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ABSTRACT The susceptibility of deep neural networks (DNNs) to adversarial examples has prompted
an increase in the deployment of adversarial attacks. Image-agnostic universal adversarial perturbations
(UAPs) are muchmore threatening, but many limitations exist to implementing UAPs in real-world scenarios
where only binary decisions are returned. In this research, we propose D-BADGE, a novel method to craft
universal adversarial perturbations for executing decision- To primarily optimize perturbation by focusing
on decisions, we consider the direction of these updates as the primary factor and the magnitude of updates as
the secondary factor. First, we employ Hamming loss that measures the distance from distributions of ground
truth and accumulating decisions in batches to determine the magnitude of the gradient. This magnitude is
applied in the direction of the revised simultaneous perturbation stochastic approximation (SPSA) to update
the perturbation. This simple yet efficient decision-based method functions similarly to a score-based attack,
enabling the generation of UAPs in real-world scenarios, and can be easily extended to targeted attacks.
Experimental validation across multiple victim models demonstrates that the D-BADGE outperforms
existing attack methods, even image-specific and score-based attacks. In particular, our proposed method
shows a superior attack success rate with less training time. The research also shows that D-BADGE can
successfully deceive unseen victim models and accurately target specific classes.

INDEX TERMS Deep neural networks, universal decision-based adversarial attack, image classification,
representation learning, vulnerability, zeroth-order optimization.

I. INTRODUCTION
Deep Neural Networks (DNNs) are considered among
the most versatile and sophisticated machine learning
architectures. Optimization algorithms refine the networks’
parameters by autonomously identifying the optimal decision
boundaries. For this reason, revolutionary progress has
been achieved in numerous computer vision tasks [1], [2].
However, it has been proven that DNNs are highly vulnerable
to adversarial examples (AEs), which are indistinguishable
from the original image by adding a tiny amount of adversar-
ial perturbation [3]. This can be critical, as adversarial attacks
using AEs threaten the safety of DNN-based applications.
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They can confuse the networks [4], compromise privacy [5],
[6], duplicate or steal a model [7], [8], and intentionally
manipulate the model’s decisions [9], [10], [11], [12], [13].

Since the introduction of Universal Adversarial Perturba-
tion (UAP) by Moosavi-Dezfooli et al. [10], adversarial
attacks have become even more menacing. AEs can be
generated from any input image by simply applying an image-
agnostic perturbation, allowing the UAP to capture the entire
decision boundary of a victim model [14]. Unlike image-
dependent methods, when generating an AE for an input
image, once the UAP is created, it only needs to be added to
the input image, ensuring that AEs are generated promptly.
Furthermore, this fooling technique is easily transferable
across other network models. When the DNNs prevail
in industry, service providers can be requested to tune a
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FIGURE 1. (a) shows the difference between the binary decision loss and the proposed Hamming loss that aggregates multiple binary decisions to
form a continuous score. (b) illustrates the D-BADGE framework that utilizes the SPSA algorithm with the Hamming loss.

customer’s network for generalization or fine-tuning. It is
trivial that the more information provided to the service
provider, the better the result will be presented.

Fortunately, adversarial attacks have yet to cause critical
problems in real-world scenarios. This is due to two
characteristics of a closer real-world scenarios: black-box
and decision-based environments. From a certain perspective,
attacks in this setting must be most considered because it
can happen anywhere DNNs are used. In the black-box
environment, the victim model is typically unknown. There-
fore, the white-box approaches with the superior performance
of optimizing perturbations via backpropagation through the
model are no longer available [12], [13], [15], [16].
Papernot et al. [17] and Shi et al. [18] solved this

problem by utilizing a substitute model which permits white-
box access to the attacker. These kinds of methods allow the
attacker to craft adversarial perturbations without accessing
the victimmodel at all. However, the attackers have to prepare
an appropriate substitute model for a black-box victimmodel.
Or without, the perturbation should be able to generalize
arbitrary victim networks. Both are extremely challenging.
Recent focus has shifted towards techniques that identify
decision boundaries within a black-box environment using
minimal queries, highlighting a potential solution to this
challenge [15], [19]. Although these methods hold promise
for real-world applications, their utility in crafting UAPs is
limited, as they produce perturbations specific to individual
images.

Other methods that utilize the zero-order optimization
methods demonstrate the feasibility of generating UAPs
using only decisions. The optimization process is signifi-
cantly constrained by the minimal information available from
individual decisions, which adversely affects performance.
Score-based approaches, which provide distributions rather
than binary decisions in response to queries, offer a partial
solution by delivering more precise guidance on the magni-
tude necessary for learning. Nonetheless, these approaches

remain inadequately aligned with the real-world scenarios.
Building on the idea that the problem can be tackled by esti-
mating the output distribution exclusively through decisions,
we approach this by treating the collective decisions within a
batch as a measure of the distribution’s spread.

In this paper, we propose Decision-based Batch Attack
with Directional Gradient Estimation (D-BADGE), which
aims to efficiently craft universal adversarial perturbations
in the decision-based black-box attacks. We propose the
Hamming loss function, based on the Hamming distance,
to precisely measure the loss magnitude from binary deci-
sions, which accumulates the distance between distributions
on a mini-batch as illustrated in Figure 1a. The Hamming
loss is applied to the revised SPSA and utilized to determine
the magnitude of the update (see Figure 1b). The proposed
method is effectively extensible, allowing other distance
metrics and attack methods, such as targeted attacks or score-
based attacks, to be easily applied. The proposed method
achieves a white-box level attack success rate with a similar
number of perturbation updates. The main contributions of
this study can be summarized as follows:
• Wemainly propose a novel method to improve optimiza-
tion performance using the batch Hamming loss with a
distribution of decisions in a decision-based black-box
attack, where our knowledge is confined to the decisions
of queries.

• We mathematically formulated the loss function in
the context of error detection based on the Hamming
distance and compared it with other existing loss
functions.

• We analyzed the effectiveness of a straight forward com-
bination of SPSA and Adam optimization algorithms on
decision-based universal attacks.

• Our method overperforms other methods in terms of
training time efficiency while achieving white-box level
attack success rate on both convolutional networks and
transformer-based networks.
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II. RELATED WORKS
A. UNIVERSAL ADVERSARIAL ATTACK
Traditional adversarial attack methods are image-dependent
attacks. It refers to exploiting the victim model by optimizing
perturbation for one image. UAP based on DeepFool
(DF-UAP) [10] was introduced in which a perturbation
can be applied to any input image in contrast to image-
dependent perturbations by iterative boundary search [9].
Singular value-based UAP [20], which is relatively data-
efficient to build compared to UAP, was demonstrated.
Network Adversary Generation (NAG) [21] is an adversarial
example generator based on Generative Adversarial Net-
works (GAN) [22]. They demonstrated that generators can
capture the perturbation geometry and achieve high fooling
transferability. Generative Adversarial Perturbation (GAP) is
another GAN-based adversarial perturbation generator [23].
NAG and GAP are capable of generating not only image-
dependent adversaries but also UAPs.

B. BLACK-BOX ADVERSARIAL ATTACK
The attacker cannot access the victim’s architecture, gradient,
or training process in a black-box attack. We classified some
approaches by the provided information to the attacker.

1) TRANSFER-BASED METHODS
Transfer-based methods do not directly access the victims
but require a substitute model. Local Substitute Network [17]
trained perturbations using a known network and attacked
an unknown victim model. Curls and Whey [18] is another
black-box attack method using a substitute network. The
authors tried to boost the attack process by finding a faster tra-
jectory to make the data point to cross the decision boundary.
Translation-Invariant Attack [24] tackled true translation-
invariance to attack convolutional neural networks properly.

2) SCORE-BASED METHODS
These methods take the rich confidence score for each query.
Zeroth-order Optimization (ZOO) [25] proposed a black-
box attack method by optimizing randomly selected pixels
using Newton’s Method. Simple Black-box Adversarial
Attacks (SimBA) [26] is another powerful black-box attack
method. They proposed to use a set of orthonormal vectors as
a direction set for local search.

3) DECISION-BASED METHODS
In a real-world scenario, the victim service provides decisions
only. Therefore, decision-based attacks have been researched
from the perspective of query efficiency. RGF optimization
was applied to solve this problem [27], [28]. The local
search algorithm was also applied [16] but they further
applied the Biased Boundary Attack to build low-frequency
perturbations. Reliable attack precisely selects the magnitude
of an update [15], [19]. The genetic algorithm was proposed
to be applied, finding the optimal step on a sparse decision
space [29]. Wu et al. introduced Decision-based Universal

Attack (DUAttack), which is an algorithm to build a universal
perturbation using decisions [11]. They aggregated multiple
images into a mini-batch to properly update the perturbations.
To the best of our knowledge, this was the only successful
approach to solving the decision-based universal attack
problem. However, DUAttack does not successfully perform
on transformer-based victim networks. Self-attention, the
atomic operation of transformers [30], [31], [32], first
patchifies the input to project each of those, and outputs
the weighted sum of them. This discards the benefit of
diagonal perturbation and DUAttack becomes less effective
to transformer-based networks compared to CNNs.

C. ZEROTH-ORDER OPTIMIZATION
Several methods have been studied to apply gradient-
based optimization to craft adversarial perturbations with-
out the gradient of victim models. Natural Evolutionary
Strategy (NES) was employed to adversarial attack to
optimize without calculating gradients [33], [34]. Some
researchers addressed this problem by employing the RGF
algorithm [27]. RGF is a basic zeroth-order optimization
algorithm based on so-called ‘‘try one direction, adopt as
much it worths’’ strategy. Most adversarial attacks based on
the RGF aim to identify effective random steps. Randomly
sampled steps on a hypersphere can be used as an update
with the momentum optimization method [28]. The generator
was also employed in zeroth-order optimization to generate
a step using neural networks [35]. These methods effectively
addressed score-based attack problems using the RGF. SPSA
is another method for solving zeroth-order optimization
problems [36]. SPSA tries one random direction and its
opposite direction to precisely measure the value of the
direction. Then, the magnitude of the reciprocal of the
sampled direction is adopted. It can be applied to address
black-box adversarial attack problems [37], [38]. SPSA
with gradient correction (SPSA-GC) [39] improved the
direction of the steps in the black-box prompt tuning
task by integrating the SPSA algorithm with the Nesterov
Accelerated Gradient optimization algorithm [40]. In black-
box attacks, it was proven that selecting better directions
improves performance. Specifically, geometrical approaches
achieved adversarial attack in perspective of crossing over the
decision boundaries [41], [42], [43]. Thus far, the methods
NES, RGF, and SPSA have proven unsuitable for decision-
based attacks, as they are unable to accurately evaluate the
direction, particularly in the context of universal attacks.

III. METHODS
In this section, we introduce D-BADGE, a decision-
based method incorporating a revised version of the SPSA
algorithm. This revised version aggregates decisions in
a batch to recover the lost distribution. We propose the
Hamming loss function, a simple, yet highly effective tool
for comparing two distributions. Furthermore, we provide a
mathematical proof to demonstrate the feasibility of our loss
function.
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Model fooling is to deceive a victim classifier into making
a misclassification by adding a tiny amount of perturbation
to the input. Let the original input image, the perturbation
vector, and the classifier be xi,pi ∈ RNin and C : RNin 7→

[0, 1]Ncls , respectively. As long as our objective is to make
UAPs, one perturbation should be able to fool as many
images as possible. Moreover, in the real-world scenario, the
attacker can only acquire the victim’s decision. Therefore, our
objective is formulated following:

min
N∑
i=1

⟨D(xi), D(xi + p)⟩ subject to: ∥p∥∞ ≤ ϵ (1)

for N input images, where ⟨·, ·⟩ is inner product between two
vectors and ∥ · ∥l is Ll-norm of a vector, D(x) denotes the
one-hot vector corresponding to the top-1 element of C(x).

A. HAMMING LOSS
The decision of the victim model forgets score distribution.
This hinders the calculation of losses by the difference
between the distributions. Our crucial concept involves
computing and updating the distribution in mini-batches,
rather than deriving it from a single image. This allows
us to calculate the distance of two batches’ decision
distributions and formulate another score. There are several
distance metrics for distribution, such as Cross Entropy (CE),
Kullback-Leibler Divergence (KLD), EarthMover’s Distance
(EMD), and the Hamming distance. However, not all metrics
are suitable for addressing this particular issue. Hamming
distance is a distance metric for binary vectors introduced
by Hamming. This metric is essentially the exclusive OR
operation that counts the number of elements with different
values. It was first proposed to measure the amount of error
in data signal to precisely correct the error [44], [45]. This
attribute makes it fit a decision-based attack that uses binary
vectors as decisions. When attempting to apply SPSA-based
optimization, the loss function also must be convex to prevent
getting trapped in local minima, and it should be Lipschitz-
continuous to ensure stable optimization [46].

The Hamming distance is a distance metric for two arrays
consisting of binary elements, and it just fits into our problem
domain because decisions are Bernoulli-distributed random
variables. The range of the Hamming distance is the set
{0, 1} because the maximum value of the score survives
as 1 and others turn into 0 in classification. Therefore, the
Hamming distance, in this case, means the top-1 accuracy,
which completely equals to the logical and operation of
two distributions. The accuracy is a discrete distance metric;
therefore, we need to transform the accuracy into continuous
space in order to analyze as a loss function. We define
the Hamming loss function LH that utilizes the Hamming
distance consisting of two distinct planes:

LH (y1, y2) =
1
Ncls

Ncls∑
i=1

max(0, y1,i + y2,i − 1), (2)

Algorithm 1 D-BADGE Algorithm
Input: X ,Y ← T input, ground truth batches
Parameters: β1 = 0.5, β2 = 0.999, η = 10−8,
δ = 0.01, γ = 0.001
Output: puni← optimized UAP
1: p← 0
2: m0← 0, v0← 0 ▷ initialize moment vectors
3: for tin1toT do
4: x, y← Xt ,Yt ▷ iterating over batches
5:

6: u← random-select(−δ, δ)
7: p−,p+← clip(p− u), clip(p+ u)
8: x−, x+← x+ p−, x+ p+

9: x−← clamp(x−,min(x),max(x)) ▷ clamp x∗
10: x+← clamp(x+,min(x),max(x))
11:

12: ŷ−, ŷ+← D(x−), D(x+)
13: gt ←

LH (ŷ−,y)−LH (ŷ+,y)
γu ▷ apply LH

14:

15: mt ← β1 ×mt−1 + (1− β1)× gt ▷ apply Adam
16: vt ← β2 × vt−1 + (1− β2)× g2t
17: m̂t , v̂t ← mt/(1− β t1), vt/(1− β t2)
18:

19: p← clip(p+ αm̂t/(
√
v̂t + η))

20: end for
21: puni← p

where yj,i ∈ {0, 1} denotes the i-th element of the vector
yj∈{1,2}.
Convexity and Lipschitz-continuity are indicators of the

feasibility of a loss function in convex optimization. Both two
properties of the Hamming loss function can be shown.
Theorem 1: LH is a convex function.
Proof: The Hessian matrix of LH is a 2× 2 zero matrix

because it consists of planes.
∴ LH is a convex function because the Hessian matrix of it

is positive semi-definite 1. □
Lemma 1: Given a function f : RNin 7→ RNout if f is semi-

positive definite⇒ f is a convex function.
Theorem 2: LH is a 1-Lipschitz-continuous function.
proof:

∇LH =

{
0, if y1,i + y2,i < 1,
(1, 1), otherwise,

(3)

where ∇ denotes the Jacobian of a matrix. The slope of a
straight line passes through two points on LH lies between
0 and 1 (inclusive).

∴ LH is a 1-Lipschitz-continuous function. □
Therefore, it is plausible that the Hamming loss function

can be optimized using SPSA-based optimization.

B. SPSA WITH ADAPTIVE MOMENTUM
SPSA is a robust algorithm, but this controls the magnitude
of updates only based on the loss value without any
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corrections. We formulated SPSA with Adaptive Momentum
(SPSA-AM), which is a combination of SPSA and Adam
optimization algorithms. Decision-based attack using SPSA-
AM is illustrated in Algorithm 1. We initialize the first
perturbation p = 0 and then randomly sample u ∈ {±δ}Nin .
Then, u serves as the step in the optimization process.
We have two different perturbations: p+ and p−, by adding
and subtracting the same step u to p. However, this does
not guarantee ∥p+∥l, ∥p−∥l ≤ ϵ. Therefore, we clipped the
perturbation using the following equation:

clip(p) = ϵ
p
∥p∥l

, l ∈ {2,∞}. (4)

And build the adversarial examples x+ and x− with two
opposite directions p+ and p− are added to x. We calculate
the pseudo-gradient g using the decision of the two perturba-
tions and a batch of images. The gradient g does not require
the decision of the clean images. Note that we clamped the
adversarial examples using the lower and upper bounds of
the original images. Finally, we update p using g and step
size α. We clipped the perturbation again because it does not
guarantee the budget constraint. The algorithm returns the
final UAP puni after updating for all batches.

C. EXTENSIONS TO OTHER ATTACK TASKS
1) TARGETED ATTACK
Wehave addressed non-targeted attacks, sowe did not specify
the target category.While non-targeted attack aims to fool the
victim, targeted attack aims to make the victim misclassify
as a specific category. In other words, the Hamming loss
function should be modified to count decisions not equal to
the target. Therefore, the target Hamming loss function L targetH
can be formulated as:

L targetH (y1, y2) =
1
Ncls

Ncls∑
i=1

(1−max(0, y1,i + y2,i − 1)). (5)

2) SCORE-BASED ATTACK
D-BADGE functions similarly to score-based attacks with
decision-based universal adversarial perturbation using the
Hamming loss function. However, our method can be directly
applied to score-based methods as well by simply not
applyingD to C(x). Score-based attacks are discussed in more
detail in the Comparison of Loss Functions section.

IV. EXPERIMENTS
In this section, we conduct extensive experiments on various
datasets and victim models to evaluate the performance of
D-BADGE in terms of attack success rate, the norm of the
perturbation, and the training time. We note that there are few
methods for craftingUAPs in a real-world environment, sowe
included other methods in our experiments, such as white-
box UAP and score-based SimBA. We also demonstrate
the transferability and performance of the proposed method
when applied to a targeted attack. Furthermore, we analyze

the effectiveness when applying various batch sizes, loss
functions, and optimization algorithms.

A. EXPERIMENT SETTINGS
1) VICTIM MODELS AND DATASETS
We evaluated convolutional networks: ResNet18 (RN18),
ResNet20 (RN20) [47], VGG19 [48], MobileNet_v2
(MVN_v2) [49], ResNeXt29_2 × 64d (RNX29) [50],
and transformers: Vision Transformer (ViT-T) [31] and
Swin Transformer (Swin-T) [32] for the CIFAR-10 [51]
dataset and a simple toy convolutional network for the
MNIST [52] dataset. We also evaluated D-BADGE on large-
scale datasets: ImageNet-1k [53] and ImageNet-12 [54].
CIFAR-10 contains 60,000 images with 32 × 32 size,
arranged by ten classes. CIFAR-10 is widely used in
evaluating the feasibility and analyzing the characteristics
of proposed methods. ImageNet-1k is a large-scale dataset
that contains 1,431,167 images arranged by 1k classes.
The size of the images in ImageNet-1k is not fixed but
usually resized into 224 × 224 or 32 × 32 according to
the purpose. ImageNet-1k is the most common dataset
for evaluating the capability of a model on the large-
scale data. ImageNet-12 is a subset of ImageNet-1k with
12 classes proposed to evaluate adversarial attack and defense
techniques. VGGNet is a deep stack of convolution layers and
ResNet is a VGGNet with skip connections. MobileNet_v2
significantly reduced the number of operations by adopting
inverted residual blocks. ResNeXt grouped the channels
of feature maps and improved the capability of each
convolution layer. ViT is a stack of transformer encoder
blocks with self-attention. Swin Transformer is based on
ViT, but employs hierarchical architecture and shifted multi-
head self-attention. These differences make networks work
differently and that is why multiple architectures have to be
experimented with validate adversarial attack methods. In
the CIFAR-10 dataset experiment, we compared D-BADGE
with DF-UAP, SimBA, and DUAttack attack methods. UAP,
DUAttack, and D-BADGE used the CIFAR-10 training set
to create universal perturbation, and SimBA built image-
dependent perturbations using the validation set. All four
methods were evaluated using the CIFAR-10 validation set.
Additionally, we attacked the CIFAR-100 dataset, which is
more challenging. Unless otherwise stated, our experiments
were primarily conducted using ResNet18.

2) TRAINING DETAILS
We trained our perturbations exactly like training a classifier,
but with zeroth-order optimization instead of backpropa-
gation. Previous works (DeepFool [9], SimBA [26], and
DF-UAP [10]) update perturbation with a single image over
multiple iterations and do the same with another image.
This can be interpreted as an inverted procedure of ours.
We controlled the step size using cosine annealing [55]
scheduling. We had α to decay from 10−4 to 10−3 once
over entire epochs. We decayed δ using step scheduling [56]
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TABLE 1. Performance comparison with other methods. (a) ResNet18 (RN18), VGG19, MobileNet_v2 (MBN_v2), (b) Vision Transformer (ViT-T) and
Swin Transformer (Swin-T) were tested as victim models. UAP, SimBA, and DUAttack are the baselines. The number inside the parenthesis refers to the
accuracy of the victim model with clean inputs. Note that DF-UAP is a white-box attack method and SimBA is an image-dependent attack method.
(c) shows the ASR of perturbations with five different random noises. The l2-norms of the random noises were made equal to the l2-norms of optimized
perturbations. Bold font numbers indicate the best result in each evaluation metric.

from 0.01 with a 0.9 decay ratio. γ hyperparameter was
set to 10−3. The default batch size was set to 256 by
heuristic compromise. All training and evaluation samples
are 8-bit images with values under 255. The l∞-norm of
perturbation was limited to 10.0. All experiments were
conducted on Ubuntu Server 18.04 with an Intel Xeon Gold
6226R 2.90GHz and NVIDIA RTX 3090.

B. EVALUATION METRICS
1) ATTACK SUCCESS RATE (ASR, %)
ASR is our primary evaluation metric for non-targeted
attacks, defined as the ratio of the number of changed
decisions over the total number of adversarial examples.
Similarly, we define target accuracy as an evaluation metric
for a targeted attack. Target accuracy is defined as the number
of adversarial examples classified to the targeted class.

2) NORM OF PERTURBATION (L∗)
The norm value of a perturbation is an intuitive evaluation
metric for how the perturbation is recognizable by humans.
l∞-norm is the highest entry in the vector space. l∞-norm
essentially determines the maximum magnitude of a given
vector. l2-norm, the Euclidean or Frobenius norm, is the
shortest distance between two vectors. It is calculated as the
distance between the original and adversarial examples in the
adversarial setting. We primarily adopted l2-norm to measure
the overall distortion of adversarial examples.

3) THE NUMBER OF UPDATES (# UDT)
This metric indicates how many times the perturbation
requires to reach a certain ASR. The lower # UDT suggests
that the update directions to the perturbation were a better
direction under a similar ASR.

4) TRAINING TIME (TIME, SECONDS)
Training time indicates how long a method takes to
generate adversarial examples for the entire validation set.

Therefore, it must be measured differently depending on
image dependency. The perturbation optimization time could
be the training time for optimizing universal perturbation and
the time to build adversarial perturbations for all images in
the validation set. The shorter training time suggests that the
method can capture a victim’s decision boundary in shorter
periods of time.

C. NON-TARGETED ATTACK
We tested four attack methods: UAP, SimBA, DUAttack,
and D-BADGE to five victim models: ResNet18, VGG19,
MBN_v2, ViT-T, and Swin-T on the CIFAR-10 dataset.
UAP and D-BADGE generated universal perturbations using
a training set (50,000 images) and evaluated using the
validation split. All experiments were performed under
l∞ = 10.0 constraint. As shown in Table 1, D-BADGE
achieved higher ASR with fewer updates and shorter training
time, even compared to the DUAttack with the same
number of updates and queries. The architecture of Vision
Transformer and Swin Transformer significantly stand out
from convolution-based networks. Swin-T showed greater
robustness against UAP, SimBA, and DUAttack compared
to ViT-T, while D-BADGE outperformed others across
the victims as shown in Table 1b. Figure 2 shows the
difference in perturbation regarding the attack methods and
victim models. We observed that DUAttack crafts similar
diagonal perturbations regardless of the victim network while
D-BADGE crafts different appearance against ResNet20 and
ViT-T. Specifically, in Figure 2d, the squares correspond to
each patch of ViTs.

WemeasuredASR on CIFAR-10 dataset against ResNet18
and D-BADGE works as well regardless of the number
of categories. For additional results, please refer to the
supplementary material. We conducted a D-BADGE attack
on the MNIST dataset using a toy network. Results are
shown in Figure 4a. The high-contrast pixels require a
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FIGURE 2. Perturbation comparison between DUAttack [11] and
D-BADGE (ours) against ResNet20 [47] and ViT-T [31].

TABLE 2. Non-targeted attack ASRs of D-BADGE on the large-scale
datasets.

FIGURE 3. The confusion matrix of the transferability on non-targeted
attack. The value of each cell refers to the ASR when fooling the target
victim using a perturbation that was trained from the source victim.

higher l2-norm limit, but the most substantial perturbation
remains less visible than the real pixel value. The l2-norms
of UAP and SimBA are less than that of D-BADGE.
This implies that D-BADGE has better learnability because
weaker perturbation generally leads to poor ASR.

D. EVALUATION ON LARGE-SCALE DATASETS
We also examined the capability of D-BADGE on large-
scale datasets that describe the real-world scenario better.
For ImageNet-1k, we resized the inputs for fast training and
evaluation as Zhang et al. [57] did. Table 2 depicts that
our method successfully attacked both victim architectures.
Specifically, our method was more effective on the smaller-
size images even if the scale of the dataset is larger but, it is
also capable of fooling larger-size images.

E. TRANSFERABILITY
We investigated the transferability across victim models of
the proposed methods. It is well known that transferring
adversarial perturbations to a network with a completely

TABLE 3. Target accuracy (%) of the targeted attack for each category in
the CIFAR-10 dataset.

different architecture is challenging [58], [59]. This means
the more a perturbation is transferable, the more the attack
method used is powerful. We tried to capture the most general
representation to the core operation of the network, e.g.
convolution for CNNs and self-attention for transformers
possible. In Figure 3, we demonstrated the transferability
of our perturbations between various models. The figure
summarizes the ASR of the D-BADGE attack trained on one
network and evaluated on another. D-BADGE is transferable
within CNNs and transformers, but not between a CNN
and a transformer. The ASRs are greater than 40% among
CNNs, which is much greater than the ASR of random
noise with l∞-norm = 10.0. The ASRs among transformers
are also greater than 20%. However, the ASRs between a
CNN and a transformer remain an average of 10.92%. CNNs
and transformers are independent of each other, especially
ViT-T. Swin Transformer is relatively more transferable to
CNNs and vice versa, with an average ASR of 16.02%.
In summary, D-BADGE is effectively transferable among
CNNs and transformers and partially among CNNs and
transformers.

F. TARGETED ATTACK
We conducted a targeted D-BADGE attack on five victims
that were trained using the CIFAR-10 dataset. The results
are displayed in Table 3. D-BADGE achieved higher target
accuracy for a specific class within each victim architecture.
Specifically, MVN_v2 outperformed the others, achieving
the highest ASR target accuracy. VGG19 exhibited poor
ASR in non-targeted attacks, yet specific target classes were
still attainable with VGG19. The average target accuracy
scores for all victims ranged from 70 to 85%, indicating
successful attacks. The categories Plane, cat, and frog were
easily targeted, while deer, dog, and ship proved to be
robust in specific victim architectures. We discovered that the
existence of classes with robust features can make adversarial
attacks more challenging.

G. EFFECTIVENESS OF BATCH ATTACK
We evaluated ASR across various batch sizes, adjusting the
number of epochs to align with the number of updates to
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FIGURE 4. (a) shows the adversarial examples of the CIFAR-10 dataset against ResNet18. The top row illustrates the original images, accompanied by
both the ground truth and the corresponding predictions. The bottom row shows the adversarial examples with their classification results. (b) shows the
adversarial examples of the MNIST dataset on various l∞-norm constraints. The numbers in parentheses denote the ASR scores. Blue and red colors
indicate correctly classified and misclassified categories, respectively, in both subfigures.

TABLE 4. Effectiveness of the batch size (BS). The number of updates was
fixed in (a) and the number of epochs was fixed in (b).

assess the batch size’s effectiveness. We observed that as the
batch size increases, the attack success rate also increases,
given a similar number of updates, as shown in Table 4a.
However, this increased total training time, as it necessitated
more inferences to the victim. In other words, a trade-off
relationship exists between ASR and time in D-BADGE.
Notably, the jump from 256 to 512 resulted in a dramatic
increase in training time. Moreover, we fixed the the number
of epochs to evaluate the query-efficiency of D-BADGE.
Table 4b shows that as the batch size slightly increases, ASR
increased up to the batch size of 256. The batch size greater
than 256 rather decreased ASR because it catastrophically
lacks the number of updates. This means the greater batch
size helps the perturbation to find a better direction faster
than with a smaller batch size. We determined that 256 is the
optimal batch size, considering a balance between ASR and
training time compared to other sizes.

H. COMPARISON OF LOSS FUNCTIONS
We also conducted experiments on score-based attacks,
assuming a score could be obtained by inserting an adver-
sarial example into the victim model. Four loss functions of
Hamming Distance (HD), KLD, CE, and EMD were tested.
The result is shown in Table 5. HD andKLD functioned better
with decisions than scores, which is contrastive to CE and
EMD. EMD worked poorly, especially with decisions. It is
because EMD, intuitively speaking, calculates the amount of
data that must be transferred between two distributions to
make them equal. This is not a direct distance metric between
two decision distributions. On the other hand, other functions

TABLE 5. Performance comparison for various loss functions. Each value
means µ ± σ of ASR against ResNet18. SB and DB refer to score-based
and decision-based attacks respectively.

TABLE 6. Ablation study. Batch attack, the Hamming loss function, and
SPSA-AM were removed in the top three rows each.

are well-known distance metrics. As a result, we obtained
the best ASR with CE and HD loss in score-based and
decision-based attacks, respectively. The ASR using HD on
decision-based attacks is slightly lower than score-based
attacks using CE but still performed with the lower variance
of ASR. This suggests that D-BADGEworks, at least, as well
as on score-based attacks despite of catastrophic lack of
information.

I. COMPARISON OF OPTIMIZATION ALGORITHMS
The optimization algorithm is a critical factor in decision-
based attacks. As we combined the SPSA and the Adam
optimizer, we also tested other combinations of optimization
algorithms. We evaluated five combinations as shown in
Figure 5. SPSA-based algorithms are basically performed
better than RGF-based algorithms. Gradient correction using
NAG or Adam helps consistent convergence of perturbations.
We captured that SPSA-GC is more consistent than SPSA
while the ASR is much lower. However, SPSA-AM still
converges stably with a few ASR drops compared to SPSA.

J. ABLATION STUDY
D-BADGE consists of three factors: batch attack, the
Hamming loss function, and SPSA-AM. If a perturbation
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FIGURE 5. Convergence using different algorithms. Five different
combinations of optimization algorithms were tested against ViT-T. The
ASRs of 20 attacks were averaged and the error range shows 2σ of them.

TABLE 7. Attack success rate (%) of iGAT [60] against two attack methods.

is updated with a single image in sequence, the direction of
the update will be biased and inconsistent. A Batch attack
helps to find a general, unbiased, and consistent direction
for updates because the direction is not only for a single
decision. This is the way how the batch attack contributes to
address universal adversarial attacks and outperforms others.
In Table 6, we removed the three factors to reveal the effect
of the factors. It shows that batch attack is essential for
successful attack and the Hamming loss function increases
the ASR and make it consistent. And Adam may slightly
reduce the ASR, but it achieved outstanding consistency with
SPSA.

K. ROBUSTNESS AGAINST DEFENSE
We evaluated the robustness of DUAttack and D-BADGE
against one of the most recent ensemble-based adversarial
defense method, iGAT [60] combined with ADT [61] and
DVERGE [62] (Table 7). We observed that DUAttack
achieved slightly higher ASR than D-BADGE. However, the
ASR of both was lower than 5%, which is almost a failure.
This can be interpreted as decision-based universal attack
is not powerful enough and yet to against recent defense
methods. ADT with iGAT failed to train the ViT-T model.
It also implies that defense methods are not robust enough,
even in the white-box settings.

V. ANALYSIS AND DISCUSSION
A. COMPUTATIONAL COMPLEXITY
We analyzed the computational complexity of D-BADGE
compared to others.

TABLE 8. The theoretical and empirical big-O complexity comparison
among two image-specific attack and universal attack methods.

1) IMAGE-SPECIFIC ATTACK
Image-specific attacks require to generate adversarial per-
turbation for each single image for a total of N images.
Image-specific attack methods DeepFool [9] and SimBA [26]
iterate until the perturbation converges. Suppose it iterates
for T times, the time complexity big-O notation of both is
O(N ) = TN .

2) UNIVERSAL ATTACK
Basic universal white-box attack DF-UAP [10] generates one
perturbation for N images. But it has to be updated sequen-
tially for N images each, which demands unnecessarily
higher complexity (O(N ) = SN where it iterates S times per
image). DUAttack [11] is another universal attack method.
It parallelizes B images as a batch, and iterates for E epochs.
Consequently, the big-O notation becomes O(N ) = E

BN .
D-BADGE runs similarly to DUAttack in the perspective
of time complexity. As shown in Table 1, the empirically
required time per image of DUAttack and D-BADGE are
approximately 0.57 seconds and 0.13 seconds, respectively,
due to the characteristics of the methods. We compared the
big-O notation of the five methods in Table 8.

B. EXPERIMENTAL ASSUMPTIONS
Our experiment holds two assumptions:

1) The attacker has inputs that are independent and
identically distributed (IID) along the trained data.

2) Multiple queries are guaranteed to the attacker so that
the universal adversarial perturbation can be updated
repeatedly.

The first assumption means D-BADGE does not address
source-free adversarial attack tasks. Decision-based adver-
sarial attacks are at the academic level, and this could be a
constraint. There is a task free from the second assumption,
namely, query-free adversarial attack [63], [64]. This scenario
holds very tight constraints and is not necessary in the real-
world scenario. Our assumptions yield real-world scenarios
with minimal constraints of data distribution and queries.

C. ARTIFICIAL INTELLIGENCE ETHICS
Ethical discussion must be preceded before utilizing artificial
intelligence technology, especially attack and defense meth-
ods. We believe researches about adversarial attack method
are most worth as a foundation for researches about defense
method and general robustness of DNNs. Both are currently
in academic level. Even so, attack methods are threats in
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certain scenarios such as medical data processing [65], [66]
and autonomous driving [67], [68]. It is known that visual
perception techniques can be used to discriminate medical
harms: tumors and abdominal aortic aneurysms [66]. It will
be critical if adversarial perturbations could increase false
negative rate.

VI. CONCLUSION
This paper proposes a novel method named D-BADGE,
which crafts image-agnostic universal perturbations in
decision-based black-box attacks. The proposed method
utilize decisions of mini-batch to reconstruct probability
distribution. The Hamming loss function is used to optimize
universal perturbation. We demonstrated that the D-BADGE
can easily be applied to targeted and score-based attacks
using a straight forward combination of SPSA and Adam,
namely SPSA-AM. The proposed method achieved better
performance with less number of updates and training time
compared to white-box UAP and score-based SimBA, even
with the same number of updates and the same number
of queries compared to DUAttack for CNN-based and
Transformer-based victim models. As it is evident that the
number of queries is also a crucial factor in black-box attacks,
we leave it as future work to craft UAPs with a few queries.
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