
Under review as a conference paper at ICLR 2023

SPURIOUS LOCAL MINIMA PROVABLY EXIST FOR
DEEP CONVOLUTIONAL NEURAL NETWORKS

Anonymous authors
Paper under double-blind review

ABSTRACT

In this paper, we prove that a general family of infinitely many spurious local
minima exist in the loss landscape of deep convolutional neural networks with
squared loss or cross-entropy loss. Our construction of spurious local minima
is general and applies to practical dataset and CNNs containing two consecutive
convolutional layers. We develop some new techniques to solve the challenges in
construction caused by convolutional layers. We solve a combinatorial problem to
show that a differentiation of data samples is always possible somewhere in feature
maps. Empirical risk is then decreased by perturbation of network parameters
that can affect different samples in different ways. Despite filters and biases are
tied in each feature map, in our construction this perturbation only affects the
output of a single ReLU neuron. We also give an example of nontrivial spurious
local minimum in which different activation patterns of samples are explicitly
constructed. Experimental results verify our theoretical findings.

1 INTRODUCTION

Convolutional neural networks (CNNs) (e.g. Lecun et al. (1998); Krizhevsky et al. (2012); Simonyan
& Zisserman (2015); Szegedy et al. (2015); He et al. (2016); Huang et al. (2017)), one of the most
important models in deep learning, have been successfully applied to many domains. Spurious local
minima, whose losses are greater than that of global minimum, play an important role in the training
of deep CNNs and understanding of deep learning models. It is widely believed that spurious local
minima exist in the loss landscape of CNNs which is thought to be highly non-convex, as evidenced
by some experimental studies (e.g. Dauphin et al. (2014); Goodfellow et al. (2015); Liao & Poggio
(2017); Freeman & Bruna (2017); Draxler et al. (2018); Garipov et al. (2018); Li et al. (2018);
Mehmeti-Gopel et al. (2021)). However, the existence of spurious local minima for deep CNNs
caused by convolutions has never been proved mathematically before.

In this paper, we prove that infinite spurious local minima exist in the loss landscape of deep CNNs
with squared loss or cross-entropy loss. This is in contrast to the "no spurious local minima" property
of deep linear networks. The construction of spurious local minima in this paper is general and
applies to practical dataset and CNNs containing two consecutive convolutional layers, which is
satisfied by popular CNN architectures.

The idea is to construct a local minimum θ at first, and then construct another point θ′ in parameter
space which has the same empirical risk as θ and there exist regions around θ′ with less empirical
risks. However, the construction of spurious local minima for CNNs faces some technical challenges,
and the construction for fully connected deep networks cannot be directly extended to CNNs. Our
main contribution in this paper is to tackle these technical challenges. In the construction of spurious
local minima for fully connected deep ReLU networks (He et al. (2020); Ding et al. (2019); Goldblum
et al. (2020); Liu et al. (2021)), in order to construct θ′ and perturb around it, data samples are
split into some groups according to the inputs of a specific ReLU neuron such that each group will
behave differently under the perturbation of network parameters so as to produce a lower risk. This
technique relies on data split and parameter perturbation, and cannot be directly applied to CNNs
due to the following difficulties. Every neuron in CNN feature maps has limited receptive field that
covers partial pixels in an input image (take image as an example), and hence the inputs to a ReLU
neuron can be identical even for distinct samples, making them hard to distinguish. This data split
issue is further complicated by the nonlinear ReLU activations that truncate negative inputs, and the

1

Under review as a conference paper at ICLR 2023

activation status can vary from place to place and from sample to sample. Moreover, the filters and
biases of CNNs are shared by all neurons in the same feature map, and thus adjusting the output of a
ReLU neuron by perturbing these tied parameters will also affect other neurons in the same feature
map.

We solve these challenges by developing some new techniques in this paper. By taking limited
receptive fields and possible distinct activation status for different locations and samples into account,
we solve a combinatorial problem to show that a split of data samples is always possible somewhere
in feature maps. We then present a construction of CNN parameters (θ′) that can be perturbed to
achieve lower losses for general local minima θ. Despite the parameters are tied, our construction can
perturb the outputs of samples at a single neuron in feature maps without affecting other locations.
We also give a concrete example of spurious local minima for CNNs. To our best knowledge, this is
the first work showing existence of spurious local minima in deep CNNs introduced by convolutional
layers.

This paper is organized as follows. Section 1.1 is related work. Section 2 describes convolutional
neural networks, and gives some notations used in this paper. In section 3, our general results on
spurious local minima are given with some discussions. In section 4, we present an example of
nontrivial spurious local minima for CNNs. Section 5 presents experimental results to verify our
theoretical findings. Finally, conclusions are provided. More lemmas, experimental details and all
proofs are given in appendices.

1.1 RELATED WORK

For some neural networks and learning models, it has been shown that there exist no spurious local
minima. These models include deep linear networks (Baldi & Hornik (1989); Kawaguchi (2016);
Lu & Kawaguchi (2017); Laurent & von Brecht (2018); Yun et al. (2018); Nouiehed & Razaviyayn
(2018); Zhang (2019)), matrix completion and tensor decomposition (e.g., Ge et al. (2016)), one-
hidden-layer networks with quadratic activation (Soltanolkotabi et al. (2019); Du & Lee (2018)),
deep linear residual networks (Hardt & Ma (2017)) and deep quadratic networks (Kazemipour et al.
(2020)).

Existence of spurious local minima for one-hidden-layer ReLU networks has been demonstrated,
by constructing examples of networks and data samples, in Safran & Shamir (2018); Swirszcz et al.
(2016); Zhou & Liang (2018); Yun et al. (2019); Ding et al. (2019); Sharifnassab et al. (2020); He
et al. (2020); Goldblum et al. (2020) etc.

For deep ReLU networks, He et al. (2020); Ding et al. (2019); Goldblum et al. (2020); Liu et al.
(2021) showed that spurious local minima exist for fully connected deep neural networks with some
general loss functions. For these spurious local minima, all ReLU neurons are active and deep neural
networks are reduced to linear predictors. Spurious local minima for CNNs are not treated in these
works. In comparison, we deal with spurious local minima for CNNs in this work, and the constructed
spurious local minima can be nontrivial in which nonlinear predictors are generated and some ReLU
neurons are inactive.

Du et al. (2018); Zhou et al. (2019); Brutzkus & Globerson (2017) showed the existence of spurious
local minima for one-hidden-layer CNNs with a single non-overlapping filter, Gaussian input and
squared loss. In contrast, we discuss practical deep CNNs with multiple filters of overlapping
receptive fields and arbitrary input, for both squared and cross-entropy loss. Given non-overlapping
filter and Gaussian input, the population risk with squared loss function can be formulated analytically
with respect to the single filter w, which facilitates the analysis of loss landscape. Thus, the techniques
used in Du et al. (2018); Zhou et al. (2019); Brutzkus & Globerson (2017) cannot be extended to the
general case of empirical risk with arbitrary input samples discussed in this paper. Nguyen & Hein
(2018) showed that a sufficiently wide CNN (include a wide layer which has more neurons than the
number of training samples followed by a fully connected layer) has a well-behaved loss surface with
almost no bad local minima. Liu (2022) explored spurious local minima for CNNs introduced by
fully connected layers. Du et al. (2019); Allen-Zhu et al. (2019) explored the local convergence of
gradient descent for sufficiently over-parameterized deep networks including CNNs.

2

Under review as a conference paper at ICLR 2023

2 PRELIMINARIES

2.1 NOTATIONS

We use Mi,· and M(i, ·) to denote the ith row of a matrix M , and use M·,i and M(·, i) to denote
the ith column of M . Mi,j and Mij are the (i, j) entry of M . The ith component of a vector v is
denoted as vi, vi or v(i). [N] is equivalent to {1, 2, · · · , N}. i : j means i, i+ 1, · · · , j. v(i : end)
stands for the components of a vector v from the ith one to the last one. 1n denotes a vector of size n
whose components are all 1s.

2.2 CONVOLUTIONAL NEURAL NETWORKS

A typical CNN includes some convolutional layers, pooling layers and fully connected layers. Because
spurious local minima caused by fully connected layers in CNNs can be treated in the same way as in
fully connected networks, we will focus on spurious local minima caused by convolutional layers.

Convolutional layers can take advantage of the translational invariance inherent in data, and are
defined as follows. Suppose the lth layer is a convolutional layer, neighboring neurons at layer (l− 1)
are grouped into patches for the convolution operation. Let Pl and sl be, respectively, the number of
patches and the size of each patch in the lth layer, and denote by Tl the number of convolutional filters
(or the number of feature maps) in the lth layer. Denote

{
ol1, · · · ,olPl

}
∈ Rsl as the set of patches in

the lth layer. If there are multiple feature maps in layer (l − 1), a patch will include corresponding
neighboring neurons from every feature map. The number of neurons in each feature map in the lth
layer is Pl−1. The number of neurons in the lth layer is then nl = TlPl−1. Given the pth (p ∈ [Pl−1])
patch ol−1p and the tth (t ∈ [Tl]) filter wl

t ∈ Rsl−1 , the output of corresponding neuron in layer l is
given as follows,

ol(h) = σ(wl
t · ol−1p + blt), (1)

where h = (t− 1)Pl−1 + p. σ(x) = max(0, x) is the ReLU activation function. There is a single
bias blt for each feature map.

For ease of presentation, we will assume that the strides for convolutions are equal to one and the
input feature maps are zero padded such that for each convolutional layer, the sizes of input and
output feature maps are equal. The convolution operation can then be reformulated as a matrix-
vector product. We explain this by considering the following one-dimensional example. Given a
one-dimensional input ol−1 = (a, b, c, d, e)T and a filter w1 = (w1

1, w
2
1, w

3
1)T , the input becomes

(0, a, b, c, d, e, 0)T after padding with zeros. Here, Tl = 1, sl−1 = 3, Pl−1 = 5 after zero-padding,
nl = TlPl−1 = 5. The convolution operation is equivalent to

ol = σ



w2

1 w3
1 0 0 0

w1
1 w2

1 w3
1 0 0

0 w1
1 w2

1 w3
1 0

0 0 w1
1 w2

1 w3
1

0 0 0 w1
1 w2

1



a
b
c
d
e

+


bl1
bl1
bl1
bl1
bl1


 . (2)

One can set (w1
1 = 0, w2

1 = 1, w3
1 = 0) in 2 to forward ol−1 unchanged (before adding bias and

ReLU activation). This is equivalent to setting the weight matrix as a identity one. For the case of
two-dimensional input, the input can be converted into a vector and the convolution operation can be
reformulated as a matrix-vector product using similar idea.

We will use matrix-vector product to represent convolution operations. Denote the weight matrix and
bias vector of the lth layer as W l and bl, respectively, with W l ∈ Rnl×nl−1 and bl ∈ Rnl , then the
output of the lth layer is ol = σ(W lol−1 + bl). This matrix-vector product formulation can also be
used to represent fully connected layers.

We only consider average pooling layers. If layer l is a average pooling layer, each patch used in
the pooling operation will include only the neighboring neurons within a single feature map in layer
(l − 1). Let Pl−1 be the number of patches in a single feature map of the (l − 1)th layer, and hence
the size of each feature map in layer l is Pl−1. For average pooling, the output of the pth neuron ol(p)
in each feature map of layer l is computed by

ol(p) = mean(ol−1p (1), · · · , ol−1p (sl−1)), p ∈ [Pl−1], (3)

3

Under review as a conference paper at ICLR 2023

where ol−1p (i) is the ith element in the pth patch of layer (l − 1) within a feature map. The average
pooling operation is a linear operation and thus can can be represented by a matrix-vector product.
The exact forms of parameter matrices for average pooling and fully connected operations will be
given in Appendix A in detail.

Consider a training set {(x1,y1) , (x2,y2) , . . . , (xN ,yN)}, where xi ∈ Rdx ,yi ∈ Rdy (i ∈ [N])
are, respectively, the input and target output. Let L be the number of layers in a CNN, and let ol,i be
the output ol for the ith data sample (denote o0,i := xi). The output vector of a CNN is

oi := oL,i = WLoL−1,i + bL, i ∈ [N].

We introduce a diagonal matrix I l,i ∈ Rnl×nl for each sample and each ReLU layer to represent the
activation status of ReLU neurons, whose diagonal entries are I l,ik,k = 1 if W l(k, ·)ol−1,i + blk > 0

and IL,ik,k = 0 otherwise. Consequently, the output of a convolutional layer can be written as
ol,i = I l,i(W lol−1,i + bl). The CNN output can be written as

oi = WLIL−1,i
(
WL−1 · · ·

(
W 1xi + b1

)
+ · · ·+ bL−1

)
+ bL. (4)

The empirical risk (training loss) is defined as

R(W 1,b1, · · · ,WL,bL) =
1

N

N∑
i=1

l (oi,yi) , (5)

where l is the loss function, such as the widely used cross-entropy loss for classification problems.
Our main goal in this paper is to construct spurious local minima for the empirical risk function of
deep CNNs given in (5).

3 SPURIOUS LOCAL MINIMA

In this section, we first construct a general local minimum with parameters θ :=
(
W l,bl

)L
l=1

. Then,
we present another point θ′ in parameter space which has an equal empirical risk with θ. We further
perturb θ′ and show that empirical risk can be decreased. Therefore, θ is a spurious local minimum in
parameter space.

Our construction is general and can be applied to CNNs with two consecutive convolutional layers,
which is easily satisfied by most practical CNN models, such as AlexNet (Krizhevsky et al. (2012)),
VGG (Simonyan & Zisserman (2015)) and GoogleNet (Szegedy et al. (2015)).

3.1 CONSTRUCTION OF LOCAL MINIMA

We first give a general construction of nontrivial local minima. Given a local minimum for a
subnetwork of a CNN, we show that it will induce a local minimum of the whole CNN if the
subnetwork is embedded into the CNN appropriately. Local minima for subnetworks of a CNN can
be constructed using any method. Our construction of spurious local minima is general and does not
rely on the concrete form of local minima for subnetworks. In section 4, we will give an explicit
construction of exemplar nontrivial local minima for subnetworks.

Our construction of spurious local minima is general and will utilize two consecutive convolutional
layers, whereever there are in the CNN. For ease of presentation, first we will assume that the last two
hidden layers before the output layer (the Lth layer, which is fully connected) are two consecutive
convolutional layers. The general case of having two consecutive convolutional layers in other places
will be discussed in section 3.3.

When layers L− 1 and L− 2 are two consecutive convolutional layers, we will fix the parameters of
the last two convolutional layers in a way such that the output oL−3,i is passed through layers L− 2
and L− 1 unchanged. Two feature maps in layers L− 2 and L− 1, respectively, are reserved for
the perturbation described later. Without loss of generality, let them be the first and second feature
maps in these two layers, respectively. Fig.1(a) shows the top layers of the CNN architeture with
some associated parameters. Note that the size of a single output feature map in the lth layer is Pl−1,
and PL−2 = PL−3 = PL−4 after padding. We have the following lemma to informally descibe the
construction of local minima θ, and its formal version is given Lemma 6 in Appendix C.

4

Under review as a conference paper at ICLR 2023

(a) Top layers for local min-
ima θ

(b) Top layers for θ′ (η ≥
−bL−3

1)
(c) Top layers for θ′ (η <
−bL−3

1)

Figure 1: The top layers and associated parameters for constructing local minima and spurious local
minima. In general, our construction can be applied to CNNs with two consecutive convolutional
layers, like layers L− 1 and L− 2 in this figure.

Lemma 1. (informal). Given a CNN whose numbers of filters in the last two convolutional layers
satisfy TL−1 ≥ 3, TL−2 ≥ 3, the parameters WL (·, 1 : 2PL−2), WL−1,bL−1 and WL−2,bL−2

of the last three layers are set to propagate oL−3,i unchanged to the output neurons, and the first and
second feature maps in both layer L− 2 and layer L− 1 have no contributions to the final output.
The remaining parameters, including WL(·, 2PL−2 + 1 : end), bL and

(
W l,bl

)L−3
l=1

, constitute a
subnetwork, and if they locally minimize the training loss when fixing other parameters, then point
θ :=

(
W l,bl

)L
l=1

is a local minimum in parameter space.

In this lemma, WL (·, 1 : 2PL−2) means the weights of connections from output neurons to the first
two feature maps in layer L− 1. The identity forward propagations in layers L− 1 and L− 2 (see
Fig.1(a)) can be implemented by setting corresponding submatrices in WL−1 and WL−2 to identity
ones, which is equivalent to setting corresponding filters to the form of (0, · · · , 1, · · · , 0)T (with a
single nonzero entry in the middle) as explained in section 2.2, and setting biases bL−1,bL−2 to
zeros.

The embedding scheme to construct local minima or saddle points has also been used for fully
connected networks by Fukumizu et al. (2019); Fukumizu & Amari (2000); He et al. (2020); Liu
et al. (2021); Zhang et al. (2022). However, embedding for CNNs needs to tackle the problems of
limited receptive fields, arbitrary activation status at different locations, and tied weights and biases.

3.2 CONSTRUCTION OF SPURIOUS LOCAL MINIMA

Our construction of spurious local minima relies on the following assumption.

Assumption 1. At local minimum θ, the inputs to the final fully connected layer are distinct for
different samples, i.e., ∀i, j ∈ [N] and i 6= j, oL−1,i 6= oL−1,j .

For practical CNNs and datasets with rich contents, the number of neurons nL−1 input to the final
fully connected layer is big and the chance of oL−1,i (note that oL−1,i 6= 0 since IL−1,i 6= 0
by the nondegenerate requirement in Lemma 6, the formal version of Lemma 1) being identical
for different samples is very small, thus Assumption 1 is reasonable and enforces a very mild
restriction on local minimum θ. This assumption is used to prevent distinct samples from becoming
indistinguishable when passing through ReLU layers and being truncated by them. For fully connected
deep neural networks, (He et al. (2020); Liu et al. (2021)) assumed that all data points are distinct,
i.e., ∀i, j ∈ [N] and i 6= j, xi 6= xj . Under this condition, we show in Lemma 7 in Appendix C
that for practical datasets and CNNs there always exists local minimum θ for which Assumption 1
holds. An exception is the neural collapse phenomenon that during the terminal phase of training, the
features of the final hidden layer tend to collapse to class feature means. As a result, our construction
of spurious local minima does not include those that may arise during the ending training phase when
the loss is driving towards zero.

5

Under review as a conference paper at ICLR 2023

3.2.1 DATA SPLIT

In the following, we will show that given Assumption 1, there must exist at least one location in
feature maps where the outputs of all samples can be split into two parts using a threshold such
that the two parts will behave differently under perturbations. This is not a easy task due to the
following difficulties introduced by convolutional layers. Firstly, the receptive field of each neuron in a
convolutional layer is smaller than the input image, thus at each location in feature maps, the effective
inputs (pixels in the receptive field) from distinct samples can be identical and indistinguishable.
Secondly, the activation status of hidden ReLU neurons can vary from place to place and from sample
to sample. Assumption 1 will help us to distinguish different samples. Thirdly, the filters and biases
are shared by all locations in a feature map, and one cannot perturb these parameters at a location
without affecting other places.

We assume that training loss at θ satisfies R(θ) > 0. By Lemma 8 given in Appendix C, for training
data that cannot be fit by linear models (also assumed by He et al. (2020); Liu et al. (2021)) and
popular CNN architectures, there always exists point θ such that both Assumption 1 and R(θ) > 0
hold. Moreover, by Lemma 11 in Appendix E, for squared and cross-entropy loss function l,
∂l(o(xi),yi)

∂o cannot equal to zero for all samples if R(θ) > 0, where o (xi) is the output function of
input xi given by 4. Without loss of generality, assume ui :=

∂l(o(xi),yi)
∂o(1) 6= 0 for some i ∈ [N],

where o(1) is the first component of output vector o. By optimality of θ :=
(
W l,bl

)L
l=1

, we have
∂R
∂bL1

= 1
N

∑N
i=1

∂l(o(xi),yi)
∂o(1) = 1

N

∑N
i=1 ui = 0.

We will split the outputs of all samples at layer L− 3. Given CNN parameters θ :=
(
W l,bl

)L
l=1

and
data samples {x1, x2, · · · , xN}, we consider the outputs oL−3,i (j) (i ∈ [N] , j ∈ [M]) in feature
maps of layer L− 3, where M is the number of neurons (locations) in all feature maps of layer L− 3
used in Lemma 1. For all j ∈ [M] , i ∈ [N], we denote

vji := WL−3 (j, ·) oL−4,i, wj := WL (1, 2PL−2 + j) . (6)

vji is the output at layer L−3 before adding bias and ReLU activation. Thus, at each location j ∈ [M],
there is a list (vj1, v

j
2, · · · , v

j
N). Let x̃ji be the vector composed of pixels of xi in the receptive field of

the jth location. x̃ji can be identical for distinct samples, resulting in identical vji s. Identical vji s can
also be resulted from ReLU activations that remove the difference between input samples.

In general, at each location j in the feature maps, (vj1, v
j
2, · · · , v

j
N) are organized in groups according

to their magnitudes. Assume there are gj groups in the list (vj1, v
j
2, · · · , v

j
N). Without loss of

generality, we can re-index the samples in descending order of vji and write the ordered list as
vj1 = vj2 = · · · vjm1

> vjm1+1 = · · · vjm2
> · · · > vjmgj−1+1 = · · · = vjmgj

= vjN .

Let u = (u1, u2, · · · , uN)
T and note that u 6= 0 and

∑N
i=1 ui = 0. In the following lemma, we

show that there is at least one location where the split of data samples exists. This is a combinatorial
problem which needs to deal with multiple locations and multiple ordered groups at each location,
and the groupings of samples can be arbitrary at each location.

Lemma 2. Assume that training loss R(
(
W l,bl

)L
l=1

) > 0 for squared or cross-entropy loss.
Under Assumption 1, there exist some locations j ∈ [M] where the ordered list vj1 = vj2 =

· · · vjm1
> vjm1+1 = · · · vjm2

> · · · > vjmgj−1+1 = · · · = vjmgj
= vjN can be splitted into two parts{

vj1, v
j
2, · · · , vjn

}
and

{
vjn+1, · · · , v

j
N

}
by a threshold η such that

vj1, v
j
2, · · · , vjn > η, vjn+1, v

j
n+2, · · · , v

j
N < η,

n∑
i=1

ui 6= 0. (7)

There may be more than one location where such data split exists, and we choose the one with the
biggest threshold η for later usage. Let h be the location with the biggest split threshold, and without
loss of generality, assume it is located in the first feature map of layer L− 3 (that is why we put a
special emphasis on the first and second feature maps in layers L − 2 and L − 1 in Lemma 1 and

6

Under review as a conference paper at ICLR 2023

Lemma 4). Since η for the hth location is the biggest threshold among all locations j ∈ [M], by 7,∑n
i=1 ui 6= 0 are not satisfied at locations whose thresholds are less than η, thus we have

∀j ∈ [M], j 6= h,
∑

i∈{1,2,··· ,N |vji>η}
ui = 0. (8)

An Auxiliary Lemma At each location j ∈ [M], samples are organized into groups according to
vji (i ∈ [N]). vji s in each group are equal. Let Ijq be the set of indices of samples in the qth group of
the jth location. We have the following lemma to show that

∑
i∈Ijq ui cannot equal to zero for all

groups and all locations.

Lemma 3. Under Assumption 1, for CNNs with squared or cross-entropy loss, if R(
(
W l,bl

)L
l=1

) >

0, then there must exist some j ∈ [M] and q ∈ [gj] such that
∑
i∈Ijq ui 6= 0.

Lemma 3 will be used by Lemma 2 to find data split that satisfies (7). We will prove Lemma 3
by induction. The number of groups gj at each location and the value of vji for each group can be
arbitrary. We will prove that if Lemma 3 holds for m samples, then for all possible configurations of
current groups and all ways of adding a new sample, it also holds for m+ 1 samples.

3.2.2 CONSTRUCTION OF θ′

Given the CNN parameters θ := (W l,bl)Ll=1 specified in Lemma 6 and the threshold η in Lemma
2, we will give the point θ′ :=

(
W ′l,b′l

)L
l=1

in parameter space and show that training loss at θ′ is
equal to that at θ. We only change the parameters that are related with the first and second feature
maps in layers L− 2 and L− 1, respectively, to obtain θ′, and remaining parameters are fixed. The
purpose of these parameter setting is to make R(θ′) = R(θ) and enable different behaviors under
perturbation of parameters for different parts of samples. Different settings are designed depending
on whether η ≥ −bL−31 or not. The setting for the case of η ≥ −bL−31 is illustrated in Fig.1(b),
and the setting for η < −bL−31 is shown in Fig.1(c). The following lemma informally describe the
parameter settings and its formal version is given in Lemma 9 in Appendix C).
Lemma 4. (informal). Given the CNN parameters θ := (W l,bl)Ll=1 specified in Lemma 1 (formally
Lemma 6 in Appendix C), let θ′ :=

(
W ′l,b′l

)L
l=1

, and setW ′L,bL,W ′L−1,bL−1 andW ′L−2,bL−2

in a way such that the value wj · σ(vji + bL−31) + bL1 (the original output of the first output neuron,
contributed by location j in the first feature map of layer L− 3) is not changed for every location j
and each sample i ∈ [N], no matter how big vji is relative to η and bL−31 . There are three possible
paths through which a value σ(vji + bL−31) can propagate, i.e., the paths that connect the first, second,
and third feature maps, respectively, in layers L− 2 and L− 1 (see Fig.1). If η ≥ −bL−31 , a positive
value of σ(vji + bL−31) will pass through either the first or the second path. If η < −bL−31 , a positive
value of σ(vji + bL−31) will pass through all three paths and the outputs from the first and second
paths counteract. The differentiation of paths will make it possible for different parts of samples to
behave differently under perturbation of parameters. Remaining parameters in θ keep fixed. Then,
R(θ′) = R(θ).

3.2.3 PERTURBATION OF θ′

Next, we will show that by perturbing θ′, we can decrease the training loss. We demand that
only the final output contributed by location h in the first feature map of layer L − 3, where
vj1, v

j
2, · · · , vjn > η and

∑n
i=1 ui 6= 0 happens, will be affected by the perturbation so as to decrease

the training loss. The perturbation is then designed such that a single bias in the path each vji
(with vji > η) passes through is perturbed. The final output is not affected by locations other than h
even with vji > η due to

∑n
i=1 ui = 0. The following lemma informally describe our parameter

perturbation scheme and its formal version is given in Lemma 10 in Appendix C).

Lemma 5. (informal). If η ≥ −bL−31 , perturb b′L−22 . If η < −bL−31 , perturb b′L−21 . Remaining
parameters in θ′ keep fixed. Then under Assumption 1, a training loss lower than R(θ′) is obtained
under this perturbation.

7

Under review as a conference paper at ICLR 2023

3.3 MAIN RESULTS AND DISCUSSION

Combining Lemma 1, Lemma 4 and Lemma 5, we have the following theorem.

Theorem 1. Under Assumption 1, the local minima θ :=
(
W l,bl

)L
l=1

given in Lemma 1 are spurious
if R(θ) > 0 for squared or cross-entropy loss. Due to nonnegative homogeneity of ReLU activation,
infinitely many spurious local minima exist by scaling the parameters of different layers in θ.

In the general case when the two consecutive convolutional layers we utilized are not located at the
top and there are some convolutional, average pooling, or fully connected layers between them and
the output layer, we can still construct spurious local minima using similar idea. The only difference
is the setting of parameters for layers above the two consecutive convolutional layers, and we set
them such that the output of the two consecutive convolutional layers are propagated unchanged
(except pooling operations in possible subsequent pooling layers) to the first fully connected layer,
which plays the role of layer L in Lemmas 1 and 4, and then the output of the first fully connected
layer is forwarded unchanged to the output neurons. For such constructed θ and θ′, we can show that
θ is still a local minimum, there is still R(θ′) = R(θ) and the empirical risk can be decreased by
perturbing θ′. The details will be given in Appendix D. The requirement of having two consecutive
convolutional layers may be further relaxed, and we leave it to our future work.

Remark 1: Our construction of spurious local minima shows that for practical datasets and CNNs
each local minimum of the subnetwork is associated with a spurious local minimum. Since the
output of a CNN with ReLU activations is a piece-wise linear function, and from the perspective
of fitting data samples with piece-wise linear output (Liu (2022)), the local minima of subnetworks
of a CNN (and consequently the spurious local minima of the CNN) may be common due to the
abundance of different fitting patterns. Furthermore, as suggested by Xiong et al. (2020), CNNs
have more expressivity than fully connected NNs per parameter in terms of the number of linear
regions produced. The ability of producing more linear regions implies more fitting patterns, thus we
conjecture that CNNs are more likely to produce spurious local minima than fully connected NNs of
the same size. We leave the exploration of these ideas to our future work.

4 AN EXAMPLE OF NONTRIVIAL SPURIOUS LOCAL MINIMA

In this section, we will construct an example of nontrivial local minimum in which some neurons
are inactive, which can serve as the subnetwork in Lemma 1. By Theorem 1, the associated local
minimum for the CNN that contains this subnetwork is spurious. In comparison, in He et al. (2020);
Ding et al. (2019); Goldblum et al. (2020); Liu et al. (2021) for deep ReLU networks, spurious local
minima are trivial since all ReLU neurons are active and deep neural networks are reduced to linear
predictors.

The idea is to split data samples into two groups using a hyperplane that is perpendicular to an axis,
and then fit each group of samples using different predictors. We design a CNN architecture with
appropriate parameters to generate these two predictors, and show that perturbing parameters will
increase or at least maintain the loss.

Given data samples {x1,x2, · · · ,xN}, we use a hyperplane with normal p to split the data samples.
Choose any index k ∈ [dx], we set p = (0, 0, · · · , 1, 0, · · · , 0)

T where only the kth component of
p is 1. Without loss of generality, assume the kth component of input x is in located in its first
channel. Let I =

{
i|xki = maxj∈[N] x

k
j

}
, i.e., I is the set of indices of samples having the largest

kth component. Choose one element i∗ in set I , and denote by j∗ the index of any sample with the
largest xk among xkn (n ∈ [N], n /∈ I), then we set

cp = −1

2

(
xki∗ + xkj∗

)
. (9)

For any point x on the positive side of hyperplane p, we have

σ(p · x + cp) = σ(xk − 1

2
(xki∗ + xkj∗)) = xk − 1

2
(xki∗ + xkj∗) > 0. (10)

We fit the two groups of samples in different ways using two subnetworks. Concatenating the two
subnetworks, we obtain a full CNN. The following theorem gives an informal description of its
architecture and parameters. The formal description will be given in Appendix B.

8

Under review as a conference paper at ICLR 2023

(a) level sets around θ in
Lemma 1

(b) level sets around θ′ in
Lemma 3

(c) level sets around θ1 in
Theorem 2

Figure 2: The visualization of level sets of empirical loss around specific locations in parameter space.
(a) and (b) demonstrate that θ is a spurious local minimum since R(θ′) = R(θ). (c) shows that θ1
constructed in Theorem 2 is a local minimum.

Theorem 2. (informal). Given a CNN with two subnetworks, its parameters θ1 =
(
W l,bl

)L
l=1

are
set as follows. The parameters of the first subnetwork are set such that the kth component of sample
xi (i ∈ I) is forward propagated to the final fully connected layer, and that of sample xi (i /∈ I) is
blocked. The parameters of the second subnetwork are optimized to minimize the empirical loss for
samples {xj |j ∈ [N], j /∈ I}. Then, the point θ1 is a local minimum in parameter space.

For this local minimum, the ReLU units in the first subnetwork that correspond to the kth component
of input are only activated by samples xj (j ∈ I) and are inactive for remaining samples. Thus,
the local minimum

(
W l,bl

)L
l=1

is nontrivial for which different activation patterns exist and the
resulting predictor is nonlinear. When using the local minimum θ1 constructed in Theorem 2 as the
subnetwork of θ in Lemma 1, in order to further construct θ′ shown in Lemma 4, we need to make
sure that Assumption 1 and R(θ) > 0 hold. With the same ideas as dicussed in section 3.2.1, we
can construct the second subnetwork such that there always exists point θ1 (and consequently θ) for
which both Assumption 1 and R(θ) > 0 hold for popular datasets and CNN architectures.

5 EXPERIMENTAL RESULTS

We conduct experiments on CIFAR-10 image set to verify the correctness of Theorem 1 and Theorem
2. We use two approaches to show the existence of spurious local minima. The first one is to visualize
the loss landscape around local minima θ using the technique given in Li et al. (2018). Given two
random directions δ and η, we compute the empirical losses R(θ + αδ + βη) at grid points in the
two-dimensional plane specified by δ and η, where (α, β) are the coodinates of each grid point. Then,
the level sets of empirical loss are depicted using empirical losses at these grid points. The second
approach is to compute the empirical losses around θ along many random directions and see whether
losses lower than R(θ) exist. Experimental details are given in Appendix F.

Fig.2 shows the results of the level set visualization approach. Fig.2(a) and Fig.2(b) demonstrate that
the local minimum θ constructed in Lemma 6 is spurious since R(θ′) = R(θ) and local minimum
with loss lower than R(θ′) exists. Fig.2(c) shows that the point θ1 constructed in Theorem 2 is a local
minimum. Fig.3 shows the results of random direction approach and will be given in Appendix F.

6 CONCLUSION

We have proved that convolutional layers can introduce infinite spurious local minima in the loss
landscape of deep convolutional neural networks with squared loss or cross-entropy loss. To show
this, we developed new techniques to solve the challenges introduced by convolutional layers. We
solved a combinatorial problem to demonstrate that a split of outputs of data samples is always
possible somewhere in feature maps. In this combinatorial problem, we overcame the difficulty
of arbitrary groupings of outputs of data samples caused by limited receptive fields and arbitrary
activation status of hidden neurons. We also solved the tied parameters problem, giving perturbations
of filters and biases to decrease the training loss that affect only the output of a single neuron in the
feature map.

9

Under review as a conference paper at ICLR 2023

REFERENCES

Zeyuan Allen-Zhu, Yuanzhi Li, and Zhao Song. A convergence theory for deep learning via over-
parameterization. In International Conference on Machine Learning, 2019.

Pierre Baldi and Kurt Hornik. Neural networks and principal component analysis: Learning from
examples without local minima. Neural Networks, 2(1):53–58, 1989.

Alon Brutzkus and Amir Globerson. Globally optimal gradient descent for a convnet with gaussian
inputs. In International Conference on Machine Learning, 2017.

Yann N Dauphin, Razvan Pascanu, Caglar Gulcehre, Kyunghyun Cho, Surya Ganguli, and Yoshua
Bengio. Identifying and attacking the saddle point problem in high-dimensional non-convex
optimization. In Advances in Neural Information Processing Systems, 2014.

Tian Ding, Dawei Li, and Ruoyu Sun. Spurious local minima exist for almost all over-parameterized
neural networks. Optimization online, 2019.

Felix Draxler, Kambis Veschgini, Manfred Salmhofer, and Fred A. Hamprecht. Essentially no barriers
in neural network energy landscape. In International Conference on Machine Learning, 2018.

Simon S. Du and Jason D. Lee. On the power of over-parametrization in neural networks with
quadratic activation. In International Conference on Machine Learning, 2018.

Simon S. Du, Jason D. Lee, Yuandong Tian, Barnabás Póczos, and Aarti Singh. Gradient descent
learns one-hidden-layer cnn: Don’t be afraid of spurious local minima. In International Conference
on Machine Learning, 2018.

Simon S. Du, Jason D. Lee, Haochuan Li, Liwei Wang, and Xiyu Zhai. Gradient descent finds global
minima of deep neural networks. In International Conference on Machine Learning, 2019.

C Daniel Freeman and Joan Bruna. Topology and geometry of half-rectified network optimization.
In International Conference on Learning Representations, 2017.

K. Fukumizu and S. Amari. Local minima and plateaus in hierarchical structures of multilayer
perceptrons. Neural Networks, 13:317–327, 2000.

Kenji Fukumizu, Shoichiro Yamaguchi, Yoh ichi Mototake, and Mirai Tanaka. Semi-flat minima
and saddle points by embedding neural networks to overparameterization. In Advances in Neural
Information Processing Systems, 2019.

Timur Garipov, Pavel Izmailov, Dmitrii Podoprikhin, Dmitry P Vetrov, and Andrew G Wilson. Loss
surfaces, mode connectivity, and fast ensembling of dnns. In Advances in Neural Information
Processing Systems, 2018.

R. Ge, J. D. Lee, and T. Ma. Matrix completion has no spurious local minimum. In Advances in
Neural Information Processing Systems, 2016.

M. Goldblum, J. Geiping, A. Schwarzschild, M. Moeller, and T. Goldstein. Truth or backpropaganda?
an empirical investigation of deep learning theory. In International Conference on Learning
Representations, 2020.

Ian J Goodfellow, Oriol Vinyals, and Andrew M Saxe. Qualitatively characterizing neural network
optimization problems. In International Conference on Learning Representations, 2015.

Moritz Hardt and Tengyu Ma. Identity matters in deep learning. In International Conference on
Learning Representations, 2017.

Fengxiang He, Bohan Wang, and Dacheng Tao. Piecewise linear activations substantially shape the
loss surfaces of neural networks. In International Conference on Learning Representations, 2020.

K. He, X. Zhang, S. Ren, and J. Sun. Deep residual learning for image recognition. In IEEE
Conference on Computer Vision and Pattern Recognition, 2016.

10

Under review as a conference paper at ICLR 2023

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Delving deep into rectifiers: Surpassing
human-level performance on imagenet classification. In 2015 IEEE International Conference on
Computer Vision (ICCV), pp. 1026–1034, 2015.

Gao Huang, Zhuang Liu, and Laurens van der Maaten. Densely connected convolutional networks.
In IEEE Conference on Computer Vision and Pattern Recognition, 2017.

K. Kawaguchi. Deep learning without poor local minima. In Advances in Neural Information
Processing Systems, 2016.

Abbas Kazemipour, Brett Larsen, and Shaul Druckmann. No spurious local minima in deep quadratic
networks. arXiv preprint arXiv:2001.00098, 2020.

Alex Krizhevsky, Ilya Sutskever, and Geoffrey Hinton. Imagenet classification with deep convolu-
tional neural networks. In Advances in Neural Information Processing Systems, 2012.

Thomas Laurent and James H. von Brecht. Deep linear networks with arbitrary loss: All local minima
are global. In International Conference on Machine Learning, 2018.

Y. Lecun, L. Bottou, Y. Bengio, and P. Haffner. Gradient-based learning applied to document
recognition. Proceedings of the IEEE, 86(11):2278–2324, 1998.

Hao Li, Zheng Xu, Gavin Taylor, Christoph Studer, and Tom Goldstein. Visualizing the loss landscape
of neural nets. In Advances in Neural Information Processing Systems, 2018.

Qianli Liao and Tomaso Poggio. Theory of deep learning ii: Landscape of the empirical risk in deep
learning. arXiv preprint arXiv:1703.09833, 2017.

Bo Liu. Spurious local minima are common for deep neural networks with piecewise linear activations.
IEEE Transactions on Neural Networks and Learning Systems, pp. 1–13, 2022. doi: 10.1109/
TNNLS.2022.3204319.

Bo Liu, Zhaoying Liu, Ting Zhang, and Tongtong Yuan. Non-differentiable saddle points and
sub-optimal local minima exist for deep relu networks. Neural Networks, 144:75–89, 2021.

Haihao Lu and Kenji Kawaguchi. Depth creates no bad local minima. arXiv preprint
arXiv:1702.08580, 2017.

Christian H.X. Ali Mehmeti-Gopel, David Hartmann, and Michael Wand. Ringing relus: Harmonic
distortion analysis of nonlinear feedforward networks. In International Conference on Learning
Representations, 2021.

Q. Nguyen and M. Hein. Optimization landscape and expressivity of deep cnns. In International
Conference on Machine Learning, 2018.

Maher Nouiehed and Meisam Razaviyayn. Learning deep models: Critical points and local openness.
arXiv preprint arXiv:1803.02968, 2018.

I. Safran and O. Shamir. Spurious local minima are common in two-layer relu neural networks. In
International Conference on Machine Learning, 2018.

Arsalan Sharifnassab, Saber Salehkaleybar, and S. Jamaloddin Golestani. Bounds on over-
parameterization for guaranteed existence of descent paths in shallow relu networks. In In-
ternational Conference on Learning Representations, 2020.

Karen Simonyan and Andrew Zisserman. Very deep convolutional networks for large-scale image
recognition. In International Conference on Learning Representations, 2015.

M. Soltanolkotabi, A. Javanmard, and J. D. Lee. Theoretical insights into the optimization landscape
of overparameterized shallow neural networks. IEEE Transactions on Information Theory, 65(2):
742–769, 2019.

Grzegorz Swirszcz, Wojciech Marian Czarnecki, and Razvan Pascanu. Local minima in training of
deep networks. arXiv preprint arXiv:1611.06310, 2016.

11

Under review as a conference paper at ICLR 2023

Christian Szegedy, Wei Liu, Yangqing Jia, Pierre Sermanet, Scott Reed, Dragomir Anguelov, Dumitru
Erhan, Vincent Vanhoucke, and Andrew Rabinovich. Going deeper with convolutions. In IEEE
Conference on Computer Vision and Pattern Recognition, 2015.

Huan Xiong, Lei Huang, Mengyang Yu, Li Liu, Fan Zhu, and Ling Shao. On the number of linear
regions of convolutional neural networks. In International Conference on Machine Learning, 2020.

Chulhee Yun, Suvrit Sra, and Ali Jadbabaie. Global optimality conditions for deep neural networks.
In International Conference on Learning Representations, 2018.

Chulhee Yun, Suvrit Sra, and Ali Jadbabaie. Small nonlinearities in activation functions create bad
local minima in neural networks. In International Conference on Learning Representations, 2019.

Li Zhang. Depth creates no more spurious local minima. arXiv preprint arXiv:1901.09827, 2019.

Yaoyu Zhang, Yuqing Li, Zhongwang Zhang, Tao Luo, and Zhi-Qin John Xu. Embedding principle:
A hierarchical structure of loss landscape of deep neural networks. Journal of Machine Learning,
1:60–113, 2022.

Mo Zhou, Tianyi Liu, Yan Li, Dachao Lin, Enlu Zhou, and Tuo Zhao. Toward understanding the
importance of noise in training neural networks. In International Conference on Machine Learning,
2019.

Yi Zhou and Yingbin Liang. Critical points of neural networks: Analytical forms and landscape
properties. In International Conference on Learning Representations, 2018.

12

Under review as a conference paper at ICLR 2023

A PARAMETER MATRICES FOR AVERAGE POOLING AND FULLY CONNECTED
OPERATIONS

We give a one-dimensional example to show how to formulate the average pooling operation as a
matrix-vector product. Given a one-dimensional input ol−1 = (a, b, c, d)T , suppose the patches for
pooling are non-overlapping, which is usually the case, and the patch size is 2. The output is then
ol = (1

2 (a+ b), 12 (c+ d))T , which is equivalent to the following matrix-vector product

ol =
1

2

(
1 1 0 0
0 0 1 1

)abc
d

 . (11)

Thus, W l = 1
2

(
1 1 0 0
0 0 1 1

)
. Parameter matrix for average pooling operation in two-dimensional

case can be obtained using similar idea by converting the feature maps in input layer into a vector,
and the nonzero entries in each row of W l are not all adjacent.

For fully connected layers, there are no constraints on the entries of parameter matrixW l ∈ Rnl×nl−1 .

B AN EXAMPLE OF NONTRIVIAL LOCAL MINIMA FOR CNNS

We fit the two groups of samples separated by the hyperplane with normal p in different ways. For
samples {xj |j ∈ [N], j /∈ I}, we use a subnetwork with parameter matrix W2 to fit them, i.e., the
output of this subnetwork is

oj = W2x̂j , ∀j ∈ [N], j /∈ I, (12)
where x̂j is the input augmented with scalar 1 (at the same time weight matrices are augmented to
include biases (denoted as Ŵ l) to make notations simple).

We use a subnetwork with parameter matrix W1 to fit data samples {xj |j ∈ I}, and W1 is given by

W1(i, ·)x̂j = W2(i, ·)x̂j + λi(p
Txj + cp), j ∈ I, i ∈ [dy]. (13)

Then, the output is

oj = W1x̂j = W2x̂j + (p · xj + cp) ·
(
λ1, λ2, . . . , λdy

)T
, j ∈ I. (14)

{λi, i ∈ [dy]} are constants determined as follows. If there is only one sample xi∗ in set I with target
output yi∗ and the loss function is the squared loss, there must exist ỹi∗ such that l (ỹi∗ , yi∗) = 0. Let
oi∗ = ỹi∗ , then we have ỹi∗(j) = W2(j, ·)x̂i∗ + λj (p · xi∗ + cp) ,∀j ∈ [dy], which leads to

λj =
ỹi∗(j)−W2(j, ·)x̂i∗

xki∗ + cp
, ∀j ∈ [dy] . (15)

If there are multiple elements in set I or the loss function is the cross-entropy loss, the parameters
{λj , j ∈ [dy]} are determined by

{λj , j ∈ [dy]} = argmin{µj , j∈[dy]}

∑
i∈I

l
(
W2x̂i +

(
xki + cp

) (
µ1, µ2, · · · , µdy

)T
, yi
)
. (16)

Concatenating the two subnetworks, we obtain a full CNN. The following theorem gives its architec-
ture and parameters

(
W l,bl

)L
l=1

, and shows that θ1 :=
(
W l,bl

)L
l=1

is a local minimum. For ease of
presentation, we ignore pooling layers at first.
Theorem 3. (formal version of Theorem 2). Given a CNN, assume the number of filters in each
convolutional layer satisfies Tl ≥ 2 (l ∈ [L− 1]), and the size of each convolutional layer satisfies
nl − Pl−1 ≥ dy (l ∈ [L − 1]). Its parameters are given as follows. The weight matrix of the first
filter in the first convolutional layer is

W 1(1 : P0, 1 : P0) = IdP0×P0
, (17)

13

Under review as a conference paper at ICLR 2023

where IdP0×P0
is the identity matrix of size P0 × P0, P0 is the number of patches in the input used

for convolution. The corresponding bias is

b11 = cp. (18)

The filters and biases of higher convolution layers are set as

W l(1 : Pl−1, 1 : Pl−1) = IdPl−1×Pl−1
, bl1 = 0, l ∈ {2, 3, · · · , L− 1} (19)

to forward propagate the first feature map of o1 (xi) unchanged.

The subnetwork with parameter matrix W2 is formed by the part of CNN that removes the first filter
and all activation units in each layer, and its output is given as follows. For all j ∈ [N] and j /∈ I ,

oj = W2x̂j :=WL(·, PL−2 + 1 : nL−1)[WL−1(PL−2 + 1 : nL−1, PL−3 + 1 : nL−2) · · ·
(W 1(P0 + 1 : n1, ·)xj + b1(P0 + 1 : n1)) + · · ·+ bL−1(PL−2 + 1 : nL−1)] + bL.

(20)
W2 is optimized to minimize

∑
i∈[N],

i/∈I
l (W2x̂i, yi).

The final fully connected layer is set as

WL (i, 1 : PL−2) = (0, · · · , λi, · · · , 0) , i ∈ [dy], (21)

where only the kth component connecting to the first subnetwork is nonzero and equals to λi.

Sufficiently large positive constants cl (l ∈ [L− 1]) are added to the biases of each convolutional
layer in the second subnetwork such that the involved ReLU units are all activated. The biases of top
fully connected layer bLi (i ∈ [dy]) are then substituted by bLi −∆oL(i), where ∆oL(i) is recursively
computed as

∆o1(i) = c1, i ∈ [P0 + 1 : n1],

∆ol(i) =
∑

j∈[Pl−2+1:nl−1]

W l(i, j)∆ol−1(j) + cl, i ∈ [Pl−1 + 1 : nl], l ∈ {2, 3, · · · , L− 1} ,

∆oL(i) =
∑

j∈[PL−2+1:nL−1]

WL(i, j)∆oL−1(j), i ∈ [dy].

(22)

All remaining parameters are set to zeros. Then, the point θ1 =
(
W l,bl

)L
l=1

specified above is local
minimum in parameter space.

If pooling layers are used in CNNs, we can adjust the parameters in Theorem 3 to reflect the effects
of parameter matrices of pooing layers. However, the adjusted

(
W l,bl

)L
l=1

is still a local minimum.

The condition for the number of filters is used to contain two subnetworks. The condition for the
size of each convolutional layers is used to make sure θ1 presented in Theorem 3 meets the full rank
requirement. Because the size of each convolutional layer satisfies nl − Pl−1 ≥ dy (l ∈ [L− 1]), the
matrix W2 ∈ Rdy×dx for the second predictor is full rank around θ1 (see the proof of Theorem 3 in
Appendix G.9). These conditions are easily satisfied by most CNNs used in practice.

C LEMMAS FOR CONSTRUCTION OF SPURIOUS LOCAL MINIMA

The following Lemma 6 descibe the construction local minima θ, and it is the formal version of
Lemma 1 in section 3.1.

Lemma 6. Given a CNN whose numbers of filters in the last two convolutional layers satisfy
TL−1 ≥ 3, TL−2 ≥ 3, the parameters of its last three layers are set as follows to propagate oL−3(x)
to the output layer. The first and second feature maps in both layer L− 2 and layer L− 1 have no

14

Under review as a conference paper at ICLR 2023

contributions to the final output.

WL (·, 1 : 2PL−2) = 0,

WL−1 (i, i) = 1, i ∈ [min (nL−1, nL−2)] ; WL−1 (i, j) = 0, i 6= j,

WL−2 (i, ·) = 0, i ∈ [2PL−3] ; WL−2 (2PL−3 + i, i) = 1, i ∈ [min (nL−2 − 2PL−3, nL−3)] ,

WL−2 (2PL−3 + i, j) = 0, i 6= j, i ∈ [min (nL−2 − 2PL−3, nL−3)] ,

bL−1 = 0, bL−2 = 0.
(23)

The remaining parameters, including WL(·, 2PL−2 + 1 : end), bL and
(
W l,bl

)L−3
l=1

, constitute a
subnetwork, and they locally minimize the following training loss when fixing those parameters in
(23),

R̃(
(
W l,bl

)L−3
l=1

,WL(·, 2PL−2 + 1 : end), bL)

:=
1

N

N∑
i=1

l
(
WLIL−1,i

(
WL−1 · · ·

(
W 1xi + b1

)
+ · · ·+ bL−1

)
+ bL,yi

)
.

(24)

Assume that Î l,i 6= 0 for all l ∈ [L − 1] and i ∈ [N]. Then, the point θ :=
(
W l,bl

)L
l=1

obtained
above is a local minimum in parameter space.

The requirement in Lemma 6 that Î l,i 6= 0 for all l ∈ [L−1] and i ∈ [N] is used to prevent degenerate
cases in which all ReLU neurons in a layer are deactivated for some samples. The nondegenerate
cases always exist since we can fix sufficiently big biases such that all ReLU neurons are turned on
and then train the subnetwork.

The following Lemma 7 shows that for practical datasets and popular CNN architectures, there always
exists point θ in parameter space where Assumption 1 holds.

Lemma 7. For CNNs whose number of feature maps in each convolutional and average pooling
layer is greater than or equals to the number of input channels n0 and width of each fully connected
layer is bigger than or equals to that of output layer, and datasets in which all data points are distinct,
i.e., ∀i, j ∈ [N] and i 6= j, xi 6= xj , if the distinctness of samples is preserved after each pooling
operation of CNNs when directly applied to the input, then there always exists point θ for which
Assumption 1 holds.

For popular CNN architectures, such as AlexNet and VGG used in CIFAR10 and ImageNet image
classifiction tasks, the number of feature maps in each layer is greater than the number of input
channels, and the output layer is indeed narrower than hidden fully connected layers. For practical
datasets, the distinctness of samples is usually preserved after several pooling operations. Thus, the
conditions in Lemma 7 are reasonable in practice.

Proof. We consider the general case in which the two consecutive convolutional layers we utilized are
not located at the top, and there are some convolutional, pooling, or fully connected layers between
them and the final output layer. For CNNs whose number of feature maps in each convolutional
and average pooling layer is greater than or equals to the number of input channels, we can set the
parameters

(
W l,bl

)L
l=1

such that each convolutional layer forward propagates its input unchanged
using the first n0 feature maps and the remaining feature maps are set to zeros using zero filters and
biases. Also, since the width of each fully connected layer is bigger than or equals to that of output
layer, we use the first dy neurons in the first fully connected layer to perform the fully connection
operation, and subsequent fully connected layers forward propagate their inputs unchanged to the
final output neurons. Sufficiently large biases are used in the first convolutional layer and the first
fully connected layer such that all ReLU neurons in the first n0 feature maps of convolutional and
pooling layers and the first dy ReLU neurons in hidden fully connected layers are turned on, and their
effects can be cancelled at the final output layer (as done for the second subnetwork in 22 in Theorem
3).

15

Under review as a conference paper at ICLR 2023

By doing so, the training loss of the CNN can be expressed as R(θ) = 1
N

∑N
i=1 l

(
W fcW poolxi,yi

)
,

where W pool is a constant matrix that characterizes the average pooling operations from input to the
first fully connected layer, and W fc characterizes the computation in the first fully connected layer.
The CNN has been reduced to a linear classifier and the corresponding point θ in parameter space
becomes a local minimum when minimizing 1

N

∑N
i=1 l

(
W fcW poolxi,yi

)
with respect to W fc.

The only operation that can affect the distinctness of oL−1,i (i ∈ [N]) at layerL−1 (or more generally,
the two consecutive convolutional layers used in the construction of spurious local minima) is then the
pooling operation. If the distinctness of samples xi (i ∈ [N]) is preserved after each pooling operation
of the CNN when directly applied to xi (i.e.,W poolxi), then ∀i, j ∈ [N] and i 6= j, oL−1,i 6= oL−1,j ,
hence Assumption 1 holds for θ.

The following Lemma 8 shows that for training data that cannot be fit by linear models and popular
CNN architectures, point θ in parameter space with training loss R(θ) > 0 always exists.
Lemma 8. For training data that cannot be fit by linear models, and CNNs whose number of feature
maps in each convolutional and average pooling layer is greater than or equals to the number of input
channels n0 and width of each fully connected layer is bigger than or equals to that of output layer,
there always exists a point θ =

(
W l,bl

)L
l=1

in parameter space such that training loss R(θ) > 0.

The point θ =
(
W l,bl

)L
l=1

in Lemma 8 can be the same as that in Lemma 7. Therefore, combining
the two lemmas, there exists point θ where both Assumption 1 and R(θ) > 0 hold.

Most practical datasets, such as CIFAR10 and ImageNet, are complex and cannot be fit by linear
models. Thus, the conditions in Lemma 8 are reasonable in practice.

Proof. Let W ? ∈ Rdy×dx is a local minimizer of 1
N

∑N
i=1 l (Wxi,yi), where l is the loss func-

tion. For training data that cannot be fit by linear models, we have 1
N

∑N
i=1 l (W

?xi,yi) > 0.
We use the same parameter settings as in the proof of Lemma 7, and then the training loss
of CNN is expressed as R(θ) = 1

N

∑N
i=1 l

(
W fcW poolxi,yi

)
. Since 1

N

∑N
i=1 l (W

?xi,yi) =

minW∈Rdy×dx
1
N

∑N
i=1 l (Wxi,yi) > 0, we have R(θ) > 0.

The following Lemma 9 descibe the construction the point θ′, and it is the formal version of Lemma
4 in section 3.2.2.
Lemma 9. Given the CNN parameters θ := (W l,bl)Ll=1 specified in Lemma 6, let θ′ :=(
W ′l,b′l

)L
l=1

. If η ≥ −bL−31 , set

W ′L (1, PL−2 + 1 : 2PL−2) = WL (1, 2PL−2 + 1 : 3PL−2) ,

W ′L (1, 1 : PL−2) = WL (1, 2PL−2 + 1 : 3PL−2) , W ′L (1, 2PL−2 + 1 : 3PL−2) = 0T ,

W ′L (2 : dy, 1 : 2PL−2) = 0,

W ′L−1 (i, i) = −1, i ∈ [PL−3] ; W ′L−1 (i, i) = +1, i ∈ {PL−3 + 1 : 2PL−3} ,
b′L−11 = η + bL−31 , b′L−12 = η + bL−31 ,

W ′L−2 (i, i) = −1, i ∈ [PL−4] ; W ′L−2 (PL−3 + i, i) = +1, i ∈ [PL−4] ,

b′L−31 = − min
i∈[N], j∈[PL−4]

vji , b′L−21 = η + b′L−31 ;

b′L−22 = −η − b′L−31 ; b′L1 = bL1 −
PL−2∑
j=1

wj
(
η + bL−31

)
.

(25)

16

Under review as a conference paper at ICLR 2023

If η < −bL−31 , set

W ′L (1, 1 : PL−2) = WL (1, 2PL−2 + 1 : 3PL−2) ,

W ′L (1, PL−2 + 1 : 2PL−2) = −WL (1, 2PL−2 + 1 : 3PL−2) , W ′L (2 : dy, 1 : 2PL−2) = 0;

W ′L−1(i, i) = 1, i ∈ [PL−3] ; W ′L−1(i, i) = 1, i ∈ [PL−3 + 1 : 2PL−3] ;

W ′L−1(i, i) = 1, i ∈ [2PL−3 + 1 : 3PL−3] ,

W ′L−2(i, i) = 1, i ∈ [PL−4] ; W ′L−2(PL−3 + i, i) = 1, i ∈ [PL−4] ,

b′L−31 = − min
i∈[N], j∈[PL−4]

vji , b′L−21 = −η − b′L−31 , b′L−22 = −η − b′L−31 ,

b′L−23 = −η − b′L−31 , b′L−11 = 0, b′L−12 = 0, b′L−13 = η + bL−31 ; b′Li = bLi , i ∈ [dy].
(26)

Remaining parameters in θ keep fixed. Then, R(θ′) = R(θ).

The purpose of introducing b′L−31 is to make σ(vji + b′L−31) ≥ 0 for all i ∈ [N], j ∈ [PL−4].

Next, we show that by perturbing θ′, we can decrease the training loss. We use different perturbation
schemes for different cases of η. The following Lemma 10 descibe the perturbation scheme, and it is
the formal version of Lemma 5 in section 3.2.3.

Lemma 10. If η ≥ −bL−31 , perturb b′L−22 = −η − b′L−31 as

b′L−22 → b′L−22 + δb = −η − b′L−31 + δb. (27)

If η < −bL−31 , perturb b′L−21 = −η − b′L−31 as

b′L−21 −→ b′L−21 + δb = −η − b′L−31 + δb. (28)

Remaining parameters in θ′ keep fixed. Then under Assumption 1, a training loss lower than R(θ′) is
obtained under this perturbation with a proper sign of δb.

D CONSTRUCTION OF SPURIOUS LOCAL MINIMA: THE GENERAL CASE

When the two consecutive convolutional layers we utilized are not located at the top, and there are
some convolutional, pooling, or fully connected layers between the two consecutive convolutional
layers used in our construction and the final output layer, we can still construct spurious local minima
using settings similar to Lemmas 6, 9 and 10. We let the first fully connected layer play the role of
layer L in Lemmas 6 and 9, and set the parameters of layers above the two consecutive convolutional
layers such that the output of the two consecutive convolutional layers are propagated unchanged
(except the pooling operations in subsequent pooling layers) to the first fully connected layer, whose
output is then forwarded invariantly to the final output neurons. Similar to the proof of Lemma 7, this
is always possible by utilizing the minimal widths among subsequent convolutional layers and fully
connected layers, respectively.

Then, by reserving the first two feature maps in layers starting from the two consecutive convolutional
layers and minimizing the loss of the remaining subnetwork, we can obtain a local minimum θ. By
setting the parameters connected to the two consecutive convolutional layers as in Lemma 9, we can
obtain θ′. The positive value of σ(vji + bL−31) may pass through different paths as before for different
location j. If there are average pooling layers above the two consecutive convolutional layers, since
average pooling operation is linear, the average poolings in feature maps of different paths are finally
aggregated in the first fully connected layer, producing an output equal to that of θ. Therefore, there
is still R(θ′) = R(θ). The perturbation scheme is the same as in Lemma 10, and the perturbation
will persist after passing through the linear average pooling operations, thus the empirical risk can be
decreased by perturbing θ′ as before.

17

Under review as a conference paper at ICLR 2023

E MORE AUXILIARY LEMMAS

Denote ui :=
∂l(o(xi),yi)
∂o(1) and oi := oL,i(1) =

∑M
j=1 w

jσ
(
vji + bL−3tj

)
+ bL1 , where bL−3tj is the

bias associated with the feature map in which location j resides. We have the following lemma for
squared and cross-entropy loss.

Lemma 11. For convolutional neural networks with squared loss or cross-entropy loss, the follow-
ings can be achieved through perturbing WL(1, ·) under Assumption 1, where o′i and u′i denote,
respectively, oi and ui after perturbation.

1. o′i 6= o′j if oi = oj (i, j ∈ [N], i 6= j).

2. u′i 6= 0 if ui = 0 (i ∈ [N]).

3. u′i 6= u′j or u′i + u′j 6= 0 if ui = uj or ui + uj = 0, respectively, (i, j ∈ [N], i 6= j).

4. u = (u1, u2, · · · , uN)
T 6= 0 if R = 1

N

∑N
i=1 l (oi,yi) > 0.

5. Nonzero gaps between o′is or u′is can still exist after subsequent perturbations.

The maintenance of nonzero gaps between o′is or u′is guarantees that o′i 6= o′j or u′i 6= u′j etc. still
hold after subsequent perturbations.

In the following, we absorb biases into weights and the CNN output is written as oi =
WLIL−1,iWL−1 · · · I1,iW 1xi. Here, we omit the hat on augmented variables for notational simplic-
ity, and the exact meaning of involved symbols is clear from context. The following two lemmas will
be used to prove u′i 6= u′j or u′i + u′j 6= 0 (i, j ∈ [N], i 6= j) in Lemma 11 for cross-entropy loss.

Lemma 12. For cross-entropy loss, if ui = uj for two samples xi,xj (i 6= j) and
IL−1,iWL−1 · · ·W 1xi = αIL−1,jWL−1 · · · I1,jW 1xj (α 6= 0, α 6= 1), then under Assumption 1,
u′i 6= u′j can be achieved through perturbing WL(1, ·).

Lemma 13. For cross-entropy loss, if ui + uj = 0 for two samples xi,xj (i 6= j) and
IL−1,iWL−1 · · ·W 1xi = αIL−1,jWL−1 · · · I1,jW 1xj (α 6= 0, α 6= 1), then under Assumption 1,
u′i + u′j 6= 0 can be achieved through perturbing WL(1, ·).

F EXPERIMENTAL DETAILS

We use CIFAR-10 image set to train CNNs, which consists of 10 classes and 50000 training images
of size 32 × 32. The CNN used in our experiments has 7 convolutional layers, with the number
of channels being 64, 64, 128, 128, 256, 256, 256, respectively, and no pooling layers are used. The
convolution filters are all 3×3. Each convolutional layer is followed by a ReLU layer. The subnetwork
in Lemma 6 is trained by Adam optimizer with 150 epochs, with a learning rate of 0.001 and weight
decay of 0.0005. The subnetwork W2 in Theorem 3 is trained by Adam optimizer with 500 epochs,
with a learning rate of 0.0001 and weight decay of 0.0005. Both subnetworks use the Kaiming
initialization (He et al. (2015)). The biggest threshold η in Lemma 2 is found to be 6.8915.

Fig.3 shows the results of random direction approach.

G MISSING PROOFS

For the proofs in the following sections, we assume that the perturbation of network parameters
for a differentiable local minimum θ =

(
W l,bl

)L
l=1

is very small such that the activation patterns
I l,i (l ∈ [L− 1], i ∈ [N]) will keep constant.

18

Under review as a conference paper at ICLR 2023

(a) variation of empirical
loss in random directions
around θ in Lemma 1

(b) variation of empirical
loss in random directions
around θ′ in Lemma 3

(c) variation of empirical
loss in random directions
around θ1 in Theorem 2

Figure 3: The variation of empirical loss in 200 random directions around specific locations in
parameter space. In (b), some directions have losses lower than R(θ′) = R(θ). (a) and (b) together
demonstrate that θ is a spurious local minimum. (c) shows that θ1 constructed in Theorem 2 is a local
minimum.

G.1 PROOF OF LEMMA 6

Proof. When parameters are perturbed as
(
W l,bl

)L
l=1
−→

(
W l + δW l,bl + δbl

)L
l=1

, the output
after perturbation is as follows,

o′ (xi) := o′L,i =
(
ŴL + δŴL

)
ÎL−1,i

(
ŴL−1 + δŴL−1

)
ÎL−2,i · · ·

(
Ŵ 1 + δŴ 1

)
x̂i

= (ŴLÎL−1,iŴL−1ÎL−2,i · · · Ŵ 1 + δF i)x̂i, ∀i ∈ [N],
(29)

where δF i = δŴLÎL−1,iŴL−1ÎL−2,i · · · Ŵ 1 + ŴLÎL−1,iδŴL−1ÎL−2,i · · · Ŵ 1 + · · · +
δŴLÎL−1,iδŴL−1ÎL−2,i · · · δŴ 1.

The training loss after perturbation is

R((W l + δW l,bl + δbl)Ll=1) =
1

N

N∑
i=1

l (o′ (xi) ,yi)

=
1

N

N∑
i=1

l
(
ŴLÎL−1,iŴL−1ÎL−2,i · · · Ŵ 1x̂i + δF ix̂i,yi

)
.

(30)

Since for every sample the output of each layer is nondegenerate,
when minimizing R̃(

(
W l,bl

)L−3
l=1

,WL(·, 2PL−2 + 1 : end), bL) :=

1
N

∑N
i=1 l

(
ŴLÎL−1,iŴL−1ÎL−2,i · · · Ŵ 1x̂i,yi

)
in (24), the space of o (xi) has been fully

explored by ŴLÎL−1,iŴL−1 · · · Ŵ 1 in the neighborhood during minimization. Therefore,
R((W l + δW l,bl + δbl)Ll=1) cannot be lower than R((W l,bl)Ll=1) despite the perturbation in δF i,
and

(
W l,bl

)L
l=1

is thus a local minimum in parameter space.

G.2 PROOF OF LEMMA 2

Proof. At a location j ∈ [M] (more specifically, M :=
min (nL−1 − 2PL−2, nL−2 − 2PL−3, nL−3)), if there exist some groups in the ordered list
of vji (i ∈ [N]) such that

∑
i∈Ijq ui 6= 0, and suppose G1 =

{
vjmq+1, v

j
mq+2, · · · , vjmq+1

}
is

the first such group in the ordered list, we can set η = 1
2

(
vjmq+1+1 + vjmq+1

)
, which is the

midpoint of the gap between group G1 and the next group, and set n = mq+1. We then have∑n
i=1 ui =

∑mq

i=1 ui +
∑
i∈G1

ui =
∑
i∈G1

ui 6= 0. The requirements in (7) are satisfied and we
have found a split for data samples.

If for every group q ∈ [gj] at location j, there is
∑
i∈Ijq ui = 0, we have to explore other locations

in feature maps to see whether there exist such splits. According to Lemma 3,
∑
i∈Ijq ui = 0

19

Under review as a conference paper at ICLR 2023

cannot happen for every group q and every location j, and there must exist some locations where∑
i∈Ijq ui 6= 0 for some groups. As a result, we can split data samples as before at these locations.

There may be more than one location where such data split exists, and we choose the one with the
biggest threshold η and use it in the perturbation of training loss. Let h be the location having the
biggest split threshold, we then have

∀j ∈ [M], j 6= h,
∑

i∈{1,2,··· ,N |vji>η}
ui = 0. (31)

G.3 PROOF OF LEMMA 9

Proof. There are two possible cases for η : η ≥ −bL−31 or η < −bL−31 , which will be treated
differently in the following.

In order to compare the training losses at θ and θ′, we need to compute the output o′ (xi) := o′L,i

obtained by θ′. We will give the computation of its first component o′1 (xi) in detail. We only need
to compute those terms in o′1 (xi) that are affected by the parameter settings in (25) and (26), and
denote by õ′ (xi) the sum of such terms.

If η ≥ −bL−31 , only the first and the second feature maps in layers L− 1 and L− 2 are involved. Let
o′L−3,i := σ(WL−3 (1 : PL−4, ·) oL−4,i + b′L−31 1PL−4

), where 1PL−4
is the vector of size PL−4

whose components are all 1s. o′L−3,i is the output of the first feature map at layer L − 3 using
the new bias b′L−31 . Since WL−3 (j, ·) oL−4,i + b′L−31 ≥ 0 for all i ∈ [N], j ∈ [PL−4], there is
o′L−3,i = WL−3 (1 : PL−4, ·) oL−4,i + b′L−31 1PL−4

. Then, the output õ′ (xi) is

õ′ (xi) =W ′L (1, 1 : PL−2)

σ
(
W ′L−1 (1 : PL−2, 1 : PL−3)

σ
(
W ′L−2 (1 : PL−3, 1 : PL−4)o′L−3,i + b′L−21 1PL−3

)
+ b′L−11 1PL−2

)
+

W ′L (1, PL−2 + 1 : 2PL−2)

σ
(
W ′L−1 (PL−2 + 1 : 2PL−2, PL−3 + 1 : 2PL−3)

σ
(
W ′L−2 (PL−3 + 1 : 2PL−3, 1 : PL−4)o′L−3,i + b′L−22 1PL−3

)
+ b′L−12 1PL−2

)
+ b′L1 .

(32)

For notational simplicity, denote W ′L (1, i) (i ∈ [PL−2]) as wi, and note that vji :=
WL−3 (j, ·) oL−4,i, (j ∈ [PL−4]). Using (25), we have

õ′ (xi) =

PL−2∑
j=1

[wjσ
(
−σ
(

(−vji − b
′L−3
1) + η + b′L−31

)
+ η + bL−31

)
+

wjσ
(
σ
(

(vji + b′L−31)− η − b′L−31

)
+ η + bL−31

)
− wj

(
η + bL−31

)
] + bL1

=

PL−2∑
j=1

wj · z′j + bL1 ,

(33)

where
z′j :=σ

(
−σ
(

(−vji − b
′L−3
1) + η + b′L−31

)
+ η + bL−31

)
+

σ
(
σ
(

(vji + b′L−31)− η − b′L−31

)
+ η + bL−31

)
−
(
η + bL−31

)
.

(34)

We also denote
zj := σ(vji + bL−31), (35)

and thus the partial output obtained from θ is

õ (xi) =

PL−2∑
j=1

wj · zj + bL1 . (36)

20

Under review as a conference paper at ICLR 2023

There are three possible cases for the value of vji . Note that we already have η + bL−31 ≥ 0 if
η ≥ −bL−31 .

1) vji ≥ η.
In this case, we have vji − η ≥ 0 and vji + bL−31 ≥ vji − η ≥ 0, then

z′j = σ(η + bL−31) + σ(vji − η + η + bL−31)−
(
η + bL−31

)
= vji + bL−33 = zj > 0, ∀j ∈ [PL−2] .

(37)

2) −bL−31 ≤ vji < η .
We have −vji + η > 0. By (34) and vji + bL−31 ≥ 0, we then have

z′j = σ
(
−
(
−vji + η

)
+ η + bL−31

)
+ σ

(
η + bL−31

)
−
(
η + bL−31

)
= σ(vji + bL−31) = zj ≥ 0, ∀j ∈ [PL−2] .

(38)

3) vji < −b
L−3
1 .

In this case, we have vji < η, vji + bL−31 < 0, then

z′j = σ
(
vji − η + η + bL−31

)
+ σ

(
η + bL−31

)
−
(
η + bL−31

)
= σ

(
vji + bL−31

)
= 0 = zj , ∀j ∈ [PL−2] .

(39)

In all three possible cases, we have obtained z′j = zj ,∀j ∈ [PL−2]. Therefore, õ′ (xi) =
∑PL−2

j=1 wj ·
zj + bL1 = õ (xi) , ∀i ∈ [N]. We can obtain ok(xi) = o′k(xi) (∀i ∈ [N] ,∀k ∈ [dy], k 6= 1) for
remaining output components since W ′L (2 : dy, 1 : 2PL−2) = 0. The outputs are thus not changed,
so does the training loss.

We now discuss the case of η < −bL−31 . Denote wi := WL (1, 2PL−2 + i) ,∀i ∈ [PL−2]. The
output õ′ (xi) that is affected by the parameter setting in (26) is as follows,

õ′ (xi) =W ′L (1, 1 : PL−2)

σ
(
W ′L−1 (1 : PL−2, 1 : PL−3)

σ
(
W ′L−2 (1 : PL−3, 1 : PL−4)o′L−3,i + b′L−21 1PL−3

)
+ b′L−11 1PL−2

)
+

W ′L (1, PL−2 + 1 : 2PL−2)

σ
(
W ′L−1 (PL−2 + 1 : 2PL−2, PL−3 + 1 : 2PL−3)

σ
(
W ′L−2 (PL−3 + 1 : 2PL−3, 1 : PL−4)o′L−3,i + b′L−22 1PL−3

)
+ b′L−12 1PL−2

)
+

W ′L (1, 2PL−2 + 1 : 3PL−2)

σ
(
W ′L−1 (2PL−2 + 1 : 3PL−2, 2PL−3 + 1 : 3PL−3)

σ
(
W ′L−2 (2PL−3 + 1 : 3PL−3, 1 : PL−4)o′L−3,i + b′L−23 1PL−3

)
+ b′L−13 1PL−2

)
+ b′L1 .

(40)
Using (26), we have

õ′ (xi) =

pL−2∑
j=1

wj [σ
(
σ
(
vji + b′L−31 − η − b′L−31

))
−σ
(
σ
(
vji + b′L−31 − η − b′L−31

))
+σ
(
σ
(
vji + b′L−31 − η − b′L−31

)
+ η + bL−31

)
] + b′L1 .

=

pL−2∑
j=1

wjz′j + bL1 ,

(41)

21

Under review as a conference paper at ICLR 2023

where
z′j :=σ

(
σ
(
vji + b′L−31 − η − b′L−31

))
−σ
(
σ
(
vji + b′L−31 − η − b′L−31

))
+σ
(
σ
(
vji + b′L−31 − η − b′L−31

)
+ η + bL−31

)
.

(42)

There are also three possible cases for the value of vji . Note that we already have η+ bL−31 < 0 when
η < −bL−31 .
1) vji ≥ −b

L−3
1 .

In this case, using vji − η > 0, vji + bL−31 ≥ 0 and (42), we have

z′j =
(
vji − η

)
−
(
vji − η

)
+ σ

(
vji + bL−31

)
= vji + bL−31 = zj ≥ 0, ∀j ∈ [pL−2] .

(43)

2) η ≤ vji < −b
L−3
1 .

Using vji − η ≥ 0, vji + bL−31 < 0, we have

z′j =
(
vji − η

)
−
(
vji − η

)
+ σ

(
vji + bL−31

)
= 0 = zj , ∀j ∈ [pL−2] .

(44)

3) vji < η.
Using vji − η < 0, vji + bL−31 < 0, we have

z′j = σ
(
η + bL−31

)
= 0 = zj = σ

(
vji + bL−31

)
, ∀j ∈ [pL−2] . (45)

Therefore, in all possible cases of η and vji , the output o′1 (xi) = o1 (xi) ,∀i ∈ [N]. We have
ok(xi) = o′k(xi) (∀i ∈ [N] ,∀k ∈ [dy], k 6= 1) for remaining output components. As a result, the
training loss satisfies R (θ) = R (θ′).

G.4 PROOF OF LEMMA 10

Proof. We will show that by perturbing θ′, the training loss can be decreased. We use different
perturbation schemes to show this for different cases of η.

If η ≥ −bL−31 , we only perturb b′L−22 = −η − b′L−31 as

b′L−22 → b′L−22 + δb = −η − b′L−31 + δb. (46)

Under this perturbation, the output of each sample is perturbed as follows according to different cases
of vji .
1) vji ≥ η.
In this case, after perturbation, by modifying (34) we have

z′j = σ
(
σ(vji − η + δb) + η + bL−31

)
.

Since η is at the midpoint of a gap between adjacent vji s (as indicated in the proof of Lemma 2), there
is vji > η, hence for sufficiently small perturbation δb, vji − η + δb > 0 and vji + bL−33 + δb > 0
hold. Therefore,

z′j = vji + bL−31 + δb = zj + δb, ∀j ∈ [PL−2] . (47)

2) −bL−31 ≤ vji < η.
Since vji − η + δb < 0, the perturbation δb does not pass through the ReLU activation,

z′j = vji + bL−31 = zj , ∀j ∈ [PL−2] . (48)

22

Under review as a conference paper at ICLR 2023

3) vji < −b
L−3
1 .

In this case, vji − η + δb < 0, then

z′j = 0 = zj , ∀j ∈ [PL−2] . (49)

Combining the above three cases, it is found that the output o′1 (xi) is perturbed only if vji > η.
Correspondingly, the perturbation of output is

δo′1 (xi) = δõ′ (xi) =

PL−2∑
j=1

wj · δb · I
(
vji > η

)
, (50)

where I () is the indicator function. Other components of output do not change under this perturbation
since W ′L (2 : dy, 1 : 2PL−2) = 0. The training loss is perturbed as

δR′ := R(θ′+ δθ′)−R(θ′) =
1

N

N∑
i=1

∂l (o′ (xi) , yi)
∂o1

· δo′1 (xi) =
1

N

N∑
i=1

∂l (o (xi) , yi)
∂o1

· δo′1 (xi) ,

here o (xi) = o′ (xi) is used to get
∂l(o′(xi),yi)

∂o1
=

∂l(o(xi),yi)
∂o1

. Therefore, we have

δR′ =
1

N

N∑
i=1

ui ·
PL−2∑
j=1

wj · δb · I
(
vji > η

)
. (51)

For all samples xi with vji > η (∀j ∈ [PL−2]), by Lemma 2, only at the hth neuron in the first
feature map of layer L− 3,

∑n
i=1 ui 6= 0 and vji > η (∀i ∈ [n]) both hold. At other locations in this

feature map, because η is the biggest split threshold among all locations, even if vji > η holds, there
is
∑
i∈{1,2,··· ,N |vji>η} ui = 0 (see (8)). We then have

δR′ =
1

N
δb ·

PL−2∑
j=1

wj ·
∑

i∈{1,2,··· ,N |vji>η}
ui =

1

N
δb · wh ·

n∑
i=1

ui (52)

Setting Sgn (δb) = −Sgn
(
wh ·

∑n
i=1 ui

)
if wh 6= 0, where Sgn() is the sign function, we obtain

δR′ < 0. (53)

Therefore, the training loss is decreased by the perturbation, resulting in

R (θ) > R (θ′ + δθ′) . (54)

Thus, θ is a spurious local minimum.

If wh = 0, we perturb it as well by wh → δw, then

δR′ =
1

N
δb · δw ·

n∑
i=1

ui (55)

Setting Sgn(δb) = −Sgn (δw
∑n
i=1 ui) can still decrease the training loss, and thus the conclusion

that θ is a spurious local minimum still holds.

If η < −bL−31 , we only pertur b′L−21 = −η − b′L−31 as

b′L−21 −→ b′L−21 + δb = −η − b′L−31 + δb. (56)

With this perturbation, the output of each sample is perturbed in three different cases according to the
value of vji .
1) vji ≥ −b

L−3
1 .

In this case, by modifying (42) we have

z′j =
(
vji − η + δb

)
−
(
vji − η

)
+ σ

(
vji + bL−31

)
= zj + δb, ∀j ∈ [PL−2] .

(57)

23

Under review as a conference paper at ICLR 2023

2) η ≤ vji < −b
L−3
1 .

In this case, since a gap exists between η and vji when splitting samples with η in Lemma 2, we have
η < vji and consequently vji − η + δb > 0 for sufficiently small δb. Therefore,

z′j =
(
vji − η + δb

)
−
(
vji − η

)
= δb = zj + δb, ∀j ∈ [PL−2] . (58)

3) vji < η.
Using vji − η + δb < 0, we have

z′j = σ
(
η + bL−31

)
= 0 = zj , ∀j ∈ [PL−2] . (59)

The perturbation δb has been blocked by ReLU units.

Only in the first and second cases, the output o′1 (xi) is affected by the perturbation δb. Thus, we have

z′j = zj + δb, if vji > η, ∀i ∈ [N], j ∈ [PL−2]. (60)

The output is perturbed as

δo′1 (xi) =

PL−2∑
j=1

wjδz′j =

PL−2∑
j=1

wj · δb · I
(
vji > η

)
. (61)

Remaining output components keep unchanged. The training loss is perturbed as follows,

δR′ =
1

N

N∑
i=1

uiδo
′
1 (xi) =

1

N
δb ·

PL−2∑
j=1

wj
∑

i∈{1,2,··· ,N |vji>η}
ui. (62)

Because η is the biggest split threshold among all locations, only for the hth location, there is∑
i∈{1,2,··· ,N |vji>η}

ui 6= 0. We then have

δR′ =
1

N
δb · wh ·

n∑
i=1

ui, (63)

which is the same as (52). By setting δb with appropriate sign, we can obtain δR′ < 0 and conclude
that θ is a spurious local minimum.

If a perturbation of WL(1, ·) is required to split data samples as shown in Lemma 11, the training
loss at θ is perturbed as

R (θ + δθ) = R (θ) +
∂R (θ)

∂WL(1, ·)
δWL(1, ·) = R (θ) (64)

due to the optimality condition ∂R(θ)
∂WL(1,·) = 0T since θ is a local minimum. The perturbation δθ

only modifies WL(1, ·) and does not change other parameters. Therefore, by starting from θ + δθ
and setting the parameters of the last three layers as in Lemma 9, we can obtain a point θ′′ with
R (θ + δθ) = R (θ′′). Thus we have R (θ) = R (θ′′). We then perturb the biases of θ′′ as in Lemma
10 to obtain a loss lower than R (θ), which shows that θ is a spurious local minimum.

G.5 PROOF OF LEMMA 3

Proof. We prove by induction. We will often perturb the network parameters to tune oi or ui (i ∈
[N]), which does not change empirical loss, as shown in (64).

Let us first consider some special cases.

24

Under review as a conference paper at ICLR 2023

G.5.1 SPECIAL CASES: N = 1 OR M = 1

If there is only one data sample, i.e., N = 1, there will be only one group at each location. Then, by
Lemma 11, we have u = (u1) 6= 0, thus Lemma 3 holds.

We then consider the case of only one location: M = 1. If there are some groups with
∑
i∈I1q

ui 6= 0,
Lemma 3 already holds. If there exists a group consisting of a single sample with ui = 0, according
to Lemma 11, we can perturb network parameters to get u′i 6= 0 and thus Lemma 3 holds. Otherwise,
all groups have multiple samples and there are

∑
i∈I1q

ui = 0 for all groups, and by R(θ) > 0 and

consequently u 6= 0, there must exist some group k such that there exists i ∈ I1k and ui 6= 0. All
samples in group k have identical outputs, and by Lemma 11, we can separate this sample with
ui 6= 0 from other samples in this group by perturbation, i.e., o′i 6= o′j (∀j ∈ I1k , j 6= i). By doing so,
we can obtain a isolated sample with u′i 6= 0, and thus Lemma 3 is satisfied.

G.5.2 INDUCTION HYPOTHESIS

Now we discuss the cases for N ≥ 2 and M > 1, and use induction to prove.

In order to give our induction hypothesis, we first give some definitions. For multiple locations (M >
1), there are usually a number of groups at each location. Recall that Ijq denotes the set of indices of
samples in the qth group of the jth location. We can select one group with

∑
i∈Ijqj

ui (the sum of

uis in this group) from each location j and form a sequence
∑
i∈I1q1

ui,
∑
i∈I2q2

ui, · · · ,
∑
i∈IMqM

ui.

If all elements in this sequence are equal and nonzero, i.e.,
∑
i∈I1q1

ui =
∑
i∈I2q2

ui = · · · =∑
i∈IMqM

ui 6= 0, we call it a complete and identical sequence of groups (CI sequence). If all
elements in a sequence are nonzero but not equal, or partial elements in this sequence equal to zero,
we call it a non-CI sequence.

Given a CI sequence, after adding a sample uk into the group qj at each location j, if
∑
i∈I1q1

ui =∑
i∈I2q2

ui = · · · =
∑
i∈IMqM

ui = −uk, the sequence becomes
∑
i∈I1q1

ui = 0,
∑
i∈I2q2

ui =

0, · · · ,
∑
i∈IMqM

ui = 0 (now the set Ijqj (j ∈ [M]) contains the new sample index k). Therefore, if

for all groups and all locations, there exists only one CI sequence, and there are
∑
i∈Ijqj

ui = 0 for all

groups not in this CI sequence, then it is possible that for all j ∈ [M] and q ∈ [gj] ,
∑
i∈Ijq ui = 0

after adding a new sample that can annihilate this CI sequence, thus Lemma 3 is violated.

In order to prove Lemma 3, it suffices to prove that for every possible group configuration groups
with

∑
i∈Ijq ui 6= 0 exist after removing CI sequences. Sometimes only CI sequences exist, like

(ui)− (ui)− · · · − (ui) (i ∈ [N]), and when adding new samples, there is a risk of annihilating such
CI sequences. We can avoid such situations using perturbations of network parameters (this will be
explained in sections G.5.3 and G.5.4). Consequently, we give the following induction hypothesis.

For multiple locations, either non-CI sequences exist after removing each CI sequence (setting
each element

∑
i∈Ijqj

ui in it to zero), or the removal of CI sequences can be prevented.

By this induction hypothesis, after adding a new sample xm+1 into one existing group at each
location, groups with

∑
i∈Ijqj

ui 6= 0 still exist, and Lemma 3 holds accordingly.

As base cases, we will prove that this induction hypothesis holds for N = 2. We then prove that if it
holds for N = m (m ≥ 2), it will also hold when adding a new sample xm+1, as induction step.

G.5.3 BASE CASES: N = 2

M = 2. First, we discuss the cases of two locations. WhenN = 2, all possible group configurations
are discussed in the following and we will prove that induction hypothesis holds for each case.

25

Under review as a conference paper at ICLR 2023

CASE 1. Suppose the groups at two locations are

location 1 : (u1, u2) ,

location 2 : (u1, u2) .
(65)

If u1 + u2 6= 0, then the sequence (u1, u2)− (u1, u2) (the first element in the sequence is (u1, u2)
from location 1, and the second one is (u1, u2) from location 2) is a CI sequence. However, this
CI sequence cannot be vanished by adding a new sample since we can use perturbation of network
parameters to prevent it from happening, described later in the induction step.

If u1 + u2 = 0, by Lemma 11, we can perturb network parameters to obtain u′1 + u′2 = 0 at first.

CASE 2. Suppose the groups at two locations are

location 1 : (u1, u2) ,

location 2 : (u1) , (u2) ,
(66)

where groups on the left have bigger vji s than those on the right at each location.

By Lemma 11, we can perturb network parameters to obtain u′1 6= 0 and u′2 6= 0 for squared loss
and cross-entropy loss, then the sequences (u′1, u

′
2) − (u′1) and (u′1, u

′
2) − (u′2) are both non-CI

sequences, thus the induction hypothesis holds. If (u1, u2) in location 1 is separated as (u′1) , (u′2)
after perturbation, then it can be treated by the following case 3.

CASE 3. Suppose the groups at two locations are

location 1 : (u1) , (u2)

location 2 : (u1) , (u2) .
(67)

or
location 1 : (u1) , (u2)

location 2 : (u2) , (u1) .
(68)

For these cases, by Lemma 11, if u1 = u2, we can perturb the parameters to obtain u′1 6= u′2 for
squared loss and cross-entropy loss, then the sequences (u′1)− (u′2) and (u′2)− (u′1) are both non-CI
sequences.

The sequences (u1)− (u1) and (u2)− (u2) are CI sequences. Again, by appropriate perturbations
when adding new samples in the induction step, such CI sequences will not be removed and thus
Lemma 3 holds.

M ≥ 3. If there are more than two locations, we can select two locations as a subset, which must
belong to one of the above three possible cases. The full sequences of all locations contain those
sequences in this two-location subset as sub-sequences, and consequently groups with

∑
i∈Ijqj

ui 6= 0

still exist in full sequences. Therefore, induction hypothesis holds for M ≥ 3.

G.5.4 INDUCTION STEP

At last, we prove that if the induction hypothesis holds for N = m samples, then it holds for
N = m + 1 samples. Suppose sample xm+1 is to be added given current arrangement of groups.
Note that we can have um+1 6= 0 according to Lemma 11. There are the following three possible
situations.

1) xm+1 is added as a new group at every location.

This is equivalent to adding a new CI sequence. CI and non-CI sequences formed by previous groups
still exist, thus induction hypothesis holds.

2) xm+1 is inserted into an existing group at every location. More specifically, this can be divided
into the following four cases.

26

Under review as a conference paper at ICLR 2023

A) xm+1 is inserted into an existing group satisfying
∑
i∈Ijq ui = 0 at every location.

This is equivalent to adding a new CI sequence into existing groups. Since CI or non-CI sequences
still exist, the induction hypothesis holds.

B) xm+1 is inserted into existing CI or non-CI sequences.

If inserting xm+1 into an existing CI sequence, it will either be a new CI sequence, or annihilated by
this addition. By induction hypothesis, non-CI sequences may still exist, hence induction hypothesis
holds again after inserting xm+1. Another possible situation is that CI sequences exist, such as
(ui) − (ui) − · · · − (ui) (i ∈ [N]), and when adding new samples, there is a risk of annihilating
such CI sequences, and if no remaining non-CI sequences exist, then no groups with

∑
i∈Ijq ui 6= 0

exist. We can perturb the outputs of samples to avoid such situation using a perturbation of network
parameters. For example, if u1 + u3 = 0, then adding u3 into the sequence (u1)− (u1)− · · · − (u1)
will cause its disappearance. We will have o1 = o3 since sample 1 and sample 3 always appear in the
same group at every location after the addition. After perturbation that tunes o1 and o3 differently to
get o′1 6= o′3, as shown in Lemma 11, sample 1 and sample 3 then cannot appear in the same group at
every location. The annihilation of sequence (u1)− (u1)− · · · − (u1) is thus avoided and induction
hypothesis holds.

If inserting xm+1 into an existing non-CI sequence, it will still be a non-CI sequence by definition.
Therefore, induction hypothesis holds.

C) xm+1 is inserted into an existing CI sequence at some locations and into an existing non-CI
sequence at remaining locations.

The involved CI sequence becomes a non-CI one, and the involved non-CI sequence may become a
non-CI sequence, a CI sequence or a zero sequence. Anyway, non-CI sequences still exist and cannot
be removed by adding a sample, and thus induction hypothesis holds.

D) xm+1 is inserted into an existing CI or non-CI sequence at some locations and into groups with∑
i∈Ijq ui = 0 at remaining locations.

In this case, non-CI sequences will exist after inserting xm+1, thus induction hypothesis holds.

3) xm+1 is inserted into existing groups at some locations j ∈ J1, and added as new groups at
remaining locations j ∈ J2. Equivalently, we can regard new groups in J2 (before adding xm+1) as
existing groups with

∑
i∈Ijq ui = 0, thus the above case D) can be applied directly, and induction

hypothesis is maintained.

G.5.5 INDUCTION CONCLUSION

We have proved that if the induction hypothesis holds forN = m samples, then it holds forN = m+1
samples. By induction hypothesis, there exists j ∈ [M] , q ∈ [gj] ,

∑
i∈Ijq ui 6= 0, and consequently

a split of data samples somewhere in feature maps is always possible.

G.6 PROOF OF LEMMA 12

Proof. For cross-entropy loss, the training loss for a sample (xi,yi) is

l (o(xi),yi)) = −
dy∑
j=1

yi,j log
e−oi,j∑dy
k=1 e

−oi,k
, (69)

27

Under review as a conference paper at ICLR 2023

where oi,j is the jth component of oi. Its derivative is

ui =
∂l (o(xi),yi)

∂oi,1
=

e−oi,1∑dy
k=1 e

−oi,k
− yi,1. (70)

Let pi = e−oi,1∑dy
k=1 e

−oi,k
, we have

ui = pi − yi,1. (71)

Denote wT := WL(1, ·), o := oi,1. Under the perturbation δw, by Taylor expansion we have

u′i = ui +
∂ui
∂o

[
(IL−1,iWL−1 · · · I1,iW 1xi) · δw

]
+

1

2

∂2ui
∂o2

[
(IL−1,iWL−1 · · · I1,iW 1xi) · δw

]2
+O(‖δw‖3).

(72)

Note that for oL−1,i = IL−1,iWL−1 · · · I1,iW 1xi, we have oL−1,i(1 : 2PL−2) = 0 (∀i ∈ [N]) due
to the parameter setting in Lemma 6, thus perturbation δw(1 : 2PL−2) has no effect in (72).

For cross-entropy loss, the first and second order derivatives of ui are

∂ui
∂o

= pi − p2i , (73)

∂2ui
∂o2

=
∂2ui
∂o∂pi

∂pi
∂o

= (1− 2pi)
∂ui
∂o

, (74)

respectively.

Let Qi := IL−1,iWL−1 · · · I1,iW 1, we now prove that if Qixi = αQjxj (α 6= 0, α 6= 1), then
by setting δw appropriately, one can always make u′i 6= u′j . Note that ∂ui

∂o = pi − p2i 6= 0

since pi 6= 0 and pi 6= 1 for finite inputs. Also note the requirement IL−1,i 6= 0 in Lemma
6, we have Qixi 6= 0, i ∈ [N]. We can set δw = ε Qixi

‖Qixi‖ such that (Qixi) · δw 6= 0 and

(Qjxj) · δw 6= 0, where ε is a sufficiently small positive number. By (72), if ∂ui

∂o 6=
1
α
∂uj

∂o , then
∂ui

∂o (Qixi) · δw 6= ∂uj

∂o (Qjxj) · δw, hence we have u′i 6= u′j up to the first-order Taylor expansion.

If Qixi = αQjxj and ∂ui

∂o = 1
α
∂uj

∂o , we need to consider the second-order term in (72), and if
∂2ui

∂o2 α
2 6= ∂2uj

∂o2 , we have u′i 6= u′j up to the second-order Taylor approximation. Otherwise, we have
∂ui

∂o = 1
α
∂uj

∂o and ∂2ui

∂o2 α
2 =

∂2uj

∂o2 , which result in

(pi − p2i)α = pj − p2j (75)

and
(1− 2pi)α = 1− 2pj , (76)

respectively.

We next show that (75) and (76) cannot both hold for each case of yi,1 ∈ {0, 1}, and thus we have
u′i 6= u′j up to either the first-order or the second-order Taylor approximation.

If ui = pi, uj = pj or ui = pi − 1, uj = pj − 1, then ui = uj implies pi = pj . From (75) and
α 6= 1, contradiction is resulted and hence u′i 6= u′j . If samples xi and xj have distinct labels, say
without loss of generality, ui = pi − 1, uj = pj , then ui = uj leads to pj = pi − 1. Substituting it
into (75) and (76), we obtain

(pi − p2i)α = (pi − p2i) + 2(pi − 1) (77)

and
(1− 2pi)α = (1− 2pi) + 2, (78)

respectively. (77) and (78) can be transformed into

pi(1− pi)α = (1− pi)(pi − 2) (79)

28

Under review as a conference paper at ICLR 2023

and
(1− pi)(2α− 2) = α+ 1, (80)

respectively. By 1− pi 6= 0 , (79) results in
piα = pi − 2. (81)

Solving (80) and (81), we obtain α = −1, pi = 1. However, pi = 1 is impossible for finite inputs,
therefore, we have u′i 6= u′j after the perturbation.

G.7 PROOF OF LEMMA 13

Proof. We now prove that if ui + uj = 0 and Qixi = αQjxj (α 6= 0, α 6= 1), then by setting δw
appropriately, one can always obtain u′i + u′j 6= 0.

By (72), if ∂ui

∂o 6= −
1
α
∂uj

∂o , then ∂ui

∂o (Qixi) · δw 6= −∂uj

∂o (Qjxj) · δw, hence u′i + u′j 6= 0 up to the
first-order Taylor expansion.

If Qixi = αQjxj and ∂ui

∂o = − 1
α
∂uj

∂o , we need to consider the second-order term in (72), and if
∂2ui

∂o2 α
2 6= −∂

2uj

∂o2 , we have u′i + u′j 6= 0 up to the second-order Taylor approximation. Otherwise,

we have ∂ui

∂o = − 1
α
∂uj

∂o and ∂2ui

∂o2 α
2 = −∂

2uj

∂o2 , which result in

−(pi − p2i)α = pj − p2j (82)
and

−(1− 2pi)α+ (1− 2pj) = 0, (83)
respectively.

We next show that (82) and (83) cannot both hold for every case of yi,1 ∈ {0, 1}.
If ui = pi, uj = pj , then ui + uj = 0 implies pj = −pi. Substituting it into (82) and (83) and with
simple calculations, we can obtain

−piα− pi = 1− α (84)
and

2piα+ 2pi = α− 1. (85)
The solution is α = 1, pi = 0, which contradict α 6= 1, pi 6= 0.

If ui = pi − 1, uj = pj − 1, then ui + uj = 0 implies pj = 2− pi. In this case, the solution to (82)
and (83) is α = 1, pi = 1, again contradiction is resulted.

If samples xi and xj have distinct labels, say without loss of generality, ui = pi − 1, uj = pj , then
ui+uj = 0 leads to pj = 1−pi. The solution to (82) and (83) will be α = −1 and pi can be arbitrary.
However, α = −1 implies Qixi = −Qjxj . Due to IL−1,i 6= 0 by the requirement in Lemma 6, we
have for all i ∈ [N] that all components of Qixi are nonnegative and some components of it must be
positive, and thus Qixi = −Qjxj leads to contradiction. Therefore, α = −1 is impossible.

In summary, for various cases of yi,1 ∈ {0, 1}, we all have u′i + u′j 6= 0.

G.8 PROOF OF LEMMA 11

Proof.

1. Proof of o′i 6= o′j (i, j ∈ [N], i 6= j) for squared loss and cross-entropy loss.

We perturb WL(1, ·) to make o′i 6= o′j . Under this perturbation, we have

o′i = oi + (IL−1,iWL−1 · · · I1,iW 1xi) · δw = oi + (Qixi) · δw. (86)

Since oL−1,i 6= oL−1,j by Assumption 1, we have Qixi 6= Qjxj . Then, if oi = oj , we have
o′i − o′j = (Qixi −Qjxj) · δw. Let δw = ε(Qixi −Qjxj), where ε is a sufficiently small positive

number, there is o′i − o′j = ε
∥∥Qixi −Qjxj∥∥2 6= 0. Thus, o′i 6= o′j .

29

Under review as a conference paper at ICLR 2023

2. Proof of u′i 6= 0 (i ∈ [N]).

For squared loss, we perturb WL(1, ·) to make u′i 6= 0 if ui = 0. With this perturbation, we have

u′i = ui +
∂ui
∂o

[
(IL−1,iWL−1 · · · I1,iW 1xi) · δw

]
. (87)

We have ui = oi − yi,1 for squared loss l(oi,yi) = 1
2 ‖oi − yi‖2, then

u′i = (Qixi) · δw. (88)

Setting δw = ε(Qixi) results in u′i = ε
∥∥Qixi∥∥2. By Qixi 6= 0 due to the requirement IL−1,i 6= 0

in Lemma 6, we have u′i 6= 0.

For cross-entropy loss function, the derivative ui is given in (70). For finite inputs and yi,1 ∈ {0, 1},
we have e−oi,1∑dy

k=1 e
−oi,k

6= 0 and e−oi,1∑dy
k=1 e

−oi,k
6= 1, thus ui 6= 0.

3. Proof of u′i 6= u′j or u′i + u′j 6= 0 (i, j ∈ [N], i 6= j).

For squared loss, we perturb WL(1, ·) to make u′i 6= u′j or u′i + u′j 6= 0. Under this perturbation,
if ui = uj , by (87) we have u′i − u′j = (Qixi −Qjxj) · δw. Let δw = ε(Qixi −Qjxj), there is

u′i − u′j = ε
∥∥Qixi −Qjxj∥∥2 6= 0. Therefore, u′i 6= u′j (i, j ∈ [N], i 6= j).

If ui + uj = 0, we have u′i + u′j = (Qixi + Qjxj) · δw. Note that Qixi 6= −Qjxj due to
IL−1,i 6= 0 and IL−1,j 6= 0 by the requirement in Lemma 6. Let δw = ε(Qixi +Qjxj), we then
have u′i + u′j = ε

∥∥Qixi +Qjxj
∥∥2 6= 0. Therefore, u′i + u′j 6= 0 (i, j ∈ [N], i 6= j).

For cross-entropy loss function, recall that wT := WL(1, ·) and Qi := IL−1,iWL−1 · · · I1,iW 1.
Under perturbation δw, by the first-order Taylor expansion in (72), using (73) we have

u′i = ui +
∂ui
∂o

[
(IL−1,iWL−1 · · · I1,iW 1xi) · δw

]
= ui + (pi − p2i)

[
(Qixi) · δw

]
. (89)

Note that Qixi 6= 0, Qjxj 6= 0, and pi − p2i 6= 0 since pi 6= 0 and pi 6= 1. If Qixi is not parallel
to Qjxj , then (pi − p2i)(Qixi)± (pj − p2j)(Qjxj) 6= 0. Therefore, we have u′i 6= u′j or u′i + u′j 6=
0 (i, j ∈ [N], i 6= j), respectively.

If Qixi is parallel to Qjxj , i.e., Qixi = αQjxj (α 6= 0)), we can obtain u′i 6= u′j or u′i + u′j 6=
0 (i, j ∈ [N], i 6= j) by Lemma 12 or Lemma 13, respectively. α = 1 is not allowed by Assumption
1.

4. u = (u1, u2, · · · , uN)
T 6= 0 if R = 1

N

∑N
i=1 l(oi,yi) > 0.

For squared loss, ui = oi − yi,1. If oi − yi = 0 for every sample xi (i ∈ [N]), then the empirical
loss R = 1

N

∑N
i=1 l(oi,yi) = 1

2N

∑N
i=1 ‖oi − yi‖2 = 0, contradicting the assumption R > 0.

Therefore, there must be some nonzero components in vector (oi − yi) for some i ∈ [N]. Without
loss of generality, let some components in (o1 − y1,1, o2 − y2,1, · · · , oN − yN,1) be nonzero, hence
u 6= 0.

For cross-entropy loss, according to (70), ui 6= 0 (∀i ∈ [N]) for finite inputs, thus u =

(u1, u2, · · · , uN)
T 6= 0.

5. Nonzero gaps between o′is or u′is can still exist after subsequent perturbations, for squared loss and
cross-entropy loss.

We discuss the gaps between o′is in detail. Given some samples with identical outputs, say without
loss of generality, o1 = o2 = · · · = os, by Lemma 11 we can use perturbation of parameters
δwT := δWL(1, ·) to obtain o′1 6= o′2, thus a gap exists between o′1 and o′2. Without loss of
generality, suppose after the first perturbation, the outputs of samples are ordered as o′1 > o′2 > · · · >
o′n = o′n+1 = · · · = o′n+m > o′n+m+1 > · · · > o′s. We now want to perturb the outputs of samples
again to avoid o′n = o′n+1 using δw′.

Under the second perturbation δw′, the output of each sample is o′′i = (w′ + δw′) · Qixi :=
o′i + δw′ ·Qixi. The gaps between samples are changed to o′′i − o′′i+1 = o′i − o′i+1 + δw′ · (Qixi −

30

Under review as a conference paper at ICLR 2023

Qi+1xi+1) (i ∈ [s − 1]). We set δw′ small enough as follows to make sure the nonzero gaps in
o′i − o′i+1 (i ∈ [s− 1]) do not disappear.

For the gap o′′i − o′′i+1, we have o′′i − o′′i+1 ≥ o′i − o′i+1 − ‖δw′‖
∥∥Qixi −Qi+1xi+1

∥∥ (i ∈ [s− 1]).
We already have o′i − o′i+1 > 0 for nonzero gaps, and if δw′ are small enough such that

∀i ∈ [s− 1], o′i − o′i+1 − ‖δw′‖
∥∥Qixi −Qi+1xi+1

∥∥ > 0, (90)

or equivalently

∀i ∈ [s− 1], ‖δw′‖ < min
(i∈[s−1], o′i−o′i+1>0)

o′i − o′i+1

‖Qixi −Qi+1xi+1‖
, (91)

then we will have ∀i ∈ [s− 1], o′′i − o′′i+1 > 0. Note that
∥∥Qixi −Qi+1xi+1

∥∥ 6= 0. The nonzero
gaps between neighboring samples still exist.

Additional perturbations can be treated in the same spirit. For a dataset with N samples, at most N
perturbations are needed. The total perturbation is obtained by adding the perturbations in all steps,
i.e., δw + δw′ + · · · .
The gaps between u′is can be treated similarly using small enough perturbations.

G.9 PROOF OF THEOREM 3

Proof. The parameter matrix W 1(1 : P0, 1 : P0) of the first convolutional layer can be implemented
by a filter like w1

1 = (0, 0, 1, 0, 0) (for s0 = 5). With the parameter setting in Theorem 3, the output
of the kth neuron in the first convolution layer is

o1k = σ
(
xki + cp

)
, ∀i ∈ [N] (92)

Then, we have
o1k (xi) = σ

(
xki + cp

)
= xki + cp > 0, ∀i ∈ I (93)

due to (10). The outputs of remaining neurons in the first feature map of the first convolutional layer
do not matter since they will be annihilated later by WL. Given xki + cp < 0 (∀i /∈ I), we have

o1k (xi) = 0, i ∈ [N] , i /∈ I. (94)

The filters and biases of higher convolutional layers (l ∈ {2, 3, · · · , L− 1}) for the first predictor
propagate ol(1 : Pl−1) (the outputs in the first feature map of each layer) forward without changing
them.

Sufficiently large positive constants cl (l ∈ [L− 1]) are added to the biases of each layer such that
the ReLU units in the second subnetwork are all activated and their outputs are not truncated. The
first convolutional layer will be added c1 to each of its output neuron, and the change of outputs of
higher convolutional layers can be recursively computed as

∆o1(i) = c1, i ∈ [P0 + 1 : n1],

∆ol(i) =
∑

j∈[Pl−2+1:nl−1]

W l(i, j)∆ol−1(j) + cl, i ∈ [Pl−1 + 1 : nl], l ∈ {2, 3, · · · , L− 1} ,

∆oL(i) =
∑

j∈[PL−2+1:nL−1]

WL(i, j)∆oL−1(j), i ∈ [dy].

(95)
The effect of introducing cl (l ∈ [L− 1]) is cancelled at the output layer by subtracting ∆oL(i) from
oL(i) (i ∈ [dy]). This is equivalent to subtracting ∆oL(i) from bLi .

By the parameter setting, the output of each sample is

o (xi) = W2x̂i + σ
(
xki + cp

)
·
(
λ1, λ2, · · · , λdy

)T
, ∀i ∈ [N] , (96)

31

Under review as a conference paper at ICLR 2023

where the expression of W2x̂i is given in (20). This implies

o (xi) = W2x̂i +
(
xki + cp

) (
λ1, λ2, · · · , λdy

)T
, i ∈ I, (97)

and
o (xi) = ỹi, l (o (xi) , yi) = 0, i ∈ I (98)

if there is a single index in set I , where ỹi is defined in section 4. If there are multiple elements in set
I , ∑

i∈I
l (o (xi) , yi) =

∑
i∈I

l
(
W2x̂i +

(
xki + cp

) (
λ1, λ2, · · · , λdy

)T
, yi
)

(99)

is minimized.

For samples {xi, i /∈ I}, we have

o (xi) = W2x̂i,∀i ∈ [N] , i /∈ I. (100)

We now show that for the CNN given in Theorem 3, θ1 =
(
W l,bl

)L
l=1

is a local minimum. This can
be seen by perturbing the parameters and showing the non-decreaseness of loss. The training loss is

R =
1

N

N∑
I=1

l (o (xi) , yi)

=
1

N

∑
i∈I

l
(
W2x̂i +

(
xki + cp

) (
λ1, λ2, · · · , λdy

)T
, yi
)

+
1

N

∑
i∈[N],

i/∈I

l (W2x̂i, yi) .
(101)

Under perturbation
(
δW l, δbl

)L
l=1

, since there is a gap between xki (i ∈ [N]) and the threshold
1
2

(
xki∗ + xkj∗

)
, the ReLU unit in (92) keeps its activation status for every sample when the perturbation

of b11 = cp is sufficiently small. Therefore, the output of each sample is still in the form of (96).
Accordingly, if there are multiple elements in set I ,

R′ :=
1

N

N∑
i=1

l (o (xi) + δo (xi) , yi)

=
1

N

∑
i∈I

l
(
W2x̂i +

(
xki + cp

) (
λ1, λ2, · · · , λdy

)T
+ δo (xi) , yi

)
+

1

N

∑
i∈[N]

i/∈I

l (W2x̂i + δo (xi) , yi) ,

where δo (xi) (i ∈ I) and δo (xi) (i /∈ I) are caused by the perturbations
of parameters in both W1 and W2. However, since

(
λ1, λ2, · · · , λdy

)
minimize∑

i∈I l
(
W2x̂i +

(
xki + cp

) (
λ1, λ2, · · · , λdy

)T
, yi
)

, and the space of o (xi) has been fully explored

by
(
λ1, λ2, · · · , λdy

)
during minimization, we have∑

i∈I
l
(
W2x̂i +

(
xki + cp

) (
λ1, λ2, · · · , λdy

)T
+ δo (xi) , yi

)
≥
∑
i∈I

l
(
W2x̂i +

(
xki + cp

) (
λ1, λ2, · · · , λdy

)T
, yi
)
.

(102)

On the other hand, since the size of each convolutional layer satisfies nl − Pl−1 ≥ dy (l ∈ [L− 1]),
the matrix ŴL(·, PL−2 + 1 : nL−1)ŴL−1(PL−2 + 1 : nL−1, PL−3 + 1 : nL−2) · · · Ŵ 1(P0 + 1 :
n1, ·) ∈ Rdy×dx is full rank and can generate the full space of dy × dx matrices around θ, thus∑

i∈[N],

i/∈I
l (W2x̂i, yi) is minimized by W2 in (20). Therefore,∑

i∈[N],

i/∈I

l (W2x̂i + δo (xi) , yi) ≥
∑

i∈[N],

i/∈I

l (W2x̂i, yi) . (103)

32

Under review as a conference paper at ICLR 2023

Using (102) and (103),

R′ ≥ 1

N

∑
i∈I

l
(
W2x̂i +

(
xki + cp

) (
λ1, λ2, · · · , λdy

)T
, yi
)

+
1

N

∑
i∈[N],

i/∈I

l (W2x̂i, yi)

=
1

N

N∑
I=1

l (o (xi) , yi) = R.

(104)

For the case of single element in set I , R′ ≥ R can be shown easily due to (98). Therefore,
θ1 =

(
W l,bl

)L
l=1

is a local minimum.

33

	Introduction
	Related Work

	Preliminaries
	Notations
	Convolutional Neural Networks

	Spurious Local Minima
	Construction of local minima
	Construction of spurious local minima
	data split
	Construction of
	perturbation of

	Main Results and discussion

	An Example of Nontrivial Spurious Local Minima
	Experimental Results
	Conclusion
	Parameter matrices for average pooling and fully connected operations
	An Example of Nontrivial Local Minima for CNNs
	Lemmas for Construction of spurious local minima
	Construction of spurious Local Minima: the general case
	More Auxiliary Lemmas
	Experimental Details
	Missing Proofs
	Proof of Lemma 6
	Proof of Lemma 2
	Proof of Lemma 9
	Proof of Lemma 10
	Proof of Lemma 3
	Special Cases: N = 1 or M = 1
	Induction Hypothesis
	 Base Cases: N=2
	Induction Step
	Induction Conclusion

	Proof of Lemma 12
	Proof of Lemma 13
	Proof of Lemma 11
	Proof of Theorem 3

