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Abstract
We investigate the problem of learning the parameters (i.e., objective functions or constraints) of
a multi-objective decision making model, based on a set of sequentially arrived decisions. In par-
ticular, these decisions might not be exact and possibly carry measurement noise or are generated
with the bounded rationality of decision makers. In this paper, we propose a general online learning
framework to deal with this learning problem using inverse multi-objective optimization, and prove
that this framework converges at a rate of O(1/

√
T ) under certain regularity conditions. More

precisely, we develop two online learning algorithms with implicit update rules which can handle
noisy data. Numerical results with both synthetic and real world datasets show that both algorithms
can learn the parameters of a multi-objective program with great accuracy and are robust to noise.

1. Introduction

In this paper, we aim to learn the parameters (i.e., constraints and a set of objective functions) of
a decision making problem with multiple objectives, instead of solving for its efficient (or Pareto)
optimal solutions, which is the typical scenario. More precisely, we seek to learn θ given {yi}i∈[N ]

that are observations of the efficient solutions of the multi-objective optimization problem (MOP):

min
x
{f1(x, θ), f2(x, θ), . . . , fp(x, θ)}

s.t. x ∈ X(θ),

where θ is the true but unknown parameter of the MOP. In particular, we consider such learning
problems in online fashion, noting observations are unveiled sequentially in practical scenarios.
Specifically, we study such learning problem as an inverse multi-objective optimization problem
(IMOP) dealing with noisy data, develop online learning algorithms to derive parameters for each
objective function and constraint, and output an estimation of the distribution of weights (which,
together with objective functions, define individuals’ utility functions) among human subjects.

Learning human participants’ decision making scheme is critical for an organization in design-
ing and providing services or products. Nevertheless, as in most scenarios, we can only observe
their decisions or behaviors and cannot directly access decision making schemes. Indeed, partic-
ipants probably do not have exact information regarding their own decision making process [15].
To bridge the discrepancy, we leverage the inverse optimization idea that has been proposed and re-
ceived significant attention in the optimization community, which is to infer the missing information
of the underlying decision models from observed data, assuming that human decision makers are
making optimal decisions [1, 3, 4, 6, 10, 14, 15, 19–21]. This subject actually carries the data-driven
concept and becomes more applicable as large amounts of data are generated and become readily
available, especially those from digital devices and online transactions.
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Our work is most related to the subject of inverse multi-objective optimization. The goal is to
find multiple objective functions that explain the observed efficient solutions well. There are several
recent studies related to the presented research. One is in Chan et al. [6], which considers a single
observation that is assumed to be an exact optimal solution. Then, given a set of well-defined linear
functions, an inverse optimization is formulated to learn their weights. Another one is Dong and
Zeng [8], which proposes the batch learning framework to infer utility functions or constraints from
multiple noisy decisions through inverse multi-objective optimization. This work can be categorized
as doing inverse multi-objective optimization in batch setting. Recently, Dong and Zeng [9] extends
Dong and Zeng [8] with distributionally robust optimization by leveraging the prominent Wasser-
stein metric. In contrast, we do inverse multi-objective optimization in online settings, and the
proposed online learning algorithms significantly accelerate the learning process with performance
guarantees, allowing us to deal with more realistic and complex preference inference problems.

To the best of authors’ knowledge, we propose the first general framework of online learn-
ing for inferring decision makers’ objective functions or constraints using inverse multi-objective
optimization. This framework can learn the parameters of any convex decision making problem,
and can explicitly handle noisy decisions. Moreover, we show that the online learning approach,
which adopts an implicit update rule, has an O(

√
T ) regret under suitable regularity conditions

when using the ideal loss function. We finally illustrate the performance of two algorithms on both
a multi-objective quadratic programming problem and a portfolio optimization problem. Results
show that both algorithms can learn parameters with great accuracy and are robust to noise while
the second algorithm significantly accelerate the learning process over the first one.

2. Problem setting

2.1. Decision making problem with multiple objectives

We consider a family of parametrized multi-objective decision making problems of the form

min
x∈Rn

{
f1(x, θ), f2(x, θ), . . . , fp(x, θ)

}
s.t. x ∈ X(θ),

(DMP)

where p ≥ 2 and fl(x, θ) : Rn × Rnθ 7→ R for each l ∈ [p]. Assume parameter θ ∈ Θ ⊆ Rnθ . We
denote the vector of objective functions by f(x, θ) = (f1(x, θ), f2(x, θ), . . . , fp(x, θ))

T . Assume
X(θ) = {x ∈ Rn : g(x, θ) ≤ 0,x ∈ Rn

+}, where g(x, θ) = (g1(x, θ), . . . , gq(x, θ))
T is another

vector-valued function with gk(x, θ) : Rn × Rnθ 7→ R for each k ∈ [q].

Definition 1 (Efficiency) For fixed θ, a decision vector x∗ ∈ X(θ) is said to be efficient if there
exists no other decision vector x ∈ X(θ) such that fi(x, θ) ≤ fi(x

∗, θ) for all i ∈ [p], and
fk(x, θ) < fk(x

∗, θ) for at least one k ∈ [p].

In the study of multi-objective optimization, the set of all efficient solutions is denoted by XE(θ)
and called the efficient set. The weighting method is commonly used to obtain an efficient solution
through computing the problem of weighted sum (PWS) Gass and Saaty [11] as follows.

min wT f(x, θ)
s.t. x ∈ X(θ),

(PWS)
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where w = (w1, . . . , wp)T . Without loss of generality, all possible weights are restricted to a
simplex, which is denoted by Wp = {w ∈ Rp

+ : 1Tw = 1}. Next, we denote the set of optimal
solutions for the (PWS) by

S(w, θ) = argmin
x

{
wT f(x, θ) : x ∈ X(θ)

}
.

Let W +
p = {w ∈ Rp

++ : 1Tw = 1}. Following from Theorem 3.1.2 of Miettinen [18], we have:

Proposition 2 If x ∈ S(w, θ) and w ∈ W +
p , then x ∈ XE(θ).

The next result from Theorem 3.1.4 of Miettinen [18] states that all the efficient solutions can
be found by the weighting method for convex MOP.

Proposition 3 Assume that MOP is convex. If x ∈ X is an efficient solution, then there exists a
weighting vector w ∈ Wp such that x is an optimal solution of (PWS).

By Propositions 2 - 3, we summarize the relationship between S(w, θ) and XE(θ) as follows.

Corollary 4 For convex MOP,⋃
w∈W +

p

S(w, θ) ⊆ XE(θ) ⊆
⋃

w∈Wp

S(w, θ).

2.2. Inverse multi-objective optimization
We denote y the observed noisy decision that might carry measurement error or is generated with a
bounded rationality of the decision maker. We emphasize that this noisy setting of y reflects the real
world situation rather than for analysis of regret, where the noises might be from multiple sources.
Throughout the paper we assume that y is a random variable distributed according to an unknown
distribution Py supported on Y . As y is a noisy observation, we note that y does not necessarily
belong to X(θ), i.e., it might be either feasible or infeasible with respect to X(θ).

We next discuss the construction of an appropriate loss function for the inverse multi-objective
optimization problem [8, 9]. Ideally, given a noisy decision y and a hypothesis θ, the loss function
can be defined as the minimum distance between y and the efficient set XE(θ):

l(y, θ) = min
x∈XE(θ)

∥y − x∥22. (loss function)

For a general MOP, however, there might exist no explicit way to characterize the efficient set
XE(θ). Hence, an approximation approach to practically describe this is adopted. Following from
Corollary 4, a sampling approach is adopted to generate wk ∈ Wp for each k ∈ [K] and approximate
XE(θ) as

⋃
k∈[K] S(wk, θ). Then, the surrogate loss function is defined as

lK(y, θ) = min
x∈

⋃
k∈[K]

S(wk,θ)
∥y − x∥22. (surrogate loss)

By using binary variables, this surrogate loss can be converted into the Surrogate Loss Problem.

lK(y, θ) = min
zj∈{0,1}

∥y −
∑

k∈[K]

zkxk∥22

s.t.
∑

k∈[K]

zk = 1, xk ∈ S(wk, θ).
(1)

Constraint
∑

k∈[K] zk = 1 ensures that exactly one of the efficient solutions will be chosen to
measure the distance to y. Hence, solving this optimization problem identifies some wk with k ∈
[K] such that the corresponding efficient solution S(wk, θ) is closest to y.
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3. Online learning for IMOP
In our online learning setting, noisy decisions become available to the learner one by one. Hence, the
learning algorithm produces a sequence of hypotheses (θ1, . . . , θT+1). Here, T is the total number
of rounds, and θ1 is an arbitrary initial hypothesis and θt for t > 1 is the hypothesis chosen after
seeing the (t − 1)th decision. Let l(yt, θt) denote the loss the learning algorithm suffers when it
tries to predict yt based on the previous observed decisions {y1, . . . ,yt−1}. The goal of the learner
is to minimize the regret, which is the cumulative loss

∑T
t=1 l(yt, θt) against the best possible loss

when the whole batch of decisions are available. Formally, the regret is defined as

RT =
T∑
t=1

l(yt, θt)−min
θ∈Θ

T∑
t=1

l(yt, θ).

3.1. Online implicit updates
Once receiving the tth noisy decision yt, the ideal way to update θt+1 is by solving the following
optimization problem using the ideal loss function:

θt+1 = argmin
θ∈Θ

1

2
∥θ − θt∥22 + ηtl(yt, θ), (2)

where ηt is the learning rate in each round, and l(yt, θ) is defined in loss function.
As explained in the previous section, l(yt, θ) might not be computable due to the non-existence

of the closed form of the efficient set XE(θ). Thus, we seek to approximate the update 2 by:

θt+1 = argmin
θ∈Θ

1

2
∥θ − θt∥22 + ηtlK(yt, θ), (3)

where ηt is the learning rate in each round, and lK(yt, θ) is defined in surrogate loss.
To solve 3, we can replace xk ∈ S(wk, θ) by KKT conditions for each k ∈ [K]:

min
θ

1
2∥θ − θt∥22 + ηt

∑
k∈[K]

∥yt − ϑk∥22

s.t. θ ∈ Θ, g(xk) ≤ 0, uk ≥ 0,

uT
k g(xk) = 0,

∇xk
wT
k f(xk, θ) + uk · ∇xk

g(xk) = 0,

 , ∀k ∈ [K],

0 ≤ ϑk ≤Mkzk1n, ∀k ∈ [K],

xk −Mk(1− zk)1n ≤ ϑk ≤ xk, ∀k ∈ [K],∑
k∈[K]

zk = 1,

xk ∈ Rn, uk ∈ Rm
+ , zk ∈ {0, 1}, ∀k ∈ [K],

where uk is the dual variable for gk(x, θ) ≤ 0, and Mk is a big number to linearize zkxk [2].
Alternatively, solving 3 is equivalent to solving K independent programs defined in the follow-

ing and taking the one with the least optimal value (breaking ties arbitrarily).

min
θ∈Θ

1
2∥θ − θt∥22 + ηt∥yt − x∥22

s.t. x ∈ S(wk, θ).
(4)
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Algorithm 1 Online Learning for IMOP
1: Input: noisy decisions {yt}t∈T , weights
{wk}k∈K

2: Initialize θ1 = 0
3: for t = 1 to T do
4: receive yt

5: suffer loss lK(yt, θt)
6: if lK(yt, θt) = 0 then
7: θt+1 ← θt
8: else
9: set learning rate ηt ∝ 1/

√
t

10: update θt+1 by solving 3 directly (or equiva-
lently solving K subproblems 4)

11: end if
12: end for

Algorithm 2 Accelerated Online Learning
1: Input: {yt}t∈T and {wk}k∈K
2: Initialize θ1 = 0
3: for t = 1 to T do
4: receive yt

5: suffer loss lK(yt, θt)
6: let k∗ = argmink∈[K]∥yt − xk∥22,

where xk ∈ S(wk, θt) for k ∈ [K]
7: if lK(yt, θt) = 0 then
8: θt+1 ← θt
9: else

10: set learning rate ηt ∝ 1/
√
t

11: update θt+1 by 4 with k = k∗

12: end if
13: end for

Our application of the implicit update rule to learn an MOP is outlined in Algorithm 1.
Acceleration of Algorithm 1: Note that we update θ and the weight sample assigned to yt in

3 simultaneously, meaning both θ and the weight sample index k are variables when solving 3. In
other words, one needs to solve K subproblems 4 to get an optimal solution for 3. However, note
that the increment of θ by 3 is typically small for each update. Consequently, the weight sample
assigned to yt using θt+1 is roughly the same as using the previous guess of this parameter, i.e.,
θt. Hence, it is reasonable to approximate 3 by first assigning a weight sample to yt based on the
previous updating result. Then, instead of computing K problems of 4, we simply compute a single
one associated with the selected weight samples, which significantly eases the burden of solving 3.
Our application of the accelerated implicit update rule proceeds as outlined in Algorithm 2.

3.2. Analysis of convergence
Note that the proposed online learning algorithms are generally applicable to learn the parameter of
any convex MOP. In this section, we show that the average regret converges at a rate of O(1/

√
T )

under certain regularity conditions based on the ideal loss function l(y, θ). Namely, we consider the
regret bound when using the ideally implicit update rule 2.

Theorem 5 Suppose Assumptions A.2 - A.4 hold. Then, choosing ηt =
Dλ

2
√
2(B+R)κ

1√
t
, we have

RT ≤
4
√
2(B +R)Dκ

λ

√
T .

4. Experiments
In this section, we will provide a multi-objective quadratic program (MQP) and a portfolio opti-
mization problem (see Appendix A.7) to illustrate the performance of the proposed online learning
Algorithms 1 and 2. The mixed integer second order conic problems (MISOCPs), which are de-
rived from using KKT conditions in 3, are solved by [12]. Consider the following multi-objective
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quadratic optimization problem.

min
x∈R2

+

(
f1(x) =

1
2x

TQ1x+ cT1 x
f2(x) =

1
2x

TQ2x+ cT2 x

)
s.t. Ax ≤ b,

where parameters of the objective functions and constraints are provided in Appendix.
Suppose there are T decision makers. In each round, the learner would receive one noisy deci-

sion. Her goal is to learn the objective functions or restrictions of these decision makers. In round
t, we suppose that the decision maker derives an efficient solution xt by solving (PWS) with weight
wt, which is uniformly chosen from W2. Next, the learner receives the noisy decision yt corrupted
by noise that has a jointly uniform distribution with support [−0.5, 0.5]2. Namely, yt = xt + ϵt,
where each element of ϵt ∼ U(−0.5, 0.5). The learner seeks to learn c1 and c2. The learning rate
is set to ηt = 5/

√
t. Then, we implement Algorithms 1 and 2. At each round t, we solve 4 using

parallel computing with 6 workers.
To illustrate the performance of the algorithms in a statistical way, we run 100 repetitions of the

experiments. Figure 1 (a) shows the total estimation errors of c1 and c2 in each round over the 100
repetitions for the two algorithms. We also plot the average estimation error of the 100 repetitions.
As can be seen in this figure, convergence for both algorithms is pretty fast. Also, estimation errors
over rounds for different repetitions concentrate around the average, indicating that our algorithm is
pretty robust to noise. The estimation error in the last round is not zero because we use a finite K to
approximate the efficient set. We see in Figure 1 (b) that Algorithm 2 is much faster than Algorithm
1 especially when K is large. To further illustrate the performance of algorithms, we randomly pick
one repetition using Algorithm 1 and plot the estimated efficient set in Figure 1 (c). We can see
clearly that the estimated efficient set almost coincides with the real efficient set. Moreover, Figure
1 (d) shows that IMOP in online settings is drastically faster than in batch setting. It is practically
impossible to apply the batch setting algorithms in real-world applications.
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Figure 1: (a) We plot estimation errors at each round t for all 100 experiments and their average
estimation errors with K = 41. (b) Blue and yellow bars indicate average running time
and standard deviations for each K using Algorithm 1 and 2, respectively. (c) We ran-
domly pick one repetition. The estimated efficient set after T = 1000 rounds is indicated
by the red line. The real efficient set is shown by the yellow line. (d) The dotted brown
line is the error bar plot of the running time over 10 repetitions in batch setting. The blue
line is the error bar plot of the running time over 100 repetitions in an online setting using
Algorithm 1.
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Appendix A. Appendix

A.1. Omitted mathematical reformulations

Before giving the reformulations, we first make some discussions about the surrogate loss functions.

lK(y, θ) = min
zk∈{0,1}

∥y −
∑
k∈[K]

zkxk∥22

= min
zk∈{0,1}

∑
k∈[K]

∥y − zkxk∥22 − (K − 1)∥y∥22

where xk ∈ S(wk, θ) and
∑

k∈[K] zk = 1.
Since (K − 1)∥y∥22 is a constant, we can safely drop it and use the following as the surrogate

loss function when solving the optimization program in the implicit update,

lK(y, θ) = min
zk∈{0,1}

∑
k∈[K]

∥y − zkxk∥22

where xk ∈ S(wk, θ) and
∑

k∈[K] zk = 1.

A.1.1. SINGLE LEVEL REFORMULATION FOR THE INVERSE MULTI-OBJECTIVE

OPTIMIZATION PROBLEM

The parametrized mulobjective optimization problem is

min
x∈Rn

f(x, θ)

s.t. g(x) ≤ 0
MOP

where

f(x, θ) = (f1(x, θ), f2(x, θ), . . . , fp(x, θ))
T

g(x) = (g1(x), . . . , gq(x))
T
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Then, the single level reformulation for the Implicit update in the paper is given in the following

min
b

1
2∥θ − θt∥22 + ηt

∑
k∈[K]

∥yt − ϑk∥22

s.t. θ ∈ Θ g(xk) ≤ 0, uk ≥ 0

uT
k g(xk) = 0

∇xk
wT
k f(xk, θ) + uk · ∇xk

g(xk) = 0

 ∀k ∈ [K]

0 ≤ ϑk ≤Mkzk ∀k ∈ [K]

xk −Mk(1− zk) ≤ ϑk ≤ xk ∀k ∈ [K]∑
k∈[K]

zk = 1

xk ∈ Rn, uk ∈ Rm
+ , tk ∈ {0, 1}m, zk ∈ {0, 1} ∀k ∈ [K]

A.1.2. SINGLE LEVEL REFORMULATION FOR THE INVERSE MULTI-OBJECTIVE QUADRATIC

PROBLEM

When the objective functions are quadratic and the feasible region is a polyhedron, the multi-
objective optimization has the following form

min
x∈Rn


1
2x

TQ1x+ cT1 x
...

1
2x

TQpx+ cTp x


s.t. Ax ≥ b

MQP

where Ql ∈ Sn
+ (the set of symmetric positive semidefinite matrices) for all l ∈ [p]..

When trying to learn {cl}l∈[p], the single level reformulation for the Implicit update in the paper
is given in the following

min
cl

1
2

∑
l∈[p]
∥cl − ctl∥22 + ηt

∑
k∈[K]

∥yt − ϑk∥22

s.t. cl ∈ C̃l ∀l ∈ [p]
Axk ≥ b, uk ≥ 0

uk ≤Mtk

Axk − b ≤M(1− tk)

(w1
kQ1 + · · ·+ wp

kQp)xi + w1
kc1 + · · ·+ wp

kcp −ATuk = 0

 ∀k ∈ [K]

0 ≤ ϑk ≤Mkzk ∀k ∈ [K]

xk −Mk(1− zk) ≤ ϑk ≤ xk ∀k ∈ [K]∑
k∈[K]

zk = 1

xk ∈ Rn, uk ∈ Rm
+ , tk ∈ {0, 1}m, zk ∈ {0, 1} ∀l ∈ [p] ∀k ∈ [K]

where ctl is the estimation of cl at the tth round, and C̃l is a convex set for each l ∈ [p].
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We have a similar single level reformulation when learning the Right-hand side b. Clearly, this
is a Mixed Integer Second Order Cone program(MISOCP) when learning either cl or b.

A.2. Omitted Proofs

A.2.1. STRONGLY CONVEX OF wT f(x, θ) AS STATED UNDER ASSUMPTION A.2

Proof By the definition of λ,(
∇wT f(y, θ)−∇wT f(x, θ)

)T

(y − x) =

(
∇

p∑
l=1

wlfl(y, θ)−∇
p∑

l=1

wlfl(x, θl)

)T

(y − x)

=
p∑

l=1

wl

(
∇fl(y, θl)−∇fl(x, θl)

)T

(y − x)

≥
p∑

l=1

wlλl∥x− y∥22 ≥ η∥x− y∥22
p∑

l=1

wl

= λ∥x− y∥22

Thus, wT f(x, θ) is strongly convex for x ∈ Rn.

A.2.2. PROOF OF LEMMA 6

Proof By Assumption 3.1(b), we know that S(w, θ) is a single-valued set for each w ∈ Wp. Thus,
∀y ∈ Y , ∀θ1, θ2 ∈ Θ, ∃w1, w2 ∈ Wp, s.t.

x(θ1) = S(w1, θ1), x(θ2) = S(w2, θ2)

Without of loss of generality, let lK(y, θ1) ≥ lK(y, θ2). Then,

|lK(y, θ1)− lK(y, θ2)| = lK(y, θ1)− lK(y, θ2)

= ∥y − x(θ1)∥22 − ∥y − x(θ2)∥22
= ∥y − S(w1, θ1)∥22 − ∥y − S(w2, θ2)∥22
≤ ∥y − S(w2, θ1)∥22 − ∥y − S(w2, θ2)∥22
= ⟨S(w2, θ2)− S(w2, θ1), 2y − S(w2, θ1)− S(w2, θ2)⟩
≤ 2(B +R)∥S(w2, θ2)− S(w2, θ1)∥2

(5)

The last inequality is due to Cauchy-Schwartz inequality and the Assumptions 3.1(a), that is

∥2y − S(w2, θ1)− S(w2, θ2)∥2 ≤ 2(B +R) (6)

Next, we will apply Proposition 6.1 in [5] to bound ∥S(w2, θ2)− S(w2, θ1)∥2.
Under Assumptions 3.1 - 3.2, the conditions of Proposition 6.1 in [5] are satisfied. Therefore,

∥S(w2, θ2)− S(w2, θ1)∥2 ≤
2κ

λ
∥θ1 − θ2∥2 (7)

Plugging equation 6 and equation 7 in equation 5 yields the claim.

10
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A.3. Assumptions

In the following, we make a few assumptions to simplify our understanding, which are actually mild
and appear often in the literature.

Assumption A.1 Set Θ is a convex compact set. There exists D > 0 such that ∥θ∥2 ≤ D for all
θ ∈ Θ. In addition, for each θ ∈ Θ, both f(x, θ) and g(x, θ) are convex in x.

Assumption A.2

(a) X(θ) is closed, and has a nonempty relative interior. X(θ) is also bounded. Namely, there
exists B > 0 such that ∥x∥2 ≤ B for all x ∈ X(θ). The support Y of the noisy decisions
y is contained within a ball of radius R almost surely, where R < ∞. In other words,
P(∥y∥2 ≤ R) = 1.

(b) Each function in f is strongly convex on Rn, that is for each l ∈ [p], ∃λl > 0, ∀x,y ∈ Rn

(
∇fl(y, θl)−∇fl(x, θl)

)T

(y − x) ≥ λl∥x− y∥22.

Regarding Assumption A.2.(a), assuming that the feasible region is closed and bounded is very
common in inverse optimization. The finite support of the observations is needed since we do
not hope outliers have too many impacts in our learning. Let λ = minl∈[p]{λl}. It follows that
wT f(x, θ) is strongly convex with parameter λ for w ∈ Wp. Therefore, Assumption A.2.(b) ensures
that S(w, θ) is a single-valued set for each w.

The performance of the algorithm also depends on how the change of θ affects the objective
values. For ∀w ∈ Wp, θ1 ∈ Θ, θ2 ∈ Θ, we consider the following function

h(x, w, θ1, θ2) = wT f(x, θ1)− wT f(x, θ2).

Assumption A.3 ∃κ > 0, ∀w ∈ Wp, h(·, w, θ1, θ2) is κ-Lipschitz continuous on Y . That is,

|h(x, w, θ1, θ2)− h(y, w, θ1, θ2)| ≤ κ∥θ1 − θ2∥2∥x− y∥2, ∀x,y ∈ Y.

Basically, this assumption says that the objective functions will not change much when either the
parameter θ or the variable x is perturbed. It actually holds in many common situations, including
the multi-objective linear program and multi-objective quadratic program.

From now on, given any y ∈ Y, θ ∈ Θ, we denote x(θ) the efficient point in XE(θ) that is
closest to y. Namely, l(y, θ) = ∥y − x(θ)∥22.

Lemma 6 Under Assumptions A.2 - A.3, the loss function l(y, θ) is uniformly 4(B+R)κ
λ -Lipschitz

continuous in θ. That is, ∀y ∈ Y,∀θ1, θ2 ∈ Θ, we have

|l(y, θ1)− l(y, θ2)| ≤
4(B +R)κ

λ
∥θ1 − θ2∥2.

The key point in proving Lemma 6 is the observation that the perturbation of S(w, θ) due to θ is
bounded by the perturbation of θ by applying Proposition 6.1 in Bonnans and Shapiro [5]. Details
of the proof are given in Appendix.

11
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Assumption A.4 For MOP, ∀y ∈ Y,∀θ1, θ2 ∈ Θ, ∀α, β ≥ 0 s.t. α+ β = 1, we have either of the
following:

(a) if x1 ∈ XE(θ1), and x2 ∈ XE(θ2), then αx1 + βx2 ∈ XE(αθ1 + βθ2).

(b) ∥αx(θ1) + βx(θ2)− x(αθ1 + βθ2)∥2 ≤ αβ∥x(θ1)− x(θ2)∥2/(2(B +R)).

The definition of x(θ1),x(θ2) and x(αθ1+βθ2) is given before Lemma 6. This assumption requires
the convex combination of x1 ∈ XE(θ1), and x2 ∈ XE(θ2) belongs to XE(αθ1 + βθ2). Or there
exists an efficient point in XE(αθ1 + βθ2) close to the convex combination of x(θ1) and x(θ2).
Examples are given in Appendix.

A.3.1. PROOF OF THEOREM 5

Proof We will extend Theorem 3.2 in [16] to prove our theorem.
Let Gt(θ) =

1
2∥θ − θt∥22 + ηtl(yt, θ).

We will now show the loss function is convex. The first step is to show that if Assumption 3.3
holds, then the loss function l(y, θ) is convex in θ.

First, suppose Assumption 3.3(a) hold. Then,

αl(y, θ1) + βl(y, θ2)− l(y, αθ1 + βθ2)

= α∥y − x(θ1)∥22 + β∥y − x(θ2)∥22 − ∥y − x(αθ1 + βθ2)∥22
≥ α∥y − x(θ1)∥22 + β∥y − x(θ2)∥22 − ∥y − αx(θ1)− βx(θ2)∥22 (By Assumption 3.3(a))
= αβ∥x(θ1)− x(θ2)∥22
≥ 0

(8)

Second, suppose Assumption 3.3(b) holds. Then,

αl(y, θ1) + βl(y, θ2)− l(y, αθ1 + βθ2)

= α∥y − x(θ1)∥22 + β∥y − x(θ2)∥22 − ∥y − x(αθ1 + βθ2)∥22
= α∥y − x(θ1)∥22 + β∥y − x(θ2)∥22 − ∥y − αx(θ1)− βx(θ2)∥22

+∥y − αx(θ1)− βx(θ2)∥22 − ∥y − x(αθ1 + βθ2)∥22
= αβ∥x(θ1)− x(θ2)∥22 + ∥y − αx(θ1)− βx(θ2)∥22 − ∥y − x(αθ1 + βθ2)∥22
= αβ∥x(θ1)− x(θ2)∥22 − ⟨αx(θ1) + βx(θ2)− x(αθ1 + βθ2), 2y − x(αθ1 + βθ2)− αx(θ1)− βx(θ2)⟩
≥ αβ∥x(θ1)− x(θ2)∥22 − ∥αx(θ1) + βx(θ2)− x(αθ1 + βθ2)∥2∥2y − x(αθ1 + βθ2)− αx(θ1)− βx(θ2)∥2

(9)

The last inequality is by Cauchy-Schwartz inequality. Note that

∥αx(θ1) + βx(θ2)− x(αθ1 + βθ2)∥2∥2y − x(αθ1 + βθ2)− αx(θ1)− βx(θ2)∥2
≤ 2(B +R)∥αx(θ1) + βx(θ2)− x(αθ1 + βθ2)∥2
≤ αβ∥x(θ1)− x(θ2)∥2 (By Assumption 3.3(b))

(10)

Plugging equation 10 in equation 9 yields the result.

12
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Using Theorem 3.2. in [16], for αt ≤ Gt(θt+1)
Gt(θt)

, we have

RT ≤
∑T

t=1
1
ηt
(1− αt)ηtl(yt, θt)

+ 1
2ηt

(∥θt − θ∗∥22 − ∥θt+1 − θ∗∥22)
(11)

Notice that

Gt(θt)−Gt(θt+1)

= ηt(l(yt, θt)− l(yt, θt+1))− 1
2∥θt − θt+1∥22

≤ 4(B+R)κηt
λ ∥θt − θt+1∥2 − 1

2∥θt − θt+1∥22
≤ 8(B+R)2κ2η2t

λ2

(12)

The first inequality follows by applying Lemma 3.1.
Let αt =

Rt(θt+1)
Rt(θt)

. Using equation 12, we have

(1− αt)ηtl(yt, θt) = (1− αt)Gt(θt)
= Gt(θt)−Gt(θt+1)

≤ 8(B+R)2κ2η2t
λ2

(13)

Plug equation 13 in equation 11, and note the telescoping sum,

RT ≤
T∑
t=1

8(B +R)2κ2ηt
λ2

+

T∑
t=1

1

2ηt
(∥θt − θ∗∥22 − ∥θt+1 − θ∗∥22)

Setting ηt = Dλ
2(B+R)κ

√
2t

, we can simplify the second summation to D(B+R)κ
√
2

λ since the sum

telescopes and θ1 = 0, ∥θ∗∥2 ≤ D. The first sum simplifies using
∑T

t=1
1√
t
≤ 2
√
T − 1 to obtain

the result

RT ≤
4
√
2(B +R)Dκ

λ

√
T .

A.4. Omitted Examples

A.4.1. EXAMPLES FOR WHICH ASSUMPTION A.4 HOLDS

Consider for example the following quadratic program

min
x∈Rn

(
xTx− 2θT1 x
xTx− 2θT2 x

)
s.t. 0 ≤ x ≤ 10

13
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One can check that Assumption 3.3 (a) is indeed satisfied. For example, let n = 1. Then, W.L.O.G,
let θ1 ≤ θ2. Then, XE(θ) = [θ1, θ2]. Consider two parameters that θ1 = (θ11, θ

1
2), θ

2 = (θ21, θ
2
2) ∈

[0, 10]2. For all α ∈ [0, 1],

XE(αθ
1 + (1− α)θ2) = [αθ11 + (1− α)θ21, αθ

1
2 + (1− α)θ22]

Although tedious, one can check that one can check that Assumption 3.3 (a) is indeed satisfied.

A.5. Data for the Portfolio optimization problem

Table 1: True Expected Return
Security 1 2 3 4 5 6 7 8

Expected Return 0.1791 0.1143 0.1357 0.0837 0.1653 0.1808 0.0352 0.0368

Table 2: True Return Covariances Matrix
Security 1 2 3 4 5 6 7 8

1 0.1641 0.0299 0.0478 0.0491 0.058 0.0871 0.0603 0.0492
2 0.0299 0.0720 0.0511 0.0287 0.0527 0.0297 0.0291 0.0326
3 0.0478 0.0511 0.0794 0.0498 0.0664 0.0479 0.0395 0.0523
4 0.0491 0.0287 0.0498 0.1148 0.0336 0.0503 0.0326 0.0447
5 0.0580 0.0527 0.0664 0.0336 0.1073 0.0483 0.0402 0.0533
6 0.0871 0.0297 0.0479 0.0503 0.0483 0.1134 0.0591 0.0387
7 0.0603 0.0291 0.0395 0.0326 0.0402 0.0591 0.0704 0.0244
8 0.0492 0.0326 0.0523 0.0447 0.0533 0.0387 0.0244 0.1028

A.6. Approximation error

Theorem 7 Under Assumption A.2, we have that ∀y ∈ Y,∀θ ∈ Θ,

0 ≤ lK(y, θ)− l(y, θ) ≤ 4(B +R)ζ

λ
·
√
2p

Λ− 1
,

where

K =
(Λ + p− 2)!

(Λ− 1)!(p− 1)!
, ζ = max

l∈[p],x∈X(θ),θ∈Θ
|fl(x, θ)|.

Furthermore,

0 ≤ lK(y, θ)− l(y, θ) ≤ 16e(B +R)ζ

λ
· 1

K
1

p−1

.

Thus, the surrogate loss function uniformly converges to the loss function at the rate ofO(1/K
1

p−1 ).
Note that this rate exhibits a dependence on the number of objective functions p. As p increases,
we might require (approximately) exponentially more weight samples {wK}k∈[K] to achieve an
approximation accuracy. In fact, this phenomenon is a reflection of curse of dimensionality [13], a

14



LEARNING MULTI-OBJECTIVE PROGRAM THROUGH ONLINE LEARNING

principle that estimation becomes exponentially harder as the number of dimension increases. In
particular, the dimension here is the number of objective functions p. Naturally, one way to deal
with the curse of dimensionality is to employ dimension reduction techniques in statistics to find a
low-dimensional representation of the objective functions.

Example 1 When p = 2, MOP is a bi-objective decision making problem. Then, Theorem 7 shows
that lK(y, θ) − l(y, θ) is of O(1/K). That is, lK(y, θ) asymptotically converges to l(y, θ) sublin-
early.

Proof By definition,

lK(y, θ)− l(y, θ) = min
x∈

⋃
k∈[K]

S(wk,θ)
∥y − x∥22 − min

x∈XE(θ)
∥y − x∥22 ≥ 0.

Let ∥y − S(wy
k , θ)∥

2
2 = min

x∈
⋃

k∈[K]

S(wk,θ)
∥y − x∥22, and ∥y − S(wy, θ)∥22 = min

x∈XE(θ)
∥y − x∥22. Let

wy
k′ be the closest weight sample among {wk}k∈[K] to wy. Then,

lK(y, θ)− l(y, θ) = ∥y − S(wy
k , θ)∥

2
2 − ∥y − S(wy, θ)∥22

≤ ∥y − S(wy
k′ , θ)∥

2
2 − ∥y − S(wy, θ)∥22

=
(
2y − S(wy

k′ , θ)− S(wy, θ)
)T

(S(wy, θ)− S(wy
k′ , θ))

≤ ∥2y − S(wy
k′ , θ)− S(wy, θ)∥2∥S(wy, θ)− S(wy

k′ , θ)∥2
≤ 2(B +R)∥S(wy, θ)− S(wy

k′ , θ)∥2
≤ 4(B+R)ζ

√
p

λ · ∥wy − wy
k′∥2,

(14)

where ζ = max
l∈[p],x∈X(θ),θ∈Θ

|fl(x, θ)|. The third inequality is due to Cauchy Schwarz inequality.

Under Assumption A.2, we can apply Lemma 4 in [7] to yield the last inequality.
Next, we will show that ∀w ∈ Wp, the distance between w and its closest weight sample among

{wk}k∈[K] is upper bounded by the function of K and p and nothing else. More precisely, we will
show that

sup
w∈Wp

min
k∈[K]

∥w − wk∥2 ≤
√
2

Λ− 1
. (15)

Here, Λ is the number of evenly spaced weight samples between any two extreme points of Wp.
Note that {wk}k∈[K] are evenly sampled from Wp, and that the distance between any two ex-

treme points of Wp equals to
√
2. Hence, the distances between any two neighboring weight samples

are equal and can be calculated as the distance between any two extreme points of Wp divided by
Λ − 1. Proof of equation 15 can be done by further noticing that the distance between any w and
{wk}k∈[K] is upper bounded by the distances between any two neighboring weight samples.

Combining equation 14 and equation 15 yields that

0 ≤ lK(y, θ)− l(y, θ) ≤ 4(B +R)ζ

λ
·
√
2p

Λ− 1
, (16)
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Then, we can prove that the total number of weight samples K and Λ has the following rela-
tionship:

K =
(
Λ + p− 2
p− 1

)
(17)

Proof of equation 17 can be done by induction with respect to p. Obviously, equation 17 holds when
p = 2 as K = Λ. Assume equation 17 holds for the ≤ p− 1 cases. For ease of notation, denote

KΛ
p =

(
Λ + p− 2
p− 1

)
.

Then, for the p case, we note that the weight samples can be classified into two categories: wp =
0;wp > 0. For wp = 0, the number of weight samples is simply KΛ

p−1. For wp > 0, the number of
weight samples is KΛ−1

p . Thus,

K = KΛ
p−1 +KΛ−1

p . (18)

Iteratively expanding KΛ−1
p through the same argument as equation 17 and using the fact that(

n
k

)
=

(
n− 1
k − 1

)
+
(
n− 1
k

)
,

we have

K = KΛ
p−1 +KΛ−1

p = KΛ
p−1 +KΛ−1

p−1 +KΛ−2
p

...
= KΛ

p−1 +KΛ−1
p−1 + · · ·+K2

p−1 +K1
p

=
(
Λ + p− 3
p− 2

)
+

(
Λ + p− 4
p− 2

)
+ · · ·+

(
p− 1
p− 2

)
+
(
p− 1
p− 1

)
= (Λ+p−2)!

(Λ−1)!(p−1)!

(19)

To this end, we complete the proof of equation 17.
Furthermore, we notice that

K =
(Λ + p− 2)!

(Λ− 1)!(p− 1)!
≤ (Λ + p− 2)p−1

(p− 1)!
<

(
Λ + p− 2

p− 1

)p−1

· ep−1.

Then, when Λ ≥ p(K ≥ 2p−1), through simple algebraic calculation we have

e

K
1

p−1

>
p− 1

Λ + p− 2
>

1

4
· p

Λ− 1
(20)

We complete the proof by combining equation 16 and equation 20 and noticing that
√
2p ≤ p.
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A.7. Real-world case: learning expected returns in portfolio optimization
We next consider noisy decisions arising from different investors in a stock market. More precisely,
we consider a portfolio selection problem, where investors need to determine the fraction of their
wealth to invest in each security to maximize the total return and minimize the total risk. The
process typically involves the cooperation between an investor and a portfolio analyst, where the
analyst provides an efficient frontier on a certain set of securities to the investor and then the investor
selects a portfolio according to her preference to the returns and risks. The classical Markovitz
mean-variance portfolio selection [17] in the following is used by analysts.

min

(
f1(x) = −rTx
f2(x) = xTQx

)
s.t. 0 ≤ xi ≤ bi, ∀i ∈ [n],

n∑
i=1

xi = 1,

where r ∈ Rn
+ is a vector of individual security expected returns, Q ∈ Rn×n is the covariance

matrix of securities returns, x is a portfolio specifying the proportions of capital to be invested in
the different securities, and bi is an upper bound on the proportion of security i, ∀i ∈ [n].

Dataset: The dataset is derived from monthly total returns of 30 stocks from a blue-chip index
which tracks the performance of top 30 stocks in the market when the total investment universe
consists of thousands of assets. The true expected returns and true return covariance matrix for the
first 8 securities are given in the Appendix.

Details for generating the portfolios are provided in Appendix. The portfolios on the efficient
frontier are plot in Figure ??. The learning rate is set to ηt = 5/

√
t. At each round t, we solve

4 using parallel computing. In Table 3 we list the estimation error and estimated expected returns
for different K. The estimation error becomes smaller when K increases, indicating that we have a
better approximation accuracy of the efficient set when using a larger K. We also plot the estimated
efficient frontier using the estimated r̂ for K = 41 in Figure 2 (a). We can see that the estimated
efficient frontier is very close to the real one, showing that our algorithm works quite well in learning
expected returns in portfolio optimization. We also plot our estimation on the distribution of the
weight of f1(x) among the 1000 decision makers. As shown in Figure 2 (b), the distribution follows
roughly normal distribution. We apply Chi-square goodness-of-fit tests to support our hypotheses.

Table 3: Estimation Error for Different K
K 6 11 21 41

∥r̂− rtrue∥2 0.1270 0.1270 0.0420 0.0091
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Figure 2: Learning the expected return of a Portfolio optimization problem over T = 1000 rounds
with K = 41. (a) The red line indicates the real efficient frontier. The blue dots indicate
the estimated efficient frontier using the estimated expected return for K = 41. (b) Each
bar represents the proportion of the 1000 decision makers that has the corresponding
weight for f1(x).
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