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Abstract

Modern LLMs have become increasingly pow-
erful, but they are still facing challenges in spe-
cialized tasks such as Text-to-SQL. We pro-
pose SQL-CRAFT, a framework to enhance
LLMs’ SQL generation Capabilities through
inteRActive reFinemenT and enhanced rea-
soning. We leverage an Interactive Correc-
tion Loop (IC-Loop) for LLMs to interact with
databases automatically, as well as Python-
enhanced reasoning. We conduct experi-
ments on two Text-to-SQL datasets, Spider
and Bird, with performance improvements of
up to 5.7% compared to the naive prompting
method. Moreover, our method surpasses the
current state-of-the-art on the Spider Leader-
board, demonstrating the effectiveness of our
framework.

1 Introduction

Text-to-SQL — the task of converting natural lan-
guage to SQL queries — enables non-technical users
to access databases in natural language. Recently,
Large Language Models (LLMs) have made sig-
nificant progress on various tasks (Touvron et al.,
2023; OpenAl, 2023), but little work explores the
task of using LL.Ms on Text-to-SQL (Chen et al.,
2023Db).

Most LLMs are pre-trained on publically avail-
able corpora (OpenAl, 2023; Anil et al., 2023; Tou-
vron et al., 2023) but there is a scarcity of SQL
queries in the pre-training corpora of LLMs. For
instance, in the public report from Github', the pro-
portion of SQL languages is close to zero, while
Python is at the top with a 17.7% share. On the
Stack Overflow website, there are 2.2 million ques-
tions tagged with ‘Python’,> compared to 0.67 mil-
lion tagged with ‘SQL’,?, fewer than one-third of
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List countries speak both ?

Foreign Key:

city.CountryCode -> country.Code,
countrylanguag.Countrycode -> country.Code

Tables:

city:

ID (number), Name (text), CountryCode (text), District (text),
Population (number)

countrylanguage:

CountryCode (text), IsOfficial (text),
(number)

country:

Code (text), Name (text), Continent (text), Region (text), SurfaceArea
(number), IndepYear (number), Population (number), LifeExpectancy

, Percentage

(number), GNP (humber), GNPOId (number) ...

SELECT COUNT (DISTINCT CountryCode)

FROM countrylanguage

WHERE Language = AND CountryCode IN (
SELECT CountryCode FROM countrylanguage

WHERE Language = )

Noticed that UK is in the feedback

Gaiissy table. The SQL query uses the "IN" clause,
USA which selects countries that speak either
UK English or Dutch. However, the question
asks for countries speaking both
languages. Using "IN" results in a union
of sets (either English or Dutch), not an
intersection (both English and Dutch). This
could be done with two separate queries
BE joined by an "INTERSECT" clause.

AU
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SELECT COUNT (*) FROM (

SELECT CountryCode FROM countrylanguage
WHERE Language =

INTERSECT

SELECT CountryCode FROM countrylanguage
WHERE Language = )

Figure 1: Database Feedback Based Correction. LLMs
may identify errors in the SQL when the database feed-
back conflicts with common sense.

the ‘Python’ questions. Such disproportional dis-
tribution of coding languages may grant LLMs a



stronger reasoning ability in Python than SQL.

In this work, we aim to enhance LLMs’ SQL gen-
eration ability. First, we propose Interactive Cor-
rections (IC) to correct LLMs’ responses based on
the database feedback iteratively (Figure 1). This
strategy is inspired by the tricks used by human ex-
perts in writing SQL, which involve using database
feedback to correct potential mistakes. Second, we
explore two ways to incorporate Python in LLMs’
reasoning process for SQL generation, including
generating Python code first and then translating it
to SQL, as well as generating Python code together
with the corresponding SQL query simultaneously
(Chen et al., 2023a).

Finally, we conduct experiments on two recog-
nized text-to-SQL benchmarks, Spider (Yu et al.,
2018) and Bird (Li et al., 2023b). Our strategies
enhance the ability of LLMs to generate SQL, sur-
passing the state-of-the-art methods on the Spider
dataset.

2 SQL-CRAFT Framework

Our proposed SQL-CRAFT framework comprises
two strategies, Python Enhanced Reasoning, and
Interactive Correction.

Python Enhanced Reasoning. We try two meth-
ods to integrate Python during the reasoning pro-
cess, PoT (Chen et al., 2023a) and Code Blocks
(CBs).

* Program of Thoughts (PoT). We ask the model to
generate both Python Code Block and the SQL
queries simultaneously, therefore enforcing the
model to incorporate Python code blocks in its
“thought process”. Formally,

LM(QaD7P) = (Ca S),
where we prompt the LM with the user ques-
tion (), database description D and prompt P.

The LM then sequentially generates Python Code
Blocks C' followed by SQL S.

Executable Code Blocks (CBs). We divide the
SQL generation process into two steps: first,

M@, D, P) =C,

where given the user question (), database de-
scription D and prompt P;, LM generates a series
of Python Code Blocks C' aligned with its chain-
of-thought reasoning process, see Appendix A.4.
Then,

LM(Q, D, P, C) = S,

Algorithm 1: IC-Loop Control

Given Cy;
C =11LM(P,Cy, E); E < DB(C));
while C' # C do
| Co+ C;C =11LM(P,Co, E); E < DB(Cy)
end

where the LM generates the target SQL query S
given the user question (), database description
D, a different prompt P» and the Python Code
Block C' we get in the first step.

IC-Loop. We introduce Interactive Correction
(IC) shown in Figure 1, which incorporates
database feedback into the prompt to guide LLMs
to refine their initial response. As different ques-
tions may require varying numbers of corrections,
we embed IC within a loop (IC-Loop). To avoid
over-correction or insufficient correction, we de-
sign an automated control process to decide when
to terminate the loop. Given the prompt P (includ-
ing Instruction, Schema, Question) and code Cj,
we execute it on the database DB to get the result E.
The LLM continues reviewing the execution result
and rewrites Cp until LM produces the same code
as the previous run (C' = Cj). Algorithm 1 depicts
this process.

In simpler terms, we first set an upper limit on
the number of iterations for a loop. After generat-
ing the initial SQL, we enter the IC-Loop. At this
stage, the execution results are converted into CSV
format and inserted into the prompt. The model
is then instructed to write a new SQL based on
the question, the original SQL, and its execution
results. If the model believes the current SQL is
correct, it will repeat the same SQL. The loop ter-
minates when the program detects that the model
has generated the same SQL again, indicating that
the model’s knowledge and the question-answer
pair have reached a consensus. Correction cases
can be found in Appendix A.3.3

3 Experiments and Results

We conduct experiments on two cross-domain text-
to-SQL benchmarks detailed in Table 1. We em-
ploy test-suite execution evaluation* (Zhong et al.,
2020), the standard evaluation protocol for Spider,
and the official SQL execution accuracy (EA) eval-
uation for Bird®.

*github.com/taoyds/test-suite-sql-eval
>bird-bench. github.io/



Spider Bird
(Yuetal., 2018) (Lietal., 2023b)
Dev 1,034 1,534
#Domain 138 37
#DB 200 95
DB Size - 334 GB

Table 1: Statistics of two text-to-SQL benchmarks we
use in our experiments. “#Domain” and “#DB” refer to
the number of domains and databases, respectively.

GPT-3.5-Turbo GPT-4
Spider Bird Spider Bird
SQL-Only 78.2 29.99 79.7 53.30
PoT 78.5 30.70 80.0 54.61
CBs 78.6 - 80.6 -
IC-Lp 78.3 30.38 823 54.89
IC-Lp+CBs 79.6 - 83.3 -
DAILGuo et at. (2023) - - 83.1 54.76
IC-Lp+PoTours 79.3 33.25 85.4 55.20

Table 2: Performance comparison between our methods
and current SOTA DAIL(Gao et al., 2023) and ablation
studies of different components for our method. IC-Lp
refers to the IC-Loop in Section 2. For a fair comparison,
we adopt a 5-shot setting for experiments in this table.
Hypothesis testing (see Appendix A.2) supports that
the enhancement in the SQL generation capabilities of
LLMs by the DB-Copilot framework is significant.

For a fair comparison with the latest state-of-
the-art work DAIL (Gao et al., 2023) on Spider-
Dev®, we also apply the 5-shot setting to GPT-4
and GPT-3.5-Turbo. Specifically, we construct the
embeddings for the user questions and training set
questions using the Ada 2 text embedding model
from OpenAl’, and then retrieve 5 question-SQL
pairs from the training set with the highest cosine
similarity scores as our few-shot examples.

Overall Results. Table 2 reports the overall re-
sults. Both IC-Loop and PoT/CBs improve the
execution accuracy across the models and datasets.
Compared to naively using GPT-4 for SQL genera-
tion, our framework achieves a maximum of 5.7%
and 1.9% improvement on the dev set for Spider
and Bird respectively. Our best results yield an
85.4% and 55.2% performance on the dev set for
Spider and Bird respectively, surpassing the state-
Syale-lily.github.io/spider

"platform.openai.com/docs/guides/embeddings/use-
cases

of-the-art, DAIL (83.1% and 54.76% on Spider and
Bird, respectively).
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Figure 2: k-shots Sensitivity Analysis.

Effects of k in k-shot. We test various k£ on 200
examples from Spider-Dev (easy 26%, medium
36.5%, hard 16%, extra-hard 21.5%). As shown
in Figure 2, when integrated with our methods of
IC-Loop and PoT, both GPT-3.5 and GPT-4 out-
perform direct prompting and the DAIL approach
consistently across almost all £ values. Moreover,
for the less capable model GPT-3.5, both direct
prompting and DAIL approaches yield a worse
performance at k = 8,10, potentially due to the
model’s diminished attention over longer input. In
contrast, the performance decay for our method is
minimal to none, suggesting our method can effec-
tively enhance LL.M’s reasoning capability even
for less capable LLMs.

Error Analysis In total, there are 151 examples
of Spider dev on which our framework fails to
generate the gold SQL. Table 3 shows the error
case distribution for our framework on the dev set
of Spider (more cases in Appendix A.3).

Some errors do not stem from our framework’s
inability to accurately predict SQL, but rather from



Error Type Question, Gold & Prediction Explanation
Q: What are the Asian countries which have a population larger than that of Only countries with a population larger than the largest in
any country in Africa? Africa can be called “have larger population than any country
Gold: SELECT Name FROM country WHERE Continent = in Africa”. Therefore, employing the term ... >
Gold Error "Asia" AND population > (SELECT min (population) (SELEC? max (population) . is correct, whereas
(30.5%) FROM country WHERE Continent = "Africa") the Gold is erroneous.
Pred: SELECT Name FROM country WHERE Continent =
"Asia" AND population > (SELECT max (population)
FROM country WHERE Continent = "Africa")
Q: How many owners temporarily do not have any dogs? The predicted SQL wrongly assumes that all owners have had
Gold: SELECT count () FROM Owners WHERE owner_id NOT dogs by attempting to subtract the number of current dog
Logic IN (SELECT owner_id FROM Dogs) owners from the total owners.
(29.8%) Pred: SELECT (SELECT COUNT (DISTINCT owner_id) FROM
Owners) — (SELECT COUNT (DISTINCT owner_id) FROM
Dogs WHERE date_departed IS NULL)
Q: What are the names of all makers with more than 3 models? Previous studies have shown that multiple correct answers can
Ambiguity Gold: SELECT T1.FullName HAVING count (x) > 3;  Coexist across various NLP tasks (Plank, 2022; Deng et al.,
(13.2%) 2023). In this case, both “FullName” and “Maker” columns
Pred: SELECT | T1.Maker HAVING count (x) > 3; can represent the “name of makers” in the question, therefore
both gold and model-generated SQL are correct.
Q: What are the arriving date of the dogs who have gone through a treatment? The predicted SQL selects the “Name” column, which is not
Imprecise Gold: SELECT T1l.date_arrived, FROM ... asked by the question.
(11.3%) Pred: SELECT T1.date_arrived, T1.Name FROM ...
Q: Which city and country is the Alton airport at? After checking the database values in IC-Loop, the model
DB Value Gold: SELECT ... WHERE AirportName = "Alton" ; notices that there is an space for the value “Alton” in the
(10.6%) ) e on database. Since the Gold SQL query employs an exact match
Pred: SELECT ... WHERE AirportName LIKE "$Alton%" ; (="Alton"), it cannot retrieve the corresponding data. In

contrast, our framework takes such nuanced differences into
consideration and uses the LIKE clause for a fuzzy match on
“Alton”.

Others (4.6%): other errors that we cannot categorize into the above types.

Table 3: Error Cases

the incorrect gold answer, question ambiguity, or
the database setup. Among the 151 examples,
30.5% are due to annotation errors (4.5% of all the
examples in Spider dev). Appendix A.3.1 shows
an example where the gold SQL fails to answer
the question. We catalog the instances with in-
correct gold SQL, correct the errors, and share the
details.® Our findings indicate that the existing eval-
uation protocols for text-to-SQL generation may
not authentically capture the capabilities of these
sophisticated models. Therefore, we advocate for
a reassessment and enhancement of text-to-SQL
evaluation methods.

Apart from the aforementioned errors, other er-
rors can be attributed to the limitations of the model
in accurately interpreting or processing the given
information. Such an error reveals that even sophis-
ticated LLMs, such as GPT-4, still struggle with
precise interpretation and alignment to the specific
requirements of the question. We provide error
analysis on Bird in Appendix A.3.2.

8visible_after review.com

4 Conclusion

We propose SQL-CRAFT, a framework involving
interactive refinement and Python-enhanced rea-
soning that improves SQL generation accuracy for
LLMs. SQL-CRAFT demonstrates an improve-
ment of 5.7% on Spider and 1.9% on Bird com-
pared to the naive prompting method. Moreover,
SQL-CRAFT surpasses the state-of-the-art strate-
gies on Spider. We conduct a comprehensive error
analysis and observe that there are issues with the
current text-to-SQL evaluation. Therefore, we call
for attention from our community to develop a bet-
ter text-to-SQL evaluation protocol that can capture
nuances in SQL generation and authentically reflect
the model performance.

5 [Ethical Statements and Limitations

Strategies we propose are aim to improve the SQL
generation capabilities of LLMs, with some of its
concepts, possibly applicable to general language
model tasks. There are some potential societal
consequences of our work, none that we feel must
be specifically highlighted here.

In industrial application scenarios, SQL genera-



tion is often more complex and demands higher ac-
curacy. The research of Text-to-SQL still has a long
way to go before it becomes practically valuable.
During the process of conducting case studies, we
encounter some unpredictable output results, which
might be related to the hallucination of LLMs.
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A Appendix

A.1 Additional Relevant Work

In addition to the related work highlighted in the
introduction, there is other relevant work discussed
below. In the past year, LLMs have made break-
throughs in many fields, recent advancements in
NL2SQL conversion have been significantly in-
fluenced by LLMs such as GPT variants. Pour-
reza and Rafiei (2023) (2023) propose DIN-SQL, a
method that employs GPT-4 in a few-shot learning
paradigm, demonstrating notable performance in
NL2SQL tasks. Dong et al. (2023) introduce C3, a
ChatGPT-based zero-shot NL2SQL method, which
emphasizes clear prompting, calibration with hints,

and consistent output to improve execution accu-
racy. Gao et al. (2023) further explore the efficiency
and effectiveness of LLMs in NL2SQL through
their work DAIL-SQL, offering a comprehensive
evaluation of various prompt engineering strategies.
They demonstrate that DAIL-SQL, when equipped
with GPT-4, achieves superior execution accuracy
and token efficiency, making it a practical solution
for real-world applications. Some recent works ap-
plied prompting method and the principle of consis-
tency (Wang et al., 2022) to enhance the reasoning
ability of LLMs through In-Context Learning, such
as Chain-of-Thoughts(CoT) (Wei et al., 2022) and
Tree-of-Thoughts(ToT) (Yao et al., 2023). Chen
et al. (2023a) proposed the use of Python code to as-
sist LLMs in reasoning called Program of Thoughts
(PoT), achieving results that surpass CoT on math
problems.

Recent studies indicate that Language Models
can learn from a few examples given in the context,
known as in-context learning (Brown et al., 2020;
Chen et al., 2022; Liu and Liu, 2021). These works
suggest that context learning can effectively enable
LMs to perform a range of complex tasks. There-
fore, considering the complexity of the NL2SQL
task, context learning can be employed to guide
LMs to better generate SQL queries.

In addition to leveraging the in-context learn-
ing capabilities of LLMs, numerous studies have
applied Pre-trained Language Models (PLMs) to
the NL2SQL task, as the extensive pre-training
on large textual corpora enables PLMs to better
model the semantic relationship between user ques-
tions and database schemas. Overall, the PLMs
used in these works mainly fall into two categories:
encoder-only PLMs (such as BERT (Devlin et al.,
2018), ELECTRA (Clark et al., 2020)) and encoder-
decoder PLMs (like BART (Lewis et al., 2019),
T5 (Raffel et al., 2020)). For encoder-only PLMs,
systems like RATSQL (Wang et al., 2019) and
LGESQL (Cao et al., 2021) use BERT to encode
user questions and database schemas, further em-
ploying graph neural networks to model foreign
keys and schema linking. The encoded represen-
tations are then fed into a grammar-based syntac-
tic neural decoder to generate SQL queries. For
encoder-decoder PLMs, approaches like PICARD
(Scholak et al., 2021), RASAT (Qi et al., 2022), and
RESDSQL (Li et al., 2023a) frame the NL2SQL
task as an end-to-end translation problem, using the
TS5 model to directly translate user questions into
SQL queries. Additionally, task-specific strategies



like relation-aware self-attention (Qi et al., 2022),
schema selection (Li et al., 2023a), and constrained
decoding (Scholak et al., 2021) further enhance the
accuracy of Encoder-Decoder PLMs in generating
SQL queries.

A.2 Significance Test

We divided the SQL generated by several strategies
in Table 2 into 10 equal parts and calculated the
execution accuracy for each. Figure 3 shows the
box plot drawn using this data.
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Figure 3: Execution Accuracy Box Plot

To test whether our strategy can indeed im-
prove Execution Accuracy (EA), we conduct a sig-
nificance test between the “SQL-Only” and “IC-
Lp+PoT” strategies. The null hypothesis of the
test is that the median EAs obtained by the two
strategies are the same. The Mann-Whitney U Test
(Mann and Whitney, 1947) is a non-parametric sta-
tistical method used to compare whether there is
a significant difference in the medians of two in-
dependent samples. Compared to the Analysis of
Variance (ANOVA), it does not require the data
to be normally distributed, making it suitable for
small samples or data with unknown distribution.

The p-value of the test is 0.0243, which is below
the commonly accepted significance level of 0.05.
Therefore, we have reason to reject the null hy-
pothesis, indicating that the “IC-Lp+PoT” strategy
leads to a significant performance improvement.



A.3 More Cases
A.3.1 Spider Error Cases

Error Type

Question, Gold & Prediction

Reason

DB Value

Q: Find the last name of the students who currently live in the
state of North Carolina but have not registered in any degree
program.

Gold: SELECT ... WHERE T2.state_province_county

= 'NorthCarolina’ EXCEPT ...

Pred: SELECT ... WHERE T2.state_province_county

=North Carolina’ EXCEPT ...

The filtering condition in the
question does not match the
database value, string
“NorthCalifornia” in database
do not have a space in between.

Gold Error

Q: What are the first names of all players, and their average
rankings?

Gold: SELECT avg(ranking), T1.first_name
FROM players AS Tl JOIN rankings AS T2 ON
Tl.player_id = T2.player_id

GROUP BY T1l.first_name

Pred: SELECT avg(ranking), Tl.first_name
FROM players AS Tl JOIN rankings AS T2 ON
Tl.player_id = T2.player_id

GROUP BY Tl.player_id

The individuals in the table can
be uniquely determined by
column player_id not
first_name, when GROUP BY.

Gold Error

Q: Find the id and cell phone of the professionals who operate
two or more types of treatments.

Gold: SELECT T1l.professional_id,

Tl.cell _number FROM Professionals AS T1
JOIN Treatments AS T2 ON
Tl.professional_id = T2.professional_id
GROUP BY Tl.professional_id

HAVING count (x) >= 2

Pred: SELECT T1l.professional_id,

Tl.cell _number FROM Professionals AS T1
JOIN Treatments AS T2 ON
Tl.professional_id = T2.professional_id
GROUP BY Tl.professional_id HAVING
COUNT ( DISTINCT T2.treatment_type_code)
2

The gold only finds
professionals who have two or
more records in the treatment
table does not ensure that the
records are for different types
of treatments

Ambiguity

Q: What are the names and ids of all makers with more than 3
models?

Gold: SELECT T1.FullName , T1.Id FROM
CAR_MAKERS AS Tl JOIN MODEL_LIST AS T2 ON
Tl1.Id = T2.Maker GROUP BY T1.Id HAVING
count (x) > 3;

Pred: SELECT T1.Maker , T1.Id FROM
CAR_MAKERS AS Tl JOIN MODEL_LIST AS T2 ON
Tl1.Id = T2.Maker GROUP BY T1.Id HAVING
count (*) > 3;

Both column “Maker” and
column “FullName” can answer
the question about the “names
of makers” in the query.

Imprecise

Q: What are the arriving date and the departing date of the dogs
who have gone through a treatment?

Gold: SELECT DISTINCT Tl.date_arrived,
Tl.date_departed FROM Dogs AS Tl JOIN
Treatments AS T2 ON Tl.dog_id = T2.dog_id
Pred: SELECT DISTINCT Tl.date_arrived,
Tl.date_departed, T1.Name FROM Dogs AS T1
JOIN Treatments AS T2 ON Tl.dog_id =

T2 .dog_1id

The question do not require
listing the specific names of the
students, but only ask to list the
students’ arrival and departure
dates. This falls under
information redundancy.
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A.3.2 BIRD Error Cases

Error Type

Question, Gold & Prediction

Reason

DB Value Q: How many cards with unknown power that can’t be found in

foil is in duel deck A?

Gold: SELECT SUM(CASE WHEN power LIKE ’%*%’ OR
power IS NULL THEN 1 ELSE 0 END) FROM cards WHERE

hasFoil = 0 AND duelDeck = ’a’
Pred: SELECT COUNT(*) FROM cards WHERE (power IS
NULL OR power = *’ ) AND hasFoil = 0 AND duelDeck =

2,0

a

Values in database cannot exact
match with the question and
evidence.

Gold Error Q: How many artists have designed a card with a black border The gold missed one filtering
color and is available in both "arena" and "mtgo" printing type? condition.
Gold: SELECT COUNT (CASE WHEN availability
LIKE ’%arena,mtgo%’ THEN 1 ELSE NULL END)

FROM cards

Pred: SELECT COUNT (DISTINCT artist) FROM
cards WHERE borderColor = ’‘black’ AND
availability LIKE '%arena,mtgo%’

Ambiguity Q: Among black card borders, which card has full artwork? Both column “name” and
Gold: SELECT id FROM cards WHERE column “id” can answer the
borderColor = ’'black’ AND isFullArt = 1 question about the “the card has
Pred: SELECT name FROM cards WHERE full artwork™ in the query.
borderColor = ’'black’ AND isFullArt = 1;

Logic Q: Which cities have the top 5 lowest enrollment number for ~ The Pred query is incorrect

students in grades 1 through 12?

Gold: SELECT T2.City FROM frpm AS T1 INNER
JOIN schools AS T2 ON T1l.CDSCode =
T2.CDSCode GROUP BY T2.City ORDER BY
SUM(T1. ‘Enrollment (K-12) ‘) ASC LIMIT 5
Pred: SELECT T2.City, Tl."Enrollment (K-12)"
FROM frpm AS Tl JOIN schools AS T2 ON
T1.CDSCode = T2.CDSCode ORDER BY
Tl."Enrollment (K-12)" ASC LIMIT 5;

because it lacks grouping and
aggregation. It directly selects
cities and their corresponding
"Enrollment (K-12)" without
summing up the enrollment
numbers across all schools
within each city. As a result, it
returns the cities of the five
schools with the lowest
enrollment numbers, which
does not accurately answer the
question seeking the top 5 cities
with the lowest total enrollment
for students in grades 1 through
12.
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A.3.3 Interactive Correction Cases

Before

After

Reason

Q: What is the phone number of the school that has the highest number of test takers with an SAT score of over 1500?

Before:

SELECT schools.Phone
FROM satscores

JOIN schools ON
satscores.cds =
schools.CDSCode

WHERE satscores.NumGE1500
> 1500

GROUP BY schools.School
ORDER BY COUNT (%) DESC
LIMIT 1;

After:

SELECT schools.Phone
FROM satscores

JOIN schools ON
satscores.cds =
schools.CDSCode

ORDER BY
satscores.NumGE1500 DESC
LIMIT 1;

The WHERE clause is checking if the
number of test takers with an SAT score
over 1500 is greater than 1500, which is
not what the question is asking. The
question is asking for the school with
the highest number of test takers who
scored over 1500. Additionally, the
GROUP BY clause is grouping by the
school name, which may not be unique.
It would be better to group by the
school code (CDSCode) which is
unique for each school.

Q: List the top five schools, by descending order, from the highest to the lowest, the most number of Enrollment (Ages
5-17). Please give their NCES school identification number.

Before:

SELECT T1."School Name",
T2 .NCESSchool

FROM frpm AS T1

JOIN schools AS T2 ON
T1.CDSCode = T2.CDSCode
ORDER BY T1."Enrollment
(Ages 5-17)" DESC

LIMIT 5;

After:

SELECT T2.NCESSchool
FROM frpm AS T1

JOIN schools AS T2 ON
T1.CDSCode = T2.CDSCode
ORDER BY T1l."Enrollment
(Ages 5-17)" DESC
LIMIT 5;

The question asks for the top five
schools with the most number of
Enrollment (Ages 5-17), and their
NCES school identification number.
However, the SQL query provided
returns the school name, which is not
required by the question.

Q: find the package option of the tv channel that do not have any cartoon directed

by Ben Jones.

Before:

SELECT

TV_Channel .Package_Option
FROM TV_Channel

LEFT JOIN Cartoon ON
TV_Channel.id =
Cartoon.Channel

WHERE Cartoon.Directed_by
IS NOT ’'Ben Jones’;

After:

SELECT
TV_Channel.Package_Option
FROM TV_Channel

WHERE TV_Channel.id NOT IN
(

SELECT Cartoon.Channel
FROM Cartoon

WHERE Cartoon.Directed_by
= "Ben Jones’);

The current query is selecting all
channels where the director is not Ben
Jones, but it should exclude channels
that have any cartoons directed by Ben
Jones. This can be achieved by using a
subquery to find all channels that have
cartoons directed by Ben Jones, and
then excluding these channels in the
main query. Here is the corrected SQL:

Q: List the earnings of poker players in descending order.

Before:
SELECT % FROM poker_player
ORDER BY Earnings DESC;

After:

SELECT Earnings FROM
poker_player ORDER BY
Earnings DESC;

The question only asks for the earnings
of poker players. Therefore, we should
only select the ‘Earnings‘ column to
make the result more concise and
relevant to the question.

Q: How many countries speak both English and Dutch?

Before:

SELECT COUNT (DISTINCT
CountryCode)

FROM countrylanguage
WHERE Language = ’'English’
AND CountryCode IN (
SELECT CountryCode

FROM countrylanguage
WHERE Language = ’'Dutch’)

After:

SELECT COUNT (%)

FROM (

SELECT CountryCode

FROM countrylanguage
WHERE Language = ’'English’
INTERSECT

SELECT CountryCode

FROM countrylanguage
WHERE Language = ’'Dutch’)

The SQL query provided uses the ‘IN°
clause, which selects countries that
speak either English or Dutch. However,
the question asks for countries speaking
both languages. Using IN results in a
union of sets (either English or Dutch),
not an intersection (both English and
Dutch). This could be done with two
separate queries joined by an
‘INTERSECT® clause.

Table 6
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A4 Prompt Examples
A4.1 PoT Prompt Example

Global The ‘write down CODE to answer the ‘### QUESTION‘, and translate CODE to SQL.
“4## DB_STRUCTURE® includes examples of each table, and the filtering criteria should be based
on these data examples. In the CODE, ‘Table %s° is stored in ‘db_dict[’%s’]*, ‘db_dict‘ is of type
dict[pandas.DataFrame]

### RELATED_SQLs: <...>

### DB_STRUCTURE: Database name: world_1 Tables: city, sqlite_sequence, country, coun-
trylanguage Primary Keys: city[’ID’], country[’Code’], countrylanguage[’CountryCode’], Foreign Key:
pd.merge(city, country, left_on="CountryCode’, right_on="Code’) pd.merge(countrylanguage, country,
left_on="CountryCode’, right_on="Code’) Columns:

Table city: ID (number), Name (text), CountryCode (text), District (text), Population (number)

Table sqlite_sequence: name (text), seq (text)

Table country: Code (text), Name (text), Continent (text), Region (text), SurfaceArea (number),
IndepYear (number), Population (number), LifeExpectancy (number), GNP (number), GNPOId (number),
LocalName (text), GovernmentForm (text), HeadOfState (text), Capital (number), Code?2 (text)

Table countrylanguage: CountryCode (text), Language (text), [sOfficial (text), Percentage (number)

### EXAMPLES: QUESTION: What is %s in the earliest year and what year was it? THOUGHT: The an-
swer should consist of two columns, representing %s and the earliest year from the joined data, respectively.
CODE: earliest_year = db_dict[%s][’ Year’].min() year_filtered_data = step1_result[step]_result[’ Year’]
== earliest_year] result = year_filtered_data[[%s, ’Year’]] SQL: “‘sql SELECT T1.%s, T2.Year FROM
9s AS T1 JOIN %s AS T2 ON T1.1d = T2.Id WHERE T2.Year = (SELECT min(YEAR) FROM %s); *“*

QUESTION: Show names for all %s except for %s having a %s in year 2023. THOUGHT:
The answer to the question should only include the ’Name’ column of stadiums that do not have a concert
in the year 2023, and it’s a text column. CODE: %s_2023 = db_dict[’ %s’][db_dict[’%s’]['year’] ==
’2023’] result = db_dict[%s][ db_dict[%s][%s].isin(%ss_2023[%s])] SQL: “‘sql SELECT name FROM
%s EXCEPT SELECT T2.name FROM %s AS T1 WHERE T1.year = 2023 *“*

QUESTION: Find the %s that %s is A and B? THOUGHT: The task is to find instances where
a single column (%s) meets two conditions simultaneously: being A’ and *B’. This scenario is akin to
finding an intersection in two datasets. To achieve this, two separate filters are applied to the same dataset,
each for one of the conditions. Then, an inner merge is used to find common entries that satisfy both
conditions. CODE: condition_a_data = db_dict[%s][db_dict[’Cartoon’][%s] == "A’] condition_b_data
= db_dict[%s][db_dict[’Cartoon’][%s] == 'B’] result = pd.merge(condition_a_data, condition_b_data,
how="inner’) SQL: “‘sql SELECT T1.%s FROM %s AS T1 WHERE %s =’A’ INTERSECT SELECT
T1.%s FROM %s AS T1 WHERE %s =’B’ “

QUESTION: How many countries speak both English and Dutch? THOUGHT:
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