
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2025

A GRID WORLD AGENT WITH FAVORABLE INDUCTIVE
BIASES

Anonymous authors
Paper under double-blind review

ABSTRACT

We present a novel experiential learning agent with causally-informed intrinsic
reward that is capable of learning sequential and causal dependencies in a robust
and data-efficient way within grid world environments. After reflecting on state-
of-the-art Deep Reinforcement Learning algorithms, we provide a relevant dis-
cussion of common techniques as well as our own systematic comparison within
multiple grid world environments. Additionally, we investigate the conditions and
mechanisms leading to data-efficient learning and analyze relevant inductive bi-
ases that our agent utilizes to effectively learn causal knowledge and to plan for
rewarding future states of greatest expected return.

1 INTRODUCTION

Grid world environments come in many forms and have been studied extensively in the history of
Artificial Intelligence with some notable examples such as Wumpus World (Bryce, 2011), Mini-
grid (Chevalier-Boisvert et al., 2024), and Tileworld (Pollack & Ringuette, 1990). However, the
creation of intelligent grid world agents capable of learning effectively and in a data-efficient way
has posed significant challenges. Current Reinforcement Learning (RL) agents struggle in some
instances due to sequential dependencies, partial observability (Wang et al., 2023a), continual learn-
ing (primacy bias Kim et al. (2024), stability-plasticity dilemma Anand & Precup (2024)), relatively
high-dimensional state spaces, compared to more traditional RL tasks – even when a single value
per cell is provided rather than per pixel – and sometimes non-deterministic effects of actions.

Sequential dependencies usually raise the training data demand exponentially depending on the
combinatorics, and, ultimately, the number of the arising options, unless the agent is capable of
learning causal representations that transfer well because chaining them is favorable for reaching an
intended outcome. Partial observability, on the other hand, may require the model to have access
to information from prior states, which typically corresponds to the previously observed values in
a grid world outside the agent’s current field of view. In terms of input dimensionality, there is
a trade-off between the observation window being too small for learning an effective policy and
the agent’s observation window being more high-dimensional, thereby demanding more training
data, even though this might be the least problematic. Additionally, if the agent is able to represent
values outside of its observation window, a learned policy needs to consider not only the observation
window itself but also how it spatially relates to the remembered information beyond it.

With these considerations in mind, we introduce Non-Axiomatic Causal Explorer (NACE), a novel
experiential learning agent, which leverages causal reasoning and intrinsic reward signals to enable
more efficient learning as well as possesses learning mechanisms with the involved inductive biases.
NACE is designed to induce causal rules from temporal and spatial local changes in the grid, which
are often (but not always) caused by the agent. It utilizes these rules to plan for and reach future states
of maximum uncertainty in order to effectively learn more (causal rules) about the environment,
thereby improving predictability-based intrinsic reward formulations.

To illustrate the effectiveness of our approach, we provide a comprehensive discussion of state-of-
the-art Deep Reinforcement Learning (DRL) techniques as well as our own systematic comparison
within multiple grid world environments demonstrating our agent’s remarkable improvement in data
efficiency, achieving similar performance with about 1000 samples where DRL algorithms typically
require 1 million samples, representing a 1000-fold reduction in data requirements. We also thor-
oughly investigate the conditions and mechanisms under which learning in grid world environments

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2025

can become more data-efficient and attempt to answer the question about which inductive biases
can lead to close-to-optimal learning speeds in the case where the agent is not pre-equipped with
particular interaction rules between grid cell types but has the inductive biases to build and use them
effectively. Lastly, we analyze useful inductive biases applicable among a wide range of grid worlds
and their generality to raise the data efficiency of learning in such domains.

2 RELATED WORK

Current RL techniques such as value-based (e.g., Deep Q-Learning (Mnih et al., 2013)) and pol-
icy gradient-based (e.g., Proximal Policy Optimization (Schulman et al., 2017)) typically require
millions of training iterations to solve grid-world environments (Zhang et al., 2020b), struggling to
capture causal dependencies necessary for efficient planning and transferability.

Exploration improvements, such as intrinsic rewards based on information gain (Zhao et al., 2023),
prediction errors (Burda et al., 2018), or visitation counts (Zheng et al., 2021; Wang et al., 2023b),
enhance sample efficiency but often lack structured reasoning for generalization. In contrast, Tsi-
vidis et al. (2021) propose Theory-Based RL (TBRL), exemplified by EMPA (Exploring, Modeling,
and Planning Agent), which integrates Bayesian causal modeling, structured exploration, and heuris-
tic planning to generalize efficiently across tasks with minimal training. Similarly, GALOIS (Cao
et al., 2022) addresses generalization by synthesizing interpretable, hierarchical programs with strict
cause-effect logic, though its reliance on predefined program sketches limits flexibility in loosely
structured environments. As a model-based RL alternative, DreamerV3 (Hafner et al., 2023) learns
latent state dynamics and improves behavior through imagination, enabling generalization across
diverse tasks with minimal domain-specific adjustments. However, its reliance on learning both la-
tent representations and their dynamics reduces sample efficiency compared to methods that assume
predefined representations.

Symbolic approaches like STRIPS and Behavior Trees (BTs) (Guo et al., 2023; Colledanchise &
Ögren, 2018) handle human-defined causal knowledge but lack adaptive learning capabilities. Sim-
ilarly, POMDPs (Spaan, 2012) focus on probability updates rather than causal discovery, while
causal networks (Pearl, 1995) and structure-learning methods (Zheng et al., 2018) face challenges
with ambiguity and scalability.

While TBRL, GALOIS, and DreamerV3 provide solutions for structured or model-based learning,
their reliance on predefined logic, priors, or latent space learning introduces additional complexity.
Our approach proposes lightweight “empirical” causal relations learned from recurring cause-effect
patterns, supporting efficient real-time learning in grid worlds without predefined program sketches,
Bayesian modeling, or latent space learning. This ensures adaptability while retaining interpretabil-
ity and transferability.

2.1 SELECTED RL TECHNIQUES IN GRID WORLDS

DRL often struggles with sample efficiency, requiring substantial interactions with environments.
This paper examines foundational algorithms, scalable architectures, and exploration-focused meth-
ods that address these challenges.

Foundational methods include Deep Q-Network (DQN) Mnih et al. (2015), which combines deep
neural networks with Q-learning to handle large state spaces but struggles with sparse rewards;
Advantage Actor-Critic (A2C) Mnih et al. (2016), which reduces variance in updates through syn-
chronized parallel actors but is limited by its on-policy nature; Trust Region Policy Optimization
(TRPO) Schulman et al. (2015), which ensures stable policy updates with trust region constraints
but is computationally intensive; and Proximal Policy Optimization (PPO) Schulman et al. (2017),
which refines TRPO with clipped objectives for improved data utilization and computational effi-
ciency.

Scalable architectures such as Importance Weighted Actor-Learner Architectures (IMPALA) Es-
peholt et al. (2018) address multi-task learning by leveraging distributed architectures with off-
policy corrections, offering scalability but facing synchronization challenges, whereby exploration-
focused methods aim to address sparse rewards and complex state spaces. Count-Based Exploration
(COUNT) Bellemare et al. (2016) uses pseudo-counts for better exploration but is computationally

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2025

demanding in large state spaces. Random Network Distillation (RND) Burda et al. (2018) incen-
tivizes novelty through prediction errors, however, it depends on high-quality state representations.
Curiosity-Driven Exploration (CURIOSITY) Pathak et al. (2017) rewards prediction errors of ac-
tion outcomes, fostering intrinsic motivation, while Rewarding Impact-Driven Exploration (RIDE)
Raileanu & Rocktäschel (2020) focuses on impactful actions but may struggle with ambiguous state
changes. Adversarially Motivated Intrinsic Goals (AMIGO) Campero et al. (2021) generates adver-
sarial goals to guide exploration, requiring robust goal-generation mechanisms for effectiveness.

Furthermore, model-based RL techniques can learn a model of the environment and improve their
behavior through imagined future scenarios Sekar et al. (2020). This framework is particularly ad-
vantageous in high-dimensional and variable state spaces. DreamerV3 Hafner et al. (2023) builds
on this principle by introducing a general algorithm designed to address a diverse range of tasks
with minimal domain-specific adjustments. By learning latent state dynamics and planning through
imagination, DreamerV3 offers broad applicability while reducing the need for extensive tuning or
specialized configurations. However, the additional complexity of learning latent space representa-
tions together with their dynamics leads to less sample efficiency compared to when representations
are already present and only the dynamics need to be learned.

3 NON-AXIOMATIC CAUSAL EXPLORER

NACE is our proposed experiential learning technique with causality-informed intrinsic reward and
strong inductive biases for grid world environments to boost sample efficiency. Here, we provide
formal descriptions of NACE. For a comprehensive list of symbols used, refer to Appendix C.

3.1 STATES AND RULE REPRESENTATION

State in NACE is a tuple s = (sspatial, sinternal) consisting of a two-dimensional value array sspatial ∈
Nm×n and a one-dimensional value array sinternal ∈ Nk, as shown in Figure 1. The two-dimensional
array reflects the spatial structure in the grid world, including remembered cells beyond the current
view, while the one-dimensional array is used for internal values, such as inventory items (e.g.,
keys).

o o

o x

2D Spatial Array

Mental map

Key

Ball

1D Internal Array

Inventory

Figure 1: State components

Each rule is of the form (preconditions, action)⇒ consequence where the precondition can hold
a conjunction of cell value constraints spatially relative to the cell value of the consequence, and the
consequence predicts one particular cell’s value as well as the values of the one-dimensional array
at the next timestep as depicted in Figure 2. Examples of created rules are provided in Appendix G.

c
1
t−1 (e.g. consequence cell = empty)

c
2
t−1 (e.g. right of consequence cell = agent)

c
k
t−1 (cell k value constraint, e.g. omitted)

vt−1 (value array constraint, e.g. holding key)

at−1 (taken action constraint, e.g. move left)

ct (e.g. consequence cell = agent)

vt (e.g. still holding key)

R(r) (reward predicted by rule, e.g. 0)

Figure 2: Rule schema

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2025

Each rule tracks evidence using counters for w+ and w− similar to (Wang, 2013), which measure
the accuracy of the rule’s predictions. Positive evidence (w+) is accumulated whenever a perfectly
matching rule predicts correctly, while negative evidence (w−) increases with incorrect predictions.
Tracking of evidence helps the agent refine its causal knowledge by prioritizing more reliable rules.

3.2 INDUCTIVE BIASES

It is well-known that favorable inductive biases can enhance sample efficiency. Below are inductive
biases that are incorporated in NACE and relevant for many grid world environments:

1. Temporal Locality: NACE constructs rules based solely on the current and previous state,
modeling relevant dependencies locally in time.

2. Causal Representation: NACE’s knowledge representation is centered around the afore-
mentioned causal rules which can be chained and are independent of the objective.

3. Spatial Equivariance: Ability to model causal dependencies between grid cells indepen-
dently of the specific location of the cells considered in the dependency. This means learned
rules in NACE can be applied at any location.

4. State Tracking: Ability to effectively track state outside of the field of view of the agent
based on the recorded or estimated locations. NACE explicitly keeps track of a bird’s-
eye view map by recording observations into it, updating the values that are within its
observability window.

5. Attentional Bias: Relevant dependencies tend to involve values that have either observ-
ably changed or a different value than predicted. Only rules that show a change from the
previous to the current timestep, or differ from the predicted value, are considered for rule
formation, evidence updating, and prediction.

Additional discussions on inductive biases as well as ablation studies can be found in Appendix B.

3.3 CURIOSITY MODEL

This section outlines the mechanism which helps NACE systematically acquire missing causal
knowledge about the environment. The key principle is realized by making the agent plan to reach
a state which it is most unfamiliar with. The familiarity is judged by whether existing rules match
well to the situation, whereby matching is a matter of degree dependent on how many rule conditions
match the cells in the known state. This motivates the following formalism:

• Match value of a rule r is evaluated relative to consequence cell c:

M(r, c) = Number of matched preconditions
Total number of preconditions

• Cell match value of a cell c dependent on all m existing rule match values:

C(c) = max(0,M(r1, c), . . . ,M(rm, c))

• State match value S(s) of a state s is the average C(c) of its cells with C(c) > 0. This
value, as we will see, is the secondary “explorative” objective in the planning process that
guides the agent’s decisions:

S(s) =
∑

c∈X(s)
C(c)
|X(s)| where X(s) = {c ∈ s|C(c) > 0},

3.4 NACE ARCHITECTURE

Figure 3 illustrates the high-level architecture of NACE, which consists of several interconnected
components that work together to enable learning and decision-making. The related pseudocode is
provided in Appendix D.

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2025

Actual world:
A discrete 2D grid with partial observability

Observer:
1. Update bird’s-eye view map

2. Register changes and prediction failures

Hypothesizer:
Create, revise and choose rules

Planner:
1. Search for argmaxπV

π(s) > 0
2. Search for argminπS(sn) < 1

3. Random action

Predictor:
Predicts next state based on action

Actual world represents the real simulated 2D
grid environment (Minigrid) with a cell-granular
partial observability model. In each frame, the
field-of-view local to the agent is passed on to the
observer.

Observer takes the field-of-view 2D array as
input and detects changes in values as well as
identifies prediction failures from rules that
predict incorrectly.

Hypothesizer creates and updates rules based on
whether their predictions align with observations,
whereby only changed-cells and prediction-
mismatch cells as reported by Observer are
considered.

Planner searches for optimal actions that lead
to greater-than-zero expected return, and if none
such is found, searches for actions that lead to
a state of lowest state match value greater than
zero. Finally, in case such also does not exist, a
random action is chosen

Predictor forecasts the next state from the cur-
rent state and the taken action, utilizing individual
rules to predict a state transition of the entire state,
whereby for each cell its predicted value comes
from the rule with the highest M(r, c).

Figure 3: Flow diagram of the system

1. Observer: Its role is to update a bird’s-eye view map via values from the partial observa-
tion 2D array, then to find changes in input, as well as prediction-observation mismatches
(prediction failures). Formally this corresponds to determining the sets:

• Set of changes in observations: M change
t = {cobservation

t,x,y | cobservation
t,x,y ̸= cobservation

t−1,x,y }
This set captures all grid cells cx,y where the observed value has changed between
timesteps t− 1 and t, highlighting areas that have been updated or modified.

• Set of observation mismatches: M observation
mismatched,t = {cobservation

t,x,y | cprediction
t,x,y ̸= cobservation

t,x,y }
This set includes all grid cells where the observed value differs from the predicted
value at time t, indicating potential prediction failures.

• Set of prediction mismatches: M prediction
mismatched,t = {cprediction

t,x,y | cprediction
t,x,y ̸= cobservation

t,x,y }
This set identifies all grid cells where the predicted value does not match the observed
value at time t, from the perspective of predictions.

These sets enable the Observer to track state changes and prediction failures, ensuring
an accurate understanding of the environment and supporting the system’s adaptive and
predictive capabilities.

2. Hypothesizer: Associating positive and negative evidence based on prediction success, as
well as creating new rules when positive evidence is found for the first time.
Formally, for each rule r = ((c1t−1 ∧ ... ∧ ckt−1 ∧ vt−1 ∧ at−1) ⇒ (ct ∧ vt ∧ R(r))),
c := (cr = c) indicates that the value in the rule precondition aligns with the actual cell
value, value array in case of v, and taken action in case of a.
The rule preconditions are met when all equality constraints c1t−1, ..., c

k
t−1, vt−1, at−1 hold.

Positive evidence is attributed when the equality constraints of the postcondition ct, vt are
met as well and the predicted reward aligns with the observed reward (Rt = R(r)), where
only cells which changed value or have a different value than predicted are considered to
increase computational efficiency:

w+(r) =

{
w+(r) + 1 if {c1t−1, ..., c

k
t−1, ct} ⊆ (M change

t ∪M observation
mismatchedt)

w+(r) otherwise

Negative evidence is assigned when any of the postcondition equality constraints are not
met:

w−(r) =

{
w−(r) + 1 if ct ∈M prediction

mismatchedt
w−(r) otherwise

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2025

Finally, rules r for which w−(r) > w+(r) become inactive, and for two rules r1, r2 if their
preconditions match (including the action) but the postconditions are different, only the
rule with the higher truth expectation is selected, which is calculated according to:

w(r) = w−(r) + w+(r), frequency(r) = w+(r)
w(r) , confidence(r) = w(r)

w(r)+1

fexp(r) = (frequency(r)− 1
2) ∗ confidence(r) +

1
2

This not only allows the system to find the relevant preconditions under which a conse-
quence happens when the action is utilized but also gives the system tolerance to non-
deterministic effects and enables accounting for uncertainty. A brief analysis of this can be
found in Appendix A.

3. Planner: NACE makes use of depth- and width-bounded Breadth-First-Search algorithm
with a combined search objective consisting of two components: it searches for states
resulting from the different action sequences for futures that lead to the max. expected
return or, if not existing, the lowest state match value. Hence, it applies a key RL principle
to maximize the expected long-term return (Sutton et al., 1999), with the policy determined
by the considered action sequence: π(t) = at for t = 1, 2, . . . , n whereby n is smaller-
or-equal (dependent on where the optimum is found) to the maximum planning horizon:

π(t) =

{
argmaxπ V

π(s0) if V π(s0) = E [
∑n

t=0 γ
tR(st) | s0 = s, π] > 0

argminπ S(sn) < 1 otherwise

According to this definition, if no return greater than zero can be obtained for any consid-
ered action sequence, the system instead plans for a future state of lowest state match value,
whereby (∀t : (0 ≤ t < n) → S(st) = 1) ∧ S(sn) < 1, meaning the action sequence is
constrained to be planned in such a way that state match value is 1 except for the last action
where it is minimized for the resulting state.
Such constraint maximizes the agent’s chance to reach the state of minimum state match
while ensuring the low match value is not a consequence of predicting further from states
where the knowledge was already not fully applicable.
Due to the amount of possible options, the planning algorithm dominates the asymptotics
of NACE. It has the computational complexity of O(|V |+ |E|) where V is the set of nodes,
and E is the set of edges of the search graph. Constant-bounded search depth and width
can be achieved by pruning of branches by expected return and state match value, however,
bounded search depth can negatively affect performance, as analyzed in Appendix A.

4. Predictor: When the planner queries for the predicted state from a given state and an
action, the role of the predictor is to construct the predicted state by applying all knowledge
to the given state in the following way: initializing with the cell values from the given state,
where for each cell we utilize only the rule r with M(r, c) = 1 and maximum fexp(r),
meaning the rule preconditions match perfectly to the given state, the action that has been
considered, and r has the highest truth expectation among the rule candidates.
In this case the postcondition cell value of the rule is applied to the corresponding cell at
position (x, y) in the predicted state, while else the cell keeps the value from the previous
state. Hence, for utilized rules r∗ = ((c1t ∧ ... ∧ ckt ∧ vt ∧ at)⇒ (ct+1 ∧ vt+1 ∧ R(r∗))),
where ct+1 and vt+1 constrains the cell value and value array of the consequence:

ct+1,x,y =

ct+1 if r∗ = argmax
r|M(r,ct,x,y)=1

fexp(r)

ct,x,y otherwise

Now, while st+1 is a composition of the cells at all locations at time t + 1, the reward
associated with st+1 is the average of the reward of each of the N utilized rules:

R(st+1) =
1
N

∑N
i=1 R(r∗i)

Hereby, the average was chosen since if the reward prediction of all the used rules aligns
with the observed reward, their average will also align, while the sum would overestimate
the outcome.

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2025

4 EXPERIMENTS IN MINIGRID

To evaluate the effectiveness of NACE compared to other DRL techniques, we conducted a series
of experiments in Minigrid Chevalier-Boisvert et al. (2024), a 2D grid world environment featuring
diverse and procedurally generated scenarios (Hardware setup and further test environments in Ap-
pendices F and H). We focus on Minigrid levels that feature partial observability (using the default
observation format, which provides values per grid cell rather than per pixel), challenging the agent
to operate with limited information about its surroundings. The selected environments (see Table 1)
are categorized based on the specific challenges they present:

1. Static: fixed start & goal locations.
2. Dynamic: randomized start, goal,

and obstacle positions.
3. Dynamic with sequential depen-

dencies: tasks requiring specific ac-
tion sequences (e.g., a door that
needs a key or switch to be opened).

Environment Type
MiniGrid-Empty-16x16-v0 1
MiniGrid-DistShift2-v0 1
MiniGrid-LavaGapS7-v0 2
MiniGrid-SimpleCrossingS11N5-v0 2
MiniGrid-Unlock-v0 3
MiniGrid-DoorKey-8x8-v0 3

Table 1: Environments with corresponding types

In each environment, we recorded the average reward, episode length, and standard deviation every
100 timesteps, whereby each timestep incorporates the observed state, action taken, and obtained
reward. The following sections present and discuss some representative results for each category,
using the selected RL techniques mentioned in Section 2.1. (Configuration and hyperparameter de-
tails are in Appendix E). Additionally, Behavior Trees (BTs) and hard-coded policies are employed
as performance upper bounds in non-stationary and static environments.

4.1 STATIONARY ENVIRONMENTS

In this category, because the start and goal locations are fixed, the primary challenge for the agent is
to consistently learn and optimize navigation strategies over repeated episodes.

Figure 4: Learning curves in
MiniGrid-Empty-16x16-v0

Techn. Avg. reward S. dev.
TRPO 0.976 0.001
PPO 0.781 0.390
A2C, DQN 0.000 0.000
IMPALA 0.976 0.197
COUNT 0.974 0.203
RIDE 0.975 0.151
CURIOSITY 0.974 0.217
RND 0.000 0.008
AMIGO 0.976 0.059
DreamerV3 0.976 0.000
NACE 0.916 0.004

Table 2: Final values for
MiniGrid-Empty-16x16-v0

MiniGrid-Empty-16x16-v0: This environment features a large, static grid where the agent must
navigate from a fixed start location to a fixed goal. Due to the limited observation window and the
sparse reward—only granted upon reaching the goal—the task can present some difficulties. In this
case, NACE, following its innate strategy, first learns to move effectively within the grid by exploring
its immediate surroundings. Then it systematically expands its exploration, hitting observed walls
out of curiosity, and finally exploring initially invisible parts of the map until the goal object is
found and moved into. Due to its intrinsic inductive bias, it explores the area systematically and
associates reward with the goal location within about 103 timesteps. In contrast, other techniques

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2025

like DreamerV3, TRPO, IMPALA, RIDE, and AMIGO, although capable of eventually learning the
task, require over 105 timesteps to perform comparatively well (as seen in Figure 4, and Table 2).

MiniGrid-DistShift2-v0: In this case, the fixed start and goal locations are accompanied by sta-
tionary lava obstacles, which the agent must navigate around to reach the goal. DQN and Dream-
erV3 perform quite well, achieving a near-optimal policy with an average reward of 0.96, closely
mirroring the performance of the BT. Although reaching a slightly lower average reward of 0.87,
NACE was three orders of magnitudes more sample-efficient. The next-best policies were found by
AMIGO and PPO with an average reward of 0.78 and 0.76, while the other techniques were below
0.5, all of them being much less sample-efficient than NACE (as in Figure 5 and Table 3).

Figure 5: Learning curves in
MiniGrid-DistShift2-v0

Techn. Avg. reward S. dev.
TRPO 0.383 0.469
PPO 0.763 0.381
A2C 0.000 0.000
DQN 0.961 0.000
IMPALA 0.245 0.027
COUNT 0.243 0.025
RIDE 0.245 0.036
CURIOSITY 0.245 0.041
RND 0.245 0.049
AMIGO 0.778 0.203
DreamerV3 0.961 0.000
NACE 0.870 0.006

Table 3: Final values for
MiniGrid-DistShift2-v0

4.2 DYNAMIC ENVIRONMENTS

Given that the start and goal locations, along with obstacle positions, are randomized in each episode,
these environments require the agent to continuously adapt to new and unpredictable conditions.

Figure 6: Learning curves in
MiniGrid-LavaGapS7-v0

Techn. Avg. reward S. dev.
TRPO 0.187 0.375
PPO 0.838 0.309
A2C 0.000 0.000
DQN 0.114 0.309
IMPALA 0.521 0.064
COUNT 0.543 0.067
RIDE 0.535 0.070
CURIOSITY 0.531 0.103
RND 0.551 0.111
AMIGO 0.690 0.151
DreamerV3 0.952 0.005
NACE 0.794 0.044

Table 4: Final values for
MiniGrid-LavaGapS7-v0

MiniGrid-LavaGapS7-v0: In this environment, the agent must navigate around randomly placed
lava obstacles to reach a fixed goal, requiring adaptability due to the varying paths between episodes.
The 5x5 free space, which is mostly covered by the agent’s observation window, is complicated
by dynamically spawning lava, unlike the stationary obstacles in MiniGrid-DistShift2-v0. From the
mean episode rewards (as seen in Figure 6, and Table 4), it is clear that PPO and NACE find a similar
effective strategy, whereby NACE takes about 103 timesteps while PPO takes 3 × 105 timesteps to
reach a mean reward value of around 0.8, while the optimal policies, as BT shows, are between
0.9 and 1.0, a range only DreamerV3 (0.953) managed to enter. Additionally, PPO exhibits more

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2025

instability in learning and greater sensitivity to initialization, as evidenced by a higher standard
deviation. Following these, AMIGO reached an average reward of only 0.69, while the remaining
techniques performed poorly, despite the fact that this level is practically fully observable.

MiniGrid-SimpleCrossingS11N5-v0: Here the agent faces a large grid with multiple intersec-
tions and potential dead ends. The randomized layout in each episode also forces the agent to de-
velop a robust exploration strategy. As Figure 7, and Table 5 show, DreamerV3, IMPALA, COUNT,
RIDE, CURIOSITY, RND achieved near-optimal policies since their intrinsic reward mechanisms
seem to be particularly helpful in this large environment where the observable window covers only
a small part. NACE and AMIGO found reasonable policies with average rewards of 0.88 and 0.78
respectively, while the remaining techniques scored below 0.5. Again, NACE’s strength lies in its
data efficiency, driven by its inductive biases, even though it does not converge to the optimal policy.

Figure 7: Learning curves in
MiniGrid-SimpleCrossingS11N5-v0

Techn. Avg. reward S. dev.
TRPO 0.381 0.467
PPO, A2C, DQN 0.000 0.000
IMPALA 0.958 0.238
COUNT 0.960 0.168
RIDE 0.959 0.170
CURIOSITY 0.958 0.261
RND 0.958 0.222
AMIGO 0.778 0.203
DreamerV3 0.960 0.008
NACE 0.880 0.009

Table 5: Final values for
MiniGrid-SimpleCrossingS11N5-v0

4.3 DYNAMIC ENVIRONMENTS WITH SEQUENTIAL DEPENDENCIES

In these environments, the need to perform actions in a specific sequence adds complexity and tests
the agent’s ability to plan and execute multi-step strategies.

Figure 8: Learning curves in
MiniGrid-Unlock-v0

Techn. Avg. reward S. dev.
TRPO 0.577 0.471
PPO 0.890 0.263
A2C, DQN 0.000 0.000
IMPALA 0.964 0.162
COUNT 0.949 0.185
RIDE 0.775 0.188
CURIOSITY 0.051 0.016
RND 0.181 0.046
AMIGO 0.932 0.388
DreamerV3 0.967 0.003
NACE 0.858 0.018

Table 6: Final values for
MiniGrid-Unlock-v0

MiniGrid-Unlock-v0: In this scenario, the agent must first locate and pick up a key before un-
locking a door to reach the goal and obtain the reward. This sequential dependency adds a layer of
complexity that challenges the agent’s ability to plan ahead. Even though it is a single sequential
dependency, the DRL techniques that learned the fastest initially, DreamerV3 and PPO, demands
almost a million timesteps to converge to a similarly effective policy as NACE, which achieves this
within just 103 steps again (as seen in Figure 8, and Table 6). Additionally, while PPO shows more
instability in learning, it is far less chaotic than AMIGO. IMPALA reached the optimal policy, and

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2025

did so after about 2 million steps, performing similarly well as COUNT and AMIGO in the end. It
is also visible, in our runs, that TRPO did not exceed a mean episode reward of 0.6, while A2C and
DQN completely failed to learn any effective policy.

MiniGrid-DoorKey-8x8-v0: This environment introduces an additional layer of sequential de-
pendency by requiring the agent to navigate through an unlocked door to reach a goal in a separate
room. While passing through the door adds complexity, the primary challenge lies in the sparse re-
ward structure, as no reward is given for merely using the door, since only reaching the final goal is
rewarded. As presented in Figure 9, Table 7, DreamverV3 and COUNT nearly achieved the optimal
policy with an average reward of 0.975 and 0.96. AMIGO reached 0.87, but within 107 timesteps,
which is below the average reward which NACE reached within only 104 steps. Overall the re-
sults suggest poor combinatorial scaling of the involved DRL techniques, while NACE, on average,
required a similar amount of timesteps as for MiniGrid-Unlock-v0 to learn an effective policy.

Figure 9: Learning curves in
MiniGrid-DoorKey-8x8-v0

Techn. Avg. reward S. dev.
TRPO 0.000 0.000
PPO 0.156 0.357
A2C, DQN 0.000 0.000
IMPALA 0.000 0.000
COUNT 0.960 0.308
RIDE 0.354 0.126
CURIOSITY 0.000 0.000
RND 0.000 0.001
AMIGO 0.868 0.241
DreamerV3 0.977 0.004
NACE 0.922 0.012

Table 7: Final values for
MiniGrid-DoorKey-8x8-v0

The observed sample efficiency of NACE originates from explicitly exploiting the cell-based grid
world state observations for creating transition rules. This represents a strong inductive bias, which
makes NACE less generic than DreamerV3. However it can nevertheless be valuable in broader
applications where mapping high-dimensional input to a similar discrete world representation is
feasible. This mapping, dependent on the problem domain, can be implemented with the appropri-
ate choice of feature extraction techniques. Such approaches are commonly employed in robotics,
where methods like Simultaneous Localization and Mapping and object detection models are in-
tegrated to construct semantic maps for operating mobile robots Zhang et al. (2020a). However
we acknowledge this demands a considerable engineering effort, while DreamerV3 can update its
perceptual representations dynamically via gradient-based updates. Additional discussions, such as
about NACE’s sub-optimality due to representational limitations, can be found in Appendix A.

5 CONCLUSION

We introduced NACE, an experiential learning agent designed to enhance data efficiency in grid
world environments by leveraging causally-informed intrinsic rewards and inductive biases. We
compared NACE with state-of-the-art DRL techniques, demonstrating that while these techniques
are able to eventually achieve near-optimal policies, they often require significantly more data, es-
pecially as task complexity increases due to factors such as sequential dependencies. NACE, by
contrast, extends the RL framework to empirically support causal relations, enabling effective learn-
ing and decision-making even in low data settings without relying on pre-defined causal models. Our
causality-informed curiosity model, combined with the outlined inductive biases, facilitates system-
atic exploration and learning requiring significantly fewer timesteps. We hope that future work in
the field will strike new compromises regarding the inclusion of inductive biases, leading to highly
sample-efficient DRL that retains the ability to converge to optimal policies. Moving forward, we
plan to generalize NACE to handle three-dimensional and continuous spaces, as well as explore
neural implementations of NACE, further advancing the capabilities of learning agents.

10

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2025

REPRODUCIBILITY STATEMENT

• We utilized open-source implementations of the selected DRL algorithms from public
repositories (not including our technique):

– AMIGO was from here: https://github.com/facebookresearch/
adversarially-motivated-intrinsic-goals

– BT is here: https://github.com/andreneco/minigrid_bt
– DQN, A2C, TRPO, and PPO were established on Stable Baselines3 (SB3)’s

baselines repository (Raffin et al., 2021): https://stable-baselines3.
readthedocs.io/

– DreamerV3 was from here: https://github.com/qxcv/dreamerv3
– All the other were from here: https://github.com/sparisi/cbet

• We used the the Minigrid package for the environments in our comparison, which is avail-
able here: https://github.com/Farama-Foundation/Minigrid

• For NACE we provide a stand-alone zip archive for reviewers to reproduce our results,
which is runnable on a regular computer with Python interpreter. It includes a README.txt
in the NACE folder, as well as scripts to generate the tables and the plots present in the
paper.

REFERENCES

Nishanth Anand and Doina Precup. Prediction and control in continual reinforcement learning.
Advances in Neural Information Processing Systems, 36, 2024.

Marc Bellemare, Sriram Srinivasan, Georg Ostrovski, Tom Schaul, David Saxton, and Remi Munos.
Unifying count-based exploration and intrinsic motivation. Advances in neural information pro-
cessing systems, 29, 2016.

Daniel Bryce. Wumpus world in introductory artificial intelligence. Journal of Computing Sciences
in Colleges, 27(2):58–65, 2011.

Yuri Burda, Harrison Edwards, Amos Storkey, and Oleg Klimov. Exploration by random network
distillation. arXiv preprint arXiv:1810.12894, 2018.

A Campero, R Raileanu, H Küttler, JB Tenenbaum, T Rocktäschel, and E Grefenstette. Learning
with amigo: Adversarially motivated intrinsic goals. In ICLR 2021-9th International Conference
on Learning Representations. International Conference on Learning Representations, 2021.

Yushi Cao, Zhiming Li, Tianpei Yang, Hao Zhang, Yan Zheng, Yi Li, Jianye Hao, and Yang Liu.
Galois: boosting deep reinforcement learning via generalizable logic synthesis. Advances in
Neural Information Processing Systems, 35:19930–19943, 2022.

Maxime Chevalier-Boisvert, Bolun Dai, Mark Towers, Rodrigo Perez-Vicente, Lucas Willems,
Salem Lahlou, Suman Pal, Pablo Samuel Castro, and Jordan Terry. Minigrid & miniworld: Mod-
ular & customizable reinforcement learning environments for goal-oriented tasks. Advances in
Neural Information Processing Systems, 36, 2024.

Michele Colledanchise and Petter Ögren. Behavior trees in robotics and AI: An introduction. CRC
Press, 2018.

Dorit Dor and Uri Zwick. Sokoban and other motion planning problems. Computational Geometry,
13(4):215–228, 1999.

Lasse Espeholt, Hubert Soyer, Remi Munos, Karen Simonyan, Vlad Mnih, Tom Ward, Yotam
Doron, Vlad Firoiu, Tim Harley, Iain Dunning, et al. Impala: Scalable distributed deep-rl with im-
portance weighted actor-learner architectures. In International conference on machine learning,
pp. 1407–1416. PMLR, 2018.

Huihui Guo, Fan Wu, Yunchuan Qin, Ruihui Li, Keqin Li, and Kenli Li. Recent trends in task and
motion planning for robotics: A survey. ACM Computing Surveys, 55(13s):1–36, 2023.

11

https://github.com/facebookresearch/adversarially-motivated-intrinsic-goals
https://github.com/facebookresearch/adversarially-motivated-intrinsic-goals
https://github.com/andreneco/minigrid_bt
https://stable-baselines3.readthedocs.io/
https://stable-baselines3.readthedocs.io/
https://github.com/sparisi/cbet
https://github.com/Farama-Foundation/Minigrid

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2025

Danijar Hafner, Jurgis Pasukonis, Jimmy Ba, and Timothy Lillicrap. Mastering diverse domains
through world models. arXiv preprint arXiv:2301.04104, 2023.

Woojun Kim, Yongjae Shin, Jongeui Park, and Youngchul Sung. Sample-efficient and safe deep re-
inforcement learning via reset deep ensemble agents. Advances in Neural Information Processing
Systems, 36, 2024.

Volodymyr Mnih, Koray Kavukcuoglu, David Silver, Alex Graves, Ioannis Antonoglou, Daan Wier-
stra, and Martin Riedmiller. Playing atari with deep reinforcement learning. arXiv preprint
arXiv:1312.5602, 2013.

Volodymyr Mnih, Koray Kavukcuoglu, David Silver, Andrei A Rusu, Joel Veness, Marc G Belle-
mare, Alex Graves, Martin Riedmiller, Andreas K Fidjeland, Georg Ostrovski, et al. Human-level
control through deep reinforcement learning. nature, 518(7540):529–533, 2015.

Volodymyr Mnih, Adria Puigdomenech Badia, Mehdi Mirza, Alex Graves, Timothy Lillicrap, Tim
Harley, David Silver, and Koray Kavukcuoglu. Asynchronous methods for deep reinforcement
learning. In International conference on machine learning, pp. 1928–1937. PMLR, 2016.

Deepak Pathak, Pulkit Agrawal, Alexei A Efros, and Trevor Darrell. Curiosity-driven exploration
by self-supervised prediction. In International conference on machine learning, pp. 2778–2787.
PMLR, 2017.

Judea Pearl. From bayesian networks to causal networks. In Mathematical models for handling
partial knowledge in artificial intelligence, pp. 157–182. Springer, 1995.

Martha E Pollack and Marc Ringuette. Introducing the tileworld: Experimentally evaluating agent
architectures. In AAAI, volume 90, pp. 183–189, 1990.

Antonin Raffin, Ashley Hill, Adam Gleave, Anssi Kanervisto, Maximilian Ernestus, and Noah
Dormann. Stable-baselines3: Reliable reinforcement learning implementations. Journal of
Machine Learning Research, 22(268):1–8, 2021. URL http://jmlr.org/papers/v22/
20-1364.html.

Roberta Raileanu and Tim Rocktäschel. Ride: Rewarding impact-driven exploration for
procedurally-generated environments. In International Conference on Learning Representations,
2020.

John Schulman, Sergey Levine, Pieter Abbeel, Michael Jordan, and Philipp Moritz. Trust region
policy optimization. In International conference on machine learning, pp. 1889–1897. PMLR,
2015.

John Schulman, Filip Wolski, Prafulla Dhariwal, Alec Radford, and Oleg Klimov. Proximal policy
optimization algorithms. arXiv preprint arXiv:1707.06347, 2017.

Ramanan Sekar, Oleh Rybkin, Kostas Daniilidis, Pieter Abbeel, Danijar Hafner, and Deepak Pathak.
Planning to explore via self-supervised world models. In International conference on machine
learning, pp. 8583–8592. PMLR, 2020.

Matthijs TJ Spaan. Partially observable markov decision processes. Reinforcement learning: State-
of-the-art, pp. 387–414, 2012.

Richard S Sutton, Andrew G Barto, et al. Reinforcement learning. Journal of Cognitive Neuro-
science, 11(1):126–134, 1999.

Pedro A Tsividis, Joao Loula, Jake Burga, Nathan Foss, Andres Campero, Thomas Pouncy, Samuel J
Gershman, and Joshua B Tenenbaum. Human-level reinforcement learning through theory-based
modeling, exploration, and planning. arXiv preprint arXiv:2107.12544, 2021.

Andrew Wang, Andrew C Li, Toryn Q Klassen, Rodrigo Toro Icarte, and Sheila A McIlraith. Learn-
ing belief representations for partially observable deep rl. In International Conference on Machine
Learning, pp. 35970–35988. PMLR, 2023a.

12

http://jmlr.org/papers/v22/20-1364.html
http://jmlr.org/papers/v22/20-1364.html

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2025

Kaixin Wang, Kuangqi Zhou, Bingyi Kang, Jiashi Feng, and YAN Shuicheng. Revisiting intrinsic
reward for exploration in procedurally generated environments. In The Eleventh International
Conference on Learning Representations, 2023b.

Pei Wang. Non-axiomatic logic: A model of intelligent reasoning. World Scientific, 2013.

Jiadong Zhang, Wei Wang, Xianyu Qi, and Ziwei Liao. Social and robust navigation for indoor
robots based on object semantic grid and topological map. Applied Sciences, 10(24):8991, 2020a.

Tianjun Zhang, Huazhe Xu, Xiaolong Wang, Yi Wu, Kurt Keutzer, Joseph E Gonzalez, and Yuan-
dong Tian. Bebold: Exploration beyond the boundary of explored regions. arXiv preprint
arXiv:2012.08621, 2020b.

Qian Zhao, Jinhui Han, and Mao Xu. Boosting policy learning in reinforcement learning via adaptive
intrinsic reward regulation. IEEE Access, 2023.

Lulu Zheng, Jiarui Chen, Jianhao Wang, Jiamin He, Yujing Hu, Yingfeng Chen, Changjie Fan, Yang
Gao, and Chongjie Zhang. Episodic multi-agent reinforcement learning with curiosity-driven
exploration. Advances in Neural Information Processing Systems, 34:3757–3769, 2021.

Xun Zheng, Bryon Aragam, Pradeep K Ravikumar, and Eric P Xing. Dags with no tears: Continuous
optimization for structure learning. Advances in neural information processing systems, 31, 2018.

APPENDIX A ADDITIONAL STUDIES AND DISCUSSIONS

The performance results indicate that NACE often exhibits sub-optimal outcomes. To analyze this,
we present contributing factors from a conceptual perspective, examine the impact of hyperparame-
ter choices, and assess robustness to non-determinism arising from random action consequences.

• Representational Limitations: NACE’s rule-based framework captures only spatially rel-
ative dependencies from one timestep to the next. It does not exploit the inherent struc-
tural statistics of environment generation, which are leveraged by various DRL techniques.
While these structural dependencies are most apparent in static environments where loca-
tions remain constant, they are also present in dynamic environments. For example, the
goal location consistently appears in the bottom-right corner not only in MiniGrid-Empty
levels but also in MiniGrid-SimpleCrossingS11N5-v0. NACE’s inability to utilize these
broader environmental patterns limits its performance compared to methods that can.
Additionally, NACE’s rules are tied to an action, meaning agent-external changes that are
not caused by NACE need to be learned for each action separately, considerably lowering
its sample efficiency by a factor of the amount of actions. The mechanism could be ex-
tended to incorporate learning of rules without an action as a precondition, leaving it to
evidence collection whether the action is considered dependent on the truth expectation of
the alternative rules.

• Study of Reduced Planning Horizon: NACE’s estimation of expected returns relies heav-
ily on its planning horizon. Short planning horizons can significantly reduce performance,
especially in tasks requiring long-term planning. To quantify this effect, we examine two
cases: MiniGrid-DoorKey-8x8-v0, which demands longer-horizon planning, and MiniGrid-
DoorKey-6x6-v0, which is less demanding in this regard. As shown in Table 8, running
NACE with a planning horizon of only 8 steps in MiniGrid-DoorKey-8x8-v0 results in con-
vergence to an average return of 0.48, whereas extending the horizon to 100 steps improves
the average reward to 0.92. In contrast, in MiniGrid-DoorKey-6x6-v0, NACE maintains
an average reward of 0.93 regardless of the planning horizon. A similar pattern is ob-
served in MiniGrid-Empty-16x16-v0, where the average reward drops from 0.91 to 0.41
when the planning horizon is reduced from 100 to 8 steps. These results highlight NACE’s
dependence on adequate planning horizons for effective rule chaining and the significant
performance degradation that occurs when the planning horizon is too short.

13

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2025

Environment Planning Horizon, Average Reward
MiniGrid-DoorKey-6x6-v0 8 steps, 0.93
MiniGrid-DoorKey-6x6-v0 100 steps, 0.93
MiniGrid-DoorKey-8x8-v0 8 steps, 0.48
MiniGrid-DoorKey-8x8-v0 100 steps, 0.92
MiniGrid-Empty-16x16-v0 8 steps, 0.41
MiniGrid-Empty-16x16-v0 100 steps, 0.91

Table 8: NACE Performance with different planning horizons

• Robustness to Non-Determinism: NACE’s rule representation incorporates uncertainty
handling through evidence counters, enabling it to cope with non-deterministic state tran-
sitions. To assess this capability, we modify the environment to invoke unintended actions
with certain probabilities. In MiniGrid-Empty-16x16-v0, when 10% of actions result in
unintended outcomes, NACE still achieves an average reward above 0.9, demonstrating
basic tolerance to non-determinism. However, when the probability of unintended actions
increases to 20%, NACE fails to complete the task within the maximum allowed time in all
episodes. Higher tolerance to non-determinism can be achieved by increasing the default
truth expectation threshold for rule usage above the default value of 0.5. However, this
adjustment reduces sample efficiency, as it requires the agent to confirm each rule multiple
times before utilizing it.

APPENDIX B ABLATION STUDY: EFFECTS OF OMITTING KEY INDUCTIVE
BIASES IN NACE, AND INDUCTIVE BIASES IN DRL

B.1 CAUSAL RULE REPRESENTATION

The causal rule representation is foundational to NACE’s operation and cannot be omitted. However,
we analyze the effects of reducing the planning horizon, which limits the depth of chaining, in
Appendix A.

B.2 TEMPORAL LOCALITY AND ATTENTIONAL BIAS

Omitting these biases with larger environment sizes is infeasible due to the combinatorial explosion
of potential rules as we will now analyze.

• For an environment of size w × h, the number of possible rule preconditions for a single
timestep is 2w·h, as each particular cell can either be considered or not be considered in the
precondition of a rule.

• For a time window of duration d, this expands to 2w·h·d, leading to
18446744073709551616 possible rule preconditions for an 8 × 8 grid within a sin-
gle timestep.

• NACE is tied to Markov Assumption particularly within the observational window, as all
rule construction and updating considers only the previous and current state. However,
its bird view map representation also contains values from observations of previous time
steps which are currently out of view of the agent, which brings us to the next point, state
tracking.

B.3 STATE TRACKING

Without state tracking, NACE lacks memory of prior observations and memory of observations
which are outside of its field-of-view. This results in oscillatory behavior caused by the exploration
strategy of the agent, as it can only utilize information the visible information.

• In our experiments across 10 runs in MiniGrid-Empty-8x8-v0, this led the agent to turn
indefinitely due to the curiosity model assigning low match values to previously visited
areas (due to the lack of state tracking they are always considered to be of unknown value)

14

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2025

which are now outside of the field-of-view of the agent. The closest such cell is immediately
behind the agent with the default partial observation model in Minigrid, which explains the
behavior.

• State Tracking plays a critical role in ensuring purposeful exploration and decision-making,
for the agent to know which places have been visited and what it has been observing at the
particular locations, as well as which locations have yet to be observed.

• Sequential dependencies often depend on state tracking. An example of this is when a door
has to be opened with a key, where the key and the door is too far apart to be observed
concurrently, demanding some form of spatial memory. Another form of state tracking lies
in the observable inventory array, which when absent would need the modeling of long-
range temporal dependencies (e.g. did the agent already pick up the key?) which would
demand a suitable model structure to be learnable by the agent.

B.4 SPATIAL EQUIVARIANCE

The absence of spatial equivariance significantly impacts sample efficiency.

• Each rule must be learned independently for every location, meaning in an 8x8 grid, the
agent has to learn 64 times the same set of rules. However, since particular arrangements of
cell values will not re-appear through the environment generation, it can take significantly
longer to learn the relevant knowledge without this bias.

• Hence for the general case with an environment of size w × h, this increases the required
sample count at least by a factor of w ·h, harming significantly the sample efficiency of the
technique.

• Conceptually, we also would like to point out that the rule learning mechanisms do not
allow to learn spatial equivariance retrospectively either, while some DRL techniques, de-
pendent on the model structure, could potentially acquire it.

These results highlight the necessity of each inductive bias in ensuring the scalability, efficiency, and
functionality of NACE.

B.5 WHICH INDUCTIVE BIASES ARE PRESENT IN THE DRL TECHNIQUES

In the main paper we outlined the inductive biases of NACE. However we would like to point out that
some of them are also inherent in the DRL techniques, complementing our discussion on inductive
biases in DRL and NACE:

• Temporal Locality: The DRL methods perform best when the Markov Assumption is met,
despite LSTM allowing to cope with partial observability, the need to capture long-range
temporal dependencies makes sample efficient learning more difficult.

• Causal representation: While not explicitly stated as a set of cause-effect relations,
DreamerV3’s learned dynamics model can predict the consequence states of actions, which
is not the case for the model-free DRL methods. Such modeling is to some extent inde-
pendent from the objective (what is rewarding), and allows an agent to train itself from
simulated experience by predicting novel states, and to reach novel goals.

• Spatial Equivariance: Clearly the DRL techniques do not have an explicit rule represen-
tation, however the Convolution layers in the DRL policies allow for learned features to be
identified at different locations, improving generalization.

• State Tracking: Is not explicitly handled by the DRL techniques as a separate point, in-
stead it is handled in the same way as non-local temporal dependencies in the LSTM-
including policies, while NACE builds a bird view map explicitly, which can be considered
to be a form of spatial memory.

• Attentional Bias: While NACE has a strong prior to which cells to consider based on
observably changed values and prediction mismatches, the DRL policies with Convolution
layers are more flexible and allow an agent to learn which values are relevant in relation to
each other.

15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2025

APPENDIX C NOTATION AND SYMBOLS

Symbol Description
s State, represented as a combination of a 2D grid (sgrid) and a 1D array (sarray)
a Action taken by the agent
r Causal rule in the form (preconditions, action)⇒ consequence
ct,x,y Cell value at position (x, y) in the 2D grid at time t
c Equality constraint on a cell value (e.g., cr = c)
vt Value array at time t
v Equality constraint on value array (e.g., vr = v)
M(r, c) Match value of a rule r for cell c, based on the fraction of preconditions satisfied
C(c) Cell match value for cell c, derived from the maximum match value across all rules
S(s) State match value for state s, calculated as the average C(c) for cells with C(c) > 0
w+(r) Positive evidence counter for rule r, incremented when predictions align with observations
w−(r) Negative evidence counter for rule r, incremented when predictions differ from observations
w(r) Total evidence count for rule r, defined as w(r) = w+(r) + w−(r)

frequency(r) Fraction of positive evidence for rule r, defined as f(r) = w+(r)
w(r)

confidence(r) Confidence factor for rule r, defined as c(r) = w(r)
w(r)+1

fexp(r) Expected truth value for rule r, calculated as fexp(r) = (f(r)− 1
2) · c(r) +

1
2

M change
t Set of cells with changes in observed values between timesteps t− 1 and t

M observation
mismatched,t Set of cells where observed values differ from predicted values at timestep t

M prediction
mismatched,t Set of cells where predictions differ from observations at timestep t

R(r) Reward associated with rule r
R(s) Reward associated with a state s, defined as the average reward of rules applied to generate s
V (s) Value of state s, used in planning for maximizing long-term returns
π(t) Planned action sequence or policy at timestep t
γ Discount factor for future rewards

APPENDIX D PSEUDOCODE

The system can be described by the pseudocode:

Algorithm 1: Pseudocode of NACE

• Actual World: perceived array = perceive partial(world)
• Observer:

st = update bird view(st−1, perceived array)
calculate(Mchange,M

observation
mismatched,M

prediction
mismatched)

• Hypothesizer:
– Create new rules for which w+(r) = 1.
– Update rule evidences according to w+(r) and w−(r).
– Choose rules r1 with w+(r1) > w−(r1) for which there does not exist a rule r2 with

same precondition and action, but different postcondition with fexp(r2) > fexp(r1).
• Planner utilizing Predictor:

a1, ..., an = BFS with Predictor(V (s) > 0)
a∗1, ..., a

∗
n = BFS with Predictor(min(S(s)) < 1)

//whereby BFS with Predictor is bounded breadth first search with Predictor as state
transition function
If found(a1, ..., an):, return a1, ..., an
If found(a∗1, ..., a

∗
n):, return a∗1, ..., a

∗
n

Else Perform a random action

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2025

APPENDIX E HYPERPARAMETER DETAILS

E.1 FOUNDATIONAL ALGORITHMS

E.1.1 CORE MODELS AND THEIR MECHANISMS

• Deep Q-Network (DQN): DQN integrates deep neural networks with classical Q-learning,
making it effective for handling large state spaces. To stabilize training, DQN uses experi-
ence replay and a separate target network. The Q-value update in DQN follows:

Q(s, a)← Q(s, a) + α
(
R(s) + γmax

a′
Q(s′, a′)−Q(s, a)

)
where:

– s, a: current state and action,
– s′, a′: next state and action,
– R(s): reward received,
– γ: discount factor for future rewards,
– α: learning rate.

• Advantage Actor-Critic (A2C): A2C builds on the actor-critic framework, synchronizing
multiple parallel learners to reduce variance in policy updates. It calculates an advan-
tage function to evaluate actions relative to the current policy’s value estimate, stabilizing
training but requiring frequent environmental interactions due to its on-policy nature.
Advantage Function:

A(s, a) = Q(s, a)− V (s)

Policy Update: The policy is updated using the gradient:

θ ← θ + α∇θ log πθ(a|s)A(s, a)

where:
– Q(s, a): action-value function,
– V (s): state-value function,
– πθ(a|s): policy parameterized by θ,
– α: learning rate.

• Trust Region Policy Optimization (TRPO): TRPO addresses stability in policy updates
by enforcing a trust region constraint, ensuring small policy changes during optimization.
This constraint is implemented via a KL-divergence bound, preventing drastic shifts in
behavior but requiring computationally expensive second-order optimization.
Objective Function:

max
θ

Es∼πθold

[
πθ(a|s)
πθold(a|s)

A(s, a)

]
Constraint:

Es∼πθold
[DKL(πθold ||πθ)] ≤ δ

where:
– πθ(a|s): new policy,
– πθold(a|s): previous policy,
– A(s, a): advantage function,
– DKL: KL-divergence,
– δ: trust region size.

• Proximal Policy Optimization (PPO): PPO refines TRPO by introducing a clipped sur-
rogate objective, which simplifies computation and allows for multiple updates per batch.
This approach improves data utilization while maintaining policy stability.
Clipped Surrogate Objective:

max
θ

Es,a

[
min

(
πθ(a|s)
πθold(a|s)

A(s, a), clip
(

πθ(a|s)
πθold(a|s)

, 1− ϵ, 1 + ϵ

)
A(s, a)

)]
where:

17

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2025

– πθ(a|s): new policy,
– πθold(a|s): old policy,
– A(s, a): advantage function,
– ϵ: clipping threshold.

E.1.2 HYPERPARAMETER CONFIGURATION FOR FOUNDATIONAL ALGORITHMS

We utilize the Stable Baselines3 framework (Raffin et al., 2021) to train and evaluate foundational
algorithms, leveraging its pre-implemented models and customizable configurations. All algorithms
use the same convolutional neural network architecture to process observations, ensuring consis-
tency across experiments. The hyperparameters for each algorithm were selected based on achiev-
ing the best average performance across all tasks, rather than optimizing for a single task, to ensure
generalizability. The details of the network architecture and training setup for each algorithm are
outlined below.

• Network Architecture: Observations (7× 7× 3) from the Minigrid environment are pro-
cessed through four convolutional layers. Each layer is configured as follows:

– Kernel size: 2× 2

– Activation: ReLU
– Increasing number of filters: 16, 32, 64, and 128

The output of the final convolutional layer is flattened and passed to a fully connected layer
with:

– Output dimension: 128
– Activation: ReLU

• Training Setup for DQN:
– Learning rate: 0.0001
– Buffer size: 1, 000, 000
– Learning starts: 100
– Batch size: 32
– Soft update coefficient: 1
– Discount factor: 0.99
– Train frequency: 4
– Gradient steps: 1
– Target update interval: 10, 000
– Exploration fraction: 0.1
– Initial exploration epsilon: 1.0
– Final exploration epsilon: 0.05
– Max gradient norm: 10.0

• Training Setup for A2C:
– Learning rate: 0.0007
– Number of steps: 5
– Discount factor: 0.99
– Entropy coefficient: 0.0
– Value function coefficient: 0.5
– Max gradient norm: 0.5

• Training Setup for TRPO:
– Learning rate: 0.001
– Number of steps: 2048
– Batch size: 128
– Discount factor: 0.99
– Conjugate gradient max steps: 15

18

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2025

– Conjugate gradient damping: 0.1
– Line search shrinking factor: 0.8
– Line search max iterations: 10
– Number of critic updates: 10
– Target KL divergence: 0.01

• Training Setup for PPO:
– Learning rate: 0.0003
– Number of steps: 2048
– Batch size: 64
– Number of epochs: 10
– Discount factor: 0.99
– Clip range: 0.2
– Entropy coefficient: 0.0
– Value function coefficient: 0.5
– Max gradient norm: 0.5

E.2 MODEL-BASED ALGORITHM: DREAMERV3

DreamerV3 is a model-based RL algorithm designed to enhance sample efficiency by learning a
latent world model of the environment. It optimizes both the world model and the policy within the
latent space, reducing the computational demands of interacting with the environment.

World Model: The latent dynamics model predicts future latent states z based on prior latent state
zt−1, action at−1, and reward Rt−1. This model facilitates long-term planning without requiring
explicit rollouts in the actual environment.

Policy Optimization: The policy maximizes expected rewards in the learned latent space by lever-
aging the dynamics model to simulate trajectories. Policy updates use gradient-based methods in-
formed by imagined rollouts.

Loss Function:
LDreamerV3 = LReconstruction + LDynamics + LPolicy

where:

• LReconstruction: Measures the accuracy of reconstructing environment observations,

• LDynamics: Captures consistency in latent state transitions,

• LPolicy: Maximizes imagined rewards.

Hyperparameter Configuration for DreamerV3: The hyperparameter configuration has been
chosen to match the settings provided in https://github.com/qxcv/dreamerv3. To avoid
redundancy and maintain brevity, we do not include the full configuration here due to its extensive
nature.

E.3 MODEL-FREE EXPLORATION AND SCALABILITY EXTENSIONS

All experiments for the other model-free methods are based on the Torchbeast implementation of
IMPALA (Espeholt et al., 2018), which has been modified to support intrinsic reward algorithms as
described in Raileanu & Rocktäschel (2020) and Campero et al. (2021). The hyperparameters were
selected following the configurations used in these references. For clarity, we first list the values
shared across all algorithms, followed by the specific details unique to each one.

E.3.1 SHARED HYPERPARAMETERS

• Network Architecture: Observations (7×7×3 for Minigrid) are processed through three
convolutional layers:

– Number of filters: 32 per layer

19

https://github.com/qxcv/dreamerv3

1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2025

– Kernel size: 3× 3

– Stride: 2
– Padding: 1
– Activation: Exponential Linear Unit (ELU)

The output of the convolutional layers is passed to:

– An LSTM layer to address partial observability by maintaining temporal dependencies
and encoding sequences of observations.

– A fully connected layer for computing:

* Policy logits: Unnormalized scores for each action, converted to probabilities us-
ing a softmax function.

* Value estimates: Predictions of expected future returns, used in actor-critic meth-
ods.

• Training Setup:

– Number of actors: 40
– Number of buffers: 80
– Unroll length: 100
– Number of learner threads: 4
– Batch size: 32
– Discount factor: 0.99
– Learning rate: 0.0001
– Policy entropy loss: 0.0005
– Gradient clipping: Norm of 40
– Save interval: Every 20 minutes

• Special Parameters (Only When Applicable):

– Count reset probability: 0.001 (COUNT, RIDE)
– Hash bits: 128 (COUNT)

E.3.2 INTRINSIC REWARDS AND COEFFICIENTS

Intrinsic rewards address sparse rewards and inefficient exploration. Each algorithm applies scal-
ing coefficients to normalize its intrinsic rewards. Additionally, all techniques incorporate policies
enhanced with LSTMs to address partial observability by maintaining memory of past observations
and actions.

• IMPALA: No intrinsic reward (ri = 0.0).

• COUNT: ri = 0.005.

• RIDE: ri = 0.1.

• CURIOSITY: ri = 0.1.

• RND: ri = 0.1.

• AMIGO: ri = 0.1 (applies to the teacher’s intrinsic rewards).

The formal definitions of the intrinsic rewards are:

COUNT: The intrinsic reward is based on state visitation counts, encouraging exploration of less-
visited states:

ri =
1

N(s0)
,

where N(s0) is the (pseudo)count of visits to state s0. Counts are never reset during training.

20

1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Under review as a conference paper at ICLR 2025

RIDE (Rewarding Impact-Driven Exploration): The intrinsic reward combines state novelty
and state-change impact:

ri = ∥ϕ(s)− ϕ(s0)∥2 ·
1

N(s0)
,

where ϕ is trained to minimize both forward and inverse dynamics prediction errors. Counts N(s0)
are reset at the beginning of each episode.

CURIOSITY: The intrinsic reward comes from the prediction error of a forward dynamics model
f , which predicts the next state embedding ϕ(s0) from the current embedding ϕ(s) and action a:

ri = ∥f(ϕ(s), a)− ϕ(s0)∥2.

RND (Random Network Distillation): The intrinsic reward is computed as the prediction error
of a trainable network ϕ attempting to match the output of a fixed random network ϕ̂:

ri = ∥ϕ(s0)− ϕ̂(s0)∥2.

AMIGO: The teacher policy generates goals g for the agent, with rewards given as:

ri = v(st, g) =

{
+1 if st satisfies g,
0 otherwise.

The total reward is a weighted sum of intrinsic and extrinsic rewards:

rt = βri + αre, with β = 0.3, α = 0.7.

E.3.3 ALGORITHM-SPECIFIC HYPERPARAMETERS AND ARCHITECTURES

• IMPALA (Baseline):
– Intrinsic reward: None.
– Loss: Policy gradient, baseline, and entropy losses.

• COUNT:
– Intrinsic reward: State visitation counts.
– Uses count reset probability: p = 0.001.

• CURIOSITY:
– Intrinsic reward: Forward prediction error.
– Modules:

* State embedding model: Encodes observations into 256-dimensional embeddings.
* Forward dynamics model: Predicts next state embedding given current embedding

and action.
* Inverse dynamics model: Predicts action given two successive state embeddings.

– Loss weights:

* Forward dynamics loss: 10.0.
* Inverse dynamics loss: 0.1.

• RIDE:
– Intrinsic reward: Product of state visitation counts and the norm of state embedding

changes.
– Modules: Same as CURIOSITY.

• RND:
– Intrinsic reward: Prediction error between random target network and predictor net-

work embeddings.
– Modules:

* Random target network: Produces fixed embeddings for observations.
* Predictor network: Trained to predict random target embeddings.

– Loss weight: 0.1.

21

1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187

Under review as a conference paper at ICLR 2025

• AMIGO:

– Intrinsic reward: Teacher-generated rewards.

– Teacher-specific parameters:

* Intrinsic reward coefficient (β): 0.3.

* Extrinsic reward coefficient (α): 0.7.

* Generator batch size: 150.

* Generator entropy cost: 0.05.

* Generator threshold: −0.5.

APPENDIX F HARDWARE AND RUNTIME

In this section, we describe the hardware setup used to run the techniques and provide runtime
characteristics, including the duration of a single run for each technique. We specify the CPU and
GPU types and indicate whether the GPU was utilized for the corresponding models. While we
report this information for reproducibility, we emphasize that the focus of our analysis is not on
computational cost, but rather on sample efficiency.

NACE:

• CPU: Apple M2 with 24GB RAM

• GPU: Not utilized for this technique

• Runtime: Approximately 15 minutes runtime till convergence per environment per run with
respective seed.

Intrinsic reward models (COUNT, RIDE, CURIOSITY, RND, AMIGO) and IMPALA:

• CPU: Intel Core i7-9750H with 32GB RAM

• GPU: Geforce GTX-1660 Ti with 6GB RAM

• Runtime: Approximately 8 hours per run on average

Baseline models (TRPO, PPO, A2C, DQN):

• CPU: 1 compute node with 64 cores and 512GB RAM in total

• GPU: NVIDIA Tesla A100 HGX GPU with 80GB RAM

• Runtime: Approximately 1 hour per run on average

DreamerV3:

• CPU: 1 compute node with 64 cores and 512GB RAM in total

• GPU: NVIDIA Tesla A100 HGX GPU with 80GB RAM

• Runtime: Approximately 40 hours per run on average

22

1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241

Under review as a conference paper at ICLR 2025

APPENDIX G EXAMPLE ENVIRONMENT WITH LEARNED RULES

Figure 10: Illustration of Minigrid-Empty-8x8

The following are all the rules NACE learns in the Minigrid-Empty-8x8 environment as illustrated
in Figure 10:

Agent interacting with goal location:
<(v=[1], c[0, 0]=’x’, c[0, 1]=’H’, ˆdown) =/> (v=[0], c[0, 0]=’.’, R(r)=1)>.
<(v=[1], c[-1, 0]=’H’, c[0, 0]=’x’, ˆleft) =/> (v=[0], c[0, 0]=’.’, R(r)=1)>.
<(v=[1], c[0,-1]=’H’, c[0, 0]=’x’, ˆup) =/> (v=[0], c[0, 0]=’.’, R(r)=1)>.
<(v=[1], c[0, 0]=’x’, c[1, 0]=’H’, ˆright) =/> (v=[0], c[0, 0]=’.’, R(r)=1)>.
Goal location interacting with agent:
<(v=[1], c[0,-1]=’x’, c[0, 0]=’H’, ˆdown) =/> (v=[0], c[0, 0]=’.’, R(r)=1)>.
<(v=[1], c[0, 0]=’H’, c[1, 0]=’x’, ˆleft) =/> (v=[0], c[0, 0]=’.’, R(r)=1)>.
<(v=[1], c[0, 0]=’H’, c[0, 1]=’x’, ˆup) =/> (v=[0], c[0, 0]=’.’, R(r)=1)>.
<(v=[1], c[-1, 0]=’x’, c[0, 0]=’H’, ˆright) =/> (v=[0], c[0, 0]=’.’, R(r)=1)>.
Agent interacting with empty space:
<(v=[1], c[0, 0]=’ ’, c[0, 1]=’x’, ˆup) =/> (v=[1], c[0, 0]=’x’, R(r)=0)>.
<(v=[1], c[-1, 0]=’x’, c[0, 0]=’ ’, ˆright) =/> (v=[1], c[0, 0]=’x’, R(r)=0)>.
<(v=[1], c[0,-1]=’x’, c[0, 0]=’ ’, ˆdown) =/> (v=[1], c[0, 0]=’x’, R(r)=0)>.
<(v=[1], c[0, 0]=’ ’, c[1, 0]=’x’, ˆleft) =/> (v=[1], c[0, 0]=’x’, R(r)=0)>.
Empty space interacting with agent:
<(v=[1], c[0,-1]=’ ’, c[0, 0]=’x’, ˆup) =/> (v=[1], c[0, 0]=’ ’, R(r)=0)>.
<(v=[1], c[0, 0]=’x’, c[1, 0]=’ ’, ˆright) =/> (v=[1], c[0, 0]=’ ’, R(r)=0)>.
<(v=[1], c[0, 0]=’x’, c[0, 1]=’ ’, ˆdown) =/> (v=[1], c[0, 0]=’ ’, R(r)=0)>.
<(v=[1], c[-1, 0]=’ ’, c[0, 0]=’x’, ˆleft) =/> (v=[1], c[0, 0]=’ ’, R(r)=0)>.
Agent interacting with wall:
<(v=[1], c[0,-1]=’o’, c[0, 0]=’x’, ˆup) =/> (v=[1], c[0, 0]=’x’, R(r)=0)>.
<(v=[1], c[0, 0]=’x’, c[1, 0]=’o’, ˆright) =/> (v=[1], c[0, 0]=’x’, R(r)=0)>.
<(v=[1], c[0, 0]=’x’, c[0, 1]=’o’, ˆdown) =/> (v=[1], c[0, 0]=’x’, R(r)=0)>.
<(v=[1], c[-1, 0]=’o’, c[0, 0]=’x’, ˆleft) =/> (v=[1], c[0, 0]=’x’, R(r)=0)>.
Wall interacting with agent:
<(v=[1], c[0, 0]=’o’, c[1, 0]=’x’, ˆleft) =/> (v=[1], c[0, 0]=’o’, R(r)=0)>.
<(v=[1], c[0, 0]=’o’, c[0, 1]=’x’, ˆup) =/> (v=[1], c[0, 0]=’o’, R(r)=0)>.
<(v=[1], c[-1, 0]=’x’, c[0, 0]=’o’, ˆright) =/> (v=[1], c[0, 0]=’o’, R(r)=0)>.
<(v=[1], c[0,-1]=’x’, c[0, 0]=’o’, ˆdown) =/> (v=[1], c[0, 0]=’o’, R(r)=0)>.

The amount of learned rules required to deal with the Minigrid environments required typically vary
between 16 (minimum with walls and free space) and usually less than 100 dependent on the amount
of cell types, whereby for two cell types to interact with m actions, at least 2 ∗m additional rules
are learned.

APPENDIX H TEST ENVIRONMENTS

Prior to moving to Minigrid NACE was first tested with internal levels.

• Level 1: Food collection. In this level, as depicted in Figure 11, the agent needs to collect
food.

23

1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295

Under review as a conference paper at ICLR 2025

Figure 11: Food collection

• Level 2: Doors and keys. In this level, as depicted in Figure 12, the agent needs open doors
with keys in order to collect batteries.

Figure 12: Food collection

• Level 3: A pong game in a grid world as illustrated in Figure 13, where the agent can only
move vertically and needs to catch the ball by predicting its movement.

Figure 13: Pong game

24

1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349

Under review as a conference paper at ICLR 2025

• Level 4: Egg delivery. In this level, as depicted in Figure 14, the agent needs to deliver
eggs to the chicken.

Figure 14: Food collection

• Level 5: Soccer level. In this level, as depicted in Figure 15, the agent needs to learn to
shoot balls into the goal.

Figure 15: Food collection

• Level 6: Food collection while avoiding electric fences. In this level as depicted in Figure
16, the agent needs to collect food while avoiding electric fences.

25

1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403

Under review as a conference paper at ICLR 2025

Figure 16: Food collection

• Level 7: Sokoban-like puzzle world (Dor & Zwick, 1999). In this level as depicted in
Figure 17, the agent needs utilize the interaction properties of many different object types
to successfully collect batteries:

Figure 17: Sokoban-like puzzle world

26

	Introduction
	Related Work
	Selected RL techniques in grid worlds

	Non-Axiomatic Causal Explorer
	States and rule representation
	Inductive Biases
	Curiosity model
	NACE architecture

	Experiments in Minigrid
	Stationary Environments
	Dynamic Environments
	Dynamic Environments with Sequential Dependencies

	Conclusion
	Additional Studies and Discussions
	Ablation Study: Effects of Omitting Key Inductive Biases in NACE, and Inductive biases in DRL
	Causal Rule Representation
	Temporal Locality and Attentional Bias
	State Tracking
	Spatial Equivariance
	Which inductive biases are present in the DRL techniques

	Notation and Symbols
	Pseudocode
	Hyperparameter Details
	Foundational Algorithms
	Core Models and Their Mechanisms
	Hyperparameter Configuration for Foundational Algorithms

	Model-Based Algorithm: DreamerV3
	Model-Free Exploration and Scalability Extensions
	Shared Hyperparameters
	Intrinsic Rewards and Coefficients
	Algorithm-Specific Hyperparameters and Architectures

	Hardware and runtime
	Example environment with learned rules
	Test environments

