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ABSTRACT

The utilization of pre-trained networks, especially those trained on ImageNet, has
become a common practice in Computer Vision. However, prior research has
indicated that a significant number of images in the ImageNet dataset contain wa-
termarks, making pre-trained networks susceptible to learning artifacts such as
watermark patterns within their latent spaces. In this paper, we aim to assess the
extent to which popular pre-trained architectures display such behavior and to de-
termine which classes are most affected. Additionally, we examine the impact
of watermarks on the extracted features. Contrary to the popular belief that the
Chinese logographic watermarks impact the “carton” class only, our analysis re-
veals that a variety of ImageNet classes, such as “monitor”, “broom”, “apron”
and “safe” rely on spurious correlations. Finally, we propose a simple approach
to mitigate this issue in fine-tuned networks by ignoring the encodings from the
feature-extractor layer of ImageNet pre-trained networks that are most susceptible
to watermark imprints.

1 INTRODUCTION

In recent years, the utilization of ImageNet [Deng et al.| (2009) pre-trained models has become a
standard practice in Computer Vision applications Kornblith et al.|(2019). Trained on the large and
diverse collection of images, these models obtain the ability to extract high-level visual features that
later could be transferred to a different task. This technique, referred to as transfer learning (see
e.g. [Weiss et al.| (2016) for a review), has proven to be highly effective, leading to significant ad-
vancements in various computer vision applications, such as object detection Talukdar et al.|(2018)),
semantic segmentation Van Opbroek et al.|(2018)) and classification |Yuan et al.| (2021})).

Deep Neural Networks (DNNs), despite being highly effective across a variety of applications, are
prone to learning spurious correlations, i.e., erroneous relationships between variables that seem to
be associated based on a given dataset but in reality lack a causal relationship|lzmailov et al.| (2022).
This phenomenon, referred to as the “Clever-Hans effect” [Lapuschkin et al.| (2019) or “shortcut-
learning” |Geirhos et al.[(2020), impairs the model’s ability to generalize. In Computer Vision (CV),
such correlations may manifest as DNNs’ dependence on background information for image classi-
fication Xiao et al.|(2020), textural information |Geirhos et al.| (2018]), secondary objects Rosenfeld
et al.| (2018), or unintended artifacts, such as human pen markings in skin cancer detection |Anders
et al.|(2022) and patient information in X-ray images for pneumonia detection Zech et al.[(2018).

Recent studies have uncovered the presence of spurious correlations in the ImageNet dataset, specif-
ically, the connection of the Chinese logographic watermarks to the “carton” class |Anders et al.
(2022); L1 et al.| (2022). These correlations make ImageNet-trained networks vulnerable to learn
watermark detectors in their latent space, leading to incorrect predictions when encountering similar
patterns in the data. Furthermore, it has been shown that this behavior persists even after fine-tuning
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on different datasets [Bykov et al.| (2022), indicating that the vulnerability to watermarks is not ex-
clusive to ImageNet networks but possibly extends to all fine-tuned models.

With this study, we aim to examine which specific ImageNet classes are influenced by the artifactual
behavior of watermarks. We analyze the extent to which commonly used pre-trained architectures
exhibit this phenomenon and propose a straightforward solution for reducing such behavior in trans-
fer learning by eliminating the most artifact-sensitive representations, with negligible effect on the
model’s performance.

2 METHOD

In this work, we define neural representations as sub- ~ Baseline Chinese  Latin Hindi ~ Numerals
functions of a model that map the datapoint from the
input domain to a scalar value indicating the acti-
vation of a specific neuron, given the image, simi-
larly to [Bykov et al] (2022). Our analysis focuses
on two primary scenarios: scalar representations of
output classes and feature-extractor representations,
which correspond to the layer preceding the output
logit layerﬂ

2938803

To evaluate the susceptibility of individual represen-
tations to watermarks, we created binary classifica-
tion datasets between normal and watermarked im-
ages and assessed their ability to distinguish between
the two classes. We followed the approach outlined
in|Bykov et al.|(2022) and used a baseline dataset of
998 ImageNet images’| We created four probing datasets by inserting random textual watermarks in
the three most popular languages (Chinese, Latin, Hindi) and Arabic numerals, as il-
lustrated in Figure[T] We evaluated the representations’ ability to differentiate between watermarked
and normal classes using AUC ROC, a widely used performance metric for binary classifiers. To
do so, we utilized the true labels provided by the two datasets, where class 1 represents images
with a watermark and class O represents those without. We first calculated the scalar activations
from a specific neural representation for all images from both classes. Then, utilizing the binary
labels, we calculated the AUC ROC classification score based on the differences in activations.
AUC ROC score of 1 indicates a perfect classifier, ranking the watermarked images consistently
higher than normal ones, and 0.5 a random classifier. However, we can also observe scores less
than 0.5, such as the score of 0 illustrating the perfect classifier, that is de-activated by the water-
marked images. To measure the general ability of representations to differentiate between the two
classes and provide evidence that the concept has been learned, we defined a differentiability mea-
sure d = max (4,1 — A), where A is the AUC ROC score of the representation in the particular
binary classification problem.

Figure 1: The illustration shows the images
in the baseline dataset and their correspond-
ing watermarked versions.

3 RESULTS

To analyze the effects of watermarked images on learned representations, we employed 20 popular
ImageNet-pre-trained Computer Vision architectures, namely AlexNet |[Krizhevsky| (2014)), ResNet
18, 50, 101, and 152 [He et al| (2016), ResNext 101 Xie et al.| (2017), WideResNet 101 Zagoruyko
& Komodakis| (2016), ViT Dosovitskiy et al| (2020), BEiT Bao et al.| (2021)), Inception V3 [Szegedy|
et al[(2016), DenseNet 121, 161, and 201 Huang et al.| (2017), GoogLeNet [Szegedy et al.| (2015),

MobileNet V2 [Sandler et al.| (2018), ShuffleNet V2 Ma et al.| (2018), VGG 11, 13, 16, and 19
[Simonyan & Zisserman| (2014).

'In the case of neurons that produce multi-dimensional activations in feature-extractor representations, such
as convolutional neurons, the channel neurons were analyzed by taking the average of the activation maps per
each channel.

*Images were obtained from https://github.com/EliSchwartz/
imagenet-sample-images, excluding 2 images that already contained Chinese logographic water-
marks.
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Figure 2: ImageNet classes with the highest mean AUC ROC scores across the models analyzed in 4
different scenarios (Chinese, Latin, Hindi, and Numeric watermarks). Each dot represents the AUC
ROC performance of the class representation for a single model.

For the 4 different scenarios, we collected the AUC ROC scores for every class logit representation
across all 20 ImageNet pre-trained networks. Figure 2]illustrates the top-5 ImageNet classes by the
highest average AUC ROC across the 20 models. We can observe the clear distinction between the
different scenarios — Chinese watermarks show significantly higher average classification scores,
compared to the other three watermarks, namely Latin, Hindi, and Arabic numerals. Furthermore,
it can be observed that classes with a high capability for detecting Chinese watermarks are not
inherently linked to textual objects, whereas classes for other watermarks have a natural association
with text, such as “web site” or “book jacket”. This observation supports the conclusion that the
ability of DNNss to detect Chinese logograms results from the Clever-Hans effect and is not desirable,
whereas this cannot be said for other text detectors. Interestingly, by analyzing the classes with the
lowest average AUC ROC we could even reveal — for the first time — the ability of ImageNet
classes to detect the absence of the Chinese watermarks in images, which was not given for the
other types of watermarks (illustrated in the Appendix [6).

Figure [3] illustrates the number of representations that are sensitive to the Chinese symbols, across
the logit and feature-extractor layers (layers of representations, preceding the last prediction layer)
of different networks. From the left figure, which represents the sensitivity of output logits, we can
observe that nearly all of the networks exhibit sensitive logit representations. This could be the rea-
son for the average drop of 10.6% in model performance when transparent Chinese watermarks are
added to the ImageNet validation dataset, as reported in |Li1 et al.|(2022). Some networks, such as
GoogleNet, have up to 285 output classes (out of 1000) that are susceptible to Chinese watermarks.
The right figure, which represents the ratio of sensitive representations to the total number of rep-
resentations in the feature-extractor layers, reveals a significant proportion of representations that
have a high degree of differentiability toward the Chinese watermarks. Furthermore, we can observe
that several networks, including DenseNet-161, ResNet-18, and GoogLeNet exhibit at least several
representations with very high watermark differentiability scores (d > 0.95), which is in line with
the reported high number of Chinese-sensitive class representations across output logit layer.

4 IGNORING SENSITIVE EMBEDDINGS DURING FINE-TUNING

Pre-trained ImageNet models are frequently utilized as feature extractors, where the pre-trained
weights are kept fixed and only the final layer of the network is trained on a new task-specific
dataset. To disable the undesired, but inherent correlations of the classes in fine-tuned networks,
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Figure 3: Left: Number of output class representations that exhibit a high degree of differentiability
towards Chinese watermarks across various ImageNet models. Right: Percentage of representations
in the feature-extractor layers of various networks that demonstrate a high degree of differentiability
towards Chinese watermarks.

we propose the method that simply ignores the most sensitive representations from the feature-
extractor model. To demonstrate this, we conduct an experiment, where we employed a pre-trained
DenseNet-161 model as a fixed feature-extractor and fine-tuned the last linear layer on the CalTech-
256 image classification dataset|Griffin et al.| (2007)) while varying the amount of the most sensitive
representations omitted from the embeddings. Specifically, we ranked the representations from the
DenseNet-161 feature-extractor layer based on the differentiability towards Chinese watermarks and
retrained the last linear layer while ignoring a varying amount of the most sensitive representations.
To determine the effect of this procedure, we evaluated both the accuracy of each fine-tuned model,
as well as the distribution of AUC ROC and differentiability scores across 256 output representa-
tions. The results of the experiment, displayed in Figure [d demonstrate that by excluding 0.5%
of the most sensitive representations from the DenseNet-161 feature extractor, the dependence of
the newly learned logit representations on Chinese watermarks can be significantly reduced. Fur-
thermore, omitting up to 10% of the most sensitive embeddings has no significant impact on the
performance of the fine-tuned model while significantly suppressing the Clever-Hans effect of the
new model. Additionally, it can be observed that excluding the most sensitive representations from
the feature-extractor layer narrows the distribution of AUC ROC scores, making the output classes
less likely to be highly differentiable towards spurious concepts.
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Figure 4: Left: The accuracy of the fine-tuned model and the maximum differential ability towards
Chinese symbols across output representations, with respect to the number of representations ig-
nored in the DenseNet-161 feature-extractor layer. Right: The distribution of AUC ROC scores
across output representations, with respect to the number of representations omitted from the fea-
ture extractor.

5 DISCUSSION AND CONCLUSION

With this paper, we aim to bring awareness to the potential risks of watermarked images present in
ImageNet and their impact on popular DNNs trained on this dataset. It is known that the “carton”
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class is impacted by the Chinese watermarks - however, we were able for the first time to demonstrate
and identify the significant amount of other ImageNet classes, which are affected by the Chinese
watermarks across popular ImageNet pre-trained models. Our results indicate that the sensitivity to
watermarks is a common trait among all studied networks and this poses significant risks for transfer
learning, as new models could be also vulnerable to unintended concepts. We demonstrate that by
simply omitting the most watermark-sensitive representations, fine-tuned networks can suppress the
reliance on the watermarks without incurring a significant decline in model performance. Overall,
this study highlights the importance of paying attention to the presence of watermarks in image
datasets and their impact on the performance of machine learning models.
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A APPENDIX

A.1 DATASET GENERATION

In generating the dataset, our approach is similar to that outlined in Bykov et al| (2022). We imple-

ment 4 distinct scenarios, namely Chinese characters, Latin characters, Hindi characters, and Nu-
meric watermarks. For each image in the baseline dataset, we insert a random string of 7 symbols,
selected from the set of the 20 most frequently occurring characters in each language [Dal (2004);
(2023) (for Arabic numerals we sample digits out of 10 available numbers). The watermark is
placed randomly within the image, subject to the requirement of full visibility. The font size for all
watermarks has been set to 30, while the image dimensions remain standard at 224 x 224 pixels.

Figure 5: Multiple images with watermarks observed in the ImageNet training dataset.

A.2 RESULTS

Figure [6] depicts the top-5 ImageNet classes ranked by the lowest average AUC ROC. It can be
seen that, similarly to the classes with the highest AUC ROC, the ImageNet classes demonstrate a
significantly better ability to differentiate between watermarked and normal images in the case of
Chinese watermarks, compared to other scenarios.
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Figure 6: Top-5 ImageNet ranked by the lowest average AUC ROC across 20 analyzed models for
4 different scenarios.
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Figure [7] displays the top-30 ImageNet classes with the lowest (left) and highest (right) AUC ROC
scores for the task of detection of Chinese characters.
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Figure 7: Left: The top-30 ImageNet classes ranked by the lowest average AUC ROC for the de-
tection of Chinese symbols. Right:the top-30 ImageNet classes ranked by the highest average AUC
ROC for the detection of Chinese symbols.

A.3 IGNORING SENSITIVE EMBEDDINGS DURING FINE-TUNING

For this experiment, we utilized DenseNet-161[Huang et al.| (2017), a well-known pre-trained model
on ImageNet, to extract features from the images. The features were then subjected to an average
pooling layer to yield a 2204-value embedding for each image. The embeddings were ranked based
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on their differentiability, i.e., their ability to distinguish between normal images and those with
Chinese symbols.

To classify images on the CalTech-256 |Gritfin et al.| (2007) dataset with 256 classes, we added a
linear layer to the extracted features and trained the network with 10 different scenarios. In each
scenario, we excluded a fraction a of the most differentiable embeddings from training, where «
was varied across the values of 0 (baseline), 0.005,0.01,0.02,0.03,0.05,0.1,0.15,0.25, 0.5, and
trained with the same set of hyperparameters for all scenarios.
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