
Top Right: f(v, o1) learns to predict attributed waypoints by aligning them with ground-truth
attributed trajectories using SDTW (Section 4.1). Top Left: To prevent overfitting of f(v, o1) to task
contexts, we synthesize additional demonstrations and employ asymmetric demonstration miuxup
(Section 4.2).

4 Visual Imitation via Attributed Waypoints and Demonstration
Augmentation

Our approach, AWDA, is a hierarchical and modular approach that separates out task inference and
task execution. The task inference module takes the given demonstration video and a single image
of the scene (depicting an instance of the task, different from that in the demonstration) and outputs
the full execution plan, expressed as a sequence of attributed waypoints. Task execution happens
simply by invoking the appropriate motor primitive to convey the robot end effector between each
consecutive pair of predicted waypoints.

4.1 Task Inference and Execution via Attributed Waypoints and Motor Primitives

Attributed Waypoints. Our task inference and execution modules are interfaced via attributed
waypoints. Typical waypoints used in robotics (e.g. for navigation [3]) only capture the 3D (or 6D)
pose of the robot end-effector. This is quite restrictive for manipulation tasks, as purely kinematic
guidance of the end-effector will not be able to interact with objects e.g. to pick them up or to exert
forces on them. We overcome this limitation by assigning additional attributes to each waypoint, e.g.
is an object in the end-effector, or is the end-effector experiencing force in a particular direction. We
consider attributed waypoints to be 3 + k dimensional, where k is the number of additional attributes
associated with each 3D waypoint. Attributed waypoints are are powerful tool for expressing solutions
to kinematic tasks. For instance, just 1 single attribute, of whether there is an object in the gripper or
not, allows us to express all 50 tasks in the Meta-world task-set as a sequence of these 4D waypoints
(3D for end-effector location and 1D for “is there an object in the gripper”). We will use this attribute
as a running example for explanation, but other attributes could be added.
Motor Primitives. Given a pair of attributed waypoints, our method uses motor primitives to convey
the robot between pairs of attributed waypoints. While conveying the end-effector between 3D
waypoints in space is well understood (inverse kinematics and motion planning), moving between our
proposed attributed waypoints is more involved as it can involve a change in “attributes” along the
way. Thankfully, changes in attributes correspond to well-studied basic skills in robotics literature.
For instance, using the same 4D grasping example as above, going from waypoint [p; false] to [q; true]
involves grasping an object near location p and taking it to location q; while going from [q; true] to
[p; false] corresponds to releasing the currently held object and then going to location p. In general,
for k attributes, this corresponds to 2k+1 motor primitives. Our method is agnostic to the exact
implementation of motor primitives. For our experiments, we found that hand-crafted primitives
were sufficient to solve the pick-and-place task-set from [11] and all 50 Meta-world tasks [46]. We
implemented 4 hand-crafted primitives: a) free space motion without any object in hand, b) grasping
an object, c) dropping an object, and d) free space motion with an object in hand; using eye-in-hand
depth cameras.
Training the Model to Output Augmented Waypoints. Augmented waypoints and corresponding
motor primitives let us express manipulation tasks as a sequence of waypoints. We next describe
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Figure 4: Asummetric Demonstraion Mixup (ADM) augmentation: Two demonstration-trajectory
pairs (row 1) are combined into one (row 2). The first frame of demonstration 2 is blended into every
frame of demonstration 1. The end effector trajectory that serves as supervision for training on the
combined sample is entirely from trajectory 1.

how we train the task inference module to predict these augmented waypoints from a given demon-
stration, and a single image of the novel task instance. Our task inference model f takes as input,
a demonstration v and instance image o1, and outputs n attributed waypoints {w1, . . . ,wn}, each
waypoint being k + 3 dimensional. Supervision for these waypoint predictions is derived from the
trajectories in the dataset as follows. We process the given robotic trajectory, {(o1, s1, a1), . . .}, into
3D end-effector locations using forward kinematics. We also assign to each time step, the appropriate
attributes that the agent experiences in that frame. These attributes are not labeled by hand, but rather
mined automatically from the robot state st and at provided in the robotic trajectories. For example,
we label that an object has been grasped in a robotic trajectory when the commanded action is to
close the gripper, but the gripper jaws do not close. This gives us end-effector’s attributed trajectory:
t = {t1, . . . , tT }, ti ∈ Rk+3. We derive supervision for waypoints {w1, . . . ,wn} by constructing a
trajectory t̂ by linearly interpolating w’s and comparing it to the ground truth attributed trajectory
t. We use soft dynamic time-warping (SDTW) [9] to compute the loss between the predicted and
ground truth trajectory. Minimizing this objective aligns the predicted trajectory with the ground
truth trajectory.
Testing. Given a novel video v, and task instance, as observed in image o1, we use the task inference
model f(v, o1) to predict attributed waypoints. The appropriate motor primitives are used to convey
the robot from one predicted attributed waypoint to the next, until all waypoints are exhausted.

4.2 Demonstration Augmentation for Improved Task Inference

We next look at tackling the mis-fitting issue highlighted in Section 3. This mis-fitting happens
because of the strong correlation between the task and its context in the training data. We design
two augmentation strategies that break this correlation by generating training samples with the same
context but different task motion.
Asymmetric Demonstration Mixup. Our first strategy creates new training samples by mixing
existing samples in the dataset. This is reminiscent of mixup [49] but has modifications to break the
aforementioned correlation. Naively mixing samples as done in original mixup wouldn’t break the
correlation to aid out-of-distribution generalization. Instead, we leverage the temporal nature of video
demonstrations to asymmetrically blend samples. Given a sample (v, o1, t), we use another sample
(ṽ, õ1, t̃) to produce a new decorrelated sample by: a) blending all frames in v with the first frame of
the video ṽ to generate new video v′, b) blending o1 with õ1 to generate o′1, and c) retaining t as is
(as depicted in Figure 4). Specifically,

v′
t = αvt + (1− α)ṽ0, o′1 = αo1 + (1− α)õ1, t′ = t

We use a blending ratio α ∼ [0.3, 1.0], biased towards retaining all of o1 and v, since the trajectory
is always t. This asymmetric blending, where one of the demonstrations is frozen in time while
the other is moving, breaks the correlation between objects present in the scene and the task being
conducted on them. f can’t just look at o′1, but it has to track how the hand moves through in v′ to
make correct predictions. Including unaltered samples in training lets us use demonstrations and
observations as is at test time.
Additional Demonstrations via Trajectory Synthesis.
Additionally, we can break the correlation between tasks and task contexts by simply generating
synthetic tasks involving free space motions for the robot, in various contexts. We do this by sampling
a small number of points (1 to 3) uniformly at random within the agent’s workspace and moving the
end effector sequentially through these points using an inverse kinematics solver. Training samples
are created by pairing each trajectory with itself, i.e. v, o1 and t all come from the same trajectory.
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Table 1: Success rates on held-out tasks on the Pick-and-place and Meta-world benchmarks
DAML T-OSVI Full-1 Full-2 single no AD no ADM no way only

[45] [11] head points waypoints
Asymm. Demo Mixup (ADM)? ✓ ✓ ✓ ✓ ✗ ✓ ✗
Additional Data (AD) Source? TS BC-Z TS ✗ TS TS ✗
Waypoints? ✓ ✓ ✓ ✓ ✓ ✗ ✓

Pick-and-place 0.01 0.10 1.00 1.00 0.99 1.00 0.98 0.01 0.98
Meta-world [easy] 0.04 0.50 0.66 0.73 0.33 0.74 0.03 0.33 0.14
Meta-world [hard] 0.08 0.07 0.30 0.17 0.29 0.11 0.19 0.06 0.02
Meta-world [all] 0.06 0.28 0.48 0.45 0.31 0.42 0.11 0.19 0.08

Place bottle in bowl Place grapes in metal cup Place pepper in purple bowl Drag pepper across table

Figure 5: We visualize 2D projections of 3D waypoints in blue, and the interpolated trajectory in red,
as predicted by our model for 4 different held-out tasks (noted on top right of each image) from the
BC-Z dataset [20]. Predicted trajectories match the ground truth trajectories (in green). Interestingly,
for the “drag pepper across table” task, though our prediction does not match the specific ground
truth, it is still consistent with the semantics of the depicted task.

To make correct predictions on these trajectories, the model must attend to the motion of the arm
and ignore background elements, thus breaking the undesired correlations. Note that this is a simple
data collection procedure that can be easily done in an unsupervised manner. We simply add in
these additional samples for training, and find they boost performance, particularly for substantially
out-of-distribution tasks.

We note that this procedure produces samples that are not driven by a semantically-meaningful,
object-centered task. Thus, including these samples in training could also impact the model’s ability
to learn a meaningful prior over tasks. To mitigate this, we modify final layer of the model to have two
heads. One makes predictions for original samples in the dataset, while the other makes predictions
for the synthesized trajectories. This nudges the overall network to look at the motion of the hand
while also letting the last layer learn the necessary priors from the task driven samples in the dataset.

5 Experiments

We design and conduct experiments to demonstrate the effectiveness of our proposed method with
respect to prior work, and evaluate our various design choices.
Tasks, Environments, and Datasets. We conduct experiments on 4 datasets: a) Pick-and-place
task-set from [11] (shown in Figure 1) but modified to hold 2 of 16 possible tasks as novel testing
tasks; b) Meta-world task-set [46] (sample observations shown in Figure 2) where we hold out 4 of
50 tasks as novel testing tasks; c) MOSAIC task-set [29] containing 6 tasks, evaluating performance
on each task with a model trained only using demonstrations from the other tasks; and d) BC-Z
dataset [20] that has 17213 real-world trajectories (sample images in Figure 5) spanning 90 tasks of
which we hold out 5 for testing.

Pick-and-place and MOSAIC use different embodiments for demonstration and execution (Sawyer
and Panda respectively). Meta-world and BC-Z use the same embodiment. We conduct interactive
evaluation of the learned policies on Pick-and-place, Meta-world and MOSAIC task-sets and report
success rate. For BC-Z, we do offline evaluation and report the accuracy of predicted trajectories
on a held-out validation set. We note that as all tasks are set up in the same environment for the
Pick-and-place task set, so it doesn’t suffer from correlations between tasks and task contexts, or
the mis-fitting error described in Section 3. However, different tasks in Meta-world and MOSAIC
involve different objects making them suffer from the mis-fitting error.
Implementation Details. We follow [11] to construct data for training. We collect 100 successful
trajectories with each robot using hand-defined expert controllers and arbitrarily pair them up to
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Table 2: Success rates on held-out tasks from MOSAIC [29] task-set

Task Door Drawer Button Stack Block Basketball Nut Assembly All

MOSAIC [29] 0.05 0.15 0.05 0 0 0 0.04
Full-1 0.10 0.29 0.01 0 0 0.02 0.07

construct 10K training samples per task. We train our models for 500K iterations. Following [29],
we report the success rate on held-out tasks, averaged over 5 snapshots from the end of training. Our
attributed waypoints use the “is object in hand” attribute. This leads to 4 motor primitives: free
space motion without an object, moving an object, grasping a nearby object, releasing the object. We
implement the first two using inverse kinematics and motion planning; the third is implemented by
analyzing depth images to identify objects and centering the gripper to grasp the nearest object; for
the fourth we just open the gripper.

The neural network design uses the same feature extraction process as T-OSVI [11]. We extract
image features using ResNet-18, which remain spacial, and have a sinusoidal positional encoding
added, before being processed by a transformer module. Finally, the temporally processed features
are projected down into waypoints by two separate heads, one to predict waypoints for task-driven
trajectories, and one for trajectories synthesized as described in Section 4.2.
Results. We report results on the Pick-and-place and Meta-world task sets in Table 1. We break
down results on Meta-world into two splits based on the similarity of the novel task to tasks seen
in training: Meta-world [easy] (Button-Press-V2, Pick-Place-Wall-V2, which differ from training
tasks Buttom-Press-Wall-V2 and Pick-Place-V2 only due to presence/absence of distractor), and
Meta-world [hard] (Window-Open-V2, Door-Unlock-V2, require categorically different solutions
than training tasks). The results on the MOSAIC benchmarks are presented in Table 2. Each column
reports the performance on the indicated held-out task. The models for MOSAIC experiments are
trained all MOSAIC tasks except the held-out task. The column All reports the mean performance
across all held-out task experiments. We summarize our key takeaways below.
• AWDA outperforms prior work by a large margin. Our full system (denoted Full-1) completely
solves the Pick-and-place task (improving upon the 10% obtained by T-OSVI, 1% by DAML),
and obtains 48% for Meta-world [all] vs. 28% for T-OSVI, 6% for DAML, while quadrupling the
performance on the hard tasks 30% vs. 7% for T-OSVI. Performance gains are maintained even
if we omit synthesized trajectory data altogether (denoted no AD), or when using data from other
datasets instead (denoted Full-2). On the MOSAIC tasks (Table 2), we match or outperform the
current state-of-the-art for this benchmark [29] on all tasks except for one, yielding superior overall
performance (7% vs. 4%).
• Attributed waypoints with motor primitives eliminate all errors on Pick-and-place. Our models
without asymmetric demo mixup (no ADM), or without additional data (no AD), or without both
(only waypoints) obtain close to perfect performance on the Pick-and-place task. This demonstrates
the effectiveness of our proposed modular policy architecture. It also boosts performance on Meta-
world [all] by an absolute 29% from 19% with no waypoints vs. 48% with (Full-1).
• Additional data via trajectory synthesis or from other datasets helps improve generalization.
Using additional data via trajectory synthesis (Full-1) or from other datasets (Full-2) improves upon
not using any additional data (denoted no AD), particularly for the Meta-world [hard] tasks that
require entirely novel motion at test time (11% for no AD vs. 30% for Full-1 and 17% for Full-2).
Furthermore, fitting this additional data through another head is crucial for maintaining performance
on Meta-world [easy] tasks, which bear more similarity to training tasks: 66% for the two headed
model Full-1 vs. 33% for the single head model.
• Asymmetric demonstration mixup improves performance beyond the standard image augmenta-
tions (random flip, crop, translation, color jitter, etc.) that are already in use for T-OSVI, DAML and
all our models (Full-1 vs. no ADM).
• AWDA gets good performance on real data from robots. On the BC-z dataset [20], our method is
able to predict the final interaction point (grasp, release, or reach point) to within 10 cm for 63%±4%
samples of held-out tasks. This clearly identifies what objects need to be interacted with. We expect
appropriately designed motor primitives on physical robots will be able to successfully execute some
of these tasks. Figure 5 shows some sample predictions.
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6 Conclusion and Future Work

In this paper we analysed the major failure modes of state-of-the-art action prediction methods
for one-shot visual imitation. We find that they suffer from the DAgger problem, last centimeter
errors, and mis-fitting to task contexts. Our proposed method, utilizing attributed waypoints and
demonstration augmentation, is able to significantly boost success rates on existing benchmarks, even
completely solving one.

As is, our system is limited to kinematic tasks, but could be expanded to reasoning about forces,
given the proper motion primitives. While our motion primitives are closed-loop and account for
slight changes in object locations, the high level plan cannot adjust to large changes in the scene after
initial waypoint predictions. We leave this to future work.
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