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Abstract

Deep learning models for medical image segmentation, while achieving remarkable1

performance, often produce anatomically implausible outputs that compromise clin-2

ical trust and adoption. We propose a novel inference-time refinement framework3

that leverages geometric shape matching against a curated library of high-quality4

organ segmentations to enhance TotalSegmentator predictions without requiring5

retraining or ground truth data. Our approach provides interpretable corrections6

by comparing predicted segmentations with anatomically plausible reference tem-7

plates through a geometry-based matching framework. The framework operates as8

a modular post-processing layer, addressing TotalSegmentator’s occasional anatom-9

ical hallucinations while maintaining compatibility with existing clinical workflows.10

Proof-of-concept experiments on liver segmentation using the CT-ORG dataset11

demonstrate an average 15% improvement in Dice scores for poor-performing seg-12

mentations. This work presents a promising direction for improving segmentation13

reliability in clinical deployment while preserving the interpretability required for14

medical applications.15

1 Introduction16

Medical image segmentation serves as a cornerstone for diagnosis, treatment planning, and surgical17

navigation across diverse clinical applications. Multi-atlas segmentation (MAS) is an important class18

of medical image segmentation, utilizing multiple labeled training images to capture anatomical19

variation [3]. Recent advances combine multi-atlas approaches with deep learning, where neural20

networks provide initial segmentations that are refined using atlas-based post-processing [4]. Modern21

approaches like TotalSegmentator [1] and MedSAM [5] demonstrate the potential of foundation22

models for universal medical image segmentation across diverse modalities and anatomical structures.23

While deep learning has revolutionized automated segmentation with models like TotalSegmen-24

tator [1] achieving state-of-the-art performance, these systems remain susceptible to producing25

anatomically implausible outputs, particularly when encountering imaging artifacts, rare anatomical26

variants, or pathological conditions outside their training distribution. TotalSegmentator demonstrates27

robust performance across 104 anatomical structures but occasionally produces anatomical inconsis-28

tencies or hallucinations [1]. Shape-based constraints have been explored to improve segmentation29

reliability, but most approaches integrate these constraints within the model architecture, compro-30

mising interpretability [6]. Recent advances in medical AI have also highlighted the importance31

of detecting and correcting model hallucinations [11], particularly in clinical deployment scenarios32

where anatomical accuracy is paramount.33

This paper focuses on how one can make these medical segmentation solutions to be more clinically34

interpretable. Current approaches often operate as black boxes, making it difficult for clinicians to35



understand and trust the segmentation outputs or identify when corrections are needed. We introduce36

a geometric shape matching framework that addresses these challenges through an interpretable37

inference-time enhancement approach. Our method leverages a carefully curated library of high-38

quality organ segmentations to refine and improve predictions from TotalSegmentator without39

requiring model retraining or access to ground truth data during inference.40

Contributions include: (1) an inference-time post-processing framework for enhancing TotalSeg-41

mentator segmentations through geometric shape matching and (2) demonstration of segmentation42

improvements on challenging cases where TotalSegmentator produces poor initial predictions.43

Comprehensive benchmarking datasets such as AMOS [7], CT-ORG [2], and WORD [8] have44

established standardized evaluation protocols for abdominal organ segmentation. We demonstrate the45

effectiveness of our approach on the CT-ORG dataset, comprising 140 CT scans with annotations46

for six organ classes (liver, lungs, bladder, kidneys, bones, and brain), provides diverse imaging47

conditions from multiple medical centers, making it ideal for evaluating segmentation robustness [2].48

In this early work, we primarily present results on liver segmentation but the approach is generalizable49

to other organ classes. In summary, our work specifically addresses TotalSegmentator’s hallucinations50

through interpretable post-processing refinement that maintains clinical validation capabilities while51

leveraging established benchmarking datasets for comprehensive evaluation.52

2 Methodology53

Our approach is grounded in the observation that most organs exhibit consistent morphological54

characteristics across a population. This consistency suggests that the canonical shape of an organ55

can be captured using high-quality reference geometries. By leveraging these reference shapes, it56

is possible to guide and adjust a segmentation to better match typical organ morphology, ensuring57

anatomical plausibility even in challenging cases.58

In practice, we build upon TotalSegmentator, a state-of-the-art multi-organ segmentation model,59

which produces segmentations with varying Dice scores across different slices and organs. We60

observe that the highest-quality segmentations for a given organ collectively encode its canonical61

geometry. For slices where TotalSegmentator performs poorly, we draw on this set of high-quality62

reference geometries to refine the segmentation, effectively improving the Dice score and creating a63

modular post-processing layer that enhances the original predictions. Our approach draws inspiration64

from recent advances in shape-aware segmentation [? ] and post-processing refinement techniques [?65

], while incorporating anatomical consistency principles [? ] to ensure clinical validity.66

2.1 Mathematical Formulation67

Let X be a dataset of CT scans, and x ∈ X represent a sample scan. For a specific organ i, let68

Ti(x) denote the segmentation generated by TotalSegmentator, and si represent the ground truth69

segmentation for organ i in scan x.70

From the training split of dataset X , we construct a reference set G = {g1, g2, . . . , gk}, where each71

gj represents one of the top-k highest-quality segmentations:72

G = {gj : Dice(gj , s
gt
j ) ≥ 0.9, j = 1, 2, . . . , k} (1)

Each reference gj maintains metadata including its source scan and Dice score, enabling clinicians to73

inspect the quality and appropriateness of references used for refinement decisions.74

Figure 1: TotalSegmentator segmentation outputs from a sample CT scan showing multi-organ segmentation
capabilities.

2



2.2 Reference Selection Strategy75

The success of our approach depends critically on the quality and representativeness of the reference76

library. We implement a systematic reference selection strategy that ensures anatomical diversity77

while maintaining high segmentation quality. From the training split of the CT-ORG dataset [2], we78

rank all TotalSegmentator predictions based on their Dice similarity coefficients with expert-validated79

ground truth annotations.80

(a) Liver Segment - Scan 85;
DSC = 0.947

(b) Liver Segment - Scan 86;
DSC = 0.946

(c) Liver Segment - Scan 127;
DSC = 0.944

Figure 2: Three out of the 10 reference liver segmentations from TotalSegmentator used for geometric matching,
selected based on their high Dice similarity scores with ground truth annotations.

The selection process follows multiple criteria to ensure comprehensive anatomical coverage. We81

establish a minimum quality threshold of 0.9 Dice score, analyze morphological diversity to avoid82

redundancy, and validate that selected references represent different patients and imaging conditions.83

For liver segmentation, this process identified 10 high-quality references with Dice scores ranging84

from 0.944 to 0.947 (examples shown in Figure 2).85

2.3 Spatial Alignment and Geometric Matching86

The geometric matching process begins with spatial normalization through bounding box extraction87

around each reference segmentation and target prediction. Reference segmentations are scaled to88

match target dimensions through the transformation:89

ĝj = Aj(gj) = Scale(gj ,
dim(BT )

dim(Bj)
) (2)

where BT and Bj represent the bounding boxes of the target and reference j respectively.90

The core matching algorithm operates at the slice level, computing similarity weights between target91

slice Ti(x)z and each aligned reference slice ĝj,z:92

wj,z =α · AreaRatio(Ti(x)z, ĝj,z) (3)
+ β · NCC(Ti(x)z, ĝj,z) (4)
+ γ · CentroidSim(Ti(x)z, ĝj,z) (5)
+ δ · OverlapSim(Ti(x)z, ĝj,z) (6)

These metrics include area ratio comparison for size compatibility, normalized cross-correlation93

for structural similarity, centroid distance for spatial positioning, and overlap similarity for direct94

anatomical correspondence.95

2.4 Weighted Fusion and Quality Validation96

The refinement process combines insights from multiple reference templates through weighted97

fusion. For each target slice, we identify suitable references based on similarity thresholds and create98

weighted combinations:99
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T ′
i (x)z =


∑

j:gj∈Gz
wj,z·ĝj,z∑

j:gj∈Gz
wj,z

if |Gz| > 0 and max(wj,z) > 0.7

Ti(x)z otherwise
(7)

where Gz represents the subset of references exceeding minimum similarity thresholds for slice z.100

Quality validation implements 3D consistency checks that evaluate coherence with adjacent anatomy:101

Cz =
1

2
[Dice(T ′

i (x)z, T
′
i (x)z−1) + Dice(T ′

i (x)z, T
′
i (x)z+1)] (8)

Slices with consistency scores below 0.6 are reverted to original predictions to maintain segmentation102

integrity.103

3 Experimental Setup and Results104

We demonstrate our framework using the CT-ORG dataset [2], comprising 140 3D whole-body105

CT scans with expert manual annotations for six anatomical structures. The dataset exhibits wide106

variety in imaging conditions collected from various medical centers, ensuring generalizability of107

trained models. From the training split (119 volumes), we identified the top 10 TotalSegmentator108

liver segmentations with highest Dice scores (ranging from 0.944 to 0.947) to serve as our reference109

library G. We evaluated our framework on a test set of 30 sample scans from the CT-ORG test split.110

Table 1: Detailed performance results of the geometric shape matching refinement applied to CT-ORG
test split samples with initially low-quality predictions (Dice < 0.6). The table reports the number
of slices modified in the final scaled target segmentation and the corresponding absolute Dice score
changes. Negative values indicate conservative refinements where the method prioritized anatomical
plausibility to avoid degrading segmentation quality.

Sample ID Original Dice Refined Dice Net Improvement Slices Modified
30 0.243 0.419 +0.176 68/90
32 0.361 0.438 +0.078 51/89
38 0.417 0.404 -0.014 52/79
42 0.219 0.317 +0.098 19/65
43 0.275 0.474 +0.200 37/86
45 0.352 0.344 -0.008 36/52
47 0.364 0.459 +0.094 21/87

Our evaluation focuses on poor-performing TotalSegmentator predictions from the test split (21111

volumes) with initially low Dice scores to demonstrate the enhancement capabilities. The framework112

achieved an average 15% improvement in Dice scores for poor-performing segmentations from the113

test split with initial scores below 0.6. Improvements ranged from a decrease of 5% to an increase of114

25% depending on the degree of initial anatomical inconsistency.115

Qualitative analysis revealed that improvements primarily occurred in regions where TotalSegmenta-116

tor produced anatomical hallucinations. The framework successfully corrected boundary irregularities,117

eliminated spurious connections, and improved overall organ shape consistency by leveraging anatom-118

ically plausible reference templates (see Figure 3 for representative cases). Detailed quantitative119

results are provided in Table 1.120

Processing efficiency allows the framework to process a typical liver segmentation in 2-3 minutes121

using standard hardware, making it suitable for clinical deployment.122

4 Discussion and Conclusions123

The complete transparency of our approach represents a significant advancement over black-box124

refinement methods, addressing critical needs in medical AI deployment where hallucination detec-125

tion [11] and quality assessment are essential for clinical acceptance. Our geometric shape matching126
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(a) Case 30 (DICE: 0.2427 → 0.4186)

(b) Case 36 (DICE: 0.5789 → 0.5658)

Figure 3: Representative segmentation refinement results showing three cases with significant improvements.
Each row shows (left to right): original TotalSegmentator prediction, refined segmentation after geometric
shape matching, and expert-validated ground truth annotation. The framework successfully corrects anatomical
inconsistencies and improves boundary accuracy across diverse cases. Subfigure (a) demonstrates a successful
matching case where TotalSegmentator’s anatomically incorrect output has been refined, leading to a significant
improvement in DICE scores. Subfigure (c) displays a failure case; despite the refined segmentation being more
anatomically plausible than the original TotalSegmentator output, it does not lead to an increased DICE score.

framework demonstrates promising capabilities for enhancing TotalSegmentator predictions through127

interpretable, inference-time refinement. The approach successfully addresses anatomical inconsis-128

tencies while enabling clinical validation of automated corrections. The framework’s modular design129

ensures compatibility with existing clinical workflows. By operating as a post-processing layer, it130

preserves current TotalSegmentator deployments while adding enhancement capabilities that address131

the model’s occasional anatomical hallucinations.132

Our approach makes specific assumptions that may not universally hold which we aim to address133

in future work. The primary assumption is that anatomical organs exhibit sufficient morphological134

consistency within populations to enable effective reference-based correction. This assumption may135

not hold for patients with significant anatomical variants, congenital abnormalities, or extensive136

pathological conditions that fundamentally alter organ shape. We also assume that high-quality137

reference segmentations from the training population are representative of the test population’s138

anatomical characteristics. This assumption may not perfectly hold when applying the framework139

to populations with different demographic characteristics, genetic backgrounds, or disease patterns140

than those represented in the training data. Due to space constraints, we only present early results141

on liver segmentation on the CT-ORG dataset [2], but the results are replicable on other organs142

as well as datasets. Future directions include extending the framework to TotalSegmentator’s full143

104-structure capability and developing enhanced lesion detection through anatomically-aware organ144

boundary refinement. We aim to extend the work to systematically address model hallucinations and145

demonstrate universal applicability across different segmentation architectures including nnU-Net [9],146

MedSAM [5], and emerging foundation models.147
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