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Abstract

Deep language models are often described as
"black-box" systems due to their opaque in-
ference procedures. This presents a challenge
in understanding the information they capture,
and how it is encoded within transformer net-
works, raising the possibility that encoded bi-
ases may remain undetected. This work ad-
dresses confounding bias learned during model
fine-tuning, when a pretrained language model
is adapted to downstream domains and tasks.
Building on previous methodologies, we extend
them by proposing the Extended Confound-
ing Filter and the Dual Filter. These methods
aim to isolate and address weights within the
transformer network that are associated with
confounding variables through distinct train-
ing phases. We evaluate these methods on the
DementiaBank dataset, a first-person narrative
dataset that contains language of patients with
cognitive impairment and healthy controls. We
aim to demonstrate the applicability of the pro-
posed methods in the domain of dementia de-
tection as a means to correct for gender-related
disparities in class distribution at training time.
Our results show that transformer models can
overfit to the subpopulation distribution in the
training data. By disrupting the weights asso-
ciated with known confounders, we show that
fairer models can be achieved with reduced pre-
diction bias towards specific subgroups. More-
over, our findings highlight resilience of the
model against weights deletion and show a
trade-off between model performance in de-
mentia detection and the reduction of dispari-
ties across gender groups.'

1 Introduction

Transformer-based models (Vaswani et al., 2017)
have achieved significant success across various
language and vision tasks, leading to numerous ap-
plications. In particular, bidirectional encoder mod-
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els based on the self-attention mechanism, such
as BERT (Devlin et al., 2019) and its variants (Liu
etal.,2019; Sanh et al., 2020; Lee et al., 2020; Qian
et al., 2022), have demonstrated impressive per-
formance gains on NLP benchmarks and domain-
specific tasks due to their ability to learn rich dense
representations from text. As the popularity of
these models increases, it is important to ensure
that their outputs are not biased towards (or against)
certain groups at the point of deployment. However,
in practice, most transformer models are optimized
for and evaluated on a task of interest, without
considering biases inherent in the data that may
be embedded into the model (Baldini et al., 2022;
Bolukbasi et al., 2016; Hutchinson et al., 2020;
Webster et al., 2021; de Vassimon Manela et al.,
2021). If left unaddressed, such biases can prop-
agate and cause the model to learn spurious cor-
relations in downstream tasks. Efforts have been
made to mitigate these data-derived biases. One
approach involves task-agnostic methods that en-
force the learning of fair representations (Kaneko
and Bollegala, 2021; Cheng et al., 2021; Guo et al.,
2022), while another focuses on reducing discrimi-
nation in specific tasks using annotated data (Shen
et al., 2021; Ravfogel et al., 2022; Gira et al., 2022;
Zhu et al., 2023).

Confounding bias is a particular type of bias
that arises when the relationship between the an-
ticipated signal and the outcome is distorted by
the presence of extraneous factors, known as con-
founders. This results in discrepancies in model
performance across different confounder strata. In
the context of text classification, a confounder can
be considered as an extraneous variable that influ-
ences both the language provided to a classifier,
and the distribution of the class labels of interest
(Landeiro and Culotta, 2018). In this study, we fo-
cus on task-specific methods to mitigate the effects
of confounding bias. Specifically, we investigate
confounding shift in binary classification, where



positive examples are unevenly distributed across
different subgroups, and these subgroup-specific
class distributions differ at the point of evaluation
or deployment. This can lead to errors when a
model uses language indicating a subgroup, rather
than the outcome of interest, as a basis for predic-
tion. Inspired by the Confounding Filter (Wang
et al., 2019), we propose two novel techniques:
the Extended Confounding Filter and Dual Filter,
and evaluate them on the DementiaBank dataset, a
first-person narrative dataset collected from cogni-
tive impairment assessments, widely used to study
the effects of Alzheimer’s disease dementia on lan-
guage.

Our main contributions in this paper are as fol-
lows:

* We identified gender confounding bias in De-
mentiaBank, which had not been reported pre-
viously for dementia detection in any picture
description dataset.

* We extended the Confounding Filter method
which targets specific layers in a neural net-
work to the Transformer architecture and
demonstrated improvements in task perfor-
mance.

* We introduced the Dual Filter as a novel
weight masking algorithm, that identifies and
ablates parameters associated with the con-
founding bias in the entire model’s network
(vs. individual layers).

2 Related Work

Our work focuses on bias mitigation through
weight masking, which requires finding and iso-
lating the influence of model weights that repre-
sent information about a confounding variable. As
such, our work relates to prior efforts to access
information encoded within transformer networks.
Meng et al. (2023) analyze the factual information
stored in GPT2 (Radford et al., 2019) and develop
a causal intervention on neuron activations to trace
the information flow that determines the model’s
predictions. A causal intervention modifies certain
weights inside the network and evaluates the al-
tered model outcome. Other work has also used
causal interventions to probe the behavior of lan-
guage models (Vig et al., 2020; Elazar et al., 2021).
To locate the neurons associated with specific in-
formation or functionality within the network, Liu
et al. (2024) propose a gradient integration method

to pinpoint neurons that cause gaps in output logits
distribution among demographic groups. There are
also other scoring metrics used for pruning neu-
ral networks (Lee et al., 2019; Sun et al., 2024)
that can be used for locating associated weights.
They either track neuron activation or loss output
by masking certain weights within a layer and as-
sign an importance score to each entry given a
calibrated dataset. Compared to these prior efforts,
the method we employ for identifying the weights
complies with the training procedure and requires
no granular weight inspection yet still yield desired
debiasing effects.

3 Methods
3.1 Confounding Filter

Deep learning models often recognize false signals
from confounding factors, leading to sub-optimal
performance in many real-world cases (Szegedy
et al., 2013; Nguyen et al., 2015; Wang et al.,
2017b,a). To address this issue, the Confound-
ing Filter (Wang et al., 2019) was proposed to ad-
dress confounding biases in models trained on elec-
troencephologram and medical imaging data. The
Confounding Filter method is straightforward and
model-agnostic, designed to mitigate the impact of
confounding factors.

In this approach, a deep learning model is de-
noted as having two components: g(-; ), a repre-
sentation learning network, and f(+; ¢), a classifi-
cation network. The algorithm first optimizes the
entire network by solving the following objective:

0,0 = argeglin L(y, f(9(X);0); 9)
where £ denotes the loss function to be minimized.
In the second phase, assuming we have access
to the confounder label m in the dataset, the al-
gorithm localizes weights that are reactive to the
confounding variable. This is achieved through tun-
ing f(-; ¢) towards M while keeping ¢g(-; 0) fixed.
During the second phase, updates in QAS are tracked
and normalized after each batch. The sum of nor-
malized updates is denoted as m = ¢ Z?:1|A¢i]
where b is the number of total batches in the second
phase of training. The importance of each element
in 7 is determined by their magnitude. A threshold
function is then employed to get the mask:

_Jo ifm >
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Figure 1: a: Illustration of the Extended Confounding Filter (ECF) Probing framework for weights identification. b:
Illustration of the Dual Filter (DF) procedure to find weights to mask.

Here, T is the k" percentile in 7, where k is a
hyperparameter. The element-wise product ¢’ =
¢ ® M results in the confounder-mitigated network

Fl9(X):0);¢").
3.2 Extended Confounding Filter

While the original Confounding Filter algorithm
has shown improvements over the baseline in some
neural network architectures (Wang et al., 2019), its
adaptation to transformer networks remains unex-
plored. Transformer-based language models learn
to generate distributional semantic representations
(Vaswani et al., 2017) through the attention mech-
anism and positional encoding. By fine-tuning a
pretrained language model, semantic information
pertinent to a task of interest is dynamically stored
across the transformer network layers.

Our hypothesis is that fixing g(+; #) when train-
ing for the confounder variable may not effectively
capture the most confounder-associated weights
within the transformer network. To test this hy-
pothesis, we sequentially unfroze each layer in the
transformer network, starting from the top layer
down to the embedding layer and observed its im-
pact on the outcome. This is different from the
original Confounder Filtering method, where only
the classification head is trainable in the encoder
model.

As shown in Figure 2, the matrices
Wo, Wk, Wy, Wo, W1, Wy are tracked in a
single transformer block, while W,,,,;, and W,
represent the token embedding matrix and classifi-
cation weight matrix in a sequence classification
model, respectively. Similarly to the Confounding
Filter, we start by training a classification model
towards the primary outcome Y}, (Phase 1) and then
continue training the model towards classifying the
confounder Y, (Phase 2).

By sequentially unfreezing different numbers of
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Figure 2: Tracked weight matrices in the transformer
network

layers, we allow varying amounts of the model’s
parameter spaces to react to the information intro-
duced during Phase 2. (Figure. 1a) This sequential
probing scheme follows the idea from Confound-
ing Filter but provides more flexibility as you can
partition the classification network f(z) and repre-
sentation learning network g(x) at different points.
The change in parameter A¢; is normalized within
the matrix and recorded after each training batch.
Following the Confounding Filter methodology, we
restrict A¢; to each W in this probing procedure,
and the threshold 7 is calculated for each individual
weight matrix. The probing step size is by layer.
Masking matrices, derived from the threshold func-
tion, are applied to the tracked weight matrix from
Phase 1 fine-tuning. We later evaluate the effective-
ness of this method in mitigating confounding bias
against the probing depth on a real world dataset.

3.3 Dual Filter

Next, we further lift the restriction on Phase 2
training from the ECF method that the masking
be performed locally, ignoring the dynamics and
interaction the language model might have during
finetuning. We propose Dual Filter, a method that
tracks the weight change from two separate mod-
els starting from the same checkpoint, one for the
primary target and the other for the confounder.
After obtaining change matrices 7 from both mod-



els, we utilize set operations to isolate weights that
are most reactive to the confounder label during
finetuning. Specifically, we chose top k% most
changed weights from the primary model f and the
confounder model g, and take the intersection or
the difference from these two weight sets to gen-
erate the mask matrices (Figure 1b). One could
apply either the intersection set mask, the differ-
ence set mask, or the joint set of the two masks
(which is equivalent to the top k% most changed
weights from the confounder model), depending
on the dataset or tasks. We formally describe the
proposed algorithm in Algorithm 1.

Algorithm 1 Dual Filter for weights masking

Input: pretrained language model: fy(x), go(z);
dataset: D(x, yp, y.); threshold: k
Output: Confounder-adjusted model f(z;6")
1: Train fo(x;6) — y,, obtain weights change
A, and finetuned model f(x; 9).
2: Train go(z; ¢) — y., obtain weights change
A, and finetuned model g(x; QZA))

A, = argmax Z Di

pgAz),\M:k’ pi€EAp

A, = argmax E G
CQACJC':]CCZ-GAC

4: My + APJ? N Ac,kz’ Mp + Ac,k \ Ap,k‘
5: Pick mask M € {M[,MD,M]UMD}
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4 Evaluations

Confounding Shift One fundamental assump-
tion in machine learning is the test dataset and train-
ing dataset are from the same distribution. However
this assumption is often violated in real world appli-
cations resulting in distribution shifts. One specific
form of distribution shift is sub-population shift
(Cao et al., 2019; Cai et al., 2021). A model opti-
mized on a distribution shifted training set tends to
learn spurious correlations with the majority class
and may lead to poor performance on data with a
different from the training data class distribution
(Yang et al., 2023).

While the sub-population shifts are determined
by the product of group attributes and the label,
and the group attributes are not independent of the
label, it is a special type of dataset shift referred to

as Confounding Shift (Landeiro and Culotta, 2018).
Formally, confounding shift exists when two condi-
tions are met: (i) a confounding variable Y, exists
that impacts both X and Y), through distributions
P(X|Y.) and P(Y,|Y.) through the backdoor path
in a causal graph (Pearl, 2009); (ii) a subpopu-
lation distribution Py, (Y}|Ye) is different from
Pyest(Yp|Ye) (Landeiro and Culotta, 2018).

To quantitatively assess the degree of confound-
ing shift, we use a framework proposed by Ding
et al. (2024) in our experiments. This allows us to
perturb the target variable and confounding vari-
able distributions in both training and test splits to
different degrees through sampling from the origi-
nal dataset. Under this framework, we consider a
dataset with a binary target and binary confounder,
the joint distribution P(Y), Y.) governed by the fol-
lowing quantity: P(Y, = 1), P(Y, =1),P(Y, =
1Y, = 1), P(Y, = 1]Y. = 0). Next Ding et al.
(2024) introduced an positive auxiliary variable
a = %, which serves as a knob for
controlling the degree of subpopulation shift. By
setting different v values, we control the source of
the positive examples. If we hold P(Y, = 1) and
P(Y, = 1) constant, we can vary Qu,qin and ouyest
to create a mixture of datasets with various degrees
of shift for model evaluation. Details are described
in Section 5.2.

Fairness The concept of fairness in machine
learning addresses the goal of ensuring that models
operate without bias and equitably across different
demographic groups. A widely accepted notion
of group fairness, which focuses on equity at the
population level, is statistical parity (Dwork et al.,
2011). In problems with a binary outcome Y and
a binary group variable G, statistical parity is de-
fined as the absolute difference or ratio between
P(y =1|g = 1) and P(y = 1|g = 0). Smaller
values of statistical parity indicate greater equal-
ity in the model’s outputs across the two groups.
In addition to statistical parity, other fairness met-
rics consider ground truth labels and compare the
true positive rates between groups (Romano et al.,
2020; Hardt et al., 2016). These metrics assess
the model’s ability to make accurate predictions
without discriminating against any group.

In our context, the test set attributes vary due to
different data distributions associated with param-
eter o, rendering comparisons of statistical parity
across different « values infeasible. Therefore, we
evaluate P(y = 1|G,y = 0), which describes the



predicted probability for dementia among healthy
participants, and is equivalent to the false positive
rate (FPR). We calculate the absolute difference of
FPR between the subgroups. This metric helps us
assess fairness by examining the model’s behavior
across different o values.

5 Dementia Detection Case Study

In recent years, transformer models have demon-
strated promising performance in dementia detec-
tion using Cookie Theft picture description data
(Figure S2) (Hernandez-Dominguez et al., 2018;
Cohen and Pakhomov, 2020; Luz et al., 2020; Guo
et al., 2021; Li et al., 2022), a clinical test widely
adopted for assessing cognitive impairment. How-
ever, these models are susceptible to bias due to
the small size of publicly available datasets utilized
in most studies. Within this context, confounding
by gender is an unexplored potential source of bias
that could lead to erroneous predictions if the con-
founding effects are not addressed. The underlying
hypothesis is that the language used by male and
female participants in response to the picture de-
scription task may vary, and the model might learn
these differences to make dementia predictions, re-
gardless of the participants’ true cognitive status.

5.1 DementiaBank

The benchmark dataset used for our experiments is
the Pittsburgh Corpus from DementiaBank (Becker
et al., 1994; MacWhinney, 2007) This corpus is
a widely used resource in the fields of computa-
tional linguistics and dementia studies. It provides
detailed speech and language data from elderly
participants with dementia as well as healthy con-
trols. Notably, the Pittsburgh Corpus includes re-
sponses to the Cookie Theft picture description task
from the Boston Diagnostic Aphasia Examination
(Goodglass and Kaplan, 1983). The dataset com-
prises 548 examples collected from longitudinal
records of 290 participants. To ensure that the tran-
scripts accurately reflect the diagnosis label, we
selected the last transcript for each patient as input
for our model.

5.2 Experiments

We start by examining whether a text classifica-
tion model will recognize gender confounding bias
from such picture description data. We trained
a BERT-base model (Devlin et al., 2019) on the
full dataset and evaluated the model’s performance

on the task of recognizing each gender . We ran
the experiments using 5-fold cross validation with
3 repeats on both the original dataset, and a per-
fectly balanced dataset created by down-sampling
the more prevalent category. The result is shown
in Figure 3 - performance discrepancies were ob-
served among male and female examples across
multiple runs. These findings hold for some other
encoder models as well (Figure S1). This result
shows that there exists confounding by gender in
the dementia detection task which is independent
of the gender distribution in the dataset. It provides
insights that the gender of the speaker influences
the language they use to complete the Cookie Theft
picture description task, and confound the dementia
signals during model fine-tuning. Hereby, we fur-
ther investigate this confounding by gender effects
in dementia detection and evaluate our proposed
deconfounding methods.

100 @ balanced
== original

accuracy

0.70

overall male female

Figure 3: Performance discrepancies in dementia
detection when trained with a BERT-base model

Dataset Perturbation As described in Section
4 , we manipulated the conditional distribution of
dementia by gender in our dataset through random
sampling, creating a series of datasets with varying
levels of confounding shift. In our experiments,
dementia cases and female cases are coded as 1,
respectively. We fixed P(gender = 1) = 0.5 and
P(dementia = 1) = 0.5 in both the training and
test sets to ensure fair comparisons across different
configurations. This way, the dataset is balanced
with respect to both dementia and gender. Then we
adjusted the value of a = % to create
an imbalance in the source of dementia cases (sub-
population shift). If & > 1, more dementia cases
are drawn from females, while o < 1 indicates
the opposite. The further « is from 1, the more
severe the imbalance. To evaluate the model’s ro-
bustness to confounding shifts, the model is trained

“This dataset provides labels only for two genders: male
and female
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Figure 4: Extended Confounding Filter with 15% masking ratio at each tracked weight matrix

ON ONe Qurqin Value and tested on its reciprocal value
Qlgest = ﬁ, simulating an extreme shift in the test
set compared to the distribution the model was ex-
posed to during training. Models are trained for
20 epochs on 600 training examples and evaluated
on 150 examples for each configuration. The best
checkpoint is selected based on AUPRC for each
training process.

Extended Confounding Filter On creating a se-
ries of datasets with different oy,qi, values, we
probed each layer in the model in response to the
shift. The encoder model we used for dementia de-
tection is BERT-base, with 12 encoder layers and
12 attention heads in each layer. Once we obtain the
dementia finetuned model f(x) in the first Phase,
we take a snapshot of the parameters and only make
some parts of it trainable towards the gender label
in the second Phase. The trainable layer starts from
{cls}, and 1 layer is added to the trainable set each
time sequentially. Eventually the trainable set be-
comes {cls,layerl2,layerll, ..., layerl, emb}
and spans the whole network. Then for each train-
able set, f; is trained towards gender prediction.
We ranked weights that changed in each layer and
picked top 15% of the weights that changed the
most in each layer to mask (Figure 1a). Then we
evaluated the masked models.

Dual Filter In the Dual Filter approach, we track
the global weights change throughout the model’s
architecture. The classification head is exempt
from tracking as it is training towards two differ-
ent tasks and the weights in the classification head
are assumed to have the most significant change
compared to the rest of network. We first obtain
two lists of weights change matrices from f(z)
and g(x), using the same approach as Extended CF.
Then we rank and select top k% weights by their
locations in the network. A sequence of k values
are tested, ranging from 0 to 60 and step size of 1.
Then three kinds of set (M7, Mp, My N Mp) are
calculated and applied to f(x) to create the masked
model. Note when training toward gender in both
Extended CF and Dual Filter, we select only non-

dementia cases to let the model learn from texts
that are representative of the gender differences.
consequently, only healthy cases are used in the
evaluation as well.

6 Results
6.1 Extended Confounding Filter

Figure 4 demonstrates the Extended Confounding
Filter results, the red dotted line shows the per-
formance of the intact model and models whose
weights are eliminated cumulatively layer-by-layer
from left to right until the embedding layer is
reached (the right most bar). The orange bar rep-
resents the idea of the original Confounding Filter,
where only the classification head is trained in the
second phase and then masked. These results show
that a model trained and tested on the same distribu-
tion reaches the highest performance among all the
configurations, while the degree of confounding
shift correlates with the model’s performance (i.e.
the model performance drops as avyqir shifts away
from 1). Another observation is that the model
demonstrates some resilience in its ability to detect
dementia to removing gender associated weights
from upper layers in the network. No significant
performance drops are observed until we start to re-
move weights at 5" layer. The next observation we
have is the large decline when top changed weights
are removing from the embedding layer.

6.2 Dual Filter

In Figure 5, we visualize the dementia prediction
performance change as we apply three different
types of mask to the original model and gradually
increase the masking ratio. The results from ECF
with 15% layer-specific masking ratio have also
been added for comparison. The plot shows the
relation between how many weight entries are ab-
lated within the whole network against dementia
detection performance in terms of AUPRC. The
rows indicate three types of masks that are gener-
ated by Dual Filter and the columns indicate the
specific airqin, configurations that control the distri-
bution shift. The relationships between the ablation
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Figure 5: Side by side AUPRC comparison on ECF and
DF for different a4y, configurations

ratio of the three types of masks and the choice of k&
are shown in Figure 6. As we tune k to increase the
coverage of active parameters in the model, the size
of Mp first grows then reaches its peak at around
k = 40 and then fall back to zero, while the size of
M keeps increasing.
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Figure 6: Ablation ratio by each masks against total
masking ratio

Next, we show the absolute False Positive Rate
difference (ie. |[P(y=1lg =1,y =0) — P(y =
1lg = 0,y = 0)]) calculated under both Extended
Confounding Filter and Dual Filter methods. The
Figure 7 shows the FPR measurements change as
the ablation ratios increase for all three types of
masks. The mask type is indicated by row while
the columns represents different cvyyqin, -
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Figure 7: False Positive Rate (FPR) on ECF and DF for
different cvy,q;y, configurations

While the aim is to eliminate gender confound-
ing effects from the model’s dementia detection
capability, there is a possibility that the weights
associated with dementia and gender become en-
tangled during the learning process. To investigate
this, we record the change matrices for all layers
in the network during the Dual Filter training pro-
cess. We then conduct an analysis of the similarity
between the change matrices from the fine-tuned
dementia model and those from the fine-tuned gen-
der model. For similarity measurements, we utilize
the Jaccard Index to quantify the similarity between
the two input matrices, which is defined as:

[UNnV|

UV =150v]

To prepare the input, 85% percentile of two change
matrices are calculated and then the values are used
to binarize each of the matrices. Figure 8 demon-
strates the barplot from six of the tracked weight
matrices at each layer, with the configuration of
Qrain €quals to 1. From the plot we can observe
that at lower encoder layers, the similarity between
dementia model and gender model concentrates on
the attention block, especially Wy and Wg. As we
move up to the upper layer, the FEN block starts to
display more similarity and jumps up at 12" layer.
Similar patterns are also observed in other avyqin
configurations. This result indicates the finetuned
model stores information dynamically through the
whole network and shift the storage at different
layers. This finding also aligns with other work
(Wei et al., 2024) where weights entanglement are
assessed with a larger model and different tasks.

Jaccard Index

Figure 8: Jaccard Index for each of the tracked matrix
in Dual Filter

7 Discussion

The ECF method probes each layer and mask as-
sociated weights in a cumulative fashion. The or-
ange patch in Figure 4 shows simply applying Con-
founding Filter on the classification layer to the
transformer network is not enough to detect and



mitigate the confounding bias. Propagating masks
layer-by-layer helps improve or retain the demen-
tia classification performance from Confounding
Filter until several layers deep into the network.
We observe the resilience of weight ablation in the
BERT model on dementia prediction performance
which is consistent with similar resilience on cap-
turing linguistic features reported in other work
(Li et al., 2024). Model performance on dementia
does not drop significantly until gender-associated
weights at layer 5 or layer 6 gets masked, depend-
ing on the configuration of .. This is equivalent to
weights ablation ratio around 10%-12% over the
whole network. We also observe the network is
slightly more robust to weight ablation when the
confounding shift is more severe under this probing
method. For example, with configuration of o = 1,
the drop starts before 10% of weights (around layer
5) are removed; In the meanwhile, with ayqin = D
Of Qitrqin = 0.2, the drop is delayed until weights
at layer 2 or layer 3 gets deleted.

We also check the gender performance differ-
ence as gender-associated weights are removed in
each layer. Interestingly, the masked models show
a loss of gender detection ability (Figure S3 ), and
the extent of this loss varies with the number of
free layers. This demonstrates that the transformer
learns information dynamically and adapts to its
model capacity. From Figure S3 we also notice
the effects of different level of confounding shift.
While the gender performance difference by lay-
ers is not reflected balanced setting, we observe
AUROC performance change gets larger by layer
under confounding shifts. The embedding matrix
also emerges as a critical factor in dementia de-
tection, as deleting even a small proportion of the
embedding weights causes a drastic change in the
model’s dementia detection ability.

The grid of Figure 5 provides an overview of
the performance change in dementia against the
ablation ratios in the model, for both ECF and DF.
In the results we can observe the different behav-
iors from the three types of mask. For M; U Mp
filter, the model illustrates resistance against the
weight deletion more consistently. Comparing to
ECF, masking weights inside M7 U Mp shows less
resilience at the start but the performances cross
right after 10% weights are removed and then be-
comes more robust to weight delection compared to
ECF. As for Mp, some resilience can be observed
at the start of the masking but the performance
degradation becomes more extensive after a cer-

tain point. Also, the resilience behavior differs
across different avyqipn, With qypq;n, = 1 offering
the most resilience. However, the impact of M7y
mask turned out to be different. Ablating weights in
M7 first results in a sharp decrease in performance
and then gradually stabilizes when more weights
get deleted. Those results suggest the entanglement
of weights responsive for dementia detection and
gender detection enrich in the intersection set from
two change matrix, especially those weight entries
that have changed most. Interestingly, removing
all the top changed weights from the gender model
side consistently exhibits more resilience than re-
moving weights only from the difference set. We
also observe the ECF method in general preserve
better dementia detection capability if weights are
only removed from top half layers in BERT base
model (layer 6-12). By examining the between-
group FPR metric in Figure 7), both methods show
improvements in output equity. By align the fair-
ness metrics with the AUPRC changes, we clearly
observe the correlation between the dementia de-
tection ability and disparity between gender group.
For example in the M} row, when dementia perfor-
mance recovers, it aligns with an sudden increase
in the FPR difference.

8 Conclusion

In this paper, we address confounding bias
learned during model fine-tuning and propose two
model-agnostic methods for filtering confounding-
associated weights in transformers. We apply these
methods to a dementia detection task, demonstrat-
ing their utility in clinical practice. Our findings
indicate that unaddressed confounding shifts de-
grade model performance even when the overall
label and group distributions are balanced. Experi-
mental results compare the identification of gender-
associated weights both layer-wise and across the
entire model. Both methods effectively retain per-
formance on dementia detection while reducing
gender bias. Although these results are dataset-
specific, we plan to extend our approach to other
benchmarks. We observe non-monotonic responses
across different layers, suggesting further investi-
gation is needed to understand the inner workings
of even small transformer models. Lastly, we note
that ensuring fairness and maintaining model per-
formance often involves trade-offs, and real-world
decisions should consider multiple factors, includ-
ing bias tolerance and use case specifics.



9 Limitations

Dataset The experiments of our proposed meth-
ods are only conducted on a relative small dataset,
generalizability to other bias-related dataset re-
mains unknown. In addition, given the small data
size, manifesting different level of confounding
shift requires repetitive sampling to meet the de-
sired subgroup distribution. Thus the resultant
dataset contains significant amount of duplicates
that can impact the validity of the findings.

Methods In Extended Confounding Filter meth-
ods, even though the approach we take is the most
straightfoward and allows the model to absorb uni-
directional effects, we ignore the possibility of
other combinations of layer freezing inside the net-
work.

Experiments While we acknowledge BERT-
base as a good starting point of investigation, we
did not compare other encoder model in this work.
On the other hand, we briefly discussed some other
weight importance measurements to isolate weights
that impact certain outputs, we didn’t implement
and compare them with our current approach for
de-confounding bias.
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A Appendix

A.1 Gender bias in dementia detection
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Figure S1: Performance disparency between male and
female in from other encoder models. Top: Results
from RoBERTa-base, Bottom: Results from
FairBERTa (Qian et al., 2022)

Figure S2: Cookie Theft picture for cognitive
impairment assessment

A.2 Cookie Theft Picture
A.3 Gender performance change

We first evaluate model performance of AUROC
on gender prediction for each layer probing pro-
cess, then evaluate gender performance again after
removing gender-associated weights and calculate
their difference. As shown in the Figure S3 below,
the performance gap between original and masked
model becomes larger as more gender associated
weights are removed in the confounding shift sce-
narios.

Qtrain=0.2 Qtrain=0.25 Qtrain=0.33
0.25
0.20
Eo1s
kel
9]
g o0
&
0.05
0.00
Qtrain=0.5 Qtrain=1.0 Qtrain=2.0
0.25
0.20
.aE 0.15
kel
9]
o) 0.10
&
0.05
0.00
Qtrain=3.0 Qtrain=4.0 Qtrain=5.0
0.25
0.20
Eois
o
€]
& o0
=4
0.05
0.00

Figure S3: Performance difference between a intact and
masked model for gender prediction. Left-most point
means probe on classification layer and right-most
means probe on the word embedding layer.

A.4 Additional Results
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Figure S4: Selected configurations of ECF filtering with 25% masking rate at each tracked weight matrix

Table 1: Mean and Standard Deviation of APS for each experiment and .4, in ECF with 15% masking rate

Qtrain = CQtrain = Qtrain = Qtrain = Qtrain = COtrain = Qtrain = Qtrain = train =

0.2 0.25 0.33 0.5 1.0 2.0 3.0 4.0 5.0

Intact 0.8716  0.8917 0.8876 0.9001 0.9186 0.9120 0.9135 0.8818 0.8842
(0.0350) (0.0345) (0.0217) (0.0404) (0.0400) (0.0335) (0.0305) (0.0385) (0.0378)
Classifier | 0.8486 0.8807 0.8657 0.8942 0.8904 09051 09150 0.8844 0.8782
(0.0528) (0.0427) (0.0290) (0.0308) (0.0778) (0.0406) (0.0328) (0.0391) (0.0363)
Layer12 | 0.8708 0.8888 0.8803 0.8977 0.9132 0.9049 0.9059 0.8694 0.8686
(0.0324) (0.0398) (0.0353) (0.0415) (0.0415) (0.0443) (0.0417) (0.0399) (0.0661)
Layer1l | 0.8717 0.8499 0.8803 0.9046 0.9023 0.9060 0.9094 0.8803 0.8579
(0.0401) (0.0971) (0.0326) (0.0338) (0.0537) (0.0398) (0.0388) (0.0543) (0.0873)
Layer10 | 0.8720 0.8351 0.8712 0.8439 0.9071 0.9093 0.9145 0.8801 0.8781
(0.0384) (0.1265) (0.0284) (0.1446) (0.0502) (0.0300) (0.0303) (0.0319) (0.0499)
Layer9 0.8334 0.8681 0.8635 0.8687 0.9016 0.8702 0.8942 0.8599 0.8421
(0.0880) (0.0514) (0.0421) (0.1083) (0.0507) (0.1044) (0.0318) (0.0478) (0.0977)
Layer8 0.8520 0.8831 0.8712 0.8854 0.9022 0.9076 0.8977 0.8644 0.8559
(0.0705) (0.0543) (0.0432) (0.0639) (0.0630) (0.0340) (0.0296) (0.0440) (0.0910)
Layer7 0.8636 0.8665 0.8612 0.8565 0.8904 0.9014 0.8625 0.8700 0.8577
(0.0572) (0.0500) (0.0453) (0.1184) (0.0672) (0.0306) (0.0776) (0.0352) (0.0564)
Layer6 0.8648 0.8456 0.8606 0.8742 0.8893 0.8466 0.8909 0.8497 0.8607
(0.0511) (0.0933) (0.0596) (0.0967) (0.0499) (0.1167) (0.0349) (0.0369) (0.0363)
LayerS 0.8256 0.8348 0.8475 0.8670 0.8428 0.8654 0.8440 0.8347 0.8469
(0.0656) (0.0729) (0.0663) (0.0480) (0.1006) (0.0659) (0.0513) (0.0482) (0.0335)
Layer4 0.8331 0.8418 0.8503 0.8887 0.8437 0.8282 0.8178 0.7441 0.8380
(0.0449) (0.0669) (0.0534) (0.0420) (0.0869) (0.0684) (0.0704) (0.1416) (0.0507)
Layer3 0.8462 0.7945 0.8376 0.8496 0.8174 0.8132 0.7458 0.8173 0.7760
(0.0546) (0.1090) (0.0791) (0.0761) (0.0967) (0.0784) (0.1423) (0.0604) (0.1046)
Layer2 0.7897 0.8425 0.7416 0.8435 0.7021 0.7535 0.8289 0.7165 0.7274
(0.0965) (0.0681) (0.1055) (0.0723) (0.1283) (0.1429) (0.0554) (0.1437) (0.1237)
Layer1 0.7553 0.7788 0.7847 0.7913 0.7867 0.8339 0.7936 0.7029 0.7545
(0.0869) (0.0998) (0.1108) (0.1137) (0.0885) (0.0683) (0.0832) (0.1452) (0.0940)
Emb 0.4842 0.4935 0.5516 0.5034 0.5815 0.5472 0.5657 0.5205 0.5521
(0.0549) (0.0511) (0.0642) (0.0703) (0.0768) (0.0829) (0.0966) (0.1054) (0.0692)
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