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Abstract
With the recent emergence of powerful001
instruction-tuned large language models002
(LLMs), various helpful conversational Ar-003
tificial Intelligence (AI) systems have been004
deployed across many applications. When005
prompted by users, these AI systems suc-006
cessfully perform a wide range of tasks as007
part of a conversation. To provide some sort008
of memory and context, such approaches009
typically condition their output on the en-010
tire conversational history. Although this011
sensitivity to the conversational history can012
often lead to improved performance on sub-013
sequent tasks, we find that performance can014
in fact also be negatively impacted, if there015
is a task-switch. To the best of our knowl-016
edge, our work makes the first attempt to017
formalize the study of such vulnerabilities018
and interference of tasks in conversational019
LLMs caused by task-switches in the con-020
versational history. Our experiments across021
5 datasets with 15 task switches using pop-022
ular LLMs reveal that many of the task-023
switches can lead to significant performance024
degradation. 1025

1 Introduction026

Recent advancements in Natural Language Pro-027

cessing (NLP) (Brown et al., 2020; OpenAI,028

2023), have led to their widespread deployment029

of large language models (LLMs) across var-030

ious applications (Bubeck et al., 2023; Anil031

et al., 2023; Singhal et al., 2022). One of032

the popular NLP tasks includes conversational033

systems where LLMs are capable of engag-034

ing in dialogues that mimic human interac-035

tions (Manyika and Hsiao, 2023; Bai et al.,036

2022). A typical interaction involves a series of037

conversation turns starting with the user and038

the LLM responds to the user. This interac-039

tion is however focused on a specific topic or a040

1Code available on acceptance.

  Give sentiment of this review.
 "The food was terrible."

   The sentiment is Negative

 Give sentiment of this review.
 "The brunch menu is amazing..."

   The sentiment is Positive

 Solve the problem. "John has
five delicious apples. He eats
two. How many are left?"

   The sentiment is Positive

Algebra problem
Task Switch

Sentiment Prediction

 Solve the problem. "John has
five delicious apples. He eats
two. How many are left?"

Three apples left.

No Conversation History

Figure 1: An illustrative example where the chat
history is based on sentiment prediction. Algebra
word problem introduces task-switch which results
in an incorrect prediction.

task (Hosseini-Asl et al., 2020; Lee et al., 2022). 041

042

The performance of LLMs is further boosted 043

by leveraging in-context examples or few-shot 044

examples of a particular task (Brown et al., 045

2020; Smith et al., 2022; Thoppilan et al., 046

2022). In-context learning, by utilizing ex- 047

amples within the conversation history, en- 048

ables LLMs to generate responses that are 049

relevant and tailored to the contextual con- 050

versation. The auto-regressive nature of pop- 051

ular instruction-tuned (LLMs) suggests that 052

the LLM generated response is conditioned on 053

the entire conversation history. This under- 054

scores the sequential dependency and contex- 055

tual awareness embedded within these models. 056

While prompt sensitivity has been exploited 057

by in-context learning to improve downstream 058

performance, this sensitivity has also opened 059
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the door to vulnerabilities, where malicious ac-060

tors can exploit prompt sensitivity for adverse061

purposes (Greshake et al., 2023; Liu et al., 2023;062

Jiang et al., 2023b; Xu et al., 2023).063

In this paper, we investigate the sensitivity064

and the impact of LLM performance on past065

conversational interaction. To do so, we intro-066

duce the concept of task-switch. A task-switch067

is characterized by a conversational objective,068

moving from one distinct task to another within069

the same conversation thread, for example: Fig-070

ure 1 illustrates a task-switch from sentiment071

prediction to math algebra which confuses the072

model to output erroneously. Designing LLMs073

that can seamlessly switch between tasks with-074

out degradation in performance can influence075

the reliability of LLMs in realistic scenarios.076

In this work, we systematically study the077

impact of predictive performance and the sen-078

sitivity of LLMs in the presence of different079

task-based chat histories. Our key contribu-080

tions and takeaways can be summarised as:081

• We formalize the risk of performance082

degradation of LLMs due to task-switch.083

• We present the impact of task-switch on di-084

verse datasets with more than 15 different085

task-switches.086

• We measure the task-switch sensitivity for087

popular LLMs of different sizes, where088

we observe that in some cases very large089

(175B) and small (7B) LLMs can both090

be susceptible to performance degradation091

from task-switch.092

2 Related Work093

Large Language Models (LLMs) are becom-094

ing a crucial building block of conversation-095

based virtual assistants (OpenAI, 2023; Tou-096

vron et al., 2023; Jiang et al., 2023a; Anil et al.,097

2023). Leveraging in-context or few-shot ex-098

amples, LLMs have demonstrated remarkable099

capabilities for downstream tasks (Brown et al.,100

2020). In contrast to the resource-intensive fine-101

tuning process (Gao et al., 2020), in-context102

learning eliminates the need for parameter up-103

dates, while achieving state-of-the-art perfor-104

mance (Rae et al., 2021; Smith et al., 2022;105

Thoppilan et al., 2022; Von Oswald et al., 2023;106

Chan et al., 2022; Akyürek et al., 2022; Hahn107

and Goyal, 2023). However, despite its ad-108

vantages, in-context learning tends to suffer109

from sensitivity to prompts, input distribu- 110

tion, and formats, which can potentially im- 111

pact the model’s performance (Liu et al., 2021; 112

Zhao et al., 2021; Lu et al., 2021; Min et al., 113

2022; Liu and Wang, 2023; Chang and Jia, 114

2023). Chang and Jia (2023) observe that the 115

in-context examples implicitly bias the model. 116

In our work, we aim to study the bias that 117

arises due to chat history (in-context exam- 118

ples) when a user switches the task. Further- 119

more, recent works (Liu et al., 2023; Greshake 120

et al., 2023) have looked at the vulnerability 121

of LLM to prompt injections and adversarial 122

attacks. Unlike prompt injection, where a ma- 123

licious prompt may be added to the conver- 124

sation of LLM, our setting, is concerned with 125

non-malicious task-switches. While a few re- 126

cent works have investigated the reliance on 127

shortcuts in conversation history (Tang et al., 128

2023; Si et al., 2022; Weston and Sukhbaatar, 129

2023), our work aims to evaluate prompt his- 130

tory sensitivity for a new task. Our work is 131

also differentiated from the study topic change 132

in Task-oriented Dialogue systems (Xie et al., 133

2021; Xu et al., 2021; Yang et al., 2022) as we 134

consider a stronger shift of task-switch from 135

open dialogue LLMs. 136

3 Conversational Task-Switch 137

This work introduces and formalizes task-switch 138

in a conversation for LLMs. A conversation 139

between a user and the LLM consists of multi- 140

ple conversation turns. Now consider (uk, rk) 141

as the k-th turn of the conversation where uk 142

corresponds to the k-th user prompt and the 143

model’s corresponding response rk. Each user 144

prompt uk can be viewed as an instance of 145

a specific task request, e.g. sentiment clas- 146

sification or mathematical reasoning. A con- 147

versation history of L turns can be defined 148

as h = {(uk, rk)}L
k=1. Subsequently, the next 149

response, rL+1 for model θ is given as: 150

rL+1 = arg max
r

Pθ(r|uL+1, h) (1) 151

In this work, we consider conversations with 152
a single task-switch, where all user requests 153

in the conversation history h belong to the 154

same task and the final user request uL+1 is a 155

different task. We refer to the task associated 156

with h as the conversation history task (CH 157

task) Th where h ∈ Th and the switched task 158
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associated with the final user request uL+1 as159

the target task Tt where uL+1 ∈ Tt.160

When the tasks Th and Tt are sufficiently161

different (as per human understanding of lan-162

guage and tasks), the conversation history h163

ideally must not impact the response, rL+1.164

For a model robust to such a task-switches,165

Th → Tt, its response rL+1 is conditionally166

independent of the conversation history,167

rL+1 ⊥ h|uL+1 h ∈ Th, uL+1 ∈ Tt. (2)168

However, in practice, models can be sensitive169

to the conversation history, h, which can harm170

the quality of the response rL+1 after a task-171

switch, Th → Tt. We define τ(·), the task-172

switch sensitivity of a model θ, to measure the173

extent of this vulnerability.2174

τ(Th, Tt; θ) = EuL+1∈Tt,h∈Th
[log ρ] (3)175

ρ = Pθ (r∗|uL+1)
Pθ (r∗|uL+1, h) (4)176

r∗ = arg max
r

Pθ(r|uL+1). (5)177

Task-switch sensitivity can be interpreted as:178

1. τ(·) > 0: The model is impacted by the179

task-switch in the conversation history and180

is less confident in zero-shot prediction.181

2. τ(·) = 0: The task-switch has no impact182

on the model’s zero-shot prediction, sug-183

gesting a level of task-switch robustness.184

3. τ(·) < 0: The task-switch gives the model185

more confidence in its zero-shot prediction.186

187

To simulate a setting where the model has188

perfect performance on the CH-task, Th we189

adopt teacher-forcing, s.t. h = {(uk, r̂k)}L
k=1,190

where r̂ is the reference ground-truth response.191

4 Experiments192

4.1 Experimental Setup193

Data. We evaluate five different datasets194

covering a range of tasks: Gigaword (Graff195

et al., 2003); abstract algebra subset of Measur-196

ing Massive Multitask Language Understand-197

ing (MMLU; Hendrycks et al. (2021)), named198

MMLU AA; TweetQA (Xiong et al., 2019); Rot-199

ten Tomatoes (RT; Pang and Lee (2005)); and200

human-aging subset from the MMLU dataset201

(MMLU HA) in the Appendix.202

2Theoretical and empirical implications of other def-
initions for task-switch sensitivity in Appendix E

Data Task
Gigaword Summarization
MMLU AA Math Multiple Choice Question
TweetQA Social Question Answer
RT Sentiment classification
MMLU HA Social Multiple Choice Question

Table 1: Datasets Summary.

Models. We explore the task-switch sensitiv- 203

ity of four popular models. We consider two 204

open-source small models, Llama-7b-chat (Tou- 205

vron et al., 2023) and Mistral-7b-chat (Jiang 206

et al., 2023a); and two larger closed models, 207

GPT-3.5 (Brown et al., 2020) and GPT-4 (Ope- 208

nAI, 2023). Zero-shot, absolute model perfor- 209

mances are presented in Appendix B. 210

4.2 Results 211

In addition to the task-switch sensitivity τ(·), 212

we assess performance changes between the 213

predictions in the presence of history and task- 214

switch vs zero-shot. Table 2 and Table 3 show- 215

cases the impact of conversational task-switch 216

with MMLU AA and Rotten Tomatoes as the 217

target tasks, Tt respectively3. As would be 218

expected with in-context examples, the per- 219

formance change in accuracy is generally posi- 220

tive. The negative trend for change in accuracy 221

from Th → Tt, suggests that the task-switch 222

causes performance degradation. For exam- 223

ple, in the Gigaword summarization task as Th 224

and MMLU AA as Tt, most models (GPT-3.5, 225

Llama-7B and Mistral-7B) see a performance 226

drop. Interestingly, for some models, the task- 227

switch may increase performance; most promi- 228

nently for Mistral-7B with Rotten Tomatoes 229

as Th and MMLU AA as Tt. 230

The sensitivity of different models to differ- 231

ent task-switches can be compared fairly us- 232

ing the task-switch metric, τ(·) The larger the 233

value of τ(·), the greater a model’s sensitivity 234

to a specific task-switch. In Table 2 and Table 235

3, Llama-7B usually has the highest sensitivity 236

to task-switches with for example τ = 3.37 for 237

a switch from MMLU AA to Rotten Toma- 238

toes and τ = 9.91 for task-switch from Rotten 239

Tomatoes to MMLU AA. We observe a general 240

trend between the change in accuracy and τ(·) 241

for task-switch scenarios for Tt = Rotten Toma- 242

toes where a negative change in performance 243

3The impact of task-switch for other datasets as the
target tasks is given in Appendix C.1
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Figure 2: Target Task: MMLU Abstract Algebra. % change in accuracy relative to zero-shot performance.

CH-Task Model % Change τ(·)
MMLU AA GPT-3.5 17.17 ∗

GPT-4 -1.09 ∗
Llama-7B 0.00 31.51
Mistral-7B 37.68 1.12

Gigaword GPT-3.5 −12.12 ∗
GPT-4 −8.74 ∗
Llama-7B −18.75 5.23
Mistral-7B −21.74 3.13

Rotten Tomatoes GPT-3.5 2.02 ∗
GPT-4 −8.20 ∗
Llama-7B −12.50 9.91
Mistral-7B 11.59 0.83

TweetQA GPT-3.5 −19.19 ∗
GPT-4 −8.20 ∗
Llama-7B −12.50 6.37
Mistral-7B −7.25 2.78

Table 2: Task-switch impact from CH-tasks (Th) to
target (Tt): MMLU AA and conversation length
L = 6. Sensitivity not calculable for ∗.

CH-Task Model % Change τ(·)
Rotten Tomatoes GPT-3.5 3.00 ∗

GPT-4 1.74 ∗
Llama-7B 2.54 4.02
Mistral-7B 3.17 2.65

Gigaword GPT-3.5 0.11 ∗
GPT-4 −0.98 ∗
Llama-7B 1.82 1.98
Mistral-7B −0.79 3.04

MMLU AA GPT-3.5 −0.22 ∗
GPT-4 0.76 ∗
Llama-7B −5.33 3.37
Mistral-7B 1.33 1.39

TweetQA GPT-3.5 −0.33 ∗
GPT-4 −0.98 ∗
Llama-7B 2.72 2.77
Mistral-7B −1.23 3.01

Table 3: Task-switch impact from CH-tasks (Th) to
target (Tt): Rotten Tomatoes and conversation
length L = 6. Sensitivity not calculable for ∗.

also suggests very high task-switch sensitivity. 244

In Figure 2, we plot the change in performance 245

with increasing Th examples for MMLU AA 246

dataset. Here we can clearly observe that in- 247

context examples improve the predictive per- 248

formance. Notably, the accuracy variation is 249

more pronounced in smaller 7B models, likely 250

due to their lower baseline performance, which 251

is substantially improved by in-context learn- 252

ing. Performance fluctuations for conversation 253

history, h, can stem from two primary factors: 254

a significant drop in the predicted probabil- 255

ity for the zero-shot response, r∗, or a notable 256

increase in the probability for an alternative 257

response, r. The latter can result in substantial 258

performance change while maintaining low sen- 259

sitivity, τ(·). By analyzing both performance 260

changes and task-switch sensitivity, we gain 261

deeper insights into the models’ adaptability 262

to task-switches and the underlying dynamics 263

influencing these shifts. 264

5 Conclusions and Future Work 265

This work formalizes and performs an initial 266

investigation into the sensitivity of large lan- 267

guage models (LLMs) to task-switch scenarios 268

within conversational contexts. We introduce 269

a task-sensitivity metric that can explain a 270

model’s behavior to task-switches along with 271

the performance change. By experimenting 272

with various task-switch settings, we observe 273

that even advanced models like GPT-4 can 274

exhibit vulnerabilities to task-switches. Our 275

work additionally lays the foundation for future 276

work on ‘side-channel’ vulnerabilities of LLMs 277

to undesired information leakage/bias from the 278

conversation history. Further work will focus 279

on developing adaptive context management 280

strategies within LLMs to mitigate the risk of 281

task-switch sensitivity. 282
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6 Limitations283

Although both GPT-3.5 and GPT-4 show284

degradation in performance, given the closed285

nature of OpenAI models, we were not able286

to perform task sensitivity analysis. We were287

additionally limited by the maximum token288

length, hence analysis over extremely long con-289

versations was not feasible. Future work could290

also look into alignment between humans and291

the model as a metric which was out of the292

scope for this paper.293

7 Ethics and Risks294

All of the datasets used are publicly avail-295

able. Our implementation utilizes the PyTorch296

1.12 framework, an open-source library. We297

obtained a license from Meta to employ the298

Llama-7B model via HuggingFace. Addition-299

ally, our research is conducted per the licensing300

agreements of the Mistral-7B, GPT-3.5, and301

GPT-4 models. We ran our experiments on302

A100 Nvidia GPU and via OpenAI API.303

Our work may be built upon to identify vul-304

nerabilities of LLMs. Overall, there are no305

ethical concerns with this work.306
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Appendix516

Appendix A gives more details about the517

datasets, Appendix B reports the zero-shot518

absolute performance of all models on all tasks,519

Appendix C presents an ablation study on520

the conversation history length (with multi-521

ple seeds), Appendix D discusses the prompt522

templates, Appendix E discusses other defini-523

tions for task-switch sensitivity, Appendix F524

discusses correlations, and Appendix G tabu-525

lates confusion matrices for each model.526

A Datasets and Metrics Summary527

Data #Train #Test Task
MMLU HA 26 222 Social MCQ
MMLU AA 14 99 Math MCQ
RT 8.53k 1.07k Sentiment class
Gigaword 3.8M 1.95k Summarization
TweetQA 4.54k 583 Social QA

Table 4: Dataset Summary. QA: Question-
Answering. MCQ: Multiple Choice Question

In Section 4.2 of the main paper, we present528

results evaluated on two different datasets:529

MMLU Abstract Algebra (MMLU AA) mul-530

tiple choice questions and Rotten Tomatoes531

(RT) sentiment classification. In Appendix B,532

C, we present results evaluated on all of the533

datasets covering a range of tasks: MMLU534

Human Aging (MMLU HA) multiple choice535

questions, Gigaword for summarization, and536

TweetQA question-answering. The train-test537

splits of these datasets are shown in Table 4.538

The train set is randomly sampled to form539

prompts to produce a conversation history h540

of L turns, and the test set is used to evalu-541

ate model performance on the (L + 1)-th turn.542

The prompt templates used for each dataset543

are discussed in Appendix D.544

For classification tasks performance is mea-545

sured using accuracy, whilst for generative546

tasks it is measured using ROUGE (Lin, 2004)547

or METEOR (Banerjee and Lavie, 2005).548

B Absolute Performance549

When evaluating the target task with a conver-550

sation history, it is useful to compare the perfor-551

mance against a baseline with no conversation552

history (h = Ø, L = 0). This is equivalent to553

evaluating in a zero-shot setting. This section554

reports the zero-shot performance for all the 555

target task (Tt) datasets: MMLU HA in Table 556

5, MMLU AA in Table 6, RT in Table 7, Giga- 557

word in Table 8 and TweetQA in Table 9. Also 558

note that for the classification tasks (MMLU 559

HA, MMLU AA, RT), we also report the num- 560

ber of responses for which we were unable to 561

extract the answer (# Format Errors), which 562

is further discussed in Appendix D. We evalu- 563

ate on the test set with four LLMs (GPT-3.5, 564

GPT-4, Mistral-7B, Llama-7B), which were all 565

set to Temperature 0 for reproducability. 566

Model Accuracy # Format Errors
GPT-3.5 66.22 18
GPT-4 84.68 0
Llama-7B 45.50 12
Mistral-7B 55.41 0

Table 5: Zero-shot performance on MMLU HA.

Model Accuracy # Format Errors
GPT-3.5 31.31 7
GPT-4 58.59 0
Llama-7B 28.28 3
Mistral-7B 21.21 0

Table 6: Zero-shot performance on MMLU AA.

Model Accuracy # Format Errors
GPT-3.5 89.90 0
GPT-4 91.80 4
Llama-7B 87.43 1
Mistral-7B 86.68 1

Table 7: Zero-shot performance on RT.

Model ROUGE-1 ROUGE-2 ROUGE-L
GPT-3.5 17.37 4.79 14.78
GPT-4 15.76 4.07 13.34
Llama-7B 11.61 3.13 9.90
Mistral-7B 18.60 5.19 15.84

Table 8: Zero-shot performance on Gigaword.

Model ROUGE-1 ROUGE-L METEOR
GPT-3.5 30.66 30.39 44.18
GPT-4 28.03 27.68 43.41
Llama-7B 17.91 17.67 33.84
Mistral-7B 25.35 25.01 40.71

Table 9: Zero-shot performance on TweetQA.
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C Conversation History Length567

Ablation568

This section presents an ablation study on569

the performance change after a task-switch for570

varying conversation history lengths. For each571

dataset in Table 4 we select four datasets (in-572

cluding itself), from which we use the training573

set as conversation history. The details of the574

prompt structure are presented in Appendix D.575

C.1 Task-switch Performance Change576

We compare the percentage change in metrics577

relative to zero-shot performance (h = Ø, i.e.578

no conversation history) as a function of conver-579

sation history length L and for different LLMs.580

Results are plot in Figures 3, 4, 5, 6, 7 for581

MMLU HA, MMLU AA, RT, Gigaword and582

TweetQA respectively. When there is not a583

task switch, we would expect a performance584

increase (assuming the training examples are585

representative of the test set). As per our dis-586

cussion in Section 4.2, we observe that different587

models degrade on different task-switches and588

this is not limited by the model size.589

C.2 Format Failure Rate590

Typically, classification tasks (MMLU HA,591

MMLU AA, RT) are evaluated using logits,592

however we use a generative approach for con-593

sistency: we are evaluating the model in a594

conversational setting, and we do not have595

access to the logits exactly. Thus, we must596

post-process the model output to determine597

the class. In this, we try to give the LLM the598

benefit of the doubt and do our best to extract599

the class. For example, although the prompt600

requests the model to output within answer601

tags like "<Answer> positive </Answer>", we602

also accept "positive", but we do not accept603

"positive/negative". Due to the imperfect604

nature of this setup, either we may not de-605

tect the correct format, or the model generates606

erroneous text.607

Importantly, models may become more sus-608

ceptible to these errors when performing a task-609

switch, causing performance degradation. We610

capture this by reporting the percentage %611

change in the number of examples that the612

model failed on (relative to zero-shot) as the613

context history length increases. These are614

plot in Figures 8, 9, 10 for MMLU HA, MMLU615

AA and RT respectively. Figures 8 and 9 show 616

that GPT-3.5 and Mistral-7B are susceptible to 617

format errors in task-switches when evaluating 618

on multiple choice questions, whereas Figure 619

10 shows that GPT-4 and Llama-7B are more 620

susceptible in sentiment classification. 621

C.3 Performance Variance 622

Presented experimental results in the main pa- 623

per are the average across multiple seeds. How- 624

ever, it can be of interest to understand the ex- 625

tent to which the results can vary across multi- 626

ple runs, as this provides an error bound on the 627

worst-case and best-case scenarios. In this sec- 628

tion we present the variance around the mean 629

results for the models LLama-7b and Mistral- 630

7b when evaluated on the target tasks Rotten 631

Tomatoes (Fig 11) and MMLU-AA (Fig 12) 632

with conversation history lengths L ∈ {0, 3, 6}. 633

D Prompt Template 634

In each conversation turn, the user prompts the 635

model uk. The prompts are shown in Table 10. 636

We chose these prompts after careful research 637

and experimentation. We began with popular 638

templates and refined them for our purpose. 639

Additionally, since we do not have access to 640

the logits for all models, we take a generative 641

approach to the classification tasks (MMLU 642

HA, MMLU AA, RT). Since the model may 643

fail to output an answer in the desired format, 644

we post process the text to extract the answer 645

(which we count as a positive result it matches 646

the reference). We report and discuss the effect 647

of format failures further in C.2. Furthermore, 648

we note that the standard evaluation method 649

used in the Open-LLM leaderboard code (avail- 650

able on GitHub) is to see if the response starts 651

with A,B,C or D(Gao et al., 2023). We modified 652

the prompt to ensure a more consistent output 653

format (across the different models) resulting 654

in fewer mistakes made. 655

For the classification tasks, we structure the 656

prompt such that we request the model to 657

output their final answer within answer tags. 658

We note that giving an example of how to use 659

the answer tags always helped, however, this 660

can bias the model towards a particular answer. 661

Instead, we found for MMLU to just leave the 662

answer tags empty, whereas for RT to have the 663

all the sentiment classes inside the tags (see 664

Table 10 for further details). 665
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Figure 3: Target Task: MMLU HA. Percentage % change in accuracy relative to zero-shot performance
(no conversation history) for increasing conversation history length L and various models.
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Figure 4: Target Task: MMLU AA. Percentage % change in accuracy relative to zero-shot performance
(no conversation history) for increasing conversation history length L and various models.
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Figure 6: Target Task: Gigaword. Percentage % change in accuracy relative to zero-shot performance (no
conversation history) for increasing conversation history length L and various models. Note that we focus
on the effect of task-switching by clipping the y-axes at +75%.
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(c) METEOR
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Figure 7: Target Task: TweetQA. Percentage % change in accuracy relative to zero-shot performance (no
conversation history) for increasing conversation history length L and various models. Note that we focus
on the effect of task-switching by clipping the y-axes at +75%.
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Figure 8: Target Task: MMLU Human Aging. Percentage % of examples where format failed.
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Figure 9: Target Task: MMLU Abstract Algebra. Percentage % of examples where format failed.
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Figure 10: Target Task: Rotten Tomatoes. Percentage % of examples where format failed.
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Figure 11: Target Task: RT. Percentage % change in accuracy relative to zero-shot performance for
increasing conversation history length L for multiple seeds. Mean is shown in solid line, and the shaded
region is bounded by the min/max values.
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Figure 12: Target Task: MMLU Abstract Algebra. Percentage % change in accuracy relative to zero-shot
performance for increasing conversation history length L for multiple seeds. Mean is shown in solid line,
and the shaded region is bounded by the min/max values.
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MMLU {Topic} You have a multiple choice question on {Topic}. Only one of
the options is correct: A, B, C, or D. Give your answer in
the following format with the tags provided: <Answer> </Answer>.
Please read the following question and options and answer the
question
Question: {Question}
(A) {A}
(B) {B}
(C) {C}
(D) {D}

Rotten Tomatoes Can you choose only one sentiment [‘negative’, ‘positive’] for
this review.
review: {Review}
Return only the sentiment label without any other text. Make sure
to follow the format otherwise your answer will be disqualified:
<Answer> positive / negative </Answer>.
Do not output neutral.

Gigaword Please summarize the following article.
{Article}

TweetQA Read the given tweet and answer the corresponding question.
tweet: {Tweet}
question: {Question}

Table 10: Prompt templates for each dataset. Note that the MMLU {Topic} can be either Human Aging
or Abstract Algebra. Other {words} enclosed in curly braces are replaced by the corresponding field in
the datasets.
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(a) Zero-shot Sensitivity
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(c) Loss Sensitivity
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Figure 13: Empirical investigation of various sensitivity metrics on the target task Rotten Tomatoes as a
function of the conversation history length L for Llama-7b and Mistral-7b. Note that we omit the line for
the in-context dataset as this is not relevant to the investigation.
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E Task-Switch Sensitivity Metrics666

In Section 3, we introduced and formalized eval-667

uation of a model’s sensitivity to task-switch,668

namely the task sensitivity τ . This metric669

aims to capture the vulnerability of a model670

prompt to its chat history after a task-switch.671

Formally, it compares the zero-shot prediction672

r∗|u, h = Ø to the probability of the model673

outputting the same zero-shot response after674

a task switch P (r∗|u, h ̸= Ø). In this section,675

we compare the theoretical and empirical im-676

plications of different task switch sensitivity677

metrics.678

Formally, given a conversation history h of679

length L and the next user prompt u, the prob-680

ability of a model’s response rL+1 is given by681

Pθ(rL+1 | u, h). We consider the probability of682

three possible responses:683

1. r∗: zero-shot response684

2. rL+1: model’s actual response685

3. r̂L+1: reference response686

We posit that after a task-switch, a robust687

model’s likelihood of the zero-shot response re-688

mains high. Naturally, this gives us the formu-689

lation for the aforementioned sensitivity metric690

ρ1 = Pθ(r∗|u)
Pθ(r∗|u, h) , (6)691

which we call zero-shot sensitivity.692

Additionally, after a task-switch, we posit693

that a robust model’s likelihood of the actual694

response should be similar to that of the zero-695

shot response, because the irrelevant history696

should be largely ignored. This gives us697

ρ2 = Pθ(r∗|u)
Pθ(rL+1|u, h) , (7)698

which we call the confidence sensitivity.699

Lastly, we posit that if a model is well aligned700

to a task, then both the zero-shot and model’s701

actual response should be close to the reference702

response:703

ρ3 = Pθ(r̂L+1|u)
Pθ(r̂L+1|u, h) , (8)704

where each probability is essentially a measure705

of the loss, hence we label this as the loss706

sensitivity.707

The above are sensitivity per example, which 708

we can use to estimate the task-switch sensi- 709

tivity τi = E[log ρi] as per Equation 3, where 710

the expectation is calculated over the exam- 711

ples and histories (for a given length L). We 712

evaluate these metrics on the target task RT 713

(rotten tomatoes) as shown in Figure 13. Fig- 714

ure 13a shows that the zero-shot sensitivity 715

metric trends upwards for both models. This 716

is expected for a model which does not handle 717

task-switch well as the probability of the output 718

with an increased conversation length decreases 719

in comparison to the zero-shot probability. For 720

the confidence sensitivity in Figure 13b, we 721

observe that Mistral-7B behaves as we expect, 722

whereas Llama-7B becomes less confident in 723

its output compared to having no conversation 724

history. For the loss sensitivity metric in Fig- 725

ure 13c, we observe that Llama behaves as we 726

expect as the sensitivity remains relatively flat: 727

as the conversation history increases, there is 728

no significant change in the probability of out- 729

putting the reference. However, for Mistral-7b, 730

the probability falls immediately and plateaus 731

showing that the model was giving a very low 732

probability mass to the reference with no con- 733

versation history. Intuitively, it is clear that 734

both models agree in their trends only for the 735

zero-shot sensitivity τ1 in Figure 13a, hence in 736

the main paper, we report zero-shot sensitivity 737

as the task-switch sensitivity. 738
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F Correlations Models, Datasets739

and Performance740

We rank model performance against various741

metrics to see if there is any correlation that742

may help explain model performance more gen-743

erally.744

F.1 Task Tokens745

CH Task Length Llama-7B Mistral-7B
Gigaword 75 -21.35 -15.94
TweetQA 93 -15.10 -4.35
RT 108 -13.02 10.87
MMLU AA 143 -1.79 37.68

Table 11: Target Task: MMLU AA.

CH Task Length Llama-7B Mistral-7B
Gigaword 76 1.98 -0.72
TweetQA 93 2.70 -1.28
RT 108 2.38 2.83
MMLU AA 143 -5.42 1.19

Table 12: Target Task: RT

We compare the model performance against746

the mean conversation history task, Th length.747

The length is measured as the number of to-748

kens in the model, and the mean is taken over749

the whole dataset. The model performance is750

taken for three different seeds with conversa-751

tion history lengths L ∈ {3, 6}.752

F.2 Task Distance753

In this section we aim to assess the hypothesis754

that the ‘distance’ between tasks can explain755

the extent of performance degradation in dif-756

ferent task-switches, from the conversation his-757

tory task, Th to the target task, Tt. Measuring758

distance between tasks is a multi-faceted and759

complex metric. Given the lack of formal task760

distance measures, we instead use a consen-761

sus ranking approach, where multiple powerful762

Large Language Models (LLMs) are required763

to rank the different tasks on how similar they764

are. For the target task RT, we queried four of765

the largest and most powerful models to rank766

the closest tasks, based on the description of767

each task. We consider the following LLMs:768

ChatGPT; Gemini Ultra (Team et al., 2024),769

Claude 3 Sonnet from Anthropic; and Perplex-770

ity AI. The rankings by the LLMs are given771

in Table 13 relative to RT. We then select an772

overall ranking with the greatest consensus - 773

in this case three of the four LLMs agree per- 774

fectly in the ranking. This gives a consensus 775

vote of ranks (relative to RT): RT (1); MMLU 776

AA (3); TweetQA (2); and Gigaword (3). The 777

equivalent ranks are given in Table 14 with 778

MMLU AA as the reference task. In this case, 779

three of the four models perfectly agree in their 780

rankings. 781

Dataset ChatGPT Gemini Claude Perplexity
RT 1 1 1 1
MMLU AA 4 4 4 4
TweetQA 2 3 2 2
Gigaword 3 2 3 3

Table 13: Rank given by LLM for different datasets
on how similar they are to the target task RT.

Dataset ChatGPT Gemini Claude Perplexity
RT 4 4 4 4
MMLU AA 1 1 1 1
TweetQA 2 3 2 2
Gigaword 3 2 3 3

Table 14: Rank given by LLM for different datasets
on how similar they are to the target task MMLU
AA.

The following tables compare the rank of 782

the dataset distance against the mean model 783

performance. The model performance is the 784

%-percentage accuracy change relative to zero- 785

shot, and the mean is taken over three seeds 786

and over conversation history lengths L ∈ 787

{3, 6}. 788

CH-Task Rank Llama-7B Mistral-7B

RT 1 2.38 2.83
TweetQA 2 2.70 -1.28
Gigaword 3 1.98 -0.72
MMLU AA 4 -5.42 1.19

Table 15: Target Task, Tt: RT. Performance degra-
dation (with different conversation history tasks)
compared to the task rank, measuring similarity to
Tt.

Overall, there appears to be only a weak cor- 789

relation in some settings between the task dis- 790

tance and the performance degradation. This 791

suggests that performance degradation is not 792

only a function of the task distance, but is 793
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CH-Task Rank Llama-7B Mistral-7B

MMLU AA 1 -1.79 37.68
TweetQA 2 -15.10 -4.35
Gigaword 3 -21.35 -15.94
RT 4 -13.02 10.87

Table 16: Target Task: MMLU AA. Performance
degradation (with different conversation history
tasks) compared to the task rank, measuring simi-
larity to Tt.

also an attribute of the specific model. Fur-794

ther analysis would be required to understand795

the aspects of specific models for certain task-796

switches that influence the level of performance797

degradation.798

G Performance Confusion Matrix799

In this section, we summarize the performance800

change for every pairing of task-switches from801

conversation history task (Th) to target task802

(Tt). We present the results here for a conversa-803

tion length of L = 6 for each model separately.804

Tables 17, 18, 19, 20 report the results for805

models GPT-3.5, GPT-4, Llama-7B, Mistral-806

7B respectively. Each row is the performance807

change in the Target Task Tt. Please note808

that the metric for the tasks are: accuracy for809

MMLU AA, RT, MMLU HA, METEOR for810

TweetQA, and RougeL for Gigaword.811

Conversation History Task
Target Task AA RT TQ GW HA
MMLU AA 19.35 6.45 6.45 -3.13
RT -0.22 3.00 -0.33 0.11
Tweet QA -13.78 -3.55 24.81 -5.69
Gigaword -12.10 -6.59 -3.48 67.85
MMLU HA 4.73 -12.84 -8.11 20.41

Table 17: Model: GPT-3.5. Percentage % change
in model performance.

Conversation History Task
Target Task AA RT TQ GW HA
MMLU AA 8.62 -13.11 -3.39 0.00
RT 0.76 1.74 -0.98 -0.98
Tweet QA 3.69 25.58 35.80 5.06
Gigaword 12.52 14.18 59.07
MMLU HA 0.53 1.59 2.14 5.85

Table 18: Model: GPT-4. Percentage % change
in model performance.

Conversation History Task
Target Task AA RT TQ GW HA
MMLU AA 3.57 -15.63 0.00 -10.71
RT -5.69 1.82 3.76 1.82
Tweet QA 1.68 13.37 50.74 10.17
Gigaword 11.76 11.73 158.79
MMLU HA 13.86 -3.96 -0.99 25.74

Table 19: Model: Llama-7B. Percentage % change
in model performance.

Conversation History Task
Target Task AA RT TQ GW HA
MMLU AA 28.57 18.18 -4.76 -19.05
RT 0.97 3.79 -0.87 -1.30
Tweet QA -0.78 7.62 30.56 9.26
Gigaword -3.81 2.61 3.44 78.71
MMLU HA 1.63 0.81 -11.38 12.20

Table 20: Model: Mistral-7B. Percentage %
change in model performance.
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