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ABSTRACT

Scientists are often interested in inferring the underlying stochastic dynamics of
systems from population-level snapshot data, where individual trajectories are un-
available. For example, in biological studies of immune cell activation, mRNA
concentrations are measured at a single time point per cell because the measure-
ment process kills the cells. Existing methods based on Schrödinger bridge tech-
niques rely on Kullback–Leibler divergence and assume known, constant volatil-
ity, limiting their applicability in realistic settings where volatility may be un-
known or varying. In this work, we propose a new framework that directly
matches the joint distribution of the state (e.g., mRNA levels) and the time of
observation using maximum mean discrepancy. This approach reduces to a least-
squares formulation in distributional space and motivates an R2-type goodness-
of-fit measure for model inspection and comparison. We show in our experiments
that the proposed method outperforms existing Schrödinger bridge–based base-
lines in forecasting and is robust to unknown volatility and missing observations.

1 INTRODUCTION

Scientists are often interested in learning stochastic dynamics from population-level snapshots rather
than complete individual trajectories. That is, instead of tracking each individual’s dynamics over
time, they infer the underlying dynamics by analyzing aggregated observations of the entire pop-
ulation at different points in time. For example, biologists often consider a population of inactive
immune cells and are interested in understanding how gene expression — as measured by mRNA
levels — changes when these cells transform into active cells capable of killing cancer. This is an
important problem, as gaining deeper insights in this process could potentially aid in developing
methods to prevent or treat cancer. The issue with this cell data is that measuring mRNA concentra-
tion typically requires killing the cells. As a result, scientists can only obtain mRNA data for each
cell at a single time snapshot, preventing the tracking of any single cell over multiple time points.

Recently, Schrödinger bridge (SB) methods (Pavon, Trigila, and Tabak, 2021; De Bortoli, Thornton,
Heng, and Doucet, 2021; Vargas, Thodoroff, Lamacraft, and Lawrence, 2021; Koshizuka and Sato,
2022; Wang, Jennings, and Gong, 2023) and their multi-marginal extensions (Shen et al., 2025;
Zhang, 2024; Guan et al., 2024; Chen et al., 2024; Lavenant et al., 2021) have shown promise for
reconstructing distributions of trajectories from these limited snapshot data. However, because SB-
based approaches rely on Kullback–Leibler divergence to measure agreement between data and a
nominal model, they cannot handle unknown or changing volatility. In many practical scenarios,
volatility is difficult to determine in advance, which limits the applicability of these methods.

In this work, we provide a new method to learn stochastic dynamics that relaxes the strong assump-
tion of a known, constant volatility. We observe that under typical “population dynamics” settings
(Lavenant et al., 2021) — where each cell has a latent trajectory evaluated at only a single time point
— the data can be treated as if they were sampled i.i.d. from the joint distribution of the state (mRNA
level) and the time of evaluation. Consequently, we propose a method to match this joint distribu-
tion directly, which does not rely on observing all states; notably, our approach also remains robust
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even when some states are missing. Furthermore, we show that when maximum mean discrepancy
(MMD, Gretton et al., 2012) with a specific choice of kernel is used as the distance metric for our
matching problem, the estimation reduces to a least-squares formulation in distributional space. This
perspective motivates an R2-type goodness-of-fit measure that facilitates model inspection and com-
parison. Our experiments show that the proposed method outperforms existing SB-based baselines,
and can handle both missing observations and unknown volatility.

2 SETUP AND BACKGROUND

Data Setup. We consider single-cell mRNA measurements collected at I distinct time points, la-
beled t1 < t2 < · · · < tI . For convenience, we set t1 = 0, and we do not require these time
points to be equally spaced. At each time ti, the observed data consist of Nti cells, each providing
a single mRNA concentration measurement in Rd, denoted Y ni

ti . After a cell mRNA concentra-
tion is measured, it dies, which means each cell appears exactly once in the dataset. We therefore
collect N =

∑I
i=1 Nti total observations across all time points. We write Y all

ti for the full set of
measurements taken at time ti.

Goal. If a cell’s mRNA concentration was not measured, the cell would not die and its mRNA con-
centration would follow a continuous trajectory over time. Our objective is to infer a probabilistic
model that best describes the distribution of these unobserved trajectories. Formally, we denote the
latent trajectory of the nith cell observed at the ith time step by X

(i,ni)
t . The observed state of the

cell at time ti is a single point on this trajectory Y ni
ti = X

(i,ni)
t=ti . We assume these trajectories are

independent samples from an underlying latent distribution, which in turn implies that the observa-
tions are independent as well. Our goal is to determine the best model within a given family that
captures the distribution of these trajectories.

Consequence of having only one observation per cell. Since each cell is only observed at a single
time point, our dataset consists of independent but not identically distributed observations. This
is because different cells are measured at different times, leading to variations in the distributions
of their observed states. However, if we consider time itself as a random variable sampled from
a distribution over all possible times, h(t), we arrive at a key insight: the pairs (Y ni

ti , ti) can be
viewed as independent and identically distributed (iid) samples from a joint distribution.

We remark that this formulation aligns with the way biological experiments are typically conducted.
Instead of sequencing each cell immediately after collection, experimenters often tag each cell with
a unique identifier that encodes the time it was sampled. Then, all cells are sequenced together in a
single batch, with the time information retrieved from the tags. As a result, the dataset effectively
consists of iid samples from the joint distribution of (Y ni

ti , ti).

Model. We model the latent trajectory of the (i, ni) particle with a stochastic differential equation
(SDE) driven by a d-dimensional Brownian motion W

(i,ni)
t , independent across particles:

dX(i,ni)
t = b0(X

(i,ni)
t , t)dt+ g0(X

(i,ni)
t , t)dWt, Xni

t=0 ∼ π0 (1)
We assume that the drift b0(·, ·) : Rd×[0, tI ] → Rd and initial marginal distribution π0 are unknown.
Unlike previous Schrödinger bridge works assuming known constant volatility (e.g. De Bortoli et al.,
2021; Vargas et al., 2021; Koshizuka & Sato, 2022; Wang et al., 2023; Shen et al., 2025; Zhang,
2024; Guan et al., 2024; Chen et al., 2024), we also assume that the volatility g0 is unknown and can
vary with X

(i,ni)
t and t. Allowing for unknown volatility is important in many scientific applications

because it represents the intrinsic level of noise that researchers often cannot predict or measure
directly in advance. For example, in single-cell RNA sequencing, gene expression levels can vary
significantly due to a combination of technical factors (e.g., amplification biases, dropout events) and
biological factors (e.g., stochastic gene transcription). And in such scenarios, precisely quantifying
the overall noise — i.e., the volatility — is very challenging.

Finally, we assume standard SDE regularity conditions. The first assumption below ensures a strong
solution to the SDE exists; see Pavliotis (2016, Chapter 3, Theorem 3.1). The second ensures that
the process does not exhibit unbounded variability.

Assumption 2.1 The drifts and volatility are L and L′-Lipschitz respectively; i.e., for all t ∈ [0, tI ],
∥b0(x, t) − b0(y, t)∥ ≤ L∥x − y∥ and |g0(x, t) − g0(y, t)| ≤ L′∥x − y∥, where ∥ · ∥ denotes the

2



Published at FPI workshop at ICLR 2025

usual L2 norm of a vector. And we have at most linear growth; i.e., there exist K,K ′ < ∞ and
constant c such that ∥b0(y, t)∥ < K∥y∥+ c and ∥g0(y, t)∥ < K ′∥y∥+ c′.

Assumption 2.2 At each time step ti, the distribution of the Nti particles has bounded second
moments. Moreover, the initial distribution π0 also has bounded second moments.

3 OUR METHOD

Our method allows us to learn the optimal model within a given family to represent the distribution
of latent cell trajectories, even when the volatility is unknown and may vary over time. In what
follows, we describe our optimization problem and its solution, outline criteria for assessing model
fit, and finally discuss how the method can be extended to accommodate missing data.

State distribution at snapshots. At each snapshot time ti the ground truth dynamic eq. (1) deter-
mines a distribution of states (e.g., mRNA level) specific to that time. Unfortunately, we do not have
access to this ground truth distribution of states. However, we observe Nti independent samples
Y 1
ti , . . . ,Y

Nti
ti from that distribution at time ti. With these samples, we can approximate the true

state distribution with the empirical measure,

f̂ti(·) =
1

Nti

Nti∑
j=1

δ
Y

(j)
ti

(·), (2)

where δ
Y

(j)
ti

denotes the Dirac delta measure centered at Y (j)
ti . This empirical measure is an approx-

imation of the true marginal distribution of cell states at time ti.

Treating snapshot time as random. We consider observations collected at I distinct time points
{tI , . . . , tI}. In our modeling framework, we posit that there exists an underlying time distribution,
ĥ(·), which reflects how snapshot times are sampled. We assume that this distribution is the empiri-
cal distribution over time — constructed directly from the data — that may assign different weights
to different time points, depending on the number of observations collected. Letting Nti denote the
number of cell measurements at time ti, the empirical time distribution is given by

ĥ(·) = 1∑I
i=1 Nti

I∑
i=1

Nti δti(·) =
I∑

i=1

ĥti δti(·), (3)

with weights

ĥti =
Nti∑I
i=1 Nti

.

Joint distribution of state and time. Instead of considering distributions of Yti separately at each
snapshot, we consider the joint distribution of state-time observation (Yti , ti). Under a candidate
SDE model parameterized by θ, let fθ,t(·) denote the predicted marginal distribution of cell states
at time t. By pairing this with the empirical time distribution ĥ, we obtain the predicted joint
distribution under the candidate model is

fθ = ĥ · fθ,t. (4)

This construction implies that the time-augmented observations (Y (j)
ti , ti) are modeled as indepen-

dent samples from fθ. In contrast, the empirical joint distribution, which reflects the observed data,
is formed by combining the empirical time measure with the state distributions at each time:

f̂ = ĥ · f̂t. (5)

Our Approach: Directly Matching the State–Time Joint Distributions. Our primary objective
is to estimate the parameters θ of the candidate SDE model by ensuring that the model-implied
joint distribution, fθ, aligns with the empirical joint distribution, f̂ , derived from the data. In other
words, we wish to have the distribution predicted by our model accurately approximate the true
(but unknown) joint distribution of state and time. To quantify the discrepancy between fθ and f̂ ,
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we adopt the maximum mean discrepancy (MMD) (Gretton et al., 2012). The MMD measures the
L2 distance between the kernel mean embeddings of the two distributions in a reproducing kernel
Hilbert space (RKHS).

A key insight is that matching the joint distribution in state–time space can be interpreted as a form
of least squares regression in the kernel embedding space with respect to time. This connection is
formalized in the following proposition, which decomposes the MMD between joint distributions
into a weighted average of the MMDs computed for their conditional distributions:

Proposition 3.1 Let f(x, t) = f(x | t)h(t) and g(x, t) = g(x | t)h(t) be joint distributions on
x ∈ X and t ∈ T , where T is a discrete set and h(t) is a probability mass function. Suppose we
define the kernel K

(
(x, t), (x′, t′)

)
= Kx(x,x

′) δ(t − t′), which factorizes as a positive definite
kernel Kx on the state space and a delta kernel on the time space. Denote by MMDK the MMD
computed with kernel K. Then, the squared MMD between f and g can be decomposed as

MMD2
K

(
f(x, t), g(x, t)

)
=
∑
t∈T

h2(t) MMD2
Kx

(
f(· | t), g(· | t)

)
.

This proposition shows that the overall MMD between two joint distributions can be understood as a
time-weighted average of the MMDs between the corresponding conditional state distributions. We
provide a complete proof of proposition 3.1 in appendix A.

Choosing a delta function as the time kernel is essential for this result. With this choice, the joint
MMD reduces to an average over discrete time steps. Specifically, the MMD squared between fθ
and f̂ can be expressed as

MMD2
(
fθ, f̂

)
=

I∑
i=1

(
Nti∑I
i=1 Nti

)2

MMD2
(
fθ,ti , f̂ti

)
(6)

Our method in practice. In practice, at each time step we approximate the MMD squared between
fθ and f̂ using its U-statistic estimator (Lemma 6, (Gretton et al., 2012)). To do so, we simulate M
trajectories from the candidate model and record the state snapshots at time ti, denoted by Zm

ti for
m = 1, . . . ,M . The U-statistic estimator is then given by

MMD2
U,U

(
fθ,ti , f̂ti

)
=

1

Nti(Nti − 1)

∑
ni ̸=n′

i

K(Y ni
ti ,Y

n′
i

ti )− 2

NtiM

∑
ni,m

K(Y ni
ti ,Zm

ti )

+
1

M(M − 1)

∑
m ̸=m′

K(Zm
ti ,Z

m′

ti ).

This estimator is both unbiased and consistent (Hall, 2004). Finally, we estimate our model param-
eters by minimizing the overall loss function:

θ̂ = argmin
θ

I∑
i=1

(
Nti∑I
i=1 Nti

)2

MMD2
U,U

(
fθ,ti , f̂ti

)
. (7)

In our implementation, we use the radial basis function (RBF) kernel for the state space, where we
determined the length scale by the median heuristic (Garreau et al., 2017) applied to pairwise dis-
tances in the observed data. Additionally, we normalize time to the interval [0, 1]. For optimization,
we compute the gradients with respect to the parameters using the stochastic adjoint method (Li
et al., 2020). We use the Adam optimizer to perform the parameter updates.

Picking fθ,ti in practice. In practice, we choose the candidate marginal distributions fθ,ti based
on domain knowledge about the underlying process. In particular, we select a candidate SDE model
that captures the key dynamics of the system under study. This SDE can either follow a parametric
form, in which drift and volatility are governed by functions with finitely many parameters (as in
the Lotka–Volterra experiment; see section 4.1), or a more flexible design that incorporates neural
network architectures for the drift and/or volatility terms. For example, in the repressilator experi-
ment (section 4.2), we compare a purely parametric model to a semiparametric approach in which
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we used a multilayer perceptron to approximate part of the drift in the system (see eq. (16) for more
details). This neural network component allows the model to capture complex, nonlinear effects that
would be difficult to represent in a strictly parametric setting.

Handling missing dimensions. In many practical applications — such as our mRNA sequencing
example — it is common to encounter scenarios where only a subset of the variables is observed. For
instance, while mRNA concentrations are routinely measured, corresponding protein levels (which
are also important for modeling the underlying dynamical system) are often unavailable. Our frame-
work is well suited to such settings because it relies on matching the joint distribution of time and the
observed dimensions, rather than requiring all dimensions to be measured. More precisely, since our
loss (eq. (7)) is defined over the observed state variables (together with time), the model is trained
to match the marginal distribution of the observed variables along with time, without making any
additional assumptions or imputations for the missing dimensions. We discuss an experiment in this
missing-data scenarios in section 4 (fig. 3).

3.1 EVALUATING MODEL FIT WITH AN R2-TYPE METRIC

In this subsection, we define a new metric that can be used to assess the model fit of our method.

Least squares for distributional data. The loss function in eq. (7) defines a least squares scheme
in the RKHS associated with our kernel mean embeddings. In the special case where every model
predicts a Dirac delta measure (i.e., a point mass) and we choose the kernel to be linear, this least
squares criterion reduces to the standard Euclidean least squares. This correspondence motivates the
introduction of an R2 type metric in our setting to quantify the goodness-of-fit of a fitted model.

The “center” of a collection of distributions. In standard regression, we define the coefficient of
determination, R2, as one minus the ratio of the residual sum of squares (error) to the total sum of
squares (total variability). We measure the total variability with respect to the sample mean, which
serves as the “center” of the data because it minimizes the sum of squared deviations. When we work
with distributions, the barycenter of the collection of distributions provides an analogous notion of
center. In the context of kernel mean embeddings and MMD, Cohen et al. (2020) showed that the
barycenter of a set of distributions corresponds to their mixture. More precisely, let {f̂t1 , . . . , f̂tI}
denote the empirical distributions observed at discrete time points t1, . . . , tI . If we weight these
distributions by the relative frequency of observations, where the weight at time ti is given by wti =(

Nti∑I
i=1 Nti

)2
, then the barycenter fbary is defined as

fbary = argmin
f

I∑
i=1

wti MMD2(f, f̂ti) =
1∑I

i=1 Nti

I∑
i=1

Nti∑
nti

=1

δ
Y

nti
ti

(·). (8)

In this expression, the second equality shows that the barycenter is exactly the mixture (or the time-
average) of the empirical distributions.

The coefficient of determination for distributional data. Following the analogy with classical
regression, we can then define an R2 metric in the RKHS as follows.

Definition 3.1 (RKHS-based R2 Metric) Let f̂ti , fθ,ti , fbary, and wti defined as above. The
goodness-of-fit metric R2 in the RKHS is then defined by

R2 = 1−

∑I
i=1 wti MMD2

(
fθ,ti , f̂ti

)
∑I

i=1 wti MMD2
(
fbary, f̂ti

) . (9)

In definition 3.1, the numerator represents the weighted aggregate discrepancy (in terms of MMD
squared) between the model-predicted marginal distributions fθ,ti and the empirical marginals f̂ti
across time. And the denominator quantifies the total variability of the empirical distributions with
respect to the barycenter fbary. Thus, the metric R2 measures the proportion of the total variability
that is explained by the model, similar to the traditional R2 in regression. Besides being seen
as classic R2, we provide an alternative view of this metric in analogy to mutual information in
appendix B.
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Figure 1: Experimental results for the Lotka-Volterra system. Our method performs better than the
two baselines at the forecasting task. Note that the forecast points (red) overlap with the training
points at time 0 (blue).

Finally, observe that since the MMD2 is non-negative, the ratio in eq. (9) is bounded below by 0.
Consequently, R2 is upper bounded by 1. When the barycenter is within the model family, R2 is
also lower bound by 0 for a fitted model within the family that minimizes MMD. However, similar
to regression models without an intercept, the R2 value may be less than 0, indicating the model did
not provide better fit than the barycenter.

4 EXPERIMENTS

In this section, we first discuss how we evaluate if a method has been successful in our experiments.
We next introduce the two baselines we consider, and then present the two simulated experiments,
one for a Lotka-Volterra predator-prey system, and one for a repressilator system.

Metric of success. We consider two tasks in evaluating each method for fitting a model: (1) one-
step-ahead forecasting performance and (2) underlying vector field reconstruction. For the forecast-
ing task, since each model starts from the initial time point and propagates particles forward in time,
we retain a validation time point to evaluate forecast accuracy. In particular, we assess the forecast
accuracy by (i) computing the MMD between observation at the validation time point and forecast
obtained by simulating particles forward from the initial time point using the learnt drift and volatil-
ity, and (ii) assessing visually how close the forecasted particles match the ground truth. We include
results for the forecast task in the main text. For the vector field reconstruction task, instead, when
the ground truth drift function is available, we evaluate how well the learned vector field matches
the ground truth both visually and by computing the mean squared error (MSE) between the learnt
field and the ground truth on a grid spanning the range of the observed data. We present these vector
field reconstruction results in appendix C.

Baselines. We compare against two baselines: (1) a Schrödinger bridge with reference fitting (Shen
et al., 2025; Zhang, 2024; Guan et al., 2024), that we denote by SBIRR-ref, and (2) a multi-
marginal Schrödinger bridge with shared forward drift across all consecutive pairs of snapshots,
denoted by SB-forward (Shen et al., 2024). SBIRR-ref iteratively imputes unseen trajecto-
ries using Schrödinger bridges and fits a model based on the imputed trajectories (the reference
refinement step). In practice, we use the implementation from Shen et al. (2025) and use their best
reference to evaluate vector field prediction and to propagate particles from the initial time step be-
yond the observed horizon for the forecasting task. Notably, this task differs from the main task in
Shen et al. (2025), which focused on interpolation between time snapshots. Their approach employs
the Schrödinger bridge solution rather than a fitted reference, making it unsuitable for forecasting.
Zhang (2024) and Guan et al. (2024)’s method are based on the same reference fitting idea and have
similar algorithms to Shen et al. (2025). However, these methods are focused on linear models1,
whereas Shen et al. (2025) allows for a general model family. For SB-forward, the authors —
instead of allowing a flexible forward drift between consecutive time snapshots — constrain the
forward drift to be drawn from a shared model family across all time steps. We use their best-
fitted forward model to predict the vector field and generate forecasts. Both baselines cannot handle

1Zhang (2024) also included an L1 regularization to obtain sparse solutions.
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Figure 2: Results for repressilator. Upper: use of parametric repressilator model. Lower: use a
semi-parametric model with an MLP-based activation function (see appendix C.2.2 for details). Our
method better forecasts the last time point (red) compared to the baselines for both parametric and
semiparametric models.

unknown or non-constant volatility due to their reliance on a Kullback–Leibler divergence-based
formulation. In the experiments that follow, we set the fixed volatility values to 0.1, as done in
Vargas et al. (2021); Wang et al. (2021); Shen et al. (2025).

4.1 LOTKA-VOLTERRA SYSTEM

We simulated data from a two-dimensional Lotka–Volterra predator–prey system, where each coor-
dinate’s volatility scales proportionally with its own state variable. Specifically, we set the volatility
for the prey population X to be σX , and for the predator population Y to be σY , with σ being
the same constant across both dimensions. We consider 10 time points, each with 200 samples. A
parametric Lotka-Volterra model was fitted to the data. See appendix C.1 for additional details.

We present the forecasting results in fig. 1. Our method demonstrates superior forecasting accuracy
both visually and in terms of MMD compared to the baselines. In particular, visually we see how
the baselines exhibit higher noise levels in their forecast. We include MMD metrics in table 1. In
the same table, we also include MSE results for the vector field reconstruction task, and in fig. 4
we provide a visualization for the learnt vector fields with the various methods. We further discuss
results for this experiment in appendix C.1.3.

4.2 REPRESSILATOR

The repressilator system consists of a network of three genes that inhibit each other in a cyclic
manner: each gene produces a protein that represses the next gene’s expression, with the last one
repressing the first, forming a feedback loop. The dynamics of the repressilator system can be
modeled either by using only mRNA concentration levels (eq. (15)) or with both mRNA and protein
levels (eq. (17)). In practice, we only measure mRNA concentrations. Thus in this section we discuss
two experiments, one where we generate data from an mRNA-only repressilator system and try to
learn the underlying dynamics, and one where we generate data from an mRNA-protein repressilator
system and we try to learn the dynamics having access only to the mRNA concentration levels.

mRNA-only repressilator. In this experiment, we fit a stochastic (mRNA-only) repressilator sys-
tem, where — as for the Lotka-Volterra experiment — each coordinate’s volatility scales proportion-
ally with its own state variable. For this experiment, we consider 10 time points with 200 samples
per time point. We performed two experiments: one using a parametric model from the same family
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Figure 3: Forecasts for the repressilator experiment when protein concentration was not observed.

as the data generating process and another using a semiparametric model with a multilayer per-
ceptron modeling production rate of mRNA of each gene as a function of all mRNA levels. See
appendix C.2 for more details.

We present the visual results for the forecast task in fig. 2. As in the Lotka-Volterra experiment, our
method demonstrates superior forecasting performance for both repressilator experiments. In par-
ticular, the one-step-ahead forecast particles with our method have a very similar shape compared
to the ground truth validation points. The difference is particularly clear when the using the semi-
parametric model (bottom row), and is confirmed by the MMD metrics (see table 2 and table 3). We
include MSE results, as well as a visualization of the reconstructed vector field, in table 2 and fig. 5
(for the parametric model), and table 3 and fig. 6 (for the semiparametric model). We further discuss
these results in appendix C.2.3.

Missing-protein repressilator. In this experiment, we focus on the situation where we generate
data following the more complete biochemical model including both mRNA and protein eq. (17)
and then fit this parametric (mRNA-protein) repressilator model (appendix C.3.2) using only mRNA
concentration data. The experimental settings are the same as for the mRNA-only experiment above.
We show the results for our method on the forecasting task in fig. 3. Our method accurately forecasts
the concentrations even when protein concentration is not observed. For the two baselines, since they
cannot account for missing data, we fit a model that takes into account only the mRNA levels. In
fig. 3 we can see that the forecasts for the baselines are much worse than for our method. The key
difference here is that in our method we do not observe protein levels but the method is aware that
protein levels are also driving the underlying dynamics. Whereas for the baselines there is no way of
encoding this information in the methods without observing the protein levels. The visual difference
is also confirmed by the metric results in table 4.

5 DISCUSSION

In this work, we introduced a new method for learning SDEs from population-level snapshot data.
Our approach is based on matching the state-space distributions using a least squares scheme in a
distributional space, which allows us to infer the underlying dynamics of the system effectively. The
proposed method handles challenging aspects such as unknown and non-constant volatility, and it
is robust to missing or unobserved dimensions. Overall, our experiments indicate that the proposed
framework outperforms existing methods in various scenarios.

One of the key remaining challenges is related to the identifiability of the underlying model param-
eters. In practice, even if one had access to the complete time series of the marginal distributions,
uniquely determining the drift and volatility functions of the SDE remains problematic. This issue
arises because the evolution of the marginal distributions can be generated by multiple different
combinations of drift and volatility. We discuss these identifiability issues in more detail in Ap-
pendix D.
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APPENDIX

A PROOFS

Proof. [Proof of proposition 3.1] We start with the definition of the MMD squared between the joint
distributions f and g:

MMD2
K(f(x, t), g(x, t)) = E(x,t)∼f,(x′,t′)∼f [K((x, t), (x′, t′))]

− 2E(x,t)∼f,(x′,t′)∼g [K((x, t), (x′, t′))]

+ E(x,t)∼g,(x′,t′)∼g [K((x, t), (x′, t′))]

(10)

Using the factorized kernel K((x, t), (x′, t′)) = Kx(x,x
′) δ(t− t′), we examine each term in the

right-hand side separately. For the first term, we have:

E(x,t)∼f,(x′,t′)∼f [K((x, t), (x′, t′))] = E(x,t)∼f, (x′,t′)∼f [Kx(x,x
′) δ(t− t′)]

= Et∼h(t), t′∼h(t′)

[
δ(t− t′)E x∼f(x|t)

x′∼f(x|t′)
[Kx(x,x

′)]

]

=
∑

t,t′∈T

[
δ(t− t′)E x∼f(x|t)

x′∼f(x|t′)
[Kx(x,x

′)]

]
h(t)h(t′)

=
∑
t∈T

Ex,x′∼f(x|t)[Kx(x,x
′)]h2(t)

(11)
where we used the law of iterated expectation, conditioning on the time components t and t′, and
the fact that δ(t− t′) is nonzero only when t = t′.

Similarly for the second term:

−2E(x,t)∼f,(x′,t′)∼g [K((x, t), (x′, t′))] = E(x,t)∼f, (x′,t′)∼g[Kx(x,x
′) δ(t− t′)]

= Et∼h(t), t′∼h(t′)

[
δ(t− t′) (−2E x∼f(x|t)

x′∼g(x|t′)
[Kx(x,x

′)])

]

=
∑

t,t′∈T

[
δ(t− t′) (−2E x∼f(x|t)

x′∼g(x|t′)
[Kx(x,x

′)])

]
h(t)h(t′)

=
∑
t∈T

−2Ex∼f(x|t)
x′∼g(x|t)

[Kx(x,x
′)]h2(t)

(12)

And finally for the third term:

E(x,t)∼g,(x′,t′)∼f [K((x, t), (x′, t′))] = E(x,t)∼g, (x′,t′)∼g[Kx(x,x
′) δ(t− t′)]

= Et∼h(t), t′∼h(t′)

[
δ(t− t′)E x∼g(x|t)

x′∼g(x|t′)
[Kx(x,x

′)]

]

=
∑

t,t′∈T

[
δ(t− t′)E x∼g(x|t)

x′∼g(x|t′)
[Kx(x,x

′)]

]
h(t)h(t′)

=
∑
t∈T

Ex,x′∼g(x|t)[Kx(x,x
′)]h2(t)

(13)
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And we conclude the proof by collecting the terms:

MMD2
K(f(x, t), g(x, t))

=
∑
t∈T

h2(t)

[
Ex,x′∼f(x|t)[Kx(x,x

′)]− 2Ex∼f(x|t)
x′∼g(x|t)

[Kx(x,x
′)] + Ex,x′∼g(x|t)[Kx(x,x

′)]

]
=
∑
t∈T

h2(t)MMD2(f(· | t), g(· | t))

where we recognize the bracketed expression as the squared MMD (using Kx) between the condi-
tional distributions f(· | t) and g(· | t).

□

In our application, we used empirical distribution for time.

B ALTERNATIVE VIEW OF R2

An alternative way to view this metric is through the lens of comparing joint distributions to the
product of their marginals. In information theory, mutual information quantifies the dependence
between two random variables by measuring the divergence (typically via the Kullback–Leibler di-
vergence) between the joint distribution and the product of the marginal distributions. Analogously,
by reapplying proposition 3.1, we can interpret our R2 metric as comparing the joint distribution
of state and time as predicted by the model with the distribution obtained by taking the product of
the marginal (state and time) distributions. In this view, the denominator in eq. (9) (which uses the
barycenter) reflects the total variation or “spread” in the observed data. And the numerator captures
the remaining error when the model-predicted joint distribution is compared to the empirical joint
distribution. Thus, a higher R2 indicates that the model captures more of the dependence structure
between state and time—just as in regression a higher R2 means the model explains a larger fraction
of the variability in the data. This analogy to mutual information provides an intuitive understanding
of how our metric not only assesses goodness-of-fit but also the degree to which the model captures
the temporal structure of the data.

C FURTHER EXPERIMENTAL DETAILS

C.1 LOTKA-VOLTERRA

C.1.1 EXPERIMENT SETUP

In this experiment, we study the stochastic Lotka-Volterra model, which describes predator-prey
interactions over time. The population dynamics are governed by the following system of SDEs:

dX = αX − βXY + σXdWx,

dY = γXY − δY + σY dWy,
(14)

where [dWx, dWy] denotes a two-dimensional Brownian motion. We define the true parameter
values as α = 1.0, β = 0.4, γ = 0.4, δ = 0.1, and σ = 0.02. The initial population sizes are
sampled from uniform distributions, with X0 ∼ U(5, 5.1) and Y0 ∼ U(4, 4.1). To simulate the
system, we numerically integrate the SDEs over 10 discrete time points, using a step size of 1, with
the Euler-Maruyama scheme( implemented via the torchsde Python package).

C.1.2 MODEL FAMILY CHOICE

For this experiment, we have access to the data-generating process, as described in eq. (14). There-
fore, we select the model family to be the set of SDEs that satisfy this system of equations, eq. (14).
The learning process involves optimizing the parameters using gradient descent, with a learning rate
of 0.05 over 300 epochs, by observing R2 metric dynamics.
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Figure 4: Experimental results for the Lotka-Volterra system. Top row: forecast prediction task. A
method is successful if the forecast predicted points (in red) match the red points in the ground truth
figure. Middle row: ground truth vector field (left) and reconstructed vector fields with the three
methods. Bottom row: Difference between reconstructed vector fields and ground truth. For each
point of interest on the grid, we represent the difference between the two vectors with an arrow and
color it according to the magnitude of the difference (colorbar to the right).

C.1.3 ADDITIONAL RESULTS DISCUSSION

In this section we further discuss results for the Lotka-Volterra experiment. In particular, we analyze
the MMD and MSE metrics from table 1, and the visualization of the reconstructed fields from fig. 4.

In the first row of table 1 we show the MMD results for the forecast task. The MMD is computed
using a Radial Basis Function (RBF) kernel with length scale 1. In each cell, the first number
represent the MMD averaged across 10 different seeds, and the second number (in parenthesis) is the
standard deviation over the same 10 seeds. We color in green the cell corresponding to the method
with lowest MMD. We also highlight in green any other methods whose one-standard deviation
confidence interval overlaps the mean of the best method. From the first row, we can see how our
method is (by far) the best method at the forecasting task. In the second row we compare the MSEs
for the vector reconstruction task. Also for this task we observe that our method is — from an MMD
perspective — much better than the baselines. If we look at the middle row of fig. 4, we see that
from a visual perspective the reconstructed vector fields are very similar to the ground truth for all
the three methods. Also from the bottom row of the same figure, we can see that the difference
between the reconstructed fields and ground truth for our method and SBIRR-ref is very similar,
whereas for SB-forward it is a bit worse.
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LV
Metric MMD-SDE SBIRR-ref SB-forward
Forecast 0.012 (0.0067) 0.14 (0.023) 0.71 (0.49)
Drift 0.00071 (0.000027) 0.079 (0.0080) 0.59 (0.13)

Table 1: Evaluation metric for Lotka-Volterra (mean (sd)). Drift was evaluated using MSE on a grid,
while the forecast was evaluated using MMD with RBF kernel and length scale 1.
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Figure 5: Experimental results for the repressilator system using parametric model as model fam-
ily.Top row: forecast prediction task. A method is successful if the forecast predicted points (in red)
match the red points in the ground truth figure. Middle row: ground truth vector field (left) and
reconstructed vector fields with the three methods. Bottom row: Difference between reconstructed
vector fields and ground truth. For each point of interest on the grid, we represent the difference
between the two vectors with an arrow and color it according to the magnitude of the difference
(colorbar to the right).

C.2 REPRESSILATOR

C.2.1 EXPERIMENT SETUP

The repressilator is a synthetic genetic circuit designed to function as a biological oscillator, produc-
ing sustained periodic fluctuations in the concentrations of its components. It consists of a network
of three genes arranged in a cyclic inhibitory loop: each gene encodes a protein that suppresses the
expression of the next, with the last gene repressing the first, completing the feedback cycle.

The system’s dynamics can be described by the following stochastic differential equations (SDEs):

dX1 =
β

1 + (X3/k)n
− γX1 + σX1dW1,

dX2 =
β

1 + (X1/k)n
− γX2 + σX2dW2, (15)

dX3 =
β

1 + (X2/k)n
− γX3 + σX3dW3,

where [dW1, dW2, dW3] represents a three-dimensional Brownian motion. The inhibitory structure
of the system is evident from the drift terms, which describe how each gene’s expression is repressed
by another in the cycle. For our simulations, we set the parameters to β = 10, n = 3, k = 1, γ = 1,
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and σ = 0.02. The initial conditions are sampled from uniform distributions: X1, X2 ∼ U(1, 1.1)
and X3 ∼ U(2, 2.1). We simulate the SDEs over 10 discrete time points, with 200 samples collected
at each step.

C.2.2 MODEL FAMILY CHOICE

Parametric model. For this experiment, we have access to the data-generating process, as described
in eq. (15). Therefore, we pick as a model family the set of SDEs that satisfy this system of equa-
tions, eq. (15). The learning process involves optimizing the parameters using gradient descent, with
a learning rate of 0.05 over 500 epochs, as determined by R2 metric dynamics.

Semiparametric model. We assume we know the functional form up until that

dXt = Mfθ(Xt)−LXt +G diag(Xt)dWt (16)

where M is a diagonal matrix of (positive) maximum production rate, L is a diagonal matrix of
(positive) degradation rate, G is a diagonal matrix of (positive) volatility all unknown (parameterized
by their logarithm). We parameterize the so-called activation function fθ : R3

+ → [0, 1]3, encoding
regulation among genes, using an MLP with three hidden layers of [32, 64, 32] hidden neurons each,
and one final sigmoid function layer.

C.2.3 FURTHER EXPERIMENTAL RESULTS

Parametric model. In this section we further discuss results for the repressilator experiment with
parametric model family. In particular, we analyze the MMD and MSE metrics from table 2, and
the visualization of the reconstructed fields from fig. 5.

In the first row of table 2, we see that for the forecasting task, our method achieves a much lower
MMD compared to the two baselines. This quantitatively supports the visual intuition from fig. 2 in
the main text, where our approach more accurately captures the underlying distribution of the data.
In the second row, we observe that the MSE for the vector field reconstruction task is significantly
lower for our method, indicating superior performance in recovering the true dynamics. This is
further corroborated by the visualizations in fig. 5: in the middle row, our reconstructed vector field
closely resembles the ground truth, whereas SBIRR-ref exhibits small but notable deviations,
and SB-forward fails both in magnitude and direction. The bottom row further reinforces this
conclusion, showing that the magnitude of the differences between the reconstructed and true vector
fields is substantially larger for the two baselines compared to our method (for which is very close
to 0 everywhere on the grid).

Repressilator (parametric)
Metric MMD-SDE SBIRR-ref SB-forward
Forecast 0.016 (0.016) 0.47 (0.34) 0.42 (0.16)
Drift 0.027 (0.063) 1.71 (0.20) 12.9 (0.21)

Table 2: Evaluation metric for repressilator when using the parametric model (mean(sd)). Drift was
evaluated using MSE on a grid, while the forecast was evaluated using MMD with RBF kernel and
length scale 1.

Semiparametric model. In this section we further discuss results for the repressilator experiment
with the semiparametric model family. In particular, we analyze the MMD and MSE metrics from
table 3, and the visualization of the reconstructed fields from fig. 6.

In the first row of table 3, we see that also for this forecasting task, our method achieves a substan-
tially lower MMD compared to the two baselines. This aligns with the visual evidence from fig. 2
in the main text (bottom row), where our method’s predicted points (in red) more closely match
the ground truth. In the second row of table 3, we see that for this model choice our method and
SBIRR-ref achieve similar results, whereas SB-forward exhibits much higher MSE. Figure 6
confirms this intuition: our reconstructed vector field and the one for SBIRR-ref are quite similar
and not too different from the ground truth, whereas SB-forward performs particularly poorly,
failing to recover both the direction and magnitude of the vector field.
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Repressilator (semiparametric)
Metric MMD-SDE SBIRR-ref SB-forward
Forecast 0.077 (0.031) 0.29 (0.11) 1.15 (0.33)
Drift 6.25 (0.37) 7.85 (1.85) 12.00 (0.74)

Table 3: Evaluation metric for Repressilator using MLP activation function (mean(sd)). Drift was
evaluated using MSE on a grid, while forecast was evaluated using MMD with RBF kernel and
length scale 1.
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Figure 6: Experimental results for the repressilator system using semiparametric model as model
family. Top row: forecast prediction task. A method is successful if the forecast predicted points (in
red) match the red points in the ground truth figure. Middle row: ground truth vector field (left) and
reconstructed vector fields with the three methods. Bottom row: Difference between reconstructed
vector fields and ground truth. For each point of interest on the grid, we represent the difference
between the two vectors with an arrow and color it according to the magnitude of the difference
(colorbar to the right).

C.3 REPRESSILATOR WITH MISSING PROTEIN

C.3.1 EXPERIMENT SETUP

In appendix C.2 we introduced the repressilator system as a system of SDEs governing changes
in mRNA concentration. A more complete model for this system takes also into account protein
levels. Indeed, each gene produces a protein that represses the next gene’s expression, with the last
one repressing the first. So proteins play a big role in the repressilator feedback loop. And this is
why scientists often consider a more complex version of this system, that evolves according to the

15



Published at FPI workshop at ICLR 2025

following SDEs:

dX1 = α+
β

1 + (Y3/k)n
− γX1 + σX1dW1

dX2 = α+
β

1 + (Y1/k)n
− γX2 + σX2dW2

dX3 = α+
β

1 + (Y2/k)n
− γX3 + σX2dW3

dY1 = βpX1 − γpY1 + σY1dW4

dY2 = βpX2 − γpY2 + σY2dW5

dY3 = βpX3 − γpY3 + σY3dW6

(17)

where [dW1, dW2, dW3, dW4, dW5, dW6] is a 6D Brownian motion. X1, X2, X3 represents the
mRNA levels while Y1, Y2, Y3 are the corresponding proteins. As explained above, the actual system
regulation is now mediated by proteins rather than mRNA themselves.

To obtain data, we fix the following parameters: α = 10−5, β = 10, n = 3, k = 1, γ = 1, βp =
1, γp = 1, σ = 0.02. We start the dynamics with initial distribution X1, X2 ∼ U(1, 1.1) and
X3 ∼ U(2, 2.1), while Yi ∼ U(0, 0.1). We simulate the SDEs for 10 instants of time. At each time
step, we take 200 samples and only took Xi as observations.

C.3.2 MODEL FAMILY CHOICE

Our method. For this experiment, we have access to the data-generating process, as described in
eq. (17). Therefore, we select our model family to be the set of SDEs that satisfy this system of
equations, eq. (17). The learning process involves optimizing the parameters using gradient descent,
with a learning rate of 0.05 over 500 epochs, as determined by R2 metric dynamics.

Baselines. Since the two baseline methods that we consider cannot handle missing data we cannot
use them to fit eq. (17). Instead, we fit a simpler mRNA-only model as described in eq. (15).

Repressilator (with missing protein)
Metric MMD-SDE SBIRR-ref SB-forward
Forecast 0.51 (0.17) 1.26 (0.06) 1.22 (0.09)

Table 4: Evaluation metric for Repressilator forecasting with missing protein observations. Forecast
was evaluated using MMD with RBF kernel and length scale 1.

D IDENTIFIABILITY ANALYSIS

In this appendix, we provide further details on the identifiability problem from the the main text
discussion.

Why drift and volatility are not identified in general. Even with complete access to the marginal
distributions πt over time, the pair (b0, g0) is not uniquely determined by the Fokker–Planck equa-
tion

∂πt

∂t
= ∇ ·

[
−b0 πt +

1

2
g0 g

⊤
0 ∇πt

]
For example, suppose (b0, g0) satisfies the equation for a given πt. Then, for any vector field h
that satisfies the continuity condition ∇ · (hπt) = 0, the modified drift b′0 = b0 + h with the
same volatility g0 also satisfies the Fokker–Planck equation. This observation indicates that an
infinite family of drift functions can generate the same evolution of the marginal distribution if no
further constraints are imposed. Furthermore, let A be any orthogonal matrix (i.e., AA⊤ = I).
Then, the pair (b0, g0 A) also satisfies the Fokker–Planck equation. These examples illustrate the
inherent non-uniqueness (or non-identifiability) of the drift and volatility functions based solely on
the evolution of the marginal distributions.
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In practice, to achieve identifiability, one must restrict the candidate function classes for b0 and g0.
For instance, assuming that b0 is a gradient field (i.e., b0 = ∇Φ for some potential Φ and that g0
is constant is known to yield identifiability under suitable conditions (Lavenant et al., 2021; Guan
et al., 2024). A complete characterization of identifiability in more general settings is beyond the
scope of this work and constitutes an important direction for future research.

17


	Introduction
	Setup and Background
	Our method
	Evaluating model fit with an R2-type metric

	Experiments
	Lotka-Volterra system
	Repressilator

	Discussion
	Proofs
	Alternative view of R2
	Further experimental details
	Lotka-Volterra
	Experiment setup
	Model family choice
	Additional Results Discussion

	Repressilator
	Experiment setup
	Model family choice
	Further experimental results

	Repressilator with missing protein
	Experiment setup
	Model family choice


	Identifiability Analysis

