
SQL-CRAFT: Advancing Text-to-SQL Capabilities through Interactive
Refinement and Enhanced Reasoning

Anonymous ACL submission

Abstract

Modern LLMs have become increasingly pow-001
erful, but they are still facing challenges in spe-002
cialized tasks such as Text-to-SQL. We pro-003
pose SQL-CRAFT, a framework to enhance004
LLMs’ SQL generation Capabilities through005
inteRActive reFinemenT and enhanced rea-006
soning. We leverage an Interactive Correc-007
tion Loop (IC-Loop) for LLMs to interact with008
databases automatically, as well as Python-009
enhanced reasoning. We conduct experi-010
ments on two Text-to-SQL datasets, Spider011
and Bird, with performance improvements of012
up to 5.7% compared to the naive prompting013
method. Moreover, our method surpasses the014
current state-of-the-art on the Spider Leader-015
board, demonstrating the effectiveness of our016
framework.017

1 Introduction018

Text-to-SQL – the task of converting natural lan-019

guage to SQL queries – enables non-technical users020

to access databases in natural language. Recently,021

Large Language Models (LLMs) have made sig-022

nificant progress on various tasks (Touvron et al.,023

2023; OpenAI, 2023), but little work explores the024

task of using LLMs on Text-to-SQL (Chen et al.,025

2023b).026

Most LLMs are pre-trained on publically avail-027

able corpora (OpenAI, 2023; Anil et al., 2023; Tou-028

vron et al., 2023) but there is a scarcity of SQL029

queries in the pre-training corpora of LLMs. For030

instance, in the public report from Github1, the pro-031

portion of SQL languages is close to zero, while032

Python is at the top with a 17.7% share. On the033

Stack Overflow website, there are 2.2 million ques-034

tions tagged with ‘Python’,2 compared to 0.67 mil-035

lion tagged with ‘SQL’,3, fewer than one-third of036

1madnight.github.io/githut/#/
2stackoverflow.com/questions/tagged/python
3stackoverflow.com/questions/tagged/sql

Figure 1: Database Feedback Based Correction. LLMs
may identify errors in the SQL when the database feed-
back conflicts with common sense.

the ‘Python’ questions. Such disproportional dis- 037

tribution of coding languages may grant LLMs a 038

1

stronger reasoning ability in Python than SQL.039

In this work, we aim to enhance LLMs’ SQL gen-040

eration ability. First, we propose Interactive Cor-041

rections (IC) to correct LLMs’ responses based on042

the database feedback iteratively (Figure 1). This043

strategy is inspired by the tricks used by human ex-044

perts in writing SQL, which involve using database045

feedback to correct potential mistakes. Second, we046

explore two ways to incorporate Python in LLMs’047

reasoning process for SQL generation, including048

generating Python code first and then translating it049

to SQL, as well as generating Python code together050

with the corresponding SQL query simultaneously051

(Chen et al., 2023a).052

Finally, we conduct experiments on two recog-053

nized text-to-SQL benchmarks, Spider (Yu et al.,054

2018) and Bird (Li et al., 2023b). Our strategies055

enhance the ability of LLMs to generate SQL, sur-056

passing the state-of-the-art methods on the Spider057

dataset.058

2 SQL-CRAFT Framework059

Our proposed SQL-CRAFT framework comprises060

two strategies, Python Enhanced Reasoning, and061

Interactive Correction.062

Python Enhanced Reasoning. We try two meth-063

ods to integrate Python during the reasoning pro-064

cess, PoT (Chen et al., 2023a) and Code Blocks065

(CBs).066

• Program of Thoughts (PoT). We ask the model to067

generate both Python Code Block and the SQL068

queries simultaneously, therefore enforcing the069

model to incorporate Python code blocks in its070

“thought process”. Formally,071

LM(Q,D,P) = (C, S),072

where we prompt the LM with the user ques-073

tion Q, database description D and prompt P .074

The LM then sequentially generates Python Code075

Blocks C followed by SQL S.076

• Executable Code Blocks (CBs). We divide the077

SQL generation process into two steps: first,078

LM(Q,D,P1) = C,079

where given the user question Q, database de-080

scription D and prompt P1, LM generates a series081

of Python Code Blocks C aligned with its chain-082

of-thought reasoning process, see Appendix A.4.083

Then,084

LM(Q,D,P2, C) = S,085

Algorithm 1: IC-Loop Control
GivenGivenGiven C0;
C = LLM(P,C0, E); E ← DB(C0);
while C ̸= C0 do

C0 ← C; C = LLM(P,C0, E); E ← DB(C0)
end

where the LM generates the target SQL query S 086

given the user question Q, database description 087

D, a different prompt P2 and the Python Code 088

Block C we get in the first step. 089

IC-Loop. We introduce Interactive Correction 090

(IC) shown in Figure 1, which incorporates 091

database feedback into the prompt to guide LLMs 092

to refine their initial response. As different ques- 093

tions may require varying numbers of corrections, 094

we embed IC within a loop (IC-Loop). To avoid 095

over-correction or insufficient correction, we de- 096

sign an automated control process to decide when 097

to terminate the loop. Given the prompt P (includ- 098

ing Instruction, Schema, Question) and code C0, 099

we execute it on the database DB to get the result E. 100

The LLM continues reviewing the execution result 101

and rewrites C0 until LLM produces the same code 102

as the previous run (C = C0). Algorithm 1 depicts 103

this process. 104

In simpler terms, we first set an upper limit on 105

the number of iterations for a loop. After generat- 106

ing the initial SQL, we enter the IC-Loop. At this 107

stage, the execution results are converted into CSV 108

format and inserted into the prompt. The model 109

is then instructed to write a new SQL based on 110

the question, the original SQL, and its execution 111

results. If the model believes the current SQL is 112

correct, it will repeat the same SQL. The loop ter- 113

minates when the program detects that the model 114

has generated the same SQL again, indicating that 115

the model’s knowledge and the question-answer 116

pair have reached a consensus. Correction cases 117

can be found in Appendix A.3.3 118

3 Experiments and Results 119

We conduct experiments on two cross-domain text- 120

to-SQL benchmarks detailed in Table 1. We em- 121

ploy test-suite execution evaluation4 (Zhong et al., 122

2020), the standard evaluation protocol for Spider, 123

and the official SQL execution accuracy (EA) eval- 124

uation for Bird5. 125

4github.com/taoyds/test-suite-sql-eval
5bird-bench.github.io/

2

Spider
(Yu et al., 2018)

Bird
(Li et al., 2023b)

Dev 1,034 1,534
#Domain 138 37
#DB 200 95
DB Size - 33.4 GB

Table 1: Statistics of two text-to-SQL benchmarks we
use in our experiments. “#Domain” and “#DB” refer to
the number of domains and databases, respectively.

GPT-3.5-Turbo GPT-4

Spider Bird Spider Bird

SQL-Only 78.2 29.99 79.7 53.30

PoT 78.5 30.70 80.0 54.61

CBs 78.6 – 80.6 –

IC-Lp 78.3 30.38 82.3 54.89

IC-Lp+CBs 79.6 – 83.3 –

DAILGao et al. (2023) – – 83.1 54.76

IC-Lp+PoTours 79.3 33.25 85.4 55.20

Table 2: Performance comparison between our methods
and current SOTA DAIL(Gao et al., 2023) and ablation
studies of different components for our method. IC-Lp
refers to the IC-Loop in Section 2. For a fair comparison,
we adopt a 5-shot setting for experiments in this table.
Hypothesis testing (see Appendix A.2) supports that
the enhancement in the SQL generation capabilities of
LLMs by the DB-Copilot framework is significant.

For a fair comparison with the latest state-of-126

the-art work DAIL (Gao et al., 2023) on Spider-127

Dev6, we also apply the 5-shot setting to GPT-4128

and GPT-3.5-Turbo. Specifically, we construct the129

embeddings for the user questions and training set130

questions using the Ada 2 text embedding model131

from OpenAI7, and then retrieve 5 question-SQL132

pairs from the training set with the highest cosine133

similarity scores as our few-shot examples.134

Overall Results. Table 2 reports the overall re-135

sults. Both IC-Loop and PoT/CBs improve the136

execution accuracy across the models and datasets.137

Compared to naively using GPT-4 for SQL genera-138

tion, our framework achieves a maximum of 5.7%139

and 1.9% improvement on the dev set for Spider140

and Bird respectively. Our best results yield an141

85.4% and 55.2% performance on the dev set for142

Spider and Bird respectively, surpassing the state-143

6yale-lily.github.io/spider
7platform.openai.com/docs/guides/embeddings/use-

cases

of-the-art, DAIL (83.1% and 54.76% on Spider and 144

Bird, respectively). 145

0 2 4 6 8 10
k-shot

70

71

72

73

74

75

Ex
ec

ut
io

n
Ac

cu
ra

cy
 (%

)

GPT-3.5 + IC-Loop + PoT
GPT-3.5 + DAIL
GPT-3.5

0 2 4 6 8 10
k-shot

72

74

76

78

80

82

84

86

Ex
ec

ut
io

n
Ac

cu
ra

cy
 (%

)

GPT-4 + IC-Loop + PoT
GPT-4 + DAIL
GPT-4

Figure 2: k-shots Sensitivity Analysis.

Effects of k in k-shot. We test various k on 200 146

examples from Spider-Dev (easy 26%, medium 147

36.5%, hard 16%, extra-hard 21.5%). As shown 148

in Figure 2, when integrated with our methods of 149

IC-Loop and PoT, both GPT-3.5 and GPT-4 out- 150

perform direct prompting and the DAIL approach 151

consistently across almost all k values. Moreover, 152

for the less capable model GPT-3.5, both direct 153

prompting and DAIL approaches yield a worse 154

performance at k = 8, 10, potentially due to the 155

model’s diminished attention over longer input. In 156

contrast, the performance decay for our method is 157

minimal to none, suggesting our method can effec- 158

tively enhance LLM’s reasoning capability even 159

for less capable LLMs. 160

Error Analysis In total, there are 151 examples 161

of Spider dev on which our framework fails to 162

generate the gold SQL. Table 3 shows the error 163

case distribution for our framework on the dev set 164

of Spider (more cases in Appendix A.3). 165

Some errors do not stem from our framework’s 166

inability to accurately predict SQL, but rather from 167

3

Error Type Question, Gold & Prediction Explanation

Gold Error
(30.5%)

Q:Q:Q: What are the Asian countries which have a population larger than that of
any country in Africa?
Gold:Gold:Gold: SELECT Name FROM country WHERE Continent =

"Asia" AND population > (SELECT min(population)

FROM country WHERE Continent = "Africa")
Pred:Pred:Pred: SELECT Name FROM country WHERE Continent =

"Asia" AND population > (SELECT max(population)

FROM country WHERE Continent = "Africa")

Only countries with a population larger than the largest in
Africa can be called “have larger population than any country
in Africa”. Therefore, employing the term ... >
(SELECT max(population) ... is correct, whereas
the Gold is erroneous.

Logic
(29.8%)

Q:Q:Q: How many owners temporarily do not have any dogs?
Gold:Gold:Gold: SELECT count(*) FROM Owners WHERE owner_id NOT
IN (SELECT owner_id FROM Dogs)
Pred:Pred:Pred: SELECT (SELECT COUNT(DISTINCT owner_id) FROM
Owners) - (SELECT COUNT(DISTINCT owner_id) FROM
Dogs WHERE date_departed IS NULL)

The predicted SQL wrongly assumes that all owners have had
dogs by attempting to subtract the number of current dog
owners from the total owners.

Ambiguity
(13.2%)

Q:Q:Q: What are the names of all makers with more than 3 models?
Gold:Gold:Gold: SELECT T1.FullName ... HAVING count(*) > 3;

Pred:Pred:Pred: SELECT T1.Maker ... HAVING count(*) > 3;

Previous studies have shown that multiple correct answers can
coexist across various NLP tasks (Plank, 2022; Deng et al.,
2023). In this case, both “FullName” and “Maker” columns
can represent the “name of makers” in the question, therefore
both gold and model-generated SQL are correct.

Imprecise
(11.3%)

Q:Q:Q: What are the arriving date of the dogs who have gone through a treatment?
Gold:Gold:Gold: SELECT T1.date_arrived, FROM ...

Pred:Pred:Pred: SELECT T1.date_arrived, T1.Name FROM ...

The predicted SQL selects the “Name” column, which is not
asked by the question.

DB Value
(10.6%)

Q:Q:Q: Which city and country is the Alton airport at?
Gold:Gold:Gold: SELECT ... WHERE AirportName = "Alton" ;

Pred:Pred:Pred: SELECT ... WHERE AirportName LIKE "%Alton%" ;

After checking the database values in IC-Loop, the model
notices that there is an space for the value “Alton” in the
database. Since the Gold SQL query employs an exact match
(="Alton"), it cannot retrieve the corresponding data. In
contrast, our framework takes such nuanced differences into
consideration and uses the LIKE clause for a fuzzy match on
“Alton”.

Others (4.6%): other errors that we cannot categorize into the above types.

Table 3: Error Cases

the incorrect gold answer, question ambiguity, or168

the database setup. Among the 151 examples,169

30.5% are due to annotation errors (4.5% of all the170

examples in Spider dev). Appendix A.3.1 shows171

an example where the gold SQL fails to answer172

the question. We catalog the instances with in-173

correct gold SQL, correct the errors, and share the174

details.8 Our findings indicate that the existing eval-175

uation protocols for text-to-SQL generation may176

not authentically capture the capabilities of these177

sophisticated models. Therefore, we advocate for178

a reassessment and enhancement of text-to-SQL179

evaluation methods.180

Apart from the aforementioned errors, other er-181

rors can be attributed to the limitations of the model182

in accurately interpreting or processing the given183

information. Such an error reveals that even sophis-184

ticated LLMs, such as GPT-4, still struggle with185

precise interpretation and alignment to the specific186

requirements of the question. We provide error187

analysis on Bird in Appendix A.3.2.188

8visible_after_review.com

4 Conclusion 189

We propose SQL-CRAFT, a framework involving 190

interactive refinement and Python-enhanced rea- 191

soning that improves SQL generation accuracy for 192

LLMs. SQL-CRAFT demonstrates an improve- 193

ment of 5.7% on Spider and 1.9% on Bird com- 194

pared to the naive prompting method. Moreover, 195

SQL-CRAFT surpasses the state-of-the-art strate- 196

gies on Spider. We conduct a comprehensive error 197

analysis and observe that there are issues with the 198

current text-to-SQL evaluation. Therefore, we call 199

for attention from our community to develop a bet- 200

ter text-to-SQL evaluation protocol that can capture 201

nuances in SQL generation and authentically reflect 202

the model performance. 203

5 Ethical Statements and Limitations 204

Strategies we propose are aim to improve the SQL 205

generation capabilities of LLMs, with some of its 206

concepts, possibly applicable to general language 207

model tasks. There are some potential societal 208

consequences of our work, none that we feel must 209

be specifically highlighted here. 210

In industrial application scenarios, SQL genera- 211

4

tion is often more complex and demands higher ac-212

curacy. The research of Text-to-SQL still has a long213

way to go before it becomes practically valuable.214

During the process of conducting case studies, we215

encounter some unpredictable output results, which216

might be related to the hallucination of LLMs.217

References218

Rohan Anil, Andrew M Dai, Orhan Firat, Melvin John-219
son, Dmitry Lepikhin, Alexandre Passos, Siamak220
Shakeri, Emanuel Taropa, Paige Bailey, Zhifeng221
Chen, et al. 2023. Palm 2 technical report. arXiv222
preprint arXiv:2305.10403.223

Tom Brown, Benjamin Mann, Nick Ryder, Melanie224
Subbiah, Jared D Kaplan, Prafulla Dhariwal, Arvind225
Neelakantan, Pranav Shyam, Girish Sastry, Amanda226
Askell, et al. 2020. Language models are few-shot227
learners. Advances in neural information processing228
systems, 33:1877–1901.229

Ruisheng Cao, Lu Chen, Zhi Chen, Yanbin Zhao,230
Su Zhu, and Kai Yu. 2021. Lgesql: line graph en-231
hanced text-to-sql model with mixed local and non-232
local relations. arXiv preprint arXiv:2106.01093.233

Mingda Chen, Jingfei Du, Ramakanth Pasunuru, Todor234
Mihaylov, Srini Iyer, Veselin Stoyanov, and Zor-235
nitsa Kozareva. 2022. Improving in-context few-shot236
learning via self-supervised training. arXiv preprint237
arXiv:2205.01703.238

Wenhu Chen, Xueguang Ma, Xinyi Wang, and239
William W. Cohen. 2023a. Program of thoughts240
prompting: Disentangling computation from reason-241
ing for numerical reasoning tasks. Transactions on242
Machine Learning Research.243

Zui Chen, Lei Cao, Sam Madden, Tim Kraska, Zeyuan244
Shang, Ju Fan, Nan Tang, Zihui Gu, Chunwei Liu,245
and Michael Cafarella. 2023b. Seed: Domain-246
specific data curation with large language models.247
arXiv e-prints, pages arXiv–2310.248

Kevin Clark, Minh-Thang Luong, Quoc V Le, and249
Christopher D Manning. 2020. Electra: Pre-training250
text encoders as discriminators rather than generators.251
arXiv preprint arXiv:2003.10555.252

Naihao Deng, Xinliang Zhang, Siyang Liu, Winston Wu,253
Lu Wang, and Rada Mihalcea. 2023. You are what254
you annotate: Towards better models through anno-255
tator representations. In Findings of the Association256
for Computational Linguistics: EMNLP 2023, pages257
12475–12498, Singapore. Association for Computa-258
tional Linguistics.259

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and260
Kristina Toutanova. 2018. Bert: Pre-training of deep261
bidirectional transformers for language understand-262
ing. arXiv preprint arXiv:1810.04805.263

Xuemei Dong, Chao Zhang, Yuhang Ge, Yuren Mao, 264
Yunjun Gao, Jinshu Lin, Dongfang Lou, et al. 2023. 265
C3: Zero-shot text-to-sql with chatgpt. arXiv 266
preprint arXiv:2307.07306. 267

Dawei Gao, Haibin Wang, Yaliang Li, Xiuyu Sun, 268
Yichen Qian, Bolin Ding, and Jingren Zhou. 2023. 269
Text-to-sql empowered by large language mod- 270
els: A benchmark evaluation. arXiv preprint 271
arXiv:2308.15363. 272

Mike Lewis, Yinhan Liu, Naman Goyal, Marjan 273
Ghazvininejad, Abdelrahman Mohamed, Omer Levy, 274
Ves Stoyanov, and Luke Zettlemoyer. 2019. Bart: De- 275
noising sequence-to-sequence pre-training for natural 276
language generation, translation, and comprehension. 277
arXiv preprint arXiv:1910.13461. 278

Haoyang Li, Jing Zhang, Cuiping Li, and Hong Chen. 279
2023a. Resdsql: Decoupling schema linking and 280
skeleton parsing for text-to-sql. In Proceedings of 281
the AAAI Conference on Artificial Intelligence, vol- 282
ume 37, pages 13067–13075. 283

Jinyang Li, Binyuan Hui, Ge Qu, Binhua Li, Jiaxi 284
Yang, Bowen Li, Bailin Wang, Bowen Qin, Rongyu 285
Cao, Ruiying Geng, et al. 2023b. Can llm already 286
serve as a database interface. A big bench for 287
large-scale database grounded text-to-sqls. CoRR 288
abs/2305.03111. 289

Yixin Liu and Pengfei Liu. 2021. Simcls: A simple 290
framework for contrastive learning of abstractive 291
summarization. arXiv preprint arXiv:2106.01890. 292

Henry B Mann and Donald R Whitney. 1947. On a test 293
of whether one of two random variables is stochasti- 294
cally larger than the other. The annals of mathemati- 295
cal statistics, pages 50–60. 296

R OpenAI. 2023. Gpt-4 technical report. arXiv, pages 297
2303–08774. 298

Barbara Plank. 2022. The “problem” of human label 299
variation: On ground truth in data, modeling and 300
evaluation. In Proceedings of the 2022 Conference 301
on Empirical Methods in Natural Language Process- 302
ing, pages 10671–10682, Abu Dhabi, United Arab 303
Emirates. Association for Computational Linguistics. 304

Mohammadreza Pourreza and Davood Rafiei. 2023. 305
Din-sql: Decomposed in-context learning of 306
text-to-sql with self-correction. arXiv preprint 307
arXiv:2304.11015. 308

Jiexing Qi, Jingyao Tang, Ziwei He, Xiangpeng Wan, 309
Yu Cheng, Chenghu Zhou, Xinbing Wang, Quanshi 310
Zhang, and Zhouhan Lin. 2022. Rasat: Integrating 311
relational structures into pretrained seq2seq model 312
for text-to-sql. arXiv preprint arXiv:2205.06983. 313

Colin Raffel, Noam Shazeer, Adam Roberts, Katherine 314
Lee, Sharan Narang, Michael Matena, Yanqi Zhou, 315
Wei Li, and Peter J Liu. 2020. Exploring the limits 316
of transfer learning with a unified text-to-text trans- 317
former. The Journal of Machine Learning Research, 318
21(1):5485–5551. 319

5

https://doi.org/10.18653/v1/2023.findings-emnlp.832
https://doi.org/10.18653/v1/2023.findings-emnlp.832
https://doi.org/10.18653/v1/2023.findings-emnlp.832
https://doi.org/10.18653/v1/2023.findings-emnlp.832
https://doi.org/10.18653/v1/2023.findings-emnlp.832
https://doi.org/10.18653/v1/2022.emnlp-main.731
https://doi.org/10.18653/v1/2022.emnlp-main.731
https://doi.org/10.18653/v1/2022.emnlp-main.731
https://doi.org/10.18653/v1/2022.emnlp-main.731
https://doi.org/10.18653/v1/2022.emnlp-main.731

Torsten Scholak, Nathan Schucher, and Dzmitry Bah-320
danau. 2021. Picard: Parsing incrementally for321
constrained auto-regressive decoding from language322
models. arXiv preprint arXiv:2109.05093.323

Hugo Touvron, Louis Martin, Kevin Stone, Peter Al-324
bert, Amjad Almahairi, Yasmine Babaei, Nikolay325
Bashlykov, Soumya Batra, Prajjwal Bhargava, Shruti326
Bhosale, et al. 2023. Llama 2: Open founda-327
tion and fine-tuned chat models. arXiv preprint328
arXiv:2307.09288.329

Bailin Wang, Richard Shin, Xiaodong Liu, Oleksandr330
Polozov, and Matthew Richardson. 2019. Rat-sql:331
Relation-aware schema encoding and linking for text-332
to-sql parsers. arXiv preprint arXiv:1911.04942.333

Xuezhi Wang, Jason Wei, Dale Schuurmans, Quoc Le,334
Ed Chi, Sharan Narang, Aakanksha Chowdhery, and335
Denny Zhou. 2022. Self-consistency improves chain336
of thought reasoning in language models. arXiv337
preprint arXiv:2203.11171.338

Jason Wei, Xuezhi Wang, Dale Schuurmans, Maarten339
Bosma, Fei Xia, Ed Chi, Quoc V Le, Denny Zhou,340
et al. 2022. Chain-of-thought prompting elicits rea-341
soning in large language models. Advances in Neural342
Information Processing Systems, 35:24824–24837.343

Shunyu Yao, Dian Yu, Jeffrey Zhao, Izhak Shafran,344
Thomas L Griffiths, Yuan Cao, and Karthik345
Narasimhan. 2023. Tree of thoughts: Deliberate346
problem solving with large language models. arXiv347
preprint arXiv:2305.10601.348

Tao Yu, Rui Zhang, Kai Yang, Michihiro Yasunaga,349
Dongxu Wang, Zifan Li, James Ma, Irene Li, Qingn-350
ing Yao, Shanelle Roman, et al. 2018. Spider: A351
large-scale human-labeled dataset for complex and352
cross-domain semantic parsing and text-to-sql task.353
arXiv preprint arXiv:1809.08887.354

Ruiqi Zhong, Tao Yu, and Dan Klein. 2020. Semantic355
evaluation for text-to-sql with distilled test suites.356
arXiv preprint arXiv:2010.02840.357

A Appendix358

A.1 Additional Relevant Work359

In addition to the related work highlighted in the360

introduction, there is other relevant work discussed361

below. In the past year, LLMs have made break-362

throughs in many fields, recent advancements in363

NL2SQL conversion have been significantly in-364

fluenced by LLMs such as GPT variants. Pour-365

reza and Rafiei (2023) (2023) propose DIN-SQL, a366

method that employs GPT-4 in a few-shot learning367

paradigm, demonstrating notable performance in368

NL2SQL tasks. Dong et al. (2023) introduce C3, a369

ChatGPT-based zero-shot NL2SQL method, which370

emphasizes clear prompting, calibration with hints,371

and consistent output to improve execution accu- 372

racy. Gao et al. (2023) further explore the efficiency 373

and effectiveness of LLMs in NL2SQL through 374

their work DAIL-SQL, offering a comprehensive 375

evaluation of various prompt engineering strategies. 376

They demonstrate that DAIL-SQL, when equipped 377

with GPT-4, achieves superior execution accuracy 378

and token efficiency, making it a practical solution 379

for real-world applications. Some recent works ap- 380

plied prompting method and the principle of consis- 381

tency (Wang et al., 2022) to enhance the reasoning 382

ability of LLMs through In-Context Learning, such 383

as Chain-of-Thoughts(CoT) (Wei et al., 2022) and 384

Tree-of-Thoughts(ToT) (Yao et al., 2023). Chen 385

et al. (2023a) proposed the use of Python code to as- 386

sist LLMs in reasoning called Program of Thoughts 387

(PoT), achieving results that surpass CoT on math 388

problems. 389

Recent studies indicate that Language Models 390

can learn from a few examples given in the context, 391

known as in-context learning (Brown et al., 2020; 392

Chen et al., 2022; Liu and Liu, 2021). These works 393

suggest that context learning can effectively enable 394

LMs to perform a range of complex tasks. There- 395

fore, considering the complexity of the NL2SQL 396

task, context learning can be employed to guide 397

LMs to better generate SQL queries. 398

In addition to leveraging the in-context learn- 399

ing capabilities of LLMs, numerous studies have 400

applied Pre-trained Language Models (PLMs) to 401

the NL2SQL task, as the extensive pre-training 402

on large textual corpora enables PLMs to better 403

model the semantic relationship between user ques- 404

tions and database schemas. Overall, the PLMs 405

used in these works mainly fall into two categories: 406

encoder-only PLMs (such as BERT (Devlin et al., 407

2018), ELECTRA (Clark et al., 2020)) and encoder- 408

decoder PLMs (like BART (Lewis et al., 2019), 409

T5 (Raffel et al., 2020)). For encoder-only PLMs, 410

systems like RATSQL (Wang et al., 2019) and 411

LGESQL (Cao et al., 2021) use BERT to encode 412

user questions and database schemas, further em- 413

ploying graph neural networks to model foreign 414

keys and schema linking. The encoded represen- 415

tations are then fed into a grammar-based syntac- 416

tic neural decoder to generate SQL queries. For 417

encoder-decoder PLMs, approaches like PICARD 418

(Scholak et al., 2021), RASAT (Qi et al., 2022), and 419

RESDSQL (Li et al., 2023a) frame the NL2SQL 420

task as an end-to-end translation problem, using the 421

T5 model to directly translate user questions into 422

SQL queries. Additionally, task-specific strategies 423

6

like relation-aware self-attention (Qi et al., 2022),424

schema selection (Li et al., 2023a), and constrained425

decoding (Scholak et al., 2021) further enhance the426

accuracy of Encoder-Decoder PLMs in generating427

SQL queries.428

A.2 Significance Test429

We divided the SQL generated by several strategies430

in Table 2 into 10 equal parts and calculated the431

execution accuracy for each. Figure 3 shows the432

box plot drawn using this data.

SQ
L-O

nly PoT IC-Lp DAIL

IC-Lp
+PoT

0.750

0.775

0.800

0.825

0.850

0.875

0.900

Ex
ec

ut
io

n
Ac

cu
ra

cy

Figure 3: Execution Accuracy Box Plot

433
To test whether our strategy can indeed im-434

prove Execution Accuracy (EA), we conduct a sig-435

nificance test between the “SQL-Only” and “IC-436

Lp+PoT” strategies. The null hypothesis of the437

test is that the median EAs obtained by the two438

strategies are the same. The Mann-Whitney U Test439

(Mann and Whitney, 1947) is a non-parametric sta-440

tistical method used to compare whether there is441

a significant difference in the medians of two in-442

dependent samples. Compared to the Analysis of443

Variance (ANOVA), it does not require the data444

to be normally distributed, making it suitable for445

small samples or data with unknown distribution.446

The p-value of the test is 0.0243, which is below447

the commonly accepted significance level of 0.05.448

Therefore, we have reason to reject the null hy-449

pothesis, indicating that the “IC-Lp+PoT” strategy450

leads to a significant performance improvement.451

7

A.3 More Cases452

A.3.1 Spider Error Cases453

Error Type Question, Gold & Prediction Reason

DB Value Q:Q:Q: Find the last name of the students who currently live in the
state of North Carolina but have not registered in any degree
program.
Gold:Gold:Gold: SELECT ... WHERE T2.state_province_county
= ’NorthCarolina’ EXCEPT ...

Pred:Pred:Pred: SELECT ... WHERE T2.state_province_county
= ’North Carolina’ EXCEPT ...

The filtering condition in the
question does not match the
database value, string
“NorthCalifornia” in database
do not have a space in between.

Gold Error Q:Q:Q: What are the first names of all players, and their average
rankings?
Gold:Gold:Gold: SELECT avg(ranking), T1.first_name
FROM players AS T1 JOIN rankings AS T2 ON
T1.player_id = T2.player_id
GROUP BY T1.first_name

Pred:Pred:Pred: SELECT avg(ranking), T1.first_name
FROM players AS T1 JOIN rankings AS T2 ON
T1.player_id = T2.player_id
GROUP BY T1.player_id

The individuals in the table can
be uniquely determined by
column player_id not
first_name, when GROUP BY.

Gold Error Q:Q:Q: Find the id and cell phone of the professionals who operate
two or more types of treatments.
Gold:Gold:Gold: SELECT T1.professional_id,
T1.cell_number FROM Professionals AS T1
JOIN Treatments AS T2 ON
T1.professional_id = T2.professional_id
GROUP BY T1.professional_id
HAVING count(*) >= 2

Pred:Pred:Pred: SELECT T1.professional_id,
T1.cell_number FROM Professionals AS T1
JOIN Treatments AS T2 ON
T1.professional_id = T2.professional_id
GROUP BY T1.professional_id HAVING
COUNT(DISTINCT T2.treatment_type_code) >=
2

The gold only finds
professionals who have two or
more records in the treatment
table does not ensure that the
records are for different types
of treatments

Ambiguity Q:Q:Q: What are the names and ids of all makers with more than 3
models?
Gold:Gold:Gold: SELECT T1.FullName , T1.Id FROM
CAR_MAKERS AS T1 JOIN MODEL_LIST AS T2 ON
T1.Id = T2.Maker GROUP BY T1.Id HAVING
count(*) > 3;
Pred:Pred:Pred: SELECT T1.Maker , T1.Id FROM
CAR_MAKERS AS T1 JOIN MODEL_LIST AS T2 ON
T1.Id = T2.Maker GROUP BY T1.Id HAVING
count(*) > 3;

Both column “Maker” and
column “FullName” can answer
the question about the “names
of makers” in the query.

Imprecise Q:Q:Q: What are the arriving date and the departing date of the dogs
who have gone through a treatment?
Gold:Gold:Gold: SELECT DISTINCT T1.date_arrived,
T1.date_departed FROM Dogs AS T1 JOIN
Treatments AS T2 ON T1.dog_id = T2.dog_id
Pred:Pred:Pred: SELECT DISTINCT T1.date_arrived,
T1.date_departed, T1.Name FROM Dogs AS T1
JOIN Treatments AS T2 ON T1.dog_id =
T2.dog_id

The question do not require
listing the specific names of the
students, but only ask to list the
students’ arrival and departure
dates. This falls under
information redundancy.

Table 4

8

A.3.2 BIRD Error Cases 454

Error Type Question, Gold & Prediction Reason

DB Value Q:Q:Q: How many cards with unknown power that can’t be found in
foil is in duel deck A?
Gold:Gold:Gold: SELECT SUM(CASE WHEN power LIKE ’%*%’ OR
power IS NULL THEN 1 ELSE 0 END) FROM cards WHERE
hasFoil = 0 AND duelDeck = ’a’
Pred:Pred:Pred: SELECT COUNT(*) FROM cards WHERE (power IS
NULL OR power = ’*’) AND hasFoil = 0 AND duelDeck =
’a’

Values in database cannot exact
match with the question and
evidence.

Gold Error Q:Q:Q: How many artists have designed a card with a black border
color and is available in both "arena" and "mtgo" printing type?
Gold:Gold:Gold: SELECT COUNT(CASE WHEN availability
LIKE ’%arena,mtgo%’ THEN 1 ELSE NULL END)
FROM cards
Pred:Pred:Pred: SELECT COUNT(DISTINCT artist) FROM
cards WHERE borderColor = ’black’ AND
availability LIKE ’%arena,mtgo%’

The gold missed one filtering
condition.

Ambiguity Q:Q:Q: Among black card borders, which card has full artwork?
Gold:Gold:Gold: SELECT id FROM cards WHERE
borderColor = ’black’ AND isFullArt = 1
Pred:Pred:Pred: SELECT name FROM cards WHERE
borderColor = ’black’ AND isFullArt = 1;

Both column “name” and
column “id” can answer the
question about the “the card has
full artwork” in the query.

Logic Q:Q:Q: Which cities have the top 5 lowest enrollment number for
students in grades 1 through 12?
Gold:Gold:Gold: SELECT T2.City FROM frpm AS T1 INNER
JOIN schools AS T2 ON T1.CDSCode =
T2.CDSCode GROUP BY T2.City ORDER BY
SUM(T1.‘Enrollment (K-12)‘) ASC LIMIT 5
Pred:Pred:Pred: SELECT T2.City, T1."Enrollment (K-12)"
FROM frpm AS T1 JOIN schools AS T2 ON
T1.CDSCode = T2.CDSCode ORDER BY
T1."Enrollment (K-12)" ASC LIMIT 5;

The Pred query is incorrect
because it lacks grouping and
aggregation. It directly selects
cities and their corresponding
"Enrollment (K-12)" without
summing up the enrollment
numbers across all schools
within each city. As a result, it
returns the cities of the five
schools with the lowest
enrollment numbers, which
does not accurately answer the
question seeking the top 5 cities
with the lowest total enrollment
for students in grades 1 through
12.

Table 5

9

A.3.3 Interactive Correction Cases455

Before After Reason

Q:Q:Q: What is the phone number of the school that has the highest number of test takers with an SAT score of over 1500?

Before:Before:Before:
SELECT schools.Phone
FROM satscores
JOIN schools ON
satscores.cds =
schools.CDSCode
WHERE satscores.NumGE1500
> 1500
GROUP BY schools.School
ORDER BY COUNT(*) DESC
LIMIT 1;

After:After:After:
SELECT schools.Phone
FROM satscores
JOIN schools ON
satscores.cds =
schools.CDSCode
ORDER BY
satscores.NumGE1500 DESC
LIMIT 1;

The WHERE clause is checking if the
number of test takers with an SAT score
over 1500 is greater than 1500, which is
not what the question is asking. The
question is asking for the school with
the highest number of test takers who
scored over 1500. Additionally, the
GROUP BY clause is grouping by the
school name, which may not be unique.
It would be better to group by the
school code (CDSCode) which is
unique for each school.

Q:Q:Q: List the top five schools, by descending order, from the highest to the lowest, the most number of Enrollment (Ages
5-17). Please give their NCES school identification number.

Before:Before:Before:
SELECT T1."School Name",
T2.NCESSchool
FROM frpm AS T1
JOIN schools AS T2 ON
T1.CDSCode = T2.CDSCode
ORDER BY T1."Enrollment
(Ages 5-17)" DESC
LIMIT 5;

After:After:After:
SELECT T2.NCESSchool
FROM frpm AS T1
JOIN schools AS T2 ON
T1.CDSCode = T2.CDSCode
ORDER BY T1."Enrollment
(Ages 5-17)" DESC
LIMIT 5;

The question asks for the top five
schools with the most number of
Enrollment (Ages 5-17), and their
NCES school identification number.
However, the SQL query provided
returns the school name, which is not
required by the question.

Q:Q:Q: find the package option of the tv channel that do not have any cartoon directed by Ben Jones.

Before:Before:Before:
SELECT
TV_Channel.Package_Option
FROM TV_Channel
LEFT JOIN Cartoon ON
TV_Channel.id =
Cartoon.Channel
WHERE Cartoon.Directed_by
IS NOT ’Ben Jones’;

After:After:After:
SELECT
TV_Channel.Package_Option
FROM TV_Channel
WHERE TV_Channel.id NOT IN
(
SELECT Cartoon.Channel
FROM Cartoon
WHERE Cartoon.Directed_by
= ’Ben Jones’);

The current query is selecting all
channels where the director is not Ben
Jones, but it should exclude channels
that have any cartoons directed by Ben
Jones. This can be achieved by using a
subquery to find all channels that have
cartoons directed by Ben Jones, and
then excluding these channels in the
main query. Here is the corrected SQL:

Q:Q:Q: List the earnings of poker players in descending order.

Before:Before:Before:
SELECT * FROM poker_player
ORDER BY Earnings DESC;

After:After:After:
SELECT Earnings FROM
poker_player ORDER BY
Earnings DESC;

The question only asks for the earnings
of poker players. Therefore, we should
only select the ‘Earnings‘ column to
make the result more concise and
relevant to the question.

Q:Q:Q: How many countries speak both English and Dutch?

Before:Before:Before:
SELECT COUNT(DISTINCT
CountryCode)
FROM countrylanguage
WHERE Language = ’English’
AND CountryCode IN (
SELECT CountryCode
FROM countrylanguage
WHERE Language = ’Dutch’)

After:After:After:
SELECT COUNT(*)
FROM (
SELECT CountryCode
FROM countrylanguage
WHERE Language = ’English’
INTERSECT
SELECT CountryCode
FROM countrylanguage
WHERE Language = ’Dutch’)

The SQL query provided uses the ‘IN‘
clause, which selects countries that
speak either English or Dutch. However,
the question asks for countries speaking
both languages. Using IN results in a
union of sets (either English or Dutch),
not an intersection (both English and
Dutch). This could be done with two
separate queries joined by an
‘INTERSECT‘ clause.

Table 6

10

A.4 Prompt Examples 456

A.4.1 PoT Prompt Example 457

Global The ‘write down CODE to answer the ‘### QUESTION‘, and translate CODE to SQL. 458

‘### DB_STRUCTURE‘ includes examples of each table, and the filtering criteria should be based 459

on these data examples. In the CODE, ‘Table %s‘ is stored in ‘db_dict[’%s’]‘, ‘db_dict‘ is of type 460

dict[pandas.DataFrame] 461

462

463

464

RELATED_SQLs: <...> 465

466

467

468

DB_STRUCTURE: Database name: world_1 Tables: city, sqlite_sequence, country, coun- 469

trylanguage Primary Keys: city[’ID’], country[’Code’], countrylanguage[’CountryCode’], Foreign Key: 470

pd.merge(city, country, left_on=’CountryCode’, right_on=’Code’) pd.merge(countrylanguage, country, 471

left_on=’CountryCode’, right_on=’Code’) Columns: 472

Table city: ID (number), Name (text), CountryCode (text), District (text), Population (number) 473

Table sqlite_sequence: name (text), seq (text) 474

Table country: Code (text), Name (text), Continent (text), Region (text), SurfaceArea (number), 475

IndepYear (number), Population (number), LifeExpectancy (number), GNP (number), GNPOld (number), 476

LocalName (text), GovernmentForm (text), HeadOfState (text), Capital (number), Code2 (text) 477

Table countrylanguage: CountryCode (text), Language (text), IsOfficial (text), Percentage (number) 478

479

480

481

EXAMPLES: QUESTION: What is %s in the earliest year and what year was it? THOUGHT: The an- 482

swer should consist of two columns, representing %s and the earliest year from the joined data, respectively. 483

CODE: earliest_year = db_dict[%s][’Year’].min() year_filtered_data = step1_result[step1_result[’Year’] 484

== earliest_year] result = year_filtered_data[[%s, ’Year’]] SQL: “‘sql SELECT T1.%s, T2.Year FROM 485

%s AS T1 JOIN %s AS T2 ON T1.Id = T2.Id WHERE T2.Year = (SELECT min(YEAR) FROM %s); “‘ 486

487

QUESTION: Show names for all %s except for %s having a %s in year 2023. THOUGHT: 488

The answer to the question should only include the ’Name’ column of stadiums that do not have a concert 489

in the year 2023, and it’s a text column. CODE: %s_2023 = db_dict[’%s’][db_dict[’%s’][’year’] == 490

’2023’] result = db_dict[%s][db_dict[%s][%s].isin(%ss_2023[%s])] SQL: “‘sql SELECT name FROM 491

%s EXCEPT SELECT T2.name FROM %s AS T1 WHERE T1.year = 2023 “‘ 492

493

QUESTION: Find the %s that %s is A and B? THOUGHT: The task is to find instances where 494

a single column (%s) meets two conditions simultaneously: being ’A’ and ’B’. This scenario is akin to 495

finding an intersection in two datasets. To achieve this, two separate filters are applied to the same dataset, 496

each for one of the conditions. Then, an inner merge is used to find common entries that satisfy both 497

conditions. CODE: condition_a_data = db_dict[%s][db_dict[’Cartoon’][%s] == ’A’] condition_b_data 498

= db_dict[%s][db_dict[’Cartoon’][%s] == ’B’] result = pd.merge(condition_a_data, condition_b_data, 499

how=’inner’) SQL: “‘sql SELECT T1.%s FROM %s AS T1 WHERE %s = ’A’ INTERSECT SELECT 500

T1.%s FROM %s AS T1 WHERE %s = ’B’ “‘ 501

502

QUESTION: How many countries speak both English and Dutch? THOUGHT: 503

11

	Introduction
	SQL-CRAFT Framework
	Experiments and Results
	Conclusion
	Ethical Statements and Limitations
	Appendix
	Additional Relevant Work
	Significance Test
	More Cases
	Spider Error Cases
	BIRD Error Cases
	Interactive Correction Cases

	Prompt Examples
	PoT Prompt Example

