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Abstract

Deep language models are often described as001
"black-box" systems due to their opaque in-002
ference procedures. This presents a challenge003
in understanding the information they capture,004
and how it is encoded within transformer net-005
works, raising the possibility that encoded bi-006
ases may remain undetected. This work ad-007
dresses confounding bias learned during model008
fine-tuning, when a pretrained language model009
is adapted to downstream domains and tasks.010
Building on previous methodologies, we extend011
them by proposing the Extended Confound-012
ing Filter and the Dual Filter. These methods013
aim to isolate and address weights within the014
transformer network that are associated with015
confounding variables through distinct train-016
ing phases. We evaluate these methods on the017
DementiaBank dataset, a first-person narrative018
dataset that contains language of patients with019
cognitive impairment and healthy controls. We020
aim to demonstrate the applicability of the pro-021
posed methods in the domain of dementia de-022
tection as a means to correct for gender-related023
disparities in class distribution at training time.024
Our results show that transformer models can025
overfit to the subpopulation distribution in the026
training data. By disrupting the weights asso-027
ciated with known confounders, we show that028
fairer models can be achieved with reduced pre-029
diction bias towards specific subgroups. More-030
over, our findings highlight resilience of the031
model against weights deletion and show a032
trade-off between model performance in de-033
mentia detection and the reduction of dispari-034
ties across gender groups.1035

1 Introduction036

Transformer-based models (Vaswani et al., 2017)037

have achieved significant success across various038

language and vision tasks, leading to numerous ap-039

plications. In particular, bidirectional encoder mod-040

1Code repo for reproducing all the experiment results will
be published upon acceptance.

els based on the self-attention mechanism, such 041

as BERT (Devlin et al., 2019) and its variants (Liu 042

et al., 2019; Sanh et al., 2020; Lee et al., 2020; Qian 043

et al., 2022), have demonstrated impressive per- 044

formance gains on NLP benchmarks and domain- 045

specific tasks due to their ability to learn rich dense 046

representations from text. As the popularity of 047

these models increases, it is important to ensure 048

that their outputs are not biased towards (or against) 049

certain groups at the point of deployment. However, 050

in practice, most transformer models are optimized 051

for and evaluated on a task of interest, without 052

considering biases inherent in the data that may 053

be embedded into the model (Baldini et al., 2022; 054

Bolukbasi et al., 2016; Hutchinson et al., 2020; 055

Webster et al., 2021; de Vassimon Manela et al., 056

2021). If left unaddressed, such biases can prop- 057

agate and cause the model to learn spurious cor- 058

relations in downstream tasks. Efforts have been 059

made to mitigate these data-derived biases. One 060

approach involves task-agnostic methods that en- 061

force the learning of fair representations (Kaneko 062

and Bollegala, 2021; Cheng et al., 2021; Guo et al., 063

2022), while another focuses on reducing discrimi- 064

nation in specific tasks using annotated data (Shen 065

et al., 2021; Ravfogel et al., 2022; Gira et al., 2022; 066

Zhu et al., 2023). 067

Confounding bias is a particular type of bias 068

that arises when the relationship between the an- 069

ticipated signal and the outcome is distorted by 070

the presence of extraneous factors, known as con- 071

founders. This results in discrepancies in model 072

performance across different confounder strata. In 073

the context of text classification, a confounder can 074

be considered as an extraneous variable that influ- 075

ences both the language provided to a classifier, 076

and the distribution of the class labels of interest 077

(Landeiro and Culotta, 2018). In this study, we fo- 078

cus on task-specific methods to mitigate the effects 079

of confounding bias. Specifically, we investigate 080

confounding shift in binary classification, where 081
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positive examples are unevenly distributed across082

different subgroups, and these subgroup-specific083

class distributions differ at the point of evaluation084

or deployment. This can lead to errors when a085

model uses language indicating a subgroup, rather086

than the outcome of interest, as a basis for predic-087

tion. Inspired by the Confounding Filter (Wang088

et al., 2019), we propose two novel techniques:089

the Extended Confounding Filter and Dual Filter,090

and evaluate them on the DementiaBank dataset, a091

first-person narrative dataset collected from cogni-092

tive impairment assessments, widely used to study093

the effects of Alzheimer’s disease dementia on lan-094

guage.095

Our main contributions in this paper are as fol-096

lows:097

• We identified gender confounding bias in De-098

mentiaBank, which had not been reported pre-099

viously for dementia detection in any picture100

description dataset.101

• We extended the Confounding Filter method102

which targets specific layers in a neural net-103

work to the Transformer architecture and104

demonstrated improvements in task perfor-105

mance.106

• We introduced the Dual Filter as a novel107

weight masking algorithm, that identifies and108

ablates parameters associated with the con-109

founding bias in the entire model’s network110

(vs. individual layers).111

2 Related Work112

Our work focuses on bias mitigation through113

weight masking, which requires finding and iso-114

lating the influence of model weights that repre-115

sent information about a confounding variable. As116

such, our work relates to prior efforts to access117

information encoded within transformer networks.118

Meng et al. (2023) analyze the factual information119

stored in GPT2 (Radford et al., 2019) and develop120

a causal intervention on neuron activations to trace121

the information flow that determines the model’s122

predictions. A causal intervention modifies certain123

weights inside the network and evaluates the al-124

tered model outcome. Other work has also used125

causal interventions to probe the behavior of lan-126

guage models (Vig et al., 2020; Elazar et al., 2021).127

To locate the neurons associated with specific in-128

formation or functionality within the network, Liu129

et al. (2024) propose a gradient integration method130

to pinpoint neurons that cause gaps in output logits 131

distribution among demographic groups. There are 132

also other scoring metrics used for pruning neu- 133

ral networks (Lee et al., 2019; Sun et al., 2024) 134

that can be used for locating associated weights. 135

They either track neuron activation or loss output 136

by masking certain weights within a layer and as- 137

sign an importance score to each entry given a 138

calibrated dataset. Compared to these prior efforts, 139

the method we employ for identifying the weights 140

complies with the training procedure and requires 141

no granular weight inspection yet still yield desired 142

debiasing effects. 143

3 Methods 144

3.1 Confounding Filter 145

Deep learning models often recognize false signals 146

from confounding factors, leading to sub-optimal 147

performance in many real-world cases (Szegedy 148

et al., 2013; Nguyen et al., 2015; Wang et al., 149

2017b,a). To address this issue, the Confound- 150

ing Filter (Wang et al., 2019) was proposed to ad- 151

dress confounding biases in models trained on elec- 152

troencephologram and medical imaging data. The 153

Confounding Filter method is straightforward and 154

model-agnostic, designed to mitigate the impact of 155

confounding factors. 156

In this approach, a deep learning model is de- 157

noted as having two components: g(·; θ), a repre- 158

sentation learning network, and f(·;ϕ), a classifi- 159

cation network. The algorithm first optimizes the 160

entire network by solving the following objective: 161

θ̂, ϕ̂ = argmin
θ,ϕ

L(y, f(g(X); θ);ϕ) 162

163where L denotes the loss function to be minimized. 164

In the second phase, assuming we have access 165

to the confounder label m in the dataset, the al- 166

gorithm localizes weights that are reactive to the 167

confounding variable. This is achieved through tun- 168

ing f(·;ϕ) towards M while keeping g(·; θ) fixed. 169

During the second phase, updates in ϕ̂ are tracked 170

and normalized after each batch. The sum of nor- 171

malized updates is denoted as π = 1
b

∑b
i=1|∆ϕi| 172

where b is the number of total batches in the second 173

phase of training. The importance of each element 174

in π is determined by their magnitude. A threshold 175

function is then employed to get the mask: 176

Mi =

{
0 if πi > τ

1 otherwise
177
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Figure 1: a: Illustration of the Extended Confounding Filter (ECF) Probing framework for weights identification. b:
Illustration of the Dual Filter (DF) procedure to find weights to mask.

Here, τ is the kth percentile in π, where k is a178

hyperparameter. The element-wise product ϕ̂′ =179

ϕ̂⊗M results in the confounder-mitigated network180

f(g(X); θ̂); ϕ̂′).181

3.2 Extended Confounding Filter182

While the original Confounding Filter algorithm183

has shown improvements over the baseline in some184

neural network architectures (Wang et al., 2019), its185

adaptation to transformer networks remains unex-186

plored. Transformer-based language models learn187

to generate distributional semantic representations188

(Vaswani et al., 2017) through the attention mech-189

anism and positional encoding. By fine-tuning a190

pretrained language model, semantic information191

pertinent to a task of interest is dynamically stored192

across the transformer network layers.193

Our hypothesis is that fixing g(·; θ) when train-194

ing for the confounder variable may not effectively195

capture the most confounder-associated weights196

within the transformer network. To test this hy-197

pothesis, we sequentially unfroze each layer in the198

transformer network, starting from the top layer199

down to the embedding layer and observed its im-200

pact on the outcome. This is different from the201

original Confounder Filtering method, where only202

the classification head is trainable in the encoder203

model.204

As shown in Figure 2, the matrices205

WQ,WK ,WV ,WO,W1,W2 are tracked in a206

single transformer block, while Wemb and Wcls207

represent the token embedding matrix and classifi-208

cation weight matrix in a sequence classification209

model, respectively. Similarly to the Confounding210

Filter, we start by training a classification model211

towards the primary outcome Yp (Phase 1) and then212

continue training the model towards classifying the213

confounder Yc (Phase 2).214

By sequentially unfreezing different numbers of215

𝑊!

𝑊"

𝑊#

𝑊$

weights in Attention

𝑊% 𝑊&

weights in FFN

𝑊'()X
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Figure 2: Tracked weight matrices in the transformer
network

layers, we allow varying amounts of the model’s 216

parameter spaces to react to the information intro- 217

duced during Phase 2. (Figure. 1a) This sequential 218

probing scheme follows the idea from Confound- 219

ing Filter but provides more flexibility as you can 220

partition the classification network f(x) and repre- 221

sentation learning network g(x) at different points. 222

The change in parameter ∆ϕi is normalized within 223

the matrix and recorded after each training batch. 224

Following the Confounding Filter methodology, we 225

restrict ∆ϕi to each W in this probing procedure, 226

and the threshold τ is calculated for each individual 227

weight matrix. The probing step size is by layer. 228

Masking matrices, derived from the threshold func- 229

tion, are applied to the tracked weight matrix from 230

Phase 1 fine-tuning. We later evaluate the effective- 231

ness of this method in mitigating confounding bias 232

against the probing depth on a real world dataset. 233

3.3 Dual Filter 234

Next, we further lift the restriction on Phase 2 235

training from the ECF method that the masking 236

be performed locally, ignoring the dynamics and 237

interaction the language model might have during 238

finetuning. We propose Dual Filter, a method that 239

tracks the weight change from two separate mod- 240

els starting from the same checkpoint, one for the 241

primary target and the other for the confounder. 242

After obtaining change matrices π from both mod- 243
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els, we utilize set operations to isolate weights that244

are most reactive to the confounder label during245

finetuning. Specifically, we chose top k% most246

changed weights from the primary model f and the247

confounder model g, and take the intersection or248

the difference from these two weight sets to gen-249

erate the mask matrices (Figure 1b). One could250

apply either the intersection set mask, the differ-251

ence set mask, or the joint set of the two masks252

(which is equivalent to the top k% most changed253

weights from the confounder model), depending254

on the dataset or tasks. We formally describe the255

proposed algorithm in Algorithm 1.256

Algorithm 1 Dual Filter for weights masking

Input: pretrained language model: f0(x), g0(x);
dataset: D(x, yp, yc); threshold: k

Output: Confounder-adjusted model f(x; θ
′
)

1: Train f0(x; θ) 7→ yp, obtain weights change
∆p and finetuned model f(x; θ̂).

2: Train g0(x;ϕ) 7→ yc, obtain weights change
∆c and finetuned model g(x; ϕ̂).

3:

∆p,k = argmax
p⊆∆p,|p|=k

∑
pi∈∆p

pi

∆c,k = argmax
c⊆∆c,|c|=k

∑
ci∈∆c

ci

4: MI ← ∆p,k ∩∆c,k, MD ← ∆c,k \∆p,k

5: Pick mask M ∈ {MI ,MD,MI ∪MD}
6:

θ
′ ← θ̂i = 0 ∀i ∈M

4 Evaluations257

Confounding Shift One fundamental assump-258

tion in machine learning is the test dataset and train-259

ing dataset are from the same distribution. However260

this assumption is often violated in real world appli-261

cations resulting in distribution shifts. One specific262

form of distribution shift is sub-population shift263

(Cao et al., 2019; Cai et al., 2021). A model opti-264

mized on a distribution shifted training set tends to265

learn spurious correlations with the majority class266

and may lead to poor performance on data with a267

different from the training data class distribution268

(Yang et al., 2023).269

While the sub-population shifts are determined270

by the product of group attributes and the label,271

and the group attributes are not independent of the272

label, it is a special type of dataset shift referred to273

as Confounding Shift (Landeiro and Culotta, 2018). 274

Formally, confounding shift exists when two condi- 275

tions are met: (i) a confounding variable Yc exists 276

that impacts both X and Yp through distributions 277

P (X|Yc) and P (Yp|Yc) through the backdoor path 278

in a causal graph (Pearl, 2009); (ii) a subpopu- 279

lation distribution Ptrain(Yp|Yc) is different from 280

Ptest(Yp|Yc) (Landeiro and Culotta, 2018). 281

To quantitatively assess the degree of confound- 282

ing shift, we use a framework proposed by Ding 283

et al. (2024) in our experiments. This allows us to 284

perturb the target variable and confounding vari- 285

able distributions in both training and test splits to 286

different degrees through sampling from the origi- 287

nal dataset. Under this framework, we consider a 288

dataset with a binary target and binary confounder, 289

the joint distribution P (Yp, Yc) governed by the fol- 290

lowing quantity: P (Yc = 1), P (Yp = 1), P (Yp = 291

1|Yc = 1), P (Yp = 1|Yc = 0). Next Ding et al. 292

(2024) introduced an positive auxiliary variable 293

α =
P (Yp=1|Yc=1)
P (Yp=1|Yc=0) , which serves as a knob for 294

controlling the degree of subpopulation shift. By 295

setting different α values, we control the source of 296

the positive examples. If we hold P (Yc = 1) and 297

P (Yp = 1) constant, we can vary αtrain and αtest 298

to create a mixture of datasets with various degrees 299

of shift for model evaluation. Details are described 300

in Section 5.2. 301

Fairness The concept of fairness in machine 302

learning addresses the goal of ensuring that models 303

operate without bias and equitably across different 304

demographic groups. A widely accepted notion 305

of group fairness, which focuses on equity at the 306

population level, is statistical parity (Dwork et al., 307

2011). In problems with a binary outcome Y and 308

a binary group variable G, statistical parity is de- 309

fined as the absolute difference or ratio between 310

P (ŷ = 1|g = 1) and P (ŷ = 1|g = 0). Smaller 311

values of statistical parity indicate greater equal- 312

ity in the model’s outputs across the two groups. 313

In addition to statistical parity, other fairness met- 314

rics consider ground truth labels and compare the 315

true positive rates between groups (Romano et al., 316

2020; Hardt et al., 2016). These metrics assess 317

the model’s ability to make accurate predictions 318

without discriminating against any group. 319

In our context, the test set attributes vary due to 320

different data distributions associated with param- 321

eter α, rendering comparisons of statistical parity 322

across different α values infeasible. Therefore, we 323

evaluate P (ŷ = 1|G, y = 0), which describes the 324
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predicted probability for dementia among healthy325

participants, and is equivalent to the false positive326

rate (FPR). We calculate the absolute difference of327

FPR between the subgroups. This metric helps us328

assess fairness by examining the model’s behavior329

across different α values.330

5 Dementia Detection Case Study331

In recent years, transformer models have demon-332

strated promising performance in dementia detec-333

tion using Cookie Theft picture description data334

(Figure S2) (Hernandez-Dominguez et al., 2018;335

Cohen and Pakhomov, 2020; Luz et al., 2020; Guo336

et al., 2021; Li et al., 2022), a clinical test widely337

adopted for assessing cognitive impairment. How-338

ever, these models are susceptible to bias due to339

the small size of publicly available datasets utilized340

in most studies. Within this context, confounding341

by gender is an unexplored potential source of bias342

that could lead to erroneous predictions if the con-343

founding effects are not addressed. The underlying344

hypothesis is that the language used by male and345

female participants in response to the picture de-346

scription task may vary, and the model might learn347

these differences to make dementia predictions, re-348

gardless of the participants’ true cognitive status.349

5.1 DementiaBank350

The benchmark dataset used for our experiments is351

the Pittsburgh Corpus from DementiaBank (Becker352

et al., 1994; MacWhinney, 2007) This corpus is353

a widely used resource in the fields of computa-354

tional linguistics and dementia studies. It provides355

detailed speech and language data from elderly356

participants with dementia as well as healthy con-357

trols. Notably, the Pittsburgh Corpus includes re-358

sponses to the Cookie Theft picture description task359

from the Boston Diagnostic Aphasia Examination360

(Goodglass and Kaplan, 1983). The dataset com-361

prises 548 examples collected from longitudinal362

records of 290 participants. To ensure that the tran-363

scripts accurately reflect the diagnosis label, we364

selected the last transcript for each patient as input365

for our model.366

5.2 Experiments367

We start by examining whether a text classifica-368

tion model will recognize gender confounding bias369

from such picture description data. We trained370

a BERT-base model (Devlin et al., 2019) on the371

full dataset and evaluated the model’s performance372

on the task of recognizing each gender 2. We ran 373

the experiments using 5-fold cross validation with 374

3 repeats on both the original dataset, and a per- 375

fectly balanced dataset created by down-sampling 376

the more prevalent category. The result is shown 377

in Figure 3 - performance discrepancies were ob- 378

served among male and female examples across 379

multiple runs. These findings hold for some other 380

encoder models as well (Figure S1). This result 381

shows that there exists confounding by gender in 382

the dementia detection task which is independent 383

of the gender distribution in the dataset. It provides 384

insights that the gender of the speaker influences 385

the language they use to complete the Cookie Theft 386

picture description task, and confound the dementia 387

signals during model fine-tuning. Hereby, we fur- 388

ther investigate this confounding by gender effects 389

in dementia detection and evaluate our proposed 390

deconfounding methods. 391
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0.60

0.65

0.70

0.75

0.80

0.85

0.90

0.95

1.00
ac

cu
ra

cy
balanced
original

Figure 3: Performance discrepancies in dementia
detection when trained with a BERT-base model

Dataset Perturbation As described in Section 392

4 , we manipulated the conditional distribution of 393

dementia by gender in our dataset through random 394

sampling, creating a series of datasets with varying 395

levels of confounding shift. In our experiments, 396

dementia cases and female cases are coded as 1, 397

respectively. We fixed P (gender = 1) = 0.5 and 398

P (dementia = 1) = 0.5 in both the training and 399

test sets to ensure fair comparisons across different 400

configurations. This way, the dataset is balanced 401

with respect to both dementia and gender. Then we 402

adjusted the value of α = P (dementia|female)
P (dementia|male) to create 403

an imbalance in the source of dementia cases (sub- 404

population shift). If α > 1, more dementia cases 405

are drawn from females, while α < 1 indicates 406

the opposite. The further α is from 1, the more 407

severe the imbalance. To evaluate the model’s ro- 408

bustness to confounding shifts, the model is trained 409

2This dataset provides labels only for two genders: male
and female
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on one αtrain value and tested on its reciprocal value410

αtest =
1

αtrain
, simulating an extreme shift in the test411

set compared to the distribution the model was ex-412

posed to during training. Models are trained for413

20 epochs on 600 training examples and evaluated414

on 150 examples for each configuration. The best415

checkpoint is selected based on AUPRC for each416

training process.417

Extended Confounding Filter On creating a se-418

ries of datasets with different αtrain values, we419

probed each layer in the model in response to the420

shift. The encoder model we used for dementia de-421

tection is BERT-base, with 12 encoder layers and422

12 attention heads in each layer. Once we obtain the423

dementia finetuned model f(x) in the first Phase,424

we take a snapshot of the parameters and only make425

some parts of it trainable towards the gender label426

in the second Phase. The trainable layer starts from427

{cls}, and 1 layer is added to the trainable set each428

time sequentially. Eventually the trainable set be-429

comes {cls, layer12, layer11, ..., layer1, emb}430

and spans the whole network. Then for each train-431

able set, fd is trained towards gender prediction.432

We ranked weights that changed in each layer and433

picked top 15% of the weights that changed the434

most in each layer to mask (Figure 1a). Then we435

evaluated the masked models.436

Dual Filter In the Dual Filter approach, we track437

the global weights change throughout the model’s438

architecture. The classification head is exempt439

from tracking as it is training towards two differ-440

ent tasks and the weights in the classification head441

are assumed to have the most significant change442

compared to the rest of network. We first obtain443

two lists of weights change matrices from f(x)444

and g(x), using the same approach as Extended CF.445

Then we rank and select top k% weights by their446

locations in the network. A sequence of k values447

are tested, ranging from 0 to 60 and step size of 1.448

Then three kinds of set (MI ,MD,MI ∩MD) are449

calculated and applied to f(x) to create the masked450

model. Note when training toward gender in both451

Extended CF and Dual Filter, we select only non-452

dementia cases to let the model learn from texts 453

that are representative of the gender differences. 454

consequently, only healthy cases are used in the 455

evaluation as well. 456

6 Results 457

6.1 Extended Confounding Filter 458

Figure 4 demonstrates the Extended Confounding 459

Filter results, the red dotted line shows the per- 460

formance of the intact model and models whose 461

weights are eliminated cumulatively layer-by-layer 462

from left to right until the embedding layer is 463

reached (the right most bar). The orange bar rep- 464

resents the idea of the original Confounding Filter, 465

where only the classification head is trained in the 466

second phase and then masked. These results show 467

that a model trained and tested on the same distribu- 468

tion reaches the highest performance among all the 469

configurations, while the degree of confounding 470

shift correlates with the model’s performance (i.e. 471

the model performance drops as αtrain shifts away 472

from 1). Another observation is that the model 473

demonstrates some resilience in its ability to detect 474

dementia to removing gender associated weights 475

from upper layers in the network. No significant 476

performance drops are observed until we start to re- 477

move weights at 5th layer. The next observation we 478

have is the large decline when top changed weights 479

are removing from the embedding layer. 480

6.2 Dual Filter 481

In Figure 5, we visualize the dementia prediction 482

performance change as we apply three different 483

types of mask to the original model and gradually 484

increase the masking ratio. The results from ECF 485

with 15% layer-specific masking ratio have also 486

been added for comparison. The plot shows the 487

relation between how many weight entries are ab- 488

lated within the whole network against dementia 489

detection performance in terms of AUPRC. The 490

rows indicate three types of masks that are gener- 491

ated by Dual Filter and the columns indicate the 492

specific αtrain configurations that control the distri- 493

bution shift. The relationships between the ablation 494
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DF for different αtrain configurations

ratio of the three types of masks and the choice of k495

are shown in Figure 6. As we tune k to increase the496

coverage of active parameters in the model, the size497

of MD first grows then reaches its peak at around498

k = 40 and then fall back to zero, while the size of499

MI keeps increasing.500
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Figure 6: Ablation ratio by each masks against total
masking ratio

Next, we show the absolute False Positive Rate501

difference (i.e. |P (ŷ = 1|g = 1, y = 0)− P (ŷ =502

1|g = 0, y = 0)|) calculated under both Extended503

Confounding Filter and Dual Filter methods. The504

Figure 7 shows the FPR measurements change as505

the ablation ratios increase for all three types of506

masks. The mask type is indicated by row while507

the columns represents different αtrain .508
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Figure 7: False Positive Rate (FPR) on ECF and DF for
different αtrain configurations

While the aim is to eliminate gender confound-
ing effects from the model’s dementia detection
capability, there is a possibility that the weights
associated with dementia and gender become en-
tangled during the learning process. To investigate
this, we record the change matrices for all layers
in the network during the Dual Filter training pro-
cess. We then conduct an analysis of the similarity
between the change matrices from the fine-tuned
dementia model and those from the fine-tuned gen-
der model. For similarity measurements, we utilize
the Jaccard Index to quantify the similarity between
the two input matrices, which is defined as:

J(U, V ) =
|U ∩ V |
|U ∪ V |

To prepare the input, 85% percentile of two change 509

matrices are calculated and then the values are used 510

to binarize each of the matrices. Figure 8 demon- 511

strates the barplot from six of the tracked weight 512

matrices at each layer, with the configuration of 513

αtrain equals to 1. From the plot we can observe 514

that at lower encoder layers, the similarity between 515

dementia model and gender model concentrates on 516

the attention block, especially WV and WO. As we 517

move up to the upper layer, the FFN block starts to 518

display more similarity and jumps up at 12th layer. 519

Similar patterns are also observed in other αtrain 520

configurations. This result indicates the finetuned 521

model stores information dynamically through the 522

whole network and shift the storage at different 523

layers. This finding also aligns with other work 524

(Wei et al., 2024) where weights entanglement are 525

assessed with a larger model and different tasks. 526
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Figure 8: Jaccard Index for each of the tracked matrix
in Dual Filter

7 Discussion 527

The ECF method probes each layer and mask as- 528

sociated weights in a cumulative fashion. The or- 529

ange patch in Figure 4 shows simply applying Con- 530

founding Filter on the classification layer to the 531

transformer network is not enough to detect and 532

7



mitigate the confounding bias. Propagating masks533

layer-by-layer helps improve or retain the demen-534

tia classification performance from Confounding535

Filter until several layers deep into the network.536

We observe the resilience of weight ablation in the537

BERT model on dementia prediction performance538

which is consistent with similar resilience on cap-539

turing linguistic features reported in other work540

(Li et al., 2024). Model performance on dementia541

does not drop significantly until gender-associated542

weights at layer 5 or layer 6 gets masked, depend-543

ing on the configuration of α. This is equivalent to544

weights ablation ratio around 10%-12% over the545

whole network. We also observe the network is546

slightly more robust to weight ablation when the547

confounding shift is more severe under this probing548

method. For example, with configuration of α = 1,549

the drop starts before 10% of weights (around layer550

5) are removed; In the meanwhile, with αtrain = 5551

or αtrain = 0.2, the drop is delayed until weights552

at layer 2 or layer 3 gets deleted.553

We also check the gender performance differ-554

ence as gender-associated weights are removed in555

each layer. Interestingly, the masked models show556

a loss of gender detection ability (Figure S3 ), and557

the extent of this loss varies with the number of558

free layers. This demonstrates that the transformer559

learns information dynamically and adapts to its560

model capacity. From Figure S3 we also notice561

the effects of different level of confounding shift.562

While the gender performance difference by lay-563

ers is not reflected balanced setting, we observe564

AUROC performance change gets larger by layer565

under confounding shifts. The embedding matrix566

also emerges as a critical factor in dementia de-567

tection, as deleting even a small proportion of the568

embedding weights causes a drastic change in the569

model’s dementia detection ability.570

The grid of Figure 5 provides an overview of571

the performance change in dementia against the572

ablation ratios in the model, for both ECF and DF.573

In the results we can observe the different behav-574

iors from the three types of mask. For MI ∪MD575

filter, the model illustrates resistance against the576

weight deletion more consistently. Comparing to577

ECF, masking weights inside MI ∪MD shows less578

resilience at the start but the performances cross579

right after 10% weights are removed and then be-580

comes more robust to weight delection compared to581

ECF. As for MD, some resilience can be observed582

at the start of the masking but the performance583

degradation becomes more extensive after a cer-584

tain point. Also, the resilience behavior differs 585

across different αtrain, with αtrain = 1 offering 586

the most resilience. However, the impact of MI 587

mask turned out to be different. Ablating weights in 588

MI first results in a sharp decrease in performance 589

and then gradually stabilizes when more weights 590

get deleted. Those results suggest the entanglement 591

of weights responsive for dementia detection and 592

gender detection enrich in the intersection set from 593

two change matrix, especially those weight entries 594

that have changed most. Interestingly, removing 595

all the top changed weights from the gender model 596

side consistently exhibits more resilience than re- 597

moving weights only from the difference set. We 598

also observe the ECF method in general preserve 599

better dementia detection capability if weights are 600

only removed from top half layers in BERT base 601

model (layer 6-12). By examining the between- 602

group FPR metric in Figure 7), both methods show 603

improvements in output equity. By align the fair- 604

ness metrics with the AUPRC changes, we clearly 605

observe the correlation between the dementia de- 606

tection ability and disparity between gender group. 607

For example in the MI row, when dementia perfor- 608

mance recovers, it aligns with an sudden increase 609

in the FPR difference. 610

8 Conclusion 611

In this paper, we address confounding bias 612

learned during model fine-tuning and propose two 613

model-agnostic methods for filtering confounding- 614

associated weights in transformers. We apply these 615

methods to a dementia detection task, demonstrat- 616

ing their utility in clinical practice. Our findings 617

indicate that unaddressed confounding shifts de- 618

grade model performance even when the overall 619

label and group distributions are balanced. Experi- 620

mental results compare the identification of gender- 621

associated weights both layer-wise and across the 622

entire model. Both methods effectively retain per- 623

formance on dementia detection while reducing 624

gender bias. Although these results are dataset- 625

specific, we plan to extend our approach to other 626

benchmarks. We observe non-monotonic responses 627

across different layers, suggesting further investi- 628

gation is needed to understand the inner workings 629

of even small transformer models. Lastly, we note 630

that ensuring fairness and maintaining model per- 631

formance often involves trade-offs, and real-world 632

decisions should consider multiple factors, includ- 633

ing bias tolerance and use case specifics. 634
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9 Limitations635

Dataset The experiments of our proposed meth-636

ods are only conducted on a relative small dataset,637

generalizability to other bias-related dataset re-638

mains unknown. In addition, given the small data639

size, manifesting different level of confounding640

shift requires repetitive sampling to meet the de-641

sired subgroup distribution. Thus the resultant642

dataset contains significant amount of duplicates643

that can impact the validity of the findings.644

Methods In Extended Confounding Filter meth-645

ods, even though the approach we take is the most646

straightfoward and allows the model to absorb uni-647

directional effects, we ignore the possibility of648

other combinations of layer freezing inside the net-649

work.650

Experiments While we acknowledge BERT-651

base as a good starting point of investigation, we652

did not compare other encoder model in this work.653

On the other hand, we briefly discussed some other654

weight importance measurements to isolate weights655

that impact certain outputs, we didn’t implement656

and compare them with our current approach for657

de-confounding bias.658
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A Appendix874

A.1 Gender bias in dementia detection875
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Figure S1: Performance disparency between male and
female in from other encoder models. Top: Results

from RoBERTa-base, Bottom: Results from
FairBERTa (Qian et al., 2022)

Figure S2: Cookie Theft picture for cognitive
impairment assessment

A.2 Cookie Theft Picture 876

A.3 Gender performance change 877

We first evaluate model performance of AUROC 878

on gender prediction for each layer probing pro- 879

cess, then evaluate gender performance again after 880

removing gender-associated weights and calculate 881

their difference. As shown in the Figure S3 below, 882

the performance gap between original and masked 883

model becomes larger as more gender associated 884

weights are removed in the confounding shift sce- 885

narios.
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Figure S3: Performance difference between a intact and
masked model for gender prediction. Left-most point

means probe on classification layer and right-most
means probe on the word embedding layer.
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Figure S4: Selected configurations of ECF filtering with 25% masking rate at each tracked weight matrix

Table 1: Mean and Standard Deviation of APS for each experiment and αtrain in ECF with 15% masking rate

αtrain =
0.2

αtrain =
0.25

αtrain =
0.33

αtrain =
0.5

αtrain =
1.0

αtrain =
2.0

αtrain =
3.0

αtrain =
4.0

αtrain =
5.0

Intact 0.8716
(0.0350)

0.8917
(0.0345)

0.8876
(0.0217)

0.9001
(0.0404)

0.9186
(0.0400)

0.9120
(0.0335)

0.9135
(0.0305)

0.8818
(0.0385)

0.8842
(0.0378)

Classifier 0.8486
(0.0528)

0.8807
(0.0427)

0.8657
(0.0290)

0.8942
(0.0308)

0.8904
(0.0778)

0.9051
(0.0406)

0.9150
(0.0328)

0.8844
(0.0391)

0.8782
(0.0363)

Layer12 0.8708
(0.0324)

0.8888
(0.0398)

0.8803
(0.0353)

0.8977
(0.0415)

0.9132
(0.0415)

0.9049
(0.0443)

0.9059
(0.0417)

0.8694
(0.0399)

0.8686
(0.0661)

Layer11 0.8717
(0.0401)

0.8499
(0.0971)

0.8803
(0.0326)

0.9046
(0.0338)

0.9023
(0.0537)

0.9060
(0.0398)

0.9094
(0.0388)

0.8803
(0.0543)

0.8579
(0.0873)

Layer10 0.8720
(0.0384)

0.8351
(0.1265)

0.8712
(0.0284)

0.8439
(0.1446)

0.9071
(0.0502)

0.9093
(0.0300)

0.9145
(0.0303)

0.8801
(0.0319)

0.8781
(0.0499)

Layer9 0.8334
(0.0880)

0.8681
(0.0514)

0.8635
(0.0421)

0.8687
(0.1083)

0.9016
(0.0507)

0.8702
(0.1044)

0.8942
(0.0318)

0.8599
(0.0478)

0.8421
(0.0977)

Layer8 0.8520
(0.0705)

0.8831
(0.0543)

0.8712
(0.0432)

0.8854
(0.0639)

0.9022
(0.0630)

0.9076
(0.0340)

0.8977
(0.0296)

0.8644
(0.0440)

0.8559
(0.0910)

Layer7 0.8636
(0.0572)

0.8665
(0.0500)

0.8612
(0.0453)

0.8565
(0.1184)

0.8904
(0.0672)

0.9014
(0.0306)

0.8625
(0.0776)

0.8700
(0.0352)

0.8577
(0.0564)

Layer6 0.8648
(0.0511)

0.8456
(0.0933)

0.8606
(0.0596)

0.8742
(0.0967)

0.8893
(0.0499)

0.8466
(0.1167)

0.8909
(0.0349)

0.8497
(0.0369)

0.8607
(0.0363)

Layer5 0.8256
(0.0656)

0.8348
(0.0729)

0.8475
(0.0663)

0.8670
(0.0480)

0.8428
(0.1006)

0.8654
(0.0659)

0.8440
(0.0513)

0.8347
(0.0482)

0.8469
(0.0335)

Layer4 0.8331
(0.0449)

0.8418
(0.0669)

0.8503
(0.0534)

0.8887
(0.0420)

0.8437
(0.0869)

0.8282
(0.0684)

0.8178
(0.0704)

0.7441
(0.1416)

0.8380
(0.0507)

Layer3 0.8462
(0.0546)

0.7945
(0.1090)

0.8376
(0.0791)

0.8496
(0.0761)

0.8174
(0.0967)

0.8132
(0.0784)

0.7458
(0.1423)

0.8173
(0.0604)

0.7760
(0.1046)

Layer2 0.7897
(0.0965)

0.8425
(0.0681)

0.7416
(0.1055)

0.8435
(0.0723)

0.7021
(0.1283)

0.7535
(0.1429)

0.8289
(0.0554)

0.7165
(0.1437)

0.7274
(0.1237)

Layer1 0.7553
(0.0869)

0.7788
(0.0998)

0.7847
(0.1108)

0.7913
(0.1137)

0.7867
(0.0885)

0.8339
(0.0683)

0.7936
(0.0832)

0.7029
(0.1452)

0.7545
(0.0940)

Emb 0.4842
(0.0549)

0.4935
(0.0511)

0.5516
(0.0642)

0.5034
(0.0703)

0.5815
(0.0768)

0.5472
(0.0829)

0.5657
(0.0966)

0.5205
(0.1054)

0.5521
(0.0692)
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