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Introduction

The ‘statistical learning hypothesis’ posits that infants learn their native languages(s)
by gradually collecting statistics over their language input (Saffran & Kirkham, 2018).
This is strikingly similar to how current AI’s Large Language Models (LLMs) learn:
building a probabilistic model of sequences of words from the mere observation of
these sequences as they occur in their language inputs1. How does learning in such
models fare in comparison to learning in infants? First, LLMs typically learn from text,
while preschool children learn from speech, which constitutes a richer, noisier, and
more variable signal. Second, LLMs are trained on exceedingly large amounts of data.
For instance, the recent model LLaMA was trained on 1.4T tokens, roughly 800B words
(Touvron et al., 2023) while children hear only between 1M and 10M words per year
(Gilkerson et al., 2017). At this rate, infants would need to live between 80,000 years and
almost a million years to get the same amount of data. Therefore, current language
models are outranked by children regarding robustness to input signal variability and
data efficiency as already advocated in Lavechin et al. (2023) and Warstadt et al. (2023).
One candidate explanation for the incredibly slow learning pace observed in LLMs
is their lack of innate language capabilities. Indeed, LLMs have a relatively generic
architecture that can be used to learn visual or musical patterns. In contrast, it has
been claimed that language learning critically relies on evolution-supplied specialized
structures unique to humans (Chomsky, 1957; Hauser et al., 2002).

Far from entering the complicated controversy about the role of innate knowledge in
language and cognition, we focus in this paper on an apparently simple yet fundamental
subcomponent of language: phonetics. The ability to encode the sounds of language
in terms of a relatively invariant representation has been considered one of the first
steps of language acquisition in infants. Quite surprisingly, preverbal infants have an
excellent ability to discriminate between very subtle sound differences that sometimes
escape adults. Contrary to English adult speakers, 10- to 12-month-old English-learning
infants can distinguish [t”a] from [úa], which is contrastive in Hindi (Werker et al., 1981).
Similarly, Japanese-learning infants can discriminate [ôa] from [la] as in ‘right’ versus
‘light’ (Kuhl et al., 2006), while Japanese adult speakers struggle to hear the difference
(Best & Strange, 1992; Yamada & Tohkura, 1992). It is only when infants grow older that
their perception specializes to their native language(s) (Kuhl et al., 2006; McMurray
et al., 2018).

The early capacities of infants to discriminate speech sounds highlight the initial state
of their perceptual apparatus, whereas their developmental trajectories emphasize the
role of experience (Eimas et al., 1971; Kuhl & Iverson, 1995; Kuhl et al., 2003; Maye et al.,
2002; Werker & Curtin, 2005).

1More precisely, they learn by predicting the conditional probability of future linguistic units — words
or sub-word tokens — based on past units.
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In this study, we investigate the respective contribution of initial state abilities and
language experience in infant speech perception with computational modeling2. Our
approach involves pretraining computational models of early phonetic learning to
induce initial state sound discrimination capabilities. We then observe how these
induced capabilities affect the learning trajectories taken by the model. Our results
show that models with strong initial state capabilities better fit the observed data in 6-8
and 10-12 month-old American English and Japanese-learning infants. Our methodology
allows us to explore theories positing a greater contribution of initial state factors in
infant language acquisition, a theoretical space that has been largely overlooked in
computational modeling until now.

Theoretical views on early phonetic learning in infants

The relative contributions of initial abilities versus language experience in phonetic
learning have been subject to much debate. Aslin and Pisoni (1980) have outlined
three possible theories concerning the development of speech perception in infants
– see Rowland (2013) for an overview of the different theories. Those are depicted in
Figure 1.

The universal theory hypothesizes that infants come pre-equipped with general auditory
mechanisms partially shared with other species. According to this theory, newborns
could initially discriminate all possible speech sound contrasts. Through exposure
to speech, only sensitivity to contrasts to which the child is exposed would persist
(maintenance), while sensitivity to contrasts to which the child is not exposed would
decline (loss) – see Aslin et al. (2002). There exist at least two observations incompatible
with the universal theory. First, infants lose sensitivity for some non-native contrasts
but not all of them – see Singh et al. (2022) and Tsuji and Cristia (2014) for meta-analytic
evidence. Second, infants are born capable of discriminating many sound contrasts but
not all of them – e.g., see Eilers and Minifie (1975) for an example where infants fail to
discriminate between [s] as in ‘sing’ versus [T] as in ‘thing’.

The attunement theory, perhaps the prevailing theory nowadays, proposes that infants
come pre-equipped with language-specific mechanisms that would enable them to
roughly discriminate speech sounds, although not to the same extent as adults in
terms of native speech sound discrimination (Kuhl, 2004; Werker & Curtin, 2005). The
attunement theory places greater importance on the role of experience by stipulating
that the language(s) infants are exposed to reorganize their perceptual abilities. Through
exposure to speech, infants’ sensitivity to some – mostly native – contrasts would
increase (facilitation), while sensitivity to some other – mostly non-native – contrasts
would decline (loss). According to this theory, there may be no change in perceptual

2Here, we take the initial state to be the state of the perceptual system at birth. Such a system can
come about through a combination of evolutionary processes (the true ’innate’ components) and prenatal
learning in utero. We do not attempt to distinguish these two sources of initial state abilities.
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Figure 1. The possible effects of innate factors (Evolution/Prenatal) and language
experience (Development/Postnatal) in infant speech sound perception. Adapted from
Aslin and Pisoni (1980).

abilities for some native or non-native contrasts (maintenance), which has been reported
in many studies in 6- to 12-month-old infants (Best et al., 1995; Eilers & Minifie, 1975;
Polka et al., 2001; Tsao et al., 2006) – see Best et al. (2016) for a review on the different
speech sound discrimination trajectories observed in infants. Although there may
be disagreement on the details of the implementation – e.g., the PRIMIR framework
proposed by Werker and Curtin (2005) or the perceptual magnet theory proposed by
Kuhl and Iverson (1995) and Kuhl et al. (2008) –, the attunement theory nicely accounts
for the large array of developmental patterns observed in infants.

A major critique of both the attunement theory and the universal theory is that we
may overestimate infants’ capabilities to discriminate speech sounds for two reasons.
First, it is common when working with infant participants to exclude those who fail
to pay attention, cry, or fall asleep during the experiment. Nittrouer (2001) argues
that infants may show uncooperative precisely because they cannot discriminate the
stimuli presented. Consequently, excluding infants who fail to meet the criterion of the
experimental procedure may result in inflated measures of discriminability. Indeed,
testing 6- to 14-month-olds and 2- to 3-year-olds, Nittrouer (2001) found lower discrim-
inability scores than typically reported in the literature – but see Aslin et al. (2002) for
counterarguments. The second argument is that sound discrimination experiments use
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simplified stimuli in the form of prototypical sounds and cherry-picked contrasts that
fail to account for the large variability of spontaneous speech encountered by infants
(Pierrehumbert, 2003). Under this view, sound discrimination capabilities measured
in controlled laboratory settings would not reflect the actual capabilities of infants in
real-world situations (Nittrouer, 2001; Pierrehumbert, 2003; Swingley, 2009).

This brings us to the perceptual learning theory, which proposes a scenario where experi-
ence plays a more important role. According to this theory, there would be no need to
assume innate capabilities, and infants could build the sound system of their native
language(s) in a bottom-up manner from sole exposure to speech. This theory seems
plausible in light of the experiments attempting to isolate learning mechanisms infants
may bring to the task. For instance, Maye et al. (2002) showed that it is possible to
induce different discrimination patterns in 6- and 8-month-old infants. Infants exposed
to a bimodal distribution of sounds along a [ta]-[da] continuum can discriminate [ta]
from [da], while those exposed to a unimodal distribution drawn from the center of the
continuum cannot. The perceptual learning theory is further supported by computa-
tional modeling studies showing that it is possible to reproduce some developmental
patterns in speech perceptual learning using unsupervised learning models (Lavechin
et al., 2022; Räsänen et al., 2016; Schatz et al., 2021; Steels & De Boer, 2008; Vallabha
et al., 2007)3.

Current work in modeling early phonetic learning

Computational modeling studies have always been central to the debate on the relative
contribution of innate factors and experience, as they shed light on what can be learned
from the input signal (Ambridge & Lieven, 2011; Bates et al., 1996; Joanisse & McClelland,
2015). After all, if a model successfully reproduces the observed data in infant perceptual
learning of speech sounds, do we need to posit innate factors? Despite successes in
reproducing some aspects of early phonetic learning as observed in infants (Antetomaso
et al., 2017; Lavechin et al., 2022; Miyazawa et al., 2010; Räsänen, 2012; Schatz et al., 2021;
Steels & De Boer, 2008; Vallabha et al., 2007), we argue that computational modeling
studies have thus far failed to account for the large array of infant developmental
trajectories depicted in Figure 1 and reviewed in Best et al. (2016).

Let us take the example of the American English [ô]-[l] contrast which has received the
attention of both infant development and modeling experts. In a seminal study, Kuhl
et al. (2006) showed that between 6 and 8 months, Japanese- and American English-

3Here, our goal was to provide an overview of the main arguments supporting or challenging the
different views but note that most authors do not consider these three theories to be mutually exclusive.
In other words, it is unlikely that a single theory explains the development of all speech contrasts. From
our perspective, the debate is not about trying to establish a single definitive theory as the absolute truth
but more about where the initial state fits on the nature versus nurture continuum (vertical dashed line
of Figure 1) and how this initial state influences developmental outcomes.
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learning infants are capable of discriminating [ô] from [l] with similar performance
scores. However, when tested a few months later, these same infants show markedly
different perceptual patterns. By 10-12 months, American English infants show an
improvement (facilitation) in their ability to discriminate the [ô]-[l] contrast, while
Japanese infants show a decline (loss). While the effect of language exposure (higher
scores for the model for whom the contrast is native) has been reproduced in numerous
computational modeling studies and across different pairs of languages – e.g., Lavechin
et al. (2022), Li et al. (2020), Matusevych et al. (2023), and Schatz et al. (2021) –, a
closer examination of the trajectories taken by the proposed algorithms reveals notable
differences with the trajectories observed in infants.

Schatz et al. (2021) used an algorithm based on a mixture of Gaussians applied to mel-
frequency cepstral coefficients (MFCCs) with their first- and second-order derivatives.
Their results showed that the discrimination score obtained by the Japanese model on
the [ô]-[l] contrast increases with the quantity of speech available in the training set. In
other words, for this contrast, the algorithm follows the inductive trajectory depicted in
Figure 1, contrary to the loss observed in infants according to previous studies (Kuhl
et al., 2006; Tsushima et al., 1994)4

Another example using the same algorithm from Li et al. (2020) showed a slightly
different trajectory. When trained on a single speaker, the algorithm exhibits an increase
(induction) on the [ô]-[l] contrast followed by a decrease (loss), resulting in an inverted
U-shaped trajectory which, to the best of our knowledge, has not been documented in
infants. Intriguingly, the same U-shaped trajectory is observed on the [w]-[ j] pair (as
in ‘wet’ versus ‘yet’), which is contrastive in Japanese, and for which current theories
predict either a facilitation or maintenance trajectory. This performance loss on the
[w]-[ j] pair, when the algorithm is trained on a large quantity of speech produced by
the same speaker, may indicate that the algorithm overfits that same speaker. Lavechin
et al. (2022) report the discrimination accuracy obtained by a Contrastive Predictive
Coding (CPC) algorithm trained on raw speech. Although no trajectory is reported for
individual contrasts, the overall discrimination accuracy averaged across all English or
French contrasts also follows an inductive trajectory.

Statistical learning models, irrespective of whether they operate on handcrafted features
or raw speech, are inherently rooted in the perceptual learning theory. Essentially, they
begin with limited prior knowledge of speech sounds, and their performance largely
tends to exhibit improvement over time. Consequently, current models of early phonetic
learning fail to reproduce the large array of developmental trajectories observed in

4In Kuhl et al.’s (2006) study, the observed decline on the [ô]-[l] contrast for Japanese infants was not
deemed significant, contrary to Tsushima et al. (1994), where a significant decline was noted. When taken
together with studies in later childhood and adulthood (e.g., Miyawaki et al. (1975)), it appears reasonable
to interpret the cumulative evidence as suggestive of a decline, though additional infant experiments
would be advisable.
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infants.

The present study

In this study, we seek to explore the respective contribution of initial state abilities and
experience on the development of speech sound discrimination capabilities. By and
large, existing models of early phonetic learning implement the perceptual learning
theory, where the proposed model starts with undeveloped or minimally developed
discrimination capabilities (first portion of the vertical dashed line in Figure 1). Our
primary contribution involves introducing a novel approach, previously used in ma-
chine learning but not yet applied to phonetic learning modeling, which consists of
inducing ‘innate’ speech sound discrimination capabilities by pretraining our model. By
controlling the initial state, we can now build computational models of early phonetic
learning that posit a greater role of innate factors compared to language experience
and assess which of these models better aligns with observed data in infants.

To demonstrate the relevance of our approach in modeling early phonetic learning, we
simulate the learning process of American English- and Japanese-learning infants using
CPC, an algorithm that learns from raw speech in an unsupervised manner already
proposed in Lavechin et al. (2022, 2024) and Nguyen et al. (2020) – see Matusevych
et al. (2023) for a comparison of different models. To induce ‘innate’ speech sound
discrimination capabilities and propose models more aligned with the attunement
or universal theories, we pretrain models on ambient sounds in Experiment 1, and
on multilingual speech in Experiment 2. Following Schatz et al. (2021), we evaluate
the model’s capability to discriminate American English and Japanese contrasts using
the machine ABX sound discrimination task and test whether the simulated learning
trajectories align with the observed data in infants. In particular, we focus on the [ô]-[l]
pair, which is contrastive in English but not in Japanese and for which existing data
indicate a facilitation effect over the first year of life for American English-learning
infants and a loss effect for Japanese-learning infants (Kuhl et al., 2006; Tsushima et al.,
1994). We also analyze the performance obtained on the [w]-[j] control pair (as in ‘well’
versus ‘yell’), contrastive in both languages, for which prevailing theories predict either
a maintenance or facilitation effect over the first year of life for both American English-
and Japanese-learning infants. Although fewer observations are available on the [w]-[j]
contrast, see Tsushima et al. (1994) whose results are compatible with a maintenance
or facilitation trajectory in Japanese-learning infants.

Experiment 1: inducing initial speech sound discrimination capabilities
through pretraining on ambient sounds

In this first experiment, we ask whether it is possible to induce ‘innate’ speech sound
discrimination capabilities in our model and how the resulting initial state affects
its developmental trajectory. Following Lavechin et al. (2024), we chose a learning



8

algorithm relying on auditory predictive coding at the core of the predictive brain
hypothesis that has gained attention in the neuroscience community (Huang & Rao,
2011; Hueber et al., 2020). The algorithm learns by predicting future representations of
audio based on present and past ones (see Methods).

We consider two types of models. One model starts from random initialization, which
is akin to assuming little initial discrimination capabilities except those brought by the
architecture which has been optimized to process human speech (see Rivière et al.,
2020) and corresponds to how computational models of early phonetic learning are
typically trained (e.g., see Lavechin et al., 2024; Matusevych et al., 2023; Schatz et al.,
2021). This is our no-pretraining condition, which aligns with the perceptual learning
theory. The other model follows a pre-exposure or evolutionary phase during which
it is pretrained on ambient sounds (e.g., animal vocalizations, vehicles, raindrops)
yielding an initial state optimized to process ambient sounds. We predicted that such a
pretrained model would learn the temporal dynamics of non-speech sounds and show
some initial discrimination capabilities that are not specific to any language. This is our
pretrained condition, which aligns with attunement or universal theories.

These two types of models (no pretraining vs. pretrained) undergo an exposure phase,
during which they receive the exact same language experience in the form of either
Japanese or American English recordings. We then compare their learning trajectories
in terms of speech sound discrimination capabilities.

Methods

Pretraining dataset

To build the dataset of ambient sounds, we started with the Animal Sound Archive
(Frommolt et al., 2006; GBIF.org, 2023), which consists of 78 hours of field recordings
of animals. We supplemented it with 422 hours from AudioSet (Gemmeke et al., 2017),
excluding utterances annotated as human vocalizations or music and retaining only
animal sounds or everyday environmental sounds. Additionally, we filtered out the
remaining speech segments missed by human annotators using the model proposed in
Bredin et al. (2020). Our pretraining set comprises 500 hours of ambient sounds.

Training datasets

The Japanese training set is derived from the Corpus of Spontaneous Japanese (Maekawa,
2003), and the American English corpus is made of audiobooks (Kahn et al., 2020; Kearns,
2014). For both corpora, non-speech segments were removed (Bredin et al., 2020). We
then selected a subset of American English audiobooks to match the characteristics of
the Japanese corpus in two aspects: the number of speakers and the duration of speech
per individual speaker. Ultimately, both corpora are made of approximately 500 hours



9

of speech data. This quantity of speech is compatible with what infants hear during
their first year as current estimates vary from 60 hours (Cristia et al., 2019) to 1,000
hours (Cristia, 2023).

For each language, we built smaller datasets by partitioning them into mutually exclu-
sive subsets of varying sizes: 1 hour, 4 hours, 20 hours, and 100 hours. In all conducted
experiments, whether on Japanese or English, we trained separate models on 15 sub-
sets for the 1-hour, 4-hour, and 20-hour splits and 5 separate models for the 100-hour
split.

The learner model

We chose Contrastive Predictive Coding (CPC) as our core learning mechanism (Oord
et al., 2018; Rivière et al., 2020). In the Zero Resource Speech Challenge 2021 on unsu-
pervised representation learning, CPC achieved the best speech sound discrimination
scores (Dunbar et al., 2021). This model takes as input the raw waveforms. It is designed
to predict future states of a sequence from its past in an autoregressive manner. In other
words, given a sequence of observations, the model aims to accurately predict the next
state of the input sequence based on its past context. This predictive task is achieved
through a contrastive objective, where the model learns to distinguish between positive
samples — the actual future states — and a set of negative samples — sampled from
other parts of the dataset — during training (see implementation details in Appendix
"Contrastive Predictive Coding").

Measuring speech sound discrimination

To assess the model’s ability to discriminate contrasts, we conducted the same machine
ABX sound discrimination task as used by Schatz et al. (2013). This evaluation procedure
presents the model with three triphone stimuli pronounced by the same speaker labeled
as A, B, and X. A and X are two instances of the same triphone (e.g., ‘boot’), while
B differs only in the central phone while maintaining the same context (e.g., ‘beet’).
We compute the corresponding representations RA, RB, and RX for these stimuli and
calculate the pairwise distances d(RA, RX) and d(RB, RX), with d the angular distance.
As stimuli can have different durations, we perform Dynamic Time Warping (DTW)
to obtain a time alignment before computing the average angular distance along the
shortest DTW path. The representations of A and X returned by the model are more
similar than those of B and X if d(RA, RX) < d(RB, RX), in which case the model is
considered to be correct in discriminating the contrasts. The ABX accuracy is computed
as the average number of times the model provides the correct answer across all possible
triphones and all possible contrasts. Alternatively, the accuracy can be computed across
all possible triphones containing a specific contrast (e.g., [ô]-[l]).
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Evaluation sets

We used the same evaluation sets as in Schatz et al. (2021). These sets consist of two
Japanese corpora – the left-out subset of the CSJ and the Globalphone corpus of Japanese
(GPJ) (Schultz, 2002) — and two American English corpora – a subset of the Wall Street
Journal corpus (WSJ) (Paul & Baker, 1992) and the Buckeye corpus (Pitt et al., 2005). The
CSJ and Buckeye corpora contain more spontaneous speech, while GPJ and WSJ are
composed of read speech. The CSJ evaluation set was built from the speech of speakers
absent in the training set. All four evaluation sets are made of approximately ten hours
of speech along with their forced-aligned phonetic transcripts.. Across registers (read
or spontaneous speech), the number of speakers, the proportion of male and female
speakers, and the cumulated duration per speaker are matched.

We compute the ABX accuracy in the native and the non-native condition. In the native
condition, models are evaluated on the same language they have been exposed to (e.g.,
the Japanese model evaluated on our two Japanese evaluation sets). In the non-native
condition, models are evaluated on the language they have not been exposed to (e.g.,
the Japanese model evaluated on our two American English evaluation sets). When
mutually exclusive training sets of the same duration are available, we consider the
mean and the standard deviation of the ABX accuracy in either the native or non-native
condition.

Results and discussion

We begin by measuring the ABX accuracy of both our unpretrained and pretrained
learners to assess their initial speech sound discrimination capabilities. We then com-
pare the learning trajectories displayed by our two types of learners during the language
exposure phase. To gain deeper insights into the nature of our two initial states (no
pretraining vs. pretrained), we visualize the separability of the representations ac-
cording to phonetic categories. Finally, we reflect on how the learning trajectories
exhibited by our learners on the [w]-[j] and [ô]-[l] contrasts fare with the data observed
in infants.

Initial speech sound discrimination capabilities and developmental trajectories

Panel a) of Figure 2 shows the average American English and Japanese ABX accuracy
obtained by our two initial states: with no pretraining (in blue) or with pretraining
on ambient sounds (in orange). Our randomly initialized model, which has not been
pretrained, obtains an average ABX accuracy of 62.3% (µJP = 65.2%, µEN = 59.4%). In
contrast, our model pretrained on ambient sounds obtains 92.4% ABX accuracy (µJP
= 93.1%, µEN = 91.8%) showing better discrimination capabilities. We interpret the
surprisingly high ABX accuracy obtained by our model pretrained on non-speech sounds
as evidence that learning generic representations not specific to any language is enough
to discriminate most human speech sounds.



11

No pretraining Pretrained on
ambient sounds

50

60

70

80

90

100

AB
X
ac
cu
ra
cy
(in

%
)

Chance
level

Initial state

1 4 20 100 500
Training hours

88

90

92

94

AB
X
ac
cu
ra
cy
(in

%
)

Developmenta) b)

No pretraining
Native
Non-native

Pretrained on
ambient sounds

Native
Non-native

Figure 2. Comparison of our learner trained with no pretraining (in blue) or with pre-
training on ambient sounds (in orange). Panel a) shows the average American English
and Japanese ABX accuracy obtained by both types of learners before language expe-
rience (initial state). Panel b) shows the same information for native (same training
and test language; dashed line) and non-native (different training and test languages;
solid line) models as a function of the quantity of speech available in the training set
(development). Error bars in panel a) represent +/- the standard deviation computed
across our four evaluation sets. Shaded areas in panel b) represent +/- the standard
deviation computed across mutually exclusive training sets whose number depends on
the quantity of data.

Now that our first goal – inducing initial speech sound discrimination capabilities in
our model – has been achieved, we analyze the learning trajectory exhibited by our
model after exposure to either American English or Japanese in panel b). Here, we
distinguish between native (same training and test language, solid line) and non-native
(different training and test languages, dashed line) models.

Let us first focus on the trajectory exhibited by our model that has not been pretrained in
blue. For low data quantities (between 1 and 4 hours), the native and non-native models
obtain similar ABX accuracies, indicating that models have not yet learned language-
specific representations. In other words, the American English model discriminates
American English sounds as accurately as the Japanese model (and vice-versa). It is
only after substantial exposure to their ‘native’ language (20 hours) that models start
learning language-specific representations. Overall, we observe a positive effect of data
quantity on the sound discrimination performance of our models. This is true for both
the native and the non-native models. The more speech the model receives, the better
it discriminates sounds. While this is expected in the native condition (e.g., exposure
to Japanese makes the model better at discriminating Japanese sounds), this might be
more surprising in the non-native condition. This is because there are many shared
sounds across the two languages and the results reported in panel b) are computed
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across all possible contrasts – similar to what has been observed by Lavechin et al.
(2022), Matusevych et al. (2023), and Schatz et al. (2021).

We now turn to the model pretrained on ambient sounds in orange. The pretrained
model starts with better sound discrimination capabilities and exhibits a slower learning
trajectory. Similarly to models which have not been pretrained, models pretrained
on ambient sounds obtain a higher ABX accuracy with an increase in the quantity of
speech. They also learn more language-specific representations as they receive more
speech (the gap between the orange solid and dashed lines broadens with the number
of training hours). Interestingly, after exposure to 500 hours of speech, pretrained
models performed slightly worse than models that were not pretrained. Similarly, they
learn representations that are less language-specific. Indeed, the relative difference in
ABX error rate between native and non-native models is 16.5% in the no-pretraining
condition versus 11.9% in the pretrained condition. We conducted two-way ANOVA
analyses with factors nativeness and training language for each speech quantity (1h,
4h, 20h and 100h). In all settings the p-value was lower than .0001 indicating significant
differences between the native and non-native models. While pretraining on ambient
sounds initially steers the model in a favorable direction enabling it to discriminate
speech sound contrasts effectively, this pre-exposure to non-speech sounds ends up
hurting the performance of our model in processing speech sounds. Although it is hard
to provide precise evidence, we hypothesize that, even after exposure to 500 hours of
speech, some neurons are still dedicated to processing non-speech sounds.

Visualization of the initial sound discrimination capabilities

To better understand the initial sound discrimination capabilities induced previously
through pretraining, we visualize in Figure 3 the phone representations in a two-
dimensional space using the t-distributed Stochastic Neighbor Embedding (t-SNE)
method – as done in de Seyssel et al. (2022) or Lavechin et al. (2022).

Panel a) shows the t-SNE projection of the phone representations of our two initial
states: no pretraining versus pretrained on ambient sounds. Although no fine-grained
separability between sonority categories was expected for the unpretrained model, we
still observe some degree of separability between consonants and vowels. This aligns
with the above-chance ABX accuracy of 62.3% obtained by this model (Figure 2). The
model pretrained on ambient sounds show drastically different separability patterns.
Here, we observe that phones are organized along a sonority continuum with a relatively
good separability between the different categories, despite the model never receiving
speech sounds during pretraining. Although results are only presented on our American
English test sets, similar patterns are observed on our Japanese test set.

In panel b), we specifically study the separability between the [ô]-[l] and [w]-[j] contrasts
which will be the focus of the upcoming section. Our unpretrained model shows no



13

No pretraininga)

No pretrainingb)

Pretrained on ambient sounds

Sonority
fricative
a�ricate

plosive
approximant

nasal
vowel

Pretrained on ambient sounds

Phone
ô

l

w

j

Figure 3. Visualization of the initial sound discrimination capabilities for our learner
trainedwith no pretraining (in blue) orwith pretraining onambient sounds (in orange).
Panel a) shows t-SNEs visualizations of the continuous representations (last layer)
averaged within phones in the American English test set according to sonority. Panel
b) shows the same information for the American English [ô]-[l] and [w]-[j] contrasts.
Each point is the t-SNE projection of an individual phone’s representation.

separability for the [ô]-[l] or [w]-[j] contrast. However, this is not the case with our model
pretrained on ambient sounds, which shows good separability for both contrasts.
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These results demonstrate that inducing ‘innate’ speech sound discrimination capabili-
ties is possible via pretraining on non-speech sounds. The first version of our model
comes with no pretraining (random initialization) and shows limited initial speech
sound discriminability. This version corresponds to the initial state of most computa-
tional models of early phonetic learning but does not necessarily align with dominant
theories of early phonetic acquisition in infants – it implements the perceptual learning
theory. A second version of our model comes with pretraining and shows relatively good
speech sound discriminability – it implements the attunement or universal theory.

Now that we have two different initial states at both ends of the nature-nurture contin-
uum, an important question arises: Which better predicts the developmental trajectory
observed in infants?

Individual trajectories for the [ô]-[l] and [w]-[j] pairs
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Figure 4. Comparison of the learning trajectory exhibited by our model without pre-
training (in blue) or with pretraining on ambient sounds (in orange) on the [ô]-[l] and
[w]-[j] pairs. Models are trained on either American English (solid line) or Japanese
(dashed line). [ô]-[l] and [w]-[j] occurrences are extracted from our American English
evaluation sets. Shaded areas represent +/- the standard deviation computed across
mutually exclusive training sets whose number depends on the quantity of data. Sig-
nificance scores are obtained with a one-way ANOVA with factor training language
(na: not applicable, ns: not significant, * p<.05, **, p<.001, *** p<.0001).
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To investigate this question, we study the learning trajectories exhibited by our models
on the American English [ô]-[l] pair, contrastive in American English but not in Japanese,
and the [w]-[j] control pair, contrastive in both languages. Figure 4 shows the ABX
accuracy obtained on these contrasts for our American English model (solid line) or our
Japanese model (dashed line), in the no pretraining condition (in blue) or the pretrained
condition (in orange).

Let us first focus on the no pretraining condition. The American English model better
discriminates the [ô]-[l] contrast than the non-native Japanese model. We also observe
that the gap between the two models increases with the quantity of speech. On the con-
trary, on the [w]-[j] contrast, our native American English and our non-native Japanese
models develop similar discrimination performances. These results closely replicate
those of Li et al. (2020) and Schatz et al. (2021) with a different model and correspond,
at least to some extent, to what has been observed in infants, namely that 10-12 month-
old American English- and Japanese-learning infants show a similar discrimination
performance on the [w]-[j] contrast, but American English-learning infants show better
discrimination on the [ô]-[l] contrast.

Looking more closely at how the trajectories exhibited by our models fare with those
observed in infants, we observe notable differences. While the American English
model succeeds in reproducing the facilitation trajectory observed in American English
infants on the [ô]-[l] contrast, this is not the case with the Japanese model. Indeed,
our unpretrained Japanese model also follows an inductive trajectory, while Kuhl et al.
(2006) and Tsushima et al. (1994) reported a loss trajectory in Japanese-learning infants
between 6-8 and 10-12 months for this specific contrast. Although there is less data
available on the [w]-[j] contrast, prevailing theories predict either a facilitation or a
maintenance trajectory compatible with the trajectories exhibited by our unpretrained
model.

We now turn to a similar analysis of the trajectories exhibited by our models pretrained
on ambient sounds in orange. In this condition, our native American English model
replicates the facilitation trajectory observed in American English-learning infants
on the [ô]-[l] contrast. On this same contrast, our non-native Japanese model now
exhibits a maintenance trajectory with constant performance regardless of the quantity
of speech available in the training set. While this maintenance trajectory still does not
perfectly match what has been observed in infants (i.e., a loss trajectory), the match
is closer than in the no pretraining condition. Indeed, Kuhl et al. (2006) report a low
difference in discrimination accuracy between the 6-8 month-old group and the 10-12
month-old Japanese group. Furthermore, the effect of age was found not significant
for the Japanese group. Therefore, we interpret Kuhl’s results as compatible with the
maintenance trajectory exhibited by our Japanese model. Our interpretation of the
learning trajectories exhibited by our model concerning the [w]-[j] contrast in relation to
the infant literature is similar to that presented for the no pretraining condition and will
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not be repeated here. An interesting observation, however, is that performance on the
[w]-[j] contrast still improves after 500 hours of speech, contrary to the no pretraining
condition in which performance flattens after 20 hours of speech.

Experiment 2: inducing initial speech sound discrimination capabilities through
multilingual pretraining

Experiment 1 showed that it is possible to induce innate speech sound discrimination
capabilities by pretraining on ambient sounds. During the developmental phase, our
pretrained model exposed to Japanese exhibits a maintenance trajectory on the [ô]-[l]
contrast, more closely resembling infant behavioral data that suggest a loss trajectory
(Figure 4). In the present experiment, we ask whether it is possible to induce higher
initial speech sound discrimination capabilities – and perhaps obtain a loss trajectory
on the [ô]-[l] contrast – with a different pretraining strategy: pretraining on a set of
typologically diverse languages.

Methods

We use the same training sets, learner, evaluation sets, and evaluation protocol as used
in Experiment 1. The only difference is that we pretrain on a multilingual corpus derived
from VoxPopuli (Wang et al., 2021), a large-scale multilingual speech corpus containing
recordings of European Parliament events. We remove the Germanic languages from
the 23 languages present in the dataset to prevent the model trained on English from
being positively biased. This procedure resulted in selecting 18 typologically diverse
languages5. To ensure consistency with Experiment 1, our pretraining set is made of
500 hours of speech uniformly sampled across languages, resulting in approximately
28 hours per language.

Results and discussion

Initial sound discrimination capabilities and developmental trajectories

Panel a) of Figure 5 suggests that pretraining on multilingual is sensibly similar to pre-
training on ambient sounds in terms of initial speech sound discrimination capabilities
(µJP = 93.5 %, µEN = 92.1%). Contrary to our initial hypothesis, training on mulitilingual
speech does not yield higher speech sound discrimination capabilities compared to
pretraining on ambient sounds.

During the developmental phase, the learning trajectories obtained in the pretrained
condition are similar than those obtained in Experiment 1. Two-way ANOVAs also
resulted in p-values lower than .0001 for all speech quantities indicating significant

5Bulgarian, Czech, Croatian, Estonian, Finnish, French, Greek, Hungarian, Italian, Latvian, Lithua-
nian, Maltese, Polish, Portuguese, Romanian, Slovak, Slovene and Spanish.
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Figure 5. Comparison of our learner trained with no pretraining (in blue) or with
multilingual pretraining (in orange) for native (same training and test language; solid
line) and non-native (different training and test languages; dashed line) models as a
function of the quantity of speech available in the training set (development). Shaded
areas represent +/- the standard deviation computed acrossmutually exclusive training
sets whose number depends on the quantity of data.

differences between the native and non-native models. A notable difference compared to
Experiment 1 is that pretraining on multilingual speech does not hurt the performance
obtained after 500 hours of exposure, contrary to what was observed when pretraining
on ambient sounds, as shown in panel b) of Figure 5.

Individual trajectories for the [ô]-[l] and [w]-[j] pairs

Again, the learning trajectories on the [ô]-[l] and [w]-[j] contrasts in Figure 6 are sensibly
similar to those observed in Experiment 1. However, in the pretrained condition, the
Japanese model seems to follow a facilitation trajectory on the [ô]-[l] contrast, contrary
to the maintenance trajectory observed in Experiment 1. This is due to the lower ABX
accuracy on the [ô]-[l] contrast obtained by the initial state pretrained on multilingual
speech (85.8% on Buckeye, 91.7% on WSJ) compared to the initial state pretrained on
ambient sounds (87.8% on Buckeye, 93.9% on WSJ).

In the context of this study, pretraining on 500 hours of multilingual speech does
not seem to present any advantage as compared to pretraining on ambient sounds.
Admittedly, training on larger quantities of multilingual speech – and perhaps a higher
number of languages – may yield a model that starts with higher initial speech sound
discrimination capabilities, as was the initial goal of this experiment.

In a concluding experiment (see Experiment 3 in Appendix), we show that our model
reproduces the trajectories observed in infants: facilitation on the [ô]-[l] contrast and
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Figure 6. Comparison of the learning trajectory exhibited by our model without pre-
training (in blue) or with multilingual pretraining (in orange) on the [ô]-[l] and [w]-[j]
pairs. Models are trained on either American English (solid line) or Japanese (dashed
line). [ô]-[l] and [w]-[j] occurrences are extracted from our American English evalua-
tion sets. Shaded areas represent +/- the standard deviation computed across mutually
exclusive training sets whose number depends on the quantity of data. Significance
scores are obtained with a one-way ANOVA with factor training language (na: not
applicable, ns: not significant, * p<.05, **, p<.001, *** p<.0001).

maintenance on the [w]-[j] contrast for American English-learning infants; loss on the [ô]-
[l] contrast and maintenance on the [w]-[j] contrast for Japanese-learning infants. This
is achieved through cross-lingual pretraining, where models are pre-trained on either
American English or Japanese and then further trained on the language to which they
have not been exposed. This protocol assumes higher non-native sound discrimination
capabilities than in Experiment 1 or 2. While this final experiment may not have
direct relevance from an evolutionary perspective, it achieves to demonstrate that
our model’s performance can maintain, improve, or deteriorate depending on the
interaction between innate and environmental factors.



19

General discussion

What is the respective contribution of innate factors and experience in child language
acquisition? Without bringing indisputable evidence to the question, we proposed a
novel method to build computational models of early phonetic learning that start with
initial sound discrimination capabilities. Conducting two experiments, we showed that
the model endowed with initial capabilities could demonstrate maintenance, facilita-
tion, or loss trajectories, as opposed to the standard model, which learns from scratch
and mostly exhibits facilitation trajectories. Here, we reflect on the implications of
our findings for the existing literature on modeling infant phonetic learning. We first
return to the idea of language-universal capabilities in newborns. We then propose
other approaches to induce such capabilities in computational models. Finally, we
reflect on how our work can be extended in a more systematic approach to the study of
infant phonetic learning.

The idea of universal speech perception capabilities at the initial state is prevailing
in current theories of language acquisition. In Kuhl’s (2004) words, infants have an
"initial universal ability to distinguish between phonetic units". Werker and Curtin
(2005) write about "language-general" and "language-specific" perception. In our view,
testing these theories should not only consist in collecting relevant data in infants but
also in implementing them (de Seyssel et al., 2023; Dupoux, 2018). In that regard, our
approach has two advantages. First, it encourages us to transform verbally-expressed
ideas into implementable algorithms. Second, it offers us ways to test and compare our
verbal theories.

In Experiment 1, we implemented the idea of a language-universal perceptual space
by pretraining on ambient sounds. We found that the learning trajectories taken by
the model during the developmental phase better fit the observed data in infants,
providing evidence in favor of attunement and universal theories. In Experiment 2, we
proposed a second strategy that consists of pretraining on multilingual speech data.
Admittedly, one could devise different strategies – that should be equally evaluated in
terms of their fit with observed data in infants. For instance, one might pretrain at a
larger scale both in terms of quantity of speech data and number of languages. This
could be done by training on the more than 7,000 languages being spoken worldwide6

before comparing the learning trajectories taken by the model when trained on a single
language with those observed in infants (hypothesizing rather strong initial capabilities).
On the contrary, one could devise strategies to build models that assume poorer initial
capabilities by training on a different source of data or by lowering the amount of data
available in the pretraining set. Importantly, our goal is not to provide an explanation of
the evolutionary transition from a primitive amphibian auditory system to the human
auditory system. In that regard, the pretraining strategy has no other function than

6https://www.ethnologue.com

https://www.ethnologue.com
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to hypothesize some degree of initial capabilities, offering us a rather vast ground for
exploration.

In contrast to existing modeling studies (Lavechin et al., 2024; Li et al., 2020; Matusevych
et al., 2023; Schatz et al., 2021), our approach goes beyond evaluating models solely
based on measures of native advantage (i.e., better discrimination score for the model
for whom the contrast is native). It includes assessing their fit to developmental trajec-
tories observed in infants. This work focused on the [ô]-[l] pair contrastive in American
English but not in Japanese and the [w]-[j] pair contrastive in both languages. However,
there is available data in Zulu, Tigrinya, Taa, Nuu-Chah-Nulth, Spanish, Hindi, Czech,
Nthlakampx, and Mandarin (Best et al., 2016). A more systematic approach would
involve building a training set for each of these languages and studying the speech
sound discrimination patterns developed by computational models. Successful models,
capturing a significant proportion of the variance of the available empirical record,
can then be used to obtain predictions on contrasts that have yet to be studied. These
predicted trajectories can subsequently be validated or refuted through new sound
discrimination experiments with infants. Alternatively, instead of focusing on data
from individual studies, one could compare the learning outcomes developed by com-
putational models against robust data from meta-analyses as proposed by Cruz Blandón
et al. (2023). We strongly believe that such a systematic dialogue between experimental
and modeling studies is essential to foster theory-building in psychological sciences
(Frank et al., 2017).

Conclusion

Even though current AI language models have been considered as supporting empiricist
views of language learning, these models offer a much larger range of theoretical
options. By decomposing model training in a (potentially long) evolutionary phase and
a (potentially short) developmental phase, they can implement either extreme versions
of empiricism, or extreme versions of nativism, with a whole range of intermediary
cases. In our work, we conducted two experiments that demonstrated the possibility
of inducing initial sound discrimination capabilities in our computational model of
early phonetic learning. Contrary to the randomly initialized model, the models pre-
equipped with discrimination capabilities showed learning trajectories more closely
resembling those observed in infants. Further research is needed to establish in a more
quantitative fashion what model of the initial state would fit best the observed learning
trajectories in infants.
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Appendices

Contrastive predictive coding (implementation details)

Training a neural network in an unsupervised manner often requires designing a pretext
task that will force the model to learn high-level representations of the input data. The
pretext task in a Contrastive Predictive Coding algorithm is forward modeling. where
the model is trained to predict the future states of a sequence based on its past context.
During training, the model receives a positive example drawn from the near future
up to 120 ms, and multiple negative examples not drawn from the near future. Given
the past context of a sequence, the model has to come to reliably choose the positive
sample over the negative ones.

In more technical terms, a non-linear encoder denoted as genc maps the observations xt

at time t to a latent representation zt = genc(xt). The context-dependent representation ct
is then built by an autoregressive model, gar, which aggregates the latent representations:
ct = gar(z1, ..., zt). Given the past context ct, a predictor gpred is asked to predict future
representations zt+k for k ∈ {1, ..., K}. The model is trained to maximize the categorical
cross-entropy to correctly identify a positive future sample xt+k from a set of unrelated
negative samples. Formally, at step t, the loss function Lt for the pretext task is defined
as follows:

Lt = − 1

K

K∑
k=1

log

[
exp(gpred(ct)

⊤
k zt+k)∑

n∈Nt
exp(gpred(ct)⊤k genc(n))

]
(1)

with Nt the set of negatives samples. The model is asked to predict up to K = 12 time
steps in the future, equivalent to 120ms. The encoder genc comprises 5 one-dimensional
convolutional layers with kernel sizes (10, 8, 4, 4, 4) and strides (5, 4, 2, 2, 2) and returns a
256-dimensional vector every 10 milliseconds. The auto-regressive model gar is a 2-layer
long short-term memory network of dimension 256. The predictor gpred is a single multi-
head transformer layer with K = 12 heads, each predicting at time step k ∈ {1, ..., 12}.
All models are trained for 100 epochs and the best epoch is selected according to the
validation accuracy. For each independent dataset, 5 % of the data is used as the
validation set. The other hyperparameters follow Kharitonov et al. (2021).

When training on speech, the negative samples Nt are drawn from within the same
speaker. On the other hand, when training on ambient sounds, as there is no no-
tion of speaker in this particular dataset, the negative samples are drawn from within
the sequence. This is the only difference in the training process between the two
approaches.
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t-SNE visualization

To compute the t-SNE visualizations in panel a) of Figure 3, we first extract the audio
representations of the American English Buckeye corpus. For each phone, we average
the representations over time to get a single vector representation. Next, we apply the
t-SNE method to reduce the 256-dimensional space into a 2-dimensional space. For the
sake of clarity, only 1,000 randomly sampled phones for each category are displayed.
For panel b) we apply the t-SNE method only on the representations of [ô]-[l] or [w]-[j]
occurrences. Similarly, we display only 1,000 randomly sampled representations for
each phonetic category.

Evaluated phonetic inventory

Table 1 shows the American English and Japanese phonetic inventory used in the ABX
sound discrimination task and the t-SNE visualization.

Sonority American English Japanese

Fricative f, v, T, D, s, z, S, Z, h F, s, s:, z, C, C:, ý, h
Affricate Ã, Ù

>
ts, >

ts:, >
tC, >

tC:
Plosive p, b, d, t, k, g p, p:, b, d, t, t:, k, k:, g
Approximant w, j, ô, l w, j, r
Nasal m, n, N m, n, ð
Vowel I, i:, E, 2, Ç, æ, A:, O:, U, u:, eI, aI, aU, OI, oU ä, ä:, e, e:, i, i:, o, o:, W, W:

Table 1. Evaluated phonetic inventory in American English and Japanese in the Inter-
national Phonetic Alphabet (IPA) standard (same as Schatz et al., 2021).

Additional experiment: inducing initial speech sound discrimination capabilities
through cross-lingual pretraining

Experiment 1 showed that it was possible to induce initial speech sound discrimination
capabilities in our learner through pretraining on ambient sounds. Despite a better
match between the learning trajectory exhibited by our learner and the observed data
in infants, we could only simulate a maintenance trajectory on the [ô]-[l] contrast for
the Japanese model. Experiment 2 showed that pretraining on multilingual speech did
not yield higher initial speech sound discrimination capabilities than pretraining on
ambient sounds.

In the present experiment, we ask whether the Japanese model can exhibit a loss tra-
jectory on the [ô]-[l] contrast. We likely need to hypothesize even higher speech sound
discrimination capabilities to do so. In this experiment, this is achieved through cross-
lingual pretraining. Namely: we first pre-train models on either American English or
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Japanese and train them on the language they have not been exposed to. This experi-
mental protocol is akin to assuming near-perfect sound discrimination capabilities of
American English contrasts by Japanese infants and near-perfect sound discrimination
capabilities of Japanese contrasts by American English infants.

Arguably, such a protocol lacks ecological validity as: 1) it assumes different initial states
for our American English and Japanese models; 2) it assumes near-perfect discrimina-
tion of English sounds for our Japanese model; and 3) near-perfect discrimination of
Japanese sounds for our English model. However, this Experiment serves as proof that,
being gifted with high enough initial sound discrimination capabilities, our Japanese
model can follow a loss trajectory on the [ô]-[l] contrast, while maintaining a mainte-
nance trajectory on the [w]-[j] contrast, similar to what is observed in infants (which
was not shown in Experiment 1 and 2).

Methods

We use the exact same training sets, learner, evaluation sets, and evaluation protocol
used in Experiment 1. The only difference is that we pretrain cross-linguistically instead
of pretraining on ambient sounds. Our approach involves two distinct initial states
for English and Japanese models. They are derived from the models trained on 500
hours of speech in Experiment 1. The two initial states consist of the model’s weights
after exposure to either 500 hours of American English or Japanese. We then train the
English models starting from the Japanese weights and the Japanese models starting
from the English weights.

Results and discussion

Figure 7 shows the trajectories taken by models with a cross-lingual pretraining com-
pared to those without any pretraining. Two-way ANOVAs with factors nativeness and
training language resulted in p<.0001 for each data quantity, indicating significant dif-
ferences between the native and non-native models. We observe a slight negative native
advantage when training on as little as 1 hour of speech. This arises from the fact that
the initial state of the Japanese models, composed of weights from a model trained on
500 hours of English, performs slightly better on English than the initial state of the
English models (and vice-versa). This negative native advantage reverses after exposure
to 4 hours of speech.

After training on 500 hours of speech, pretrained models show identical ABX accuracies
to those obtained by non-pretrained models. In other words, pre-exposure to another
language does not harm or benefit the final performance obtained by the models. The
cross-lingual pretraining yields different learning trajectories than those observed in
Experiment 1. Here, we observe a loss trajectory for the non-native pretrained model
(decreasing orange dashed line).
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Figure 7. Comparison of our learner trained with no pretraining (in blue) or with
cross-lingual pretraining (in orange) for native (same training and test language; solid
line) and non-native (different training and test languages; dashed line) models as a
function of the quantity of speech available in the training set (development). Shaded
areas represent +/- the standard deviation computed acrossmutually exclusive training
sets whose number depends on the quantity of data. Significance scores are obtained
with a one-way ANOVA with factor training language (na: not applicable, ns: not
significant, * p<.05, **, p<.001, *** p<.0001).

Individual trajectories for the [ô]-[l] and [w]-[j] pairs

Figure 8 shows the trajectories on the [ô]-[l] and [w]-[j] contrasts for models that have
not been pretrained (in blue) or pretrained cross-linguistically (in orange).

We will not repeat our interpretations of the trajectories taken by the unpretrained
models (left column), which are the same results as those reported in Figure 4 and are
left only for comparison.

In the pretrained condition, the American English model better discriminates the [ô]-
[l] contrast than the non-native Japanese model. The American English model also
successfully reproduces the facilitation trajectory observed in infants (Kuhl et al., 2006),
similar to what has been observed when pretraining on ambient sounds in Experiment
1. Unlike what has been observed in Experiment 1, the Japanese model follows a loss
trajectory, i.e., the performance on the [ô]-[l] contrast worsens as the quantity of speech
increases.
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Figure 8. Comparison of the learning trajectory exhibited by our model without pre-
training (in blue) or with cross-lingual pretraining (in orange) on the [ô]-[l] and [w]-[j]
pairs. Models are trained on either American English (solid line) or Japanese (dashed
line). [ô]-[l] and [w]-[j] occurrences are extracted from our American English evalua-
tion sets. Shaded areas represent +/- the standard deviation computed across mutually
exclusive training sets whose number depends on the quantity of data.

On the [w]-[j] contrast, we now observe a maintenance trajectory instead of a facilitation
trajectory in Experiment 1. In other words, after the cross-lingual pre-exposure phase,
the discrimination performance obtained by our models has already converged on the
[w]-[j] contrast. Performance does not benefit from further exposure to speech.

ABX sound discrimination accuracy

To enable comparisons, we provide the ABX accuracy obtained by models from Experi-
ment 1, 2 and the additional experiment of the present study in Table 2.
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Training ABX accuracy in ABX accuracy in
Exp. # Initial state language Japanese (CSJ / GPJ) English (Buckeye / WSJ)

MFCCs – 90.8 / 91.2 87.5 / 93.4
1 No pretraining – 65.0 / 65.3 60.4 / 58.3
1 Ambient sounds – 92.7 / 93.5 89.5 / 94.0
2 Multilingual – 92.8 / 93.9 90.6 / 93.6
1, 2 No pretraining JP 96.1 / 95.5 92.0 / 94.7
1, 2 No pretraining AE 95.2 / 95.5 93.0 / 96.4
1 Ambient sounds JP 95.6 / 95.4 91.8 / 94.7
1 Ambient sounds AE 94.3 / 94.9 92.1 / 95.5
2 Multilingual JP 96.0 / 95.8 92.1 / 95.1
2 Multilingual AE 94.6 / 95.2 92.6 / 95.8
3 Cross-lingual JP 96.3 / 96.0 92.3 / 95.2
3 Cross-lingual AE 94.5 / 94.9 92.7 / 96.3

Table 2. ABX accuracy (in %) on American English and Japanese evaluation sets.
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