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ABSTRACT

Logic synthesis, a pivotal stage in chip design, entails optimizing chip specifica-
tions encoded in hardware description languages like Verilog into highly efficient
implementations using Boolean logic gates. The process involves a sequential
application of logic minimization heuristics (“synthesis recipe"), with their arrange-
ment significantly impacting crucial metrics such as area and delay. Addressing the
challenge posed by the broad spectrum of design complexities — from variations
of past designs (e.g., adders and multipliers) to entirely novel configurations (e.g.,
innovative processor instructions) — requires a nuanced ‘synthesis recipe’ guided
by human expertise and intuition. This study conducts a thorough examination of
learning and search techniques for logic synthesis, unearthing a surprising revela-
tion: pre-trained agents, when confronted with entirely novel designs, may veer off
course, detrimentally affecting the search trajectory. We present ABC-RL, a metic-
ulously tuned α parameter that adeptly adjusts recommendations from pre-trained
agents during the search process. Computed based on similarity scores through
nearest neighbor retrieval from the training dataset, ABC-RL yields superior syn-
thesis recipes tailored for a wide array of hardware designs. Our findings showcase
substantial enhancements in the Quality-of-result (QoR) of synthesized circuits,
boasting improvements of up to 24.8% compared to state-of-the-art techniques. Fur-
thermore, ABC-RL achieves an impressive up to 9x reduction in runtime (iso-QoR)
when compared to current state-of-the-art methodologies.

1 INTRODUCTION

Modern chips are designed using sophisticated electronic design automation (EDA) algorithms that
automatically convert logic functions expressed in a hardware description language (HDL) like
Verilog to a physical layout that can be manufactured at a semiconductor foundry. EDA involves a
sequence of steps, the first of which is logic synthesis. Logic synthesis converts HDL into a low-level
“netlist” of Boolean logic gates that implement the desired function. A netlist is a graph whose
nodes are logic gates (e.g., ANDs, NOTs, ORs) and whose edges represent connections between
gates. Subsequent EDA steps like physical design then place gates on an x-y surface and route wires
between them. As the first step in the EDA flow, any inefficiencies in this step, e.g., redundant logic
gates, flow down throughout the EDA flow. Thus, the quality of logic synthesis—the area, power and
delay of the synthesized netlist—is crucial to the quality of the final design (Amarú et al., 2017).

As shown in Fig. 1, state-of-art logic synthesis algorithms perform a sequence of functionality-
preserving transformations, e.g., eliminating redundant nodes, reordering Boolean formulas, and
streamlining node representations, to arrive at a final optimized netlist Yang et al. (2012); Mishchenko
et al. (2006); Riener et al. (2019); Yu (2020); Neto et al. (2022). A specific sequence of transformations
is called a “synthesis recipe.” Typically, designers use experience and intuition to pick a “good"
synthesis recipe from the solution space of all recipes and iterate if the quality of result is poor.
This manual process is costly and time-consuming, especially for modern, complex chips. Further,
the design space of synthesis recipes is large. ABC (Brayton & Mishchenko, 2010), a state-of-art
open-source synthesis tool, provides a toolkit of 7 transformations, yielding a design space of 107
recipes (assuming 10-step recipes). A growing body of work has sought to leverage machine learning
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and reinforcement learning (RL) to automatically identify high-quality synthesis recipes (Yu et al.,
2018; Hosny et al., 2020; Zhu et al., 2020; Yu, 2020; Neto et al., 2022; Chowdhury et al., 2022),
showing promising results.

module fa
(in1,
in2,cin,
sum,cout);

input
in1,in2,cin;
output
sum,cout;

assign sum =
in1^in2^cin ;
assign cout =
(in1&in2)|
(in2&cin)|
(in1&cin) ;

endmodule
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Figure 1: (Left) A hardware design in Verilog is first
transformed into an and-inverter-graph (AIG), i.e., a
netlist containing only AND and NOT gates. Then a
sequence of functionality-preserving transformations
(here, picked from set {rw, rwz, . . . , b }) is applied
to generate an optimized AIG. Each such sequence is
called a synthesis recipe. The synthesis recipe with the
best quality of result (QoR) (e.g., area or delay) is shown
in green. (Right) Applying rw and b to an AIG results
results in an AIG with fewer nodes and lower depth.
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Figure 2: Reduction in area-delay product (greater re-
duction is better) over search iterations for a pure search
strategy (MCTS) and search augmented with learning
(MCTS+Learning). Learning an offline policy does not
help in both cases.

Prior work in this area falls within one of two cat-
egories. The first line of work (Yu, 2020; Neto
et al., 2022) proposes efficient search heuristics,
Monte-Carlo tree search (MCTS) in particular,
to explore the solution space of synthesis recipes
for a given netlist. These methods train a policy
agent during MCTS iterations, but the agent is
initialized from scratch for a given netlist and
does not learn from past data, e.g., repositories
of previously synthesized designs abundant in
chip design companies, or sourced from public
repositories (Chowdhury et al., 2021; Thakur
et al., 2023).

To leverage experience from past designs, a sec-
ond line of work seeks to augment search with
learning. Chowdhury et al. (2022) show that
a predictive QoR model trained on past designs
with simulated annealing-based search can out-
perform prior search-only methods by as much
as 20% in area and delay. The learned model
replaces time-consuming synthesis runs—a sin-
gle synthesis run can take around 10.9 minutes
in our experiments—with fast but approximate
QoR estimates from a pre-trained deep network.

Motivational Observation. Given the tree-
structured search space (see Fig. 2), we begin by
building and evaluating a baseline solution that:
1) pre-trains an offline RL agent on a dataset
of past designs; and then 2) performs RL-agent
guided MCTS search over synthesis recipe space
for new designs. Although details vary, this
strategy has been successful in other tree-search
problems, most prominently in AlphaGo (Silver et al., 2016) and AlphaZero Silver et al. (2017).
Interestingly, we found that although the agent learned on past data helps slightly on average, on
11 out of 20 designs, the baseline strategy underperformed simple MCTS search (see Table 2 for
detailed results). Fig. 2 shows two examples: in both, pure MCTS achieves better solutions faster
than learning augmented MCTS. Ideally, we seek solutions that provide consistent improvements
over search-only methods by leveraging past data.

One reason for poor performance is the large diversity of netlists in logic synthesis benchmarks.
Netlists vary significantly in size (100-46K nodes) and function. The EPFL benchmarks, for example,
partition netists into those that perform arithmetic functions (e.g., adders, dividers, square-roots) and
control functions (e.g., finite state machines, pattern detectors, etc.) because of large differences in
their graph structures. In practice, while designers often reuse components from past designs, they
frequently come up with new designs and novel functions. For netlists that differ significantly from
those in the training dataset, pre-trained agents hurt by diverting search towards suboptimal recipes.

Overview of Approach. We propose ABC-RL, a new retrieval guided RL approach that adaptively
tunes the contribution of the pre-trained policy agent in the online search stage depending on the input
netlist. ABC-RL computes a tuning factor α ∈ [0, 1] by computing a similarity score of the input
netlist and its nearest neighbor retrieved from the training dataset. Similarity is computed on graph
neural network (GNN) features learned during training. If the new netlist is identical to one in the
training dataset, we set α = 0, and only the pre-trained agent is used to output the synthesis recipe.
Conversely, when α = 1 (i.e., the netlist is novel), the pre-trained agent is ignored and ABC-RL
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defaults to a search strategy. Real-world netlists lie in between these extremes; accordingly ABC-RL
modulating the relative contributions of the pre-trained agent and pure MCTS search to the final result.
We make careful architectural choices in our implementation of ABC-RL, including the choice of
netlist and synthesis recipe encoders and state-space representation. They are described in Section 2.3.
Although our main contribution is ABC-RL, the MCTS+Learning baseline (i.e., without retrieval)
has not been evaluated for logic synthesis. Our evaluations highlight its benefits and drawbacks.

Snapshot of Results and Key Contributions. Across three common logic synthesis benchmark
suites ABC-RL consistently outperforms prior SOTA ML-based logic synthesis solutions, our own
MCTS+Learning baseline, and an MCTS+Learning solution for chip placement Mirhoseini et al.
(2021), a different EDA problem, adapted to logic synthesis. ABC-RL achieves upto 24.8% geo.
mean improvements in QoR (here, area-delay product) over SOTA. At iso-QoR, ABC-RL reduces
synthesis runtime by up to 9×.

In summary, our key contributions are:

• We propose ABC-RL, a new retrieval-guided RL approach for logic synthesis that learns from
past historical data, i.e., previously seen netlists, to optimize the QoR for a new netlist at test
time. In doing so, we identify distribution shift between training and test data as a key problem
in this domain, and show that a baseline strategy that augments MCTS with a pre-trained policy
agent Silver et al. (2016) fails to improve upon pure MCTS search.

• To address these concerns, we introduce new lightweight retrieval mechanism in ABC-RL that uses
the similarity score between the new test netlist and its nearest neighbor in the training set. This
score modulates the relative contribution of pre-trained RL agent using a modulation parameter α,
down-weighting the learned policy depending on the novelty of the test netlist.

• We make careful architectural choices for ABC-RL’s policy agent, including a new transformer
based synthesis encoder, and evaluate across three of common logic synthesis benchmarks. ABC-
RL consistently outperforms prior SOTA ML for logic synthesis methods on QoR and runtime,
as also a recent ML for chip-placement method (Mirhoseini et al., 2021) adapted to our problem
setting. Ablation studies establish the importance of α-tuning to ABC-RL.

We now describe ABC-RL, starting with a precise problem formulation and background.

2 PROPOSED APPROACH

2.1 PROBLEM STATEMENT AND BACKGROUND

We begin by formally defining the logic synthesis problem using ABC (Brayton & Mishchenko,
2010), the leading open-source synthesis tool, as an exemplar. As shown in Figure 1, ABC first
converts the Verilog description of a chip into an unoptimized And-Invert-Graph (AIG) G0 ∈ G,
where G is the set of all directed acyclic graphs. The AIG represents AND gates as nodes, wires/NOT
gates as solid/dashed edges, and implements the same Boolean function as the input Verilog. Next,
ABC performs a series of functionality-preserving transformations on G0. Transformations are
picked from a finite set of M actions, A = {rf, rm, . . . , b}. For ABC, M = 7. Applying an action
on an AIG yields a new AIG as determined by the synthesis function S : G ×A → G. A synthesis
recipe R ∈ AL is a sequence of L actions that are applied to G0 in order. Given a synthesis recipe
P = {a0, a1, . . . , aL−1} (ai ∈ A), we obtain Gi+1 = S(Gi, ai) for all i ∈ [0, L− 1] where GL is
the final optimized AIG. Finally, let QoR : G → R measure the quality of graph G, for instance, its
inverse area-delay product (so larger is better). Then, we seek to solve this optimization problem:

argmax
P∈AL

QoR(GL), s.t. Gi+1 = S(Gi, ai) ∀i ∈ [0, L− 1]. (1)

We now discuss ABC-RL, our proposed approach to solve this optimization problem. In addition to
G0, the AIG to be synthesized, we will assume access to a training set of AIGs to aid optimization.

2.2 BASELINE MCTS-BASED OPTIMIZATION

The tree-structured solution space for logic synthesis motivated prior work (Yu, 2020; Neto et al.,
2022) to adopt an MCTS-based search strategy that we briefly review here. A state s here is the
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current AIG after l transformations. In a given state, any action a ∈ A can be picked as described
above. Finally, the reward QoR(GL) is delayed to the final synthesis step. In iteration k of the
search, MCTS keeps track of two functions: Qk

MCTS(s, a) which is measure the “goodness" of a state
action pair, and Uk

MCTS(s, a) which represents upper confidence tree (UCT) factor that encourages
exploration of less visited states and actions. The policy πk

MCTS(s) balances exploitation against
exploration by combining the two terms. Further details are in §A.3.

πk
MCTS(s) = argmax

a∈A

(
Qk

MCTS(s, a) + Uk
MCTS(s, a)

)
. (2)

2.3 PROPOSED ABC-RL METHODOLOGY

We describe our proposed solution in two steps. First, we describe MCTS+Learning, which builds
similar principles as Silver et al. (2016) by training an reinforcement learning (RL) policy agent
on prior netlists to guide Monte Carlo tree search (MCTS) search, highlighting how prior work is
adapted to the logic synthesis problem. Then, we describe our full solution, ABC-RL, that uses novel
retrieval-guided augmentation to significantly improve MCTS+Learning.

MCTS+Learning: As noted, we use a dataset of Ntr training circuits to learn a policy agent πθ(s, a)
that outputs the probability of taking action a in state s by approximating the pure MCTS policy
on the training set. We first describe our state-space representation and policy network architecture.

AIG embedding

BN+LeakyReLU

GCN (1x32)

Mean pool Max pool

GCN (1x32)

Node features (1x2)

Initial AIG Past
heuristics
sequence

(0-10)
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Sequence
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(1x768)

BN

FC (832x256) +BN +LeakyRELU
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FC (256x7)

Softmax

 (s, )

Figure 3: Policy network archi-
tecture. GCN: Graph convolution
network, BN: Batch normaliza-
tion, FC: Fully connected layer

State-space and policy network architecture: We encode state s as
as a two-tuple of the input AIG, G0, and sequence of l ≤ L synthesis
actions, i.e., Al = {a0, a1, . . . , al} taken so far. Because the two
inputs are in different formats, our policy network has two parallel
branches that learn embeddings of AIG G0 and partial recipe.

For the AIG input, we employ a 3-layer graph convolutional net-
work (GCN) Kipf & Welling (2016) architecture to obtain an embed-
ding hG0 . We use LeakyRELU as the activation function and apply
batch normalization before each layer. (See appendix §B.1 for de-
tails.) In contrast to prior work that directly encodes recipes Chowd-
hury et al. (2022), we use a simple single attention layer BERT trans-
former architecture Devlin et al. (2018) to compute partial recipe
embeddings, hAl

, which we concatenate with AIG embeddings. We
make this choice since partial synthesis recipes are variable length,
and to better capture contextual relationships within a sequence of
actions. Ablation studies demonstrate the advantages of this ap-
proach. The final embedding is a concatenation on the AIG and
partial synthesis recipe embeddings.

RL-agent training: With the policy network in place, policy
πθ(s, a) is learned on a training dataset of past netlists using a
cross-entropy loss between the learned policy and the MCTS policy
over samples picked from a replay buffer. The learned policy is used

during inference to bias the upper confidence tree (UCT in Eq. 2) of MCTS towards favorable paths
by computing a new U∗k

MCTS(s, a). For completeness, we outline the pseudocode for RL-training in
the appendix (Algorithm 1).

U∗k
MCTS(s, a) = πθ(s, a) · Uk

MCTS(s, a). (3)

2.4 RETRIEVAL-GUIDED LOGIC SYNTHESIS (ABC-RL)

As we noted, hardware designs frequently contain both familiar and entirely new components. In
the latter case, our results indicate that the learned RL-agents can sometimes hurt performance on
novel inputs by biasing search towards sub-optimal synthesis recipes. In ABC-RL, we introduce a
new term α ∈ [0, 1] in Equation 3 that strategically weights the from pre-trained agents contribution,
completely turning it off when α = 1 (novel circuit) and defaulting to the baseline approach when
α = 0.
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Figure 4: ABC-RL flow: Training the agent (left), setting temperature T and threshold δth (mid) and Recipe
generation at inference-time (right)

(1) Similarity score computation: To quantify novelty of a new netlist, G0, at test-time, we compute
a similarity score with respect to its nearest neighbor in the training dataset Dtr = {Gtr

0 , . . . , Gtr
Ntr
}.

To avoid expenseive nearest neighbor queries in the graph space, for instance, via sub-graph iso-
morphisms, we leverage the graph encodings, hG already learned by the policy agent. Specifically,
we output the smallest cosine distance (∆cos(hG1 , hG2) = 1 − hG1

·hG2

|hG1
||hG2

| ) between the test AIG
embedding and all graphs in the training set: δG0 = mini ∆cos(hG0 , hGtr

i
).

(2) Tuning agent’s recommendation during MCTS: To modulate the balance between the prior
learned policy and pure search, we update the prior UCT with α ∈ [0, 1] as follows:

U∗k
MCTS(s, a) = πθ(s, a)

(1−α) · Uk
MCTS(s, a), (4)

and α is computed by passing similarity score, δG0
, through a sigmoid function, α = σδth,T (δG0

),
defined as σδth,T (z) =

1

1+e−
z−δth

T

with threshold (δth) and temperature (T ) hyperparameters.

Eq.4 allows α to smoothly vary in [0, 1] as intended, while threshold and temperature hyperparameters
control the shape of the sigmoid. Threshold δth controls how close new netlists have to be to the
training data to be considered “novel." In general, small thresholds bias ABC-RL towards more
search and less learning from past data. Temperature δth controls the transition from “previously
seen" to novel. Small temperatures cause ABC-RL to create a harder thresholds between previously
seen and novel designs. Both hyperparameters are chosen using validation data.

(3) Putting it all together: In Fig. 4, we present an overview of the ABC-RL. We begin by training
an RL-agent on training dataset Dtr. Then, we use a separate held-out validation dataset to tune
threshold, δth, and temperature, T , by comparing wins/losses of baseline MCTS+Learning vs. ABC-
RL and performing a grid-search. During inference on a new netlist G0, ABC-RL retrieves the nearest
neighbor from the training data, computes α and performs online α-guided search using weighted
recommendations from the pre-trained RL agent.

3 EMPIRICAL EVALUATION

3.1 EXPERIMENTAL SETUP

Datasets: We consider three datasets used by logic synthesis community: MCNC Yang (1991), EPFL
arithmetic and EPFL random control benchmarks Amarú et al. (2015). MCNC benchmarks have 38
netlists ranging from 100–8K nodes. EPFL arithmetic benchmarks have operations like additions,
multiplications etc. and have 1000-44K nodes. EPFL random control benchmarks have finite-state
machines, routing logic and other functions with 100 –46K nodes.

Split Circuits

Train alu2, apex3, apex5, b2, c1355, c5315, c2670, c6288, prom2, frg1, i7, i8, m3,
max512, table5, adder, log2, max, multiplier, arbiter, ctrl, int2float, priority

Valid apex7, c1908, c3540, frg2, max128, apex6, c432, c499, seq, table3, i10, sin, i2c

Test alu4, apex1, apex2, apex4, i9, m4, prom1, b9, c880, c7552, pair, max1024 {C1-C12},
bar, div, square, sqrt {A1-A4}, cavlc, mem_ctrl, router, voter {R1-R4}

Table 1: Training, validation and test splits in our experiments. Netlists from each
benchmark are represented in each split. In the test set, MCNC netlists are relabeled
[C1-C12], EPFL-arith to [A1-A4] and EPFL-control to [R1-R4].

Train-test split: We
randomly split the 56
total netlists obtained
from all three bench-
marks into 23 netlists
for training 13 for val-
idation (11 MCNC, 1
EPFL-arith, 1 EPFL-
rand) and remaining
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20 for test (see Table 1). We ensure that netlists from each benchmark are represented propor-
tionally in training, validation and test data.

Optimization objective and metrics: We seek to identify the best L = 10 synthesis recipes.
Consistent with prior works Hosny et al. (2020); Zhu et al. (2020); Neto et al. (2022), we use area-
delay product (ADP) as our QoR metric. Area and delay values are obtained using a 7nm technology
library post-technology mapping of the synthesized AIG. As a baseline, we compare against ADP of
the resyn2 synthesis recipe as is also done in prior work Neto et al. (2022); Chowdhury et al. (2022).
In addition to ADP reduction, we report runtime reduction of ABC-RL at iso-QoR, i.e., how much
faster ABC-RL is in reaching the best ADP achieved by competing methods. During evaluations on
test circuits, we give each technique a total budget of 100 synthesis runs.

Training details and hyper-parameters: To train our RL-agents, we use He initialization He et al.
(2015) for weights and following Andrychowicz et al. (2020), multiply weights of the final layer with
0.01 to prevent bias towards any one action. Agents are trained for 50 epochs using Adam with an
initial learning rate of 0.01. In each training epoch, we perform MCTS on all netlists with an MCTS
search budget K = 512 per synthesis level. After MCTS simulations, we sample L×Ntr (Ntr is
the number of training circuits) experiences from the replay buffer (size 2× L×Ntr) for training.
To stabilize training, we normalize QoR rewards (Appendix C.1) and clip it to [−1,+1] Mnih et al.
(2015). We set T = 100 and δth = 0.007 based on our validation data.

We performed the training on a server machine with one NVIDIA RTX A4000 with 16GB VRAM.
The major bottleneck during training is the synthesis time for running ABC; actual gradient updates
are relatively inexpensive. Fully training the RL-agent training took around 9 days.

Baselines for comparison: We compare ABC-RL with five main methods: (1) MCTS: Search-only
MCTS Neto et al. (2022); (2) DRiLLS: RL agent trained via A2C using hand-crafted AIG features
(not on past-training data) Hosny et al. (2020) (3) Online-RL: RL agent trained online via PPO
using Graph Convolutional Networks for AIG feature extraction (but not on past training data) (Zhu
et al., 2020); (4) SA+Pred: simulated annealing (SA) with QoR predictor learned from training
data Chowdhury et al. (2022); and (5) MCTS+L(earning): our own baseline MCTS+Learning
solution using a pre-trained RL-agent (Section ??). MCTS and SA+Pred are the current state-of-
the-art (SOTA) methods. DRiLLS and Online-RL are similar and under-perform MCTS. We report
results versus exisitng methods for completeness. MCTS+L is new and has not been evaluated on
logic synthesis. A final and sixth baseline for comparison is MCTS+L+FT (Mirhoseini et al., 2021)
which is proposed for chip placement, a different EDA problem, but we adapt for logic synthesis.
MCTS+FT is similar to MCTS+L but continues to fine-tune its pre-trained RL-agent on test inputs.

3.2 EXPERIMENTAL RESULTS

3.2.1 ABC-RL VS. SOTA

In Table 2, we compare ABC-RL over SOTA methods Hosny et al. (2020); Zhu et al. (2020); Neto
et al. (2022); Chowdhury et al. (2022) in terms of percentage area-delay product (ADP) reduction
(relative to the baseline resyn2 recipe). We also report speed-ups of ABC-RL to reach the same
QoR as the SOTA methods. Given the long synthesis runtimes, speed-up at iso-QoR as an equally
important metric. Overall, ABC-RL achieves the largest geo. mean reduction in ADP, reducing
ADP by 25% (smaller ADP is better) over resyn2. The next best method is our own MCTS+L
implementation which achieves 20.7% ADP reduction, although it is only slightly better than MCTS.

ABC-RL is also consistently the winner in all but four netlists, and in each of these cases ABC-
RL finishes second only marginally behind the winner. Interestingly, the winner in these cases is
Online+RL, a method that overall has the poorest performance. Importantly, ABC-RL is consistently
better than MCTS+L and MCTS. That is, we show that both learning on past data and using
retrieval are key to good performance. Finally, ABC-RL is also faster than competing methods
with a geo. mean speed-up of 3.8× over SOTA. We dive deeper into specific benchmark suite to
understand where ABC-RL’s improvements stem from.

MCNC benchmarks: ABC-RL provides with substantial improvements on benchmarks such as
C1 (apex1), C7 (prom1), C9 (c880), and C12 (max1024). Fig. 5 plots the ADP reductions over
search iterations for MCTS, SA+Pred, and ABC-RL over four netlists from MCNC. Note from Fig. 5
that ABC-RL in most cases achieves higher ADP reductions earlier than competing methods. Thus,
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Figure 5: Area-delay product reduction (in %) compared to resyn2 on MCNC circuits.
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Figure 6: Area-delay product reduction (in %) using ABC-RL compared to MCTS+Learning.

designers can terminate search when a desired ADP is achieved. This results in run-time speedups
upto 5.9× at iso-QoR compared to standard MCTS. (see Appendix D.1.1 for complete results)

Table 2: Area-delay reduction (%) compared to resyn2: DRiLLS Hosny et al. (2020), Online-RL Zhu et al.
(2020), SA+Pred. Chowdhury et al. (2022), MCTS Neto et al. (2022), MCTS+Learning (MCTS+L) and ABC-RL.
Speed-up vs. MCTS

.

Methods
ADP reduction (in %)

MCNC EPFL arith EPFL random Geo-
meanC1 C2 C3 C4 C5 C6 C7 C8 C9 C10 C11 C12 A1 A2 A3 A4 R1 R2 R3 R4

DRiLLS 18.9 6.7 8.0 13.0 38.4 19.1 5.4 18.0 14.3 18.6 6.6 11.0 28.8 34.7 11.1 22.7 15.4 23.0 12.9 10.1 16.1
Online-RL 20.6 6.6 8.1 13.5 39.4 21.0 5.0 17.9 16.2 20.2 4.7 11.4 36.9 34.8 10.4 24.1 16.3 22.5 10.7 8.3 16.1
SA+Pred. 17.6 17.0 15.6 13.0 46.5 18.2 8.5 23.6 19.9 17.6 10.0 20.3 36.9 25.2 8.2 21.1 16.8 21.5 25.7 26.2 19.7
MCTS 17.1 15.9 13.1 13.0 46.9 14.9 6.5 23.2 17.7 20.5 13.1 19.7 25.4 46.0 10.7 18.7 15.9 21.6 21.6 27.1 19.8
MCTS+L 17.0 19.6 16.9 12.5 46.9 13.9 10.1 24.1 17.1 16.8 8.1 19.5 36.9 55.9 10.3 22.7 15.8 24.1 38.9 26.9 20.7
ABC-RL 19.9 19.6 16.8 15.0 46.9 19.1 12.1 24.3 21.3 21.1 13.6 21.6 36.9 56.2 14.0 23.8 19.8 30.2 38.9 30.0 25.3
Iso-QoR
Speed-up 1.9x 5.9x 1.8x 1.6x 1.2x 1.3x 3.2x 4.1x 2.2x 1.2x 0.9x 1.8x 3.7x 9.0x 4.2x 8.3x 5.0x 6.4x 3.1x 5.7x 3.8x

EPFL benchmarks: ABC-RL excels on 7 out of 8 EPFL designs, particularly demonstrating
significant improvements on A3 (square), R1 (cavlc), and R3 (mem_ctrl) compared to prior
methods Hosny et al. (2020); Zhu et al. (2020); Chowdhury et al. (2022); Neto et al. (2022). Notably,
baseline MCTS+Learning performs poorly on A3 (square), R1 (cavlc), and R4 (voter). In
Fig. 6, we illustrate how ABC-RL fine-tunes α for various circuits, carefully adjusting pre-trained
recommendations to avoid unproductive exploration paths. Across all EPFL benchmarks, ABC-RL
consistently achieves superior ADP reduction compared to pure MCTS, with a geometric ADP
reduction of 28.85% over resyn2. This significantly improves QoR over standard MCTS and
SA+Pred., by 5.99% and 6.12% respectively. Moreover, ABC-RL delivers an average of 1.6×
runtime speed-up at iso-QoR compared to standard MCTS Neto et al. (2022), up to 9× speed-up.

3.2.2 BENCHMARK SPECIFIC ABC-RL AGENTS VS. SOTA

To further examine the benefits of ABC-RL in terms of netlist diversity, we train three benchmark-
specific ABC-RL agents on each benchmark suite using, as before, the train-vaidation-test splits in
Table 1. Although trained on each benchmark individually, evaluation of benchmark-specific agents
is on the full test dataset. This has two objectives: 1) Assess how benchmark-specific agents compare
against the benchmark-wide agents on their own test inputs, and 2) Study how ABC-RL’s benchmark-
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specific agents adapt when deployed on test inputs from other benchmarks. Benchmark-specific
agents are referred to as ABC-RL+X, where X is the benchmark name (MCNC, ARITH, or RC).

Table 3: Area-delay reduction (in %) obtained using benchmark specific agents (MCNC, ARITH and RC).
MCTS represents tree search adopted in Neto et al. (2022)

ABC-RL
agents

/Methods

ADP reduction (in %)

MCNC EPFL arith EPFL random Geo.
meanC1 C2 C3 C4 C5 C6 C7 C8 C9 C10 C11 C12 A1 A2 A3 A4 R1 R2 R3 R4

ABC-RL 19.9 19.6 16.8 15.0 46.9 19.1 12.1 24.3 21.3 21.1 13.6 21.6 36.9 56.2 14.0 23.8 19.8 30.2 38.9 30.0 25.3
+MCNC 20.9 19.2 17.5 15.0 52.5 18.1 10.9 24.1 24.7 21.1 16.8 22.0 32.9 47.9 10.9 18.7 18.2 24.0 24.5 27.1 21.3
+ARITH 18.0 16.0 17.3 13.0 46.9 20.3 8.8 23.2 20.0 24.1 13.1 20.8 36.9 55.9 12.1 25.1 16.9 21.5 21.8 27.7 21.4
+RC 19.0 18.5 17.4 12.5 46.9 16.8 11.9 23.3 22.5 20.4 13.1 20.0 36.5 53.4 10.8 18.7 17.8 22.8 26.6 27.1 21.7

MCTS 17.1 15.9 13.1 13.0 46.9 14.9 6.5 23.2 17.7 20.5 13.1 19.7 25.4 45.9 10.7 18.7 15.9 21.6 21.6 27.1 19.8

In Table 3, we present the performance of ABC-RL using benchmark-specific agents. Notably, ABC-
RL+X agents often outperform the general ABC-RL agent on test inputs from their own benchmark
suites. For example, ABC-RL+MCNC outperforms ABC-RL on 7 of 12 benchmarks. In return, the
performance of benchmark-specific agents drops on test inputs from other benchmarks because these
new netlists are novel for the agent. Nonetheless, our benchmark-specific agents still outperform
the SOTA MCTS approach in geo. mean ADP reduction. In fact, if except ABC-RL, each of our
benchmark-specific agents would still outperform other SOTA methods including MCTS+L. These
results emphasize ABC-RL’s ability to fine-tune α effectively, even in the presence of a substantial
distribution gap between training and test data.

3.3 ABC-RL VS. MCTS+L+FT

In recent work, Mirhoseini et al. (2021) proposed a pre-trained PPO agent for chip placement. This
problem seeks to place blocks on the chip surface so as to reduce total chip area, wire-length and
congestion. Although the input to chip placement is also a graph, the graph only encodes connectivity
and not functionality. Importantly, an action in this setting, e.g. moving or swapping blocks, is quick,
allowing for millions of actions to be explored. In contrast, for logic synthesis, actions (synthesis
steps) involve expensive functionality-preserving graph-level transformations on the entire design
taking up to 5 minutes for larger designs. To adapt to new inputs, Mirhoseini et al. (2021) adopt a
different strategy: they continue to fine-tune (FT) their agents as they perform search on test inputs.
Here we ask if the FT strategy could work for ABC-RL instead of our retrieval-guided solution.

Table 4: Area-delay reduction (in %). ABC-RL−BERT is ABC-RL trained with naive synthesis encoder instead
of BERT. MCTS+L+FT indicate MCTS+Learning with online fine-tuning.

Ablation
study

ADP reduction (in %)

MCNC EPFL arith EPFL random Geo.
meanC1 C2 C3 C4 C5 C6 C7 C8 C9 C10 C11 C12 A1 A2 A3 A4 R1 R2 R3 R4

ABC-RL 19.9 19.6 16.8 15.0 46.9 19.1 12.1 24.3 21.3 21.1 13.6 21.6 36.9 56.2 14.0 23.8 19.8 30.2 38.9 30.0 25.3
MCTS+L+FT 17.1 18.0 15.0 14.1 37.9 12.9 10.1 24.3 17.3 19.6 10.0 20.0 36.9 55.9 10.7 22.1 20.0 30.2 38.9 28.3 23.3
ABC-RL− BERT 17.0 16.5 14.9 13.1 44.6 16.9 10.0 23.5 16.3 18.8 10.6 19.0 36.9 51.7 9.9 20.0 15.5 23.0 28.0 26.9 21.2

To test this, we fine-tune ABC-RL’s benchmark-wide agent during online MCTS within our evaluation
budget of 100 synthesis runs. Table 4 compares ABC-RL vs. the new MCTS+L+FT approach. ABC-
RL outperforms MCTS+L+FT on all but one netlist, and reduces ADP by 2.66%, 2.40% and 0.33%
on MCNC, EPFL, and random control benchmarks, with 9.0% decline on C5 (i9).

3.3.1 IMPACT OF ARCHITECTURAL CHOICES

We inspect the role of BERT-based recipe encoder in ABC-RL by replacing it with a fixed length
(L = 10) encoder where, using the approach from (Chowdhury et al., 2022), we directly encode the
synthesis commands in numerical form and apply zero-padding for recipe length less than L. The
results are shown in Table 4. ABC-RL reduces ADP by 2.51%, 4.04% and 4.11% on MCNC, EPFL
arithmetic and random control benchmarks, and upto -10.90% decline on R3 (router), compared
to the version without BERT. This shows the importance of transformer-based encoder in extracting
meaningful features from synthesis recipe sub-sequences for state representation.
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4 RELATED WORK

Learning-based approaches for logic synthesis: This can be classified into two sub-categories: 1)
Synthesis recipe classification (Yu et al., 2018; Neto et al., 2019) and prediction (Chowdhury et al.,
2021; 2022) based approaches, and 2) RL-based approaches (Haaswijk et al., 2018; Hosny et al.,
2020; Zhu et al., 2020). Neto et al. (2019) partition the original graph into smaller sub-networks
and performs binary classification on sub-networks to pick which recipes work best. On the other
hand, RL-based solutions Haaswijk et al. (2018); Hosny et al. (2020); Zhu et al. (2020) use online
RL algorithms to craft synthesis recipes, but do not leverage prior data. We show that ABC-RL
outperforms them.

ML for EDA: ML has been used for a range of EDA problems Mirhoseini et al. (2021); Kurin et al.
(2020); Lai et al. (2022; 2023); Schmitt et al. (2021); Yolcu & Póczos (2019); Vasudevan et al. (2021);
Yang et al. (2022). Closer to this work, Mirhoseini et al. (2021) used a deep-RL agent to optimize
chip placement, a different problem, and use the pre-trained agent (with online fine-tuning) to place
the new design. This leaves limited scope for online exploration. Additionally, each move or action in
placement, i.e., moving the x-y co-ordinates of modules in the design, is cheap unlike time-consuming
actions in logic synthesis. Thus placement agents can be fine-tuned with larger amounts of test-time
data relative to ABC-RL which has a constrained online search budget. Our ablation study shows
ABC-RL defeats search combined with fine-tuned agent for given synthesis budget. A related body of
work developed general representations of boolean circuits, for instance, DeepGate Li et al. (2022);
Shi et al. (2023), ConVERTS Chowdhury et al. (2023) and “functionality matters" Wang et al. (2022),
learned on signal probability estimation and functionality prediction, respectively. These embeddings
could enhance the quality of our GCN embeddings and are interesting avenues for future work.

RL and search for combinatorial optimization: Fusing learning and search finds applications
across diverse domains such as branching heuristics (He et al., 2014), Go and chess playing (Silver
et al., 2016; Schrittwieser et al., 2020), traveling salesman (TSP) (Xing & Tu, 2020), and common
subgraph detection (Bai et al., 2021). Each of these problems has unique structure. TSP and common
subgraph detection both have graph inputs like logic synthesis but do not perform transformations on
graphs. Branching problems have tree-structure, but do not operate on graphs. Go and Chess involve
self-play during training and must anticipate opponents. Thus these works have each developed
specialized solutions tailored to the problem domain, as we do with ABC-RL. Further, these previous
works have not identified distribution shift as a problem and operate atleast under the assumption that
train-test state distributions align closely.

Retrieval guided Reinforcement learning: Recent works (Goyal et al., 2022; Humphreys et al.,
2022) have explored the benefits of retrieval in game-playing RL-agents. However, they implement
retrieval differently: trajectories from prior episodes are retrieved and the entire trajectory is an
additonal input to the policy agent. This also requires the policy-agent to be aware of retrieval during
training. In contrast, our retrieval strategy is lightweight; instead of an entire graph/netlist, we only
retrieve the similarity score from the training dataset and then fix α. In addition, we do not need to
incorporate the retrieval strategy during training, enabling off-the-shelf use of pre-trained RL agents.
ABC-RL already significantly outperforms SOTA methods with this strategy, but the approach might
be beneficial in other settings where online costs are severely constrained.

5 CONCLUSION

We introduce ABC-RL, a novel methodology that optimizes learning and search through a retrieval-
guided mechanism, significantly enhancing the identification of high-quality synthesis recipes for new
hardware designs. Specifically, tuning the α parameter of the RL agent during MCTS search within
the synthesis recipe space effectively mitigates misguided searches toward unfavorable rewarding
trajectories, particularly when encountering sufficiently novel designs. These core concepts, substan-
tiated by empirical results, underscore the potential of ABC-RL in generating high-quality synthesis
recipes, thereby streamlining modern complex chip design processes for enhanced efficiency.

Reproducibility Statement For reproducibility, we provide detailed information regarding method-
ologies, architectures, and settings in Section 3.1.
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A APPENDIX 1

A.1 LOGIC SYNTHESIS

Logic synthesis transforms a hardware design in register transfer level (RTL) to a Boolean gate-level
network, optimizes the number of gates/depth, and then maps it to standard cells in a technology
library Brayton et al. (1984). Well-known representations of Boolean networks include sum-of-
product form, product-of-sum, Binary decision diagrams, and AIGs which are a widely accepted
format using only AND (nodes) and NOT gates (dotted edges). Several logic minimization heuristics
(discussed in Section A.2)) have been developed to perform optimization on AIG graphs because of its
compact circuit representation and directed acyclic graph (DAG)-based structuring. These heuristics
are applied sequentially (“synthesis recipe”) to perform one-pass logic optimization reducing the
number of nodes and depth of AIG. The optimized network is then mapped using cells from
technology library to finally report area, delay and power consumption.

A.2 LOGIC MINIMIZATION HEURISTICS

We now describe optimization heuristics provided by industrial strength academic tool ABC Brayton
& Mishchenko (2010):

1. Balance (b) optimizes AIG depth by applying associative and commutative logic function tree-
balancing transformations to optimize for delay.

2. Rewrite (rw, rw -z) is a directed acyclic graph (DAG)-aware logic rewriting technique that
performs template pattern matching on sub-trees and encodes them with equivalent logic functions.

3. Refactor (rf, rf -z) performs aggressive changes to the netlist without caring about logic sharing.
It iteratively examines all nodes in the AIG, lists out the maximum fan-out-free cones, and replaces
them with equivalent functions when it improves the cost (e.g., reduces the number of nodes).

4. Re-substitution (rs, rs -z) creates new nodes in the circuit representing intermediate functionalities
using existing nodes; and remove redundant nodes. Re-substitution improves logic sharing.

The zero-cost (-z) variants of these transformation heuristics perform structural changes to the
netlist without reducing nodes or depth of AIG. However, previous empirical results show circuit
transformations help future passes of other logic minimization heuristics reduce the nodes/depth and
achieve the minimization objective.

A.3 MONTE CARLO TREE SEARCH

We discuss in detail the MCTS algorithm. During selection, a search tree is built from the current
state by following a search policy, with the aim of identifying promising states for exploration.

where Qk
MCTS(s, a) denotes estimated Q value (discussed next) obtained after taking action a from

state s during the kth iteration of MCTS simulation. Uk
MCTS(s, a) represents upper confidence tree

(UCT) exploration factor of MCTS search.

Uk
MCTS(s, a) = cUCT

√
log

(∑
a N

k
MCTS(s, a)

)
Nk

MCTS(s, a)
, (5)

Nk
MCTS(s, a) denotes the visit count of the resulting state after taking action a from state s. cUCT

denotes a constant exploration factor Kocsis & Szepesvári (2006).

The selection phase repeats until a leaf node is reached in the search tree. A leaf node in MCTS tree
denotes either no child nodes have been created or it is a terminal state of the environment. Once
a leaf node is reached the expansion phase begins where an action is picked randomly and its roll
out value is returned or R(sL) is returned for the terminal state sL. Next, back propagation happens
where all parent nodes Qk(s, a) values are updated according to the following equation.

Qk
MCTS(s, a) =

Nk
MCTS(s,a)∑

i=1

Ri
MCTS(s, a)/N

k
MCTS(s, a). (6)
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A.4 ABC-RL AGENT PRE-TRAINING PROCESS

As discussed in Section 2.3, we pre-train an agent using available past data to help with choosing
which logic minimization heuristic to add to the synthesis recipe. The process is shown as Algorithm 1.

Algorithm 1 ABC-RL: Policy agent pre-training

1: procedure TRAINING(θ)
2: Replay buffer (RB) ← ϕ, Dtrain = {AIG1, AIG2, ..., AIGn}, num_epochs=N , Recipe

length=L, AIG embedding network: Λ, Recipe embedding network: R, Agent policy πθ := U
(Uniform distribution), MCTS iterations = K, Action space = A

3: for AIGi ∈ Dtrain do
4: r ← 0, depth← 0
5: s← Λ(AIGi) +R(r)
6: while depth < L do
7: πMCTS = MCTS(s, πθ,K)
8: a = argmaxa′∈AπMCTS(s, a

′)
9: r ← r + a, s′ ← A(AIGi) +R(r)

10: RB ← RB
⋃
(s, a, s′, πMCTS(s, ·))

11: s← s′, depth← depth+ 1

12: for epochs < N do
13: θ ← θi − α∇θL(πMCTS , πθ)

B NETWORK ARCHITECTURE

B.1 AIG NETWORK ARCHITECTURE

AIG encoding in ABC: An AIG graph is a directed acyclic graph representing the circuit’s boolean
functionality. We read in the same AIG format introduced in Mishchenko et al. (2006) and commonly
used in literature: nodes in the AIG represent AND gates, Primary Inputs (PIs) or Primary Outputs
(POs). On the other hand, NOT gates are represented by edges: dashed edges represent NOT gates
(i.e., the output of the edge is a logical negation of its input) and solid edges represent a simple wire
whose output equals its input.

GCN-based AIG embedding: Starting with a graph G = (V,E) that has vertices V and edges E, the
GCN aggregates feature information of a node with its neighbors’ node information. The output is then
normalized using Batchnorm and passed through a non-linear LeakyReLU activation function.
This process is repeated for k layers to obtain information for each node based on information from
its neighbours up to a distance of k-hops. A graph-level READOUT operation produces a graph-level
embedding. Formally:

hk
u = σ(Wk

∑
i∈u∪N(u)

hk−1
i√

N(u)×
√
N(v)

+ bk), k ∈ [1..K] (7)

hG = READOUT ({hk
u;u ∈ V })

Here, the embedding for node u, generated by the kth layer of the GCN, is represented by hk
u.The

parameters Wk and bk are trainable, and σ is a non-linear ReLU activation function. N(·) denotes
the 1-hop neighbors of a node. The READOUT function combines the activations from the kth layer
of all nodes to produce the final output by performing a pooling operation.

Each node in the AIG read in from ABC is translated to a node in our GCN. For the initial embeddings,
h0
u, We use two-dimensional vector to encode node-level features: (1) node type (AND, PI, or PO)

and (2) number of negated fan-in edges Chowdhury et al. (2021; 2022). we choose k = 3 and global
average and max pooling concatenated as the READOUT operation.

Architectural choice of GNN: We articulate our rationale for utilizing a simple Graph Convolutional
Network (GCN) architecture to encode AIGs for the generation of synthesis recipes aimed at
optimizing the area-delay product. We elucidate why this approach is effective and support our
argument with an experiment that validates its efficacy:
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• Working principle of logic synthesis transformations: Logic synthesis transformations
of ABC (and in general commercial logic synthesis tools) including rewrite, refactor and
re-substitute performs transformations at a local subgraph levels rather than the whole AIG
structure. For e.g. rewrite performs a backward pass from primary outputs to primary
inputs, perform k-way cut at each AIG node and replace the functionality with optimized
implementation available in the truth table library of ABC. Similarly, refactor randomly picks
a fan-in cone of an intermediate node of AIG and replaces it with a different implementation
if it reduced the nodes of AIG. Thus, effectiveness of any synthesis transformations do not
require deeper GCN layers; capturing neighborhood information upto depth 3 in our case
worked well to extract features out of AIG which can help predict which transformation
next can help reduce area-delay product.

• Feature initialization of nodes in AIG: The node in our AIG encompasses two important
feature: i) Type of node (Primary Input, Primary Output and Internal Node) and ii) Number
of negated fan-ins. Thus, our feature initialization scheme takes care of the functionality
even though the structure of AIG are exactly similar and the functionality. Thus, two AIG
having exact same structure but edge types are different (dotted edge represent negation and
solid edge represent buffer), the initial node features of AIG itself will be vastly different
and thus our 3-layer GCNs have been capable enough to distinguish between them and
generate different synthesis recipes.

Several recent GNN-based architectures Li et al. (2022); Shi et al. (2023) have been proposed
recently to capture functionality of AIG-based hardware representations. This remains an active
exploration direction to further enhance the benefits of ABC-RL to distinguish structurally similar
yet substantially varying in functionality space.

C EXPERIMENTAL DETAILS

C.1 REWARD NORMALIZATION

In our work, maximizing QoR entails finding a recipe P which is minimizing the area-delay product
of transformed AIG graph. We consider as a baseline recipe an expert-crafted synthesis recipe
resyn2 Mishchenko et al. (2006) on top of which we improve our ADP.

R =

{
1− ADP (S(G,P ))

ADP (S(G,resyn2)) ADP (S(G,P )) < 2×ADP (S(G,P )),

−1 otherwise.

C.2 BENCHMARK CHARACTERIZATION

We present the characterization of circuits used in our dataset. This data provides a clean picture on
size and level variation across all the AIGs.
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Name Inputs Outputs Nodes level

alu2 10 6 401 40
alu4 10 6 735 42
apex1 45 45 2655 27
apex2 39 3 445 29
apex3 54 50 2374 21
apex4 9 19 3452 21
apex5 117 88 1280 21
apex6 135 99 659 15
apex7 49 37 221 14
b2 16 17 1814 22
b9 41 21 105 10
C432 36 7 209 42
C499 41 32 400 20
C880 60 26 327 24
C1355 41 32 504 26
C1908 31 25 414 32
C2670 233 140 717 21
C3540 50 22 1038 41
C5315 178 123 1773 38
C6288 32 32 2337 120
C7552 207 108 2074 29
frg1 28 3 126 19
frg2 143 139 1164 13
i10 257 224 2675 50
i7 199 67 904 6
i8 133 81 3310 21
i9 88 63 889 14
m3 8 16 434 14
m4 8 16 760 14
max1024 10 6 1021 20
max128 7 24 536 13
max512 9 6 743 19
pair 173 137 1500 24
prom1 9 40 7803 24
prom2 9 21 3513 22
seq 41 35 2411 29
table3 14 14 2183 24
table5 17 15 1987 26

adder 256 129 1020 255
bar 135 128 3336 12
div 128 128 44762 4470
log2 32 32 32060 444
max 512 130 2865 287
multiplier 128 128 27062 274
sin 24 25 5416 225
sqrt 128 64 24618 5058
square 62 128 18484 250

arbiter 256 129 11839 87
ctrl 7 26 174 10
cavlc 10 11 693 16
i2c 147 142 1342 20
int2float 11 7 260 16
mem_ctrl 1204 1231 46836 114
priority 128 8 978 250
router 60 30 257 54
voter 1001 1 13758 70

Table 5: Benchmark characterization: Primary inputs, outputs, number of nodes and level of AIGs
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Figure 7: Area-delay product reduction (in %) compared to resyn2 on MCNC circuits. GREEN:
SA+Pred. Chowdhury et al. (2022), BLUE: MCTS Neto et al. (2022), RED: ABC-RL

D RESULTS

D.1 PERFORMANCE OF ABC-RL AGAINST PRIOR WORKS AND BASELINE MCTS+LEARNING

D.1.1 MCNC BENCHMARKS

Figure 7 plots the ADP reductions over search iterations for MCTS, SA+Pred, and ABC-RL. In m4,
ABC-RL’s agent explores paths with higher rewards whereas standard MCTS continues searching
without further improvement. A similar trend is observed for prom1 demonstrating that a pre-trained
agent helps bias search towards better parts of the search space. SA+Pred. Chowdhury et al. (2022)
also leverages past history, but is unable to compete (on average) with MCTS and ABC-RL in part
because SA typically underperforms MCTS on tree-based search spaces. Also note from Figure 5
that ABC-RL in most cases achieves higher ADP reductions earlier than competing methods (except
pair). This results in significant geo. mean run-time speedups of 2.5× at iso-QoR compared to
standard MCTS on MCNC benchmarks.

D.1.2 EPFL ARITHMETIC BENCHMARKS

Figure 8 illustrates the performance of ABC-RL in comparison to state-of-the-art methods: Pure
MCTS Neto et al. (2022) and SA+Prediction Chowdhury et al. (2022). In contrast to the scenario
where MCTS+Baseline underperforms pure MCTS (as shown in 2), here we observe that ABC-
RL effectively addresses this issue, resulting in superior ADP reduction. Remarkably, ABC-RL
achieved a geometric mean 5.8× iso-QoR speed-up compared to MCTS across the EPFL arithmetic
benchmarks.
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Figure 8: Area-delay product reduction (in %) compared to resyn2 on EPFL arithmetic benchmarks. GREEN:
SA+Pred. Chowdhury et al. (2022), BLUE: MCTS Neto et al. (2022), RED: ABC-RL
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D.1.3 EPFL RANDOM CONTROL BENCHMARKS
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Figure 9: Area-delay product reduction (in %) compared to resyn2 on EPFL random control benchmarks. On
cavlc and router, ABC-RL perform better than MCTS where baseline MCTS+Learning under-perform.
GREEN: SA+Pred. Chowdhury et al. (2022), BLUE: MCTS Neto et al. (2022), RED: ABC-RL.

D.2 PERFORMANCE OF BENCHMARK-SPECIFIC ABC-RL AGENTS

ABC-RL+MCNC agent: For 6 out of 12 MCNC benchmarks, ABC-RL guided by the MCNC agent
demonstrated improved performance compared to the benchmark-wide agent. This suggests that
the hyper-parameters (δth and T ) derived from the validation dataset led to optimized α values for
MCNC benchmarks. However, the performance of the MCNC agent was comparatively lower on
EPFL arithmetic and random control benchmarks.

ABC-RL+ARITH agent: Our EPFL arith agent resulted in better ADP reduction compared to
benchmark-wide agent only on A4(sqrt). This indicate that benchmark-wide agent is able to learn
more from diverse set of benchmarks resulting in better ADP reduction. On MCNC benchmarks, we
observe that ARITH agent performed the best amongst all on C6(m4) and C10 (c7552) because
these are arithmetic circuits.

ABC-RL+RC agent: Our RC agent performance on EPFL random control benchmarks are not that
great compared to benchmark-wide agent. This is primarily because of the fact that EPFL random
control benchmarks have hardware designs performing unique functionality and hence learning from
history doesn’t help much. But, ABC-RL ensures that performance don’t detoriate compared to pure
MCTS.

D.3 PERFORMANCE OF ABC-RL VERSUS FINE-TUNING (MCTS+L+FT)

MCNC Benchmarks: In Fig. 10, we depict the performance comparison among MCTS+finetune
agent, ABC-RL, and pure MCTS. Remarkably, ABC-RL outperforms MCTS+finetune on 11 out of
12 benchmarks, approaching MCTS+finetune’s performance on b9. A detailed analysis of circuits
where MCTS+finetune performs worse than pure MCTS (i9, m4, pair, c880, max1024,
and c7552) reveals that these belong to 6 out of 8 MCNC designs where MCTS+learning performs
suboptimally compared to pure MCTS. This observation underscores the fact that although finetuning
contributes to a better geometric mean over MCTS+learning (23.3% over 20.7%), it still falls short
on 6 out of 8 benchmarks. For the remaining two benchmarks, alu4 and apex4, MCTS+finetune
performs comparably to pure MCTS for alu4 and slightly better for apex4. Thus, ABC-RL
emerges as a more suitable choice for scenarios where fine-tuning is resource-intensive, yet we seek
a versatile agent capable of appropriately guiding the search away from unfavorable trajectories.

EPFL Benchmarks: In Fig. 11 and 12, we present the performance comparison with MCTS+finetune.
Notably, for designs bar and div, MCTS+finetune achieved equivalent ADP as ABC-RL, main-
taining the same iso-QoR speed-up compared to MCTS. These designs exhibited strong perfor-
mance with baseline MCTS+Learning, thus aligning with the expectation of favorable results with
MCTS+finetune. On square, MCTS+finetune nearly matched the ADP reduction achieved by pure
MCTS. This suggests that fine-tuning contributes to policy improvement from the pre-trained agent,
resulting in enhanced performance compared to baseline MCTS+Learning. In the case of sqrt,
MCTS+finetune approached the performance of ABC-RL. Our fine-tuning experiments affirm its
ability to correct the model policy, although it require more samples to converge towards ABC-RL
performance.
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Figure 10: Area-delay product reduction (in %) compared to resyn2 on MCNC benchmarks. YELLOW:
MCTS+Finetune, BLUE: MCTS Neto et al. (2022), RED: ABC-RL
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Figure 11: Area-delay product reduction (in %) compared to resyn2 on EPFL arithmetic benchmarks. YELLOW:
MCTS+Finetune, BLUE: MCTS Neto et al. (2022), RED: ABC-RL
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Figure 12: Area-delay product reduction (in %) compared to resyn2 on EPFL random control benchmarks.
YELLOW: MCTS+FT, BLUE: MCTS Neto et al. (2022), RED: ABC-RL
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D.4 ABC-RL: SIMILARITY SCORE COMPUTATION AND NEAREST NEIGHBOUR RETRIEVAL

Next, we report nearest neighbor retrieval performance of ABC-RL which is a key mechanism in
setting α to tune pre-trained agent’s recommendation during MCTS search. We report similarity
score which is the cosine distance between test AIG and nearest neighbour retrieved via similarity.
We also report the training circuit which the test AIG is closest to. Based on our validation dataset,
we set T = 100 and δth = 0.007.

Benchmark Designs Similarity Score Nearest neighbour

MCNC

alu4 0.000 alu2
apex1 0.001 apex3
apex2 0.002 alu2
apex4 0.000 prom2
c7552 0.006 max512
i9 0.003 prom2
m4 0.001 max512
prom1 0.002 prom2
b9 0.005 c2670
c880 0.006 frg1
pair 0.010 m3
max1024 0.023 alu2

EPFL arith

bar 0.002 prom2
div 0.001 log2
square 0.012 alu2
sqrt 0.002 multiplier

EPFL random control

cavlc 0.007 alu2
mem_ctrl 0.001 prom2
router 0.025 adder
voter 0.006 m3

Table 6: Similarity score (×10−2) of nearest neighbour retrieved using ABC-RL for test designs. Nearest
neighbour denotes the training design closest to test-time design

D.5 ABC-RL: ARCHITECTURAL CHOICES FOR RECIPE ENCODER

ABC-RL uses BERT-based recipe encoder to extract two meaningful information: 1) Contextual
relationship between current synthesis transformations and previous ones and 2) The synthesis
transformations which needs more attention compared to others depending on its position. For e.g.
rewrite operation at the start of a synthesis recipe tend to optimize more number of nodes in AIG
compared to its position later in the recipe Yu (2020); Neto et al. (2022). Similarly, transformations
like balance are intended towards reducing delay of the design wheras transformations like
rewrite, refactor, resub are intended towards area optimization. Thus, selective attention
and placement of their positions with respect to other synthesis transformations needs to be learned
which makes BERT an ideal choice to encode synthesis recipe. As part of additional ablation study,
we encode our synthesis recipe with LSTM network with input sequence length (L = 10) and apply
zero-padding for recipe length less than L.

Table 7: Area-delay reduction (in %). ABC-RL−BERT is ABC-RL trained with naive synthesis encoder instead
of BERT. MCTS+L+FT indicate MCTS+Learning with online fine-tuning.

Recipe
encoder

ADP reduction (in %)

MCNC EPFL arith EPFL random Geo.
meanC1 C2 C3 C4 C5 C6 C7 C8 C9 C10 C11 C12 A1 A2 A3 A4 R1 R2 R3 R4

Naive 17.0 16.5 14.9 13.1 44.6 16.9 10.0 23.5 16.3 18.8 10.6 19.0 36.9 51.7 9.9 20.0 15.5 23.0 28.0 26.9 21.2
LSTM-based 19.5 17.8 14.9 13.3 44.5 17.8 10.3 23.5 18.8 20.1 10.6 19.6 36.9 53.4 10.9 22.4 16.8 24.3 32.3 28.7 22.6
BERT-based 19.9 19.6 16.8 15.0 46.9 19.1 12.1 24.3 21.3 21.1 13.6 21.6 36.9 56.2 14.0 23.8 19.8 30.2 38.9 30.0 25.3
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D.6 RUNTIME ANALYSIS OF ABC-RL VERSUS SOTA

We now present wall-time comparison of ABC-RL versus SOTA methods on test designs for 100
iterations. We note that for all online search schemes, the runtime is dominated by that the number
of online synthesis runs (typically 9.5 seconds per run) as opposed to inference cost of the deep
network (e.g. 11 milli-seconds for ABC-RL) . Thus, as observed in the table below, ABC-RL
runtime is within 1.5% of MCTS and SA+Pred. Table 8 presents wall-time comparison of ABC-RL
versus existing SOTA methods for 100 iterations. Overall, ABC-RL run time overhead over MCTS
and SA+Pred. (over 100 iterations) has a geometric mean of 1.51% and 2.09%, respectively. In terms
of wall-time, ABC-RL achieves 3.75x geo. mean iso-QoR speed-up.

Designs Runtime (in seconds) ABC-RL overhead (in %) Iso-QoR speed-up
w.r.t. MCTS wall-timeMCTS SA+Pred. ABC-RL w.r.t. MCTS w.r.t. SA+Pred.

alu4 35.6 35.3 36.0 1.12 1.98 1.89x
apex1 105.6 105.1 107.0 1.33 1.81 5.82x
apex2 20.2 20.1 20.5 1.49 1.99 1.80x
apex4 195.6 193.7 199.6 2.04 3.05 1.58x
c7552 91.4 91.2 93.2 1.97 2.19 1.16x
i9 40.2 40.3 41.2 2.49 2.23 1.30x
m4 37.1 37.3 37.9 1.89 1.41 3.11x
prom1 201.6 200.3 205.7 2.03 2.70 4.04x
b9 16.9 16.8 17.3 2.37 2.98 2.11x
c880 16.8 16.6 17.5 2.38 2.99 1.20x
pair 110.3 110.0 112.0 1.54 1.73 0.90x
max1024 82.6 82.0 84.9 2.78 3.50 1.77x

bar 192.4 191.2 196.5 2.13 2.77 3.59x
div 655.4 652.1 668.9 2.06 2.58 8.82x
square 398.6 395.0 403.1 1.12 2.05 4.17x
sqrt 448.5 444.2 455.5 1.56 2.54 8.21x

cavlc 56.4 56.1 57.2 1.42 1.96 4.95x
mem_ctrl 953.7 950.3 966.5 1.34 1.70 6.33x
router 44.2 43.9 44.8 1.36 2.05 3.08x
voter 312.5 311.0 317.9 1.73 2.22 5.57x

Geomean - - - 1.51 2.09 3.75x

Table 8: Wall-time overhead of ABC-RL over SOTA methods for 100 iterations (Budget: 100 synthesis runs).
We report iso-QoR wall-time speed-up with respect to baseline MCTS Neto et al. (2022).

D.7 ABC-RL PERFORMANCE ON TRAINING AND VALIDATION DESIGNS

Next, we present ABC-RL performance on training and validation circuits and compare it with
baseline MCTS. For training circuits, ABC-RL sets α = 0 indicating the search with augmented with
full recommendation from pre-trained agent. For validation circuits, ABC-RL sets α and performs
search with tuned α recommendation from pre-trained agent.
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Designs ADP reduction (in %)

MCTS ABC-RL

alu2 21.2 22.3
apex3 12.9 12.9
apex5 32.50 32.5
apex6 10.00 10.7
apex7 0.80 1.7
b2 20.75 22.1
c1355 34.80 35.4
c1908 14.05 15.9
c2670 7.50 10.7
c3540 20.30 22.8
c432 31.00 31.8
c499 12.80 12.8
c6288 0.28 0.6
frg1 25.80 25.8
frg2 46.20 47.1
i10 28.25 31.2
i7 37.50 37.7
i8 40.00 47.3
m3 20.10 25.0
max128 24.10 31.8
max512 14.00 16.8
prom2 18.10 19.8
seq 17.10 20.9
table3 15.95 16.1
table5 23.40 25.5

Geomean 15.39 17.84

Table 9: Area-delay reduction compared to resyn2 on MCNC training and validation circuits. We compare
results of MCTS and ABC-RL approach.

Designs ADP reduction (in %)

MCTS ABC-RL

adder 18.63 18.63
log2 9.09 11.51
max 37.50 45.86
multiplier 9.90 12.68
sin 14.50 15.96

Geomean 15.55 18.18

Designs ADP reduction (in %)

MCTS ABC-RL

arbiter 0.03 0.03
ctrl 27.58 30.85
i2c 13.45 15.65
int2float 8.10 8.1
priority 77.53 77.5

Geomean 5.87 6.19

Table 10: Area-delay reduction over resyn2 on EPFL arithmetic (left) and random control (right) training and
validation benchmarks using MCTS and ABC-RL
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