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ABSTRACT

Reinforcement learning from human feedback (RLHF) is a key driver of quality
and safety in state-of-the-art large language models. Yet, a surprisingly simple and
strong inference-time strategy is Best-of-N sampling that selects the best generation
among N candidates. In this paper, we propose Best-of-N Distillation (BOND), a
novel RLHF algorithm that seeks to emulate Best-of-N but without its significant
computational overhead at inference time. Specifically, BOND is a distribution
matching algorithm that forces the distribution of generations from the policy to get
closer to the Best-of-N distribution. We use the Jeffreys divergence (a linear combi-
nation of forward and backward KL) to balance between mode-covering and mode-
seeking behavior, and derive an iterative formulation that utilizes a moving anchor
for efficiency. We demonstrate the effectiveness of our approach and several design
choices through experiments on abstractive summarization and Gemma models.

1 INTRODUCTION

State-of-the-art large language models (LLMs) such as Gemini (Gemini Team, 2023; Reid et al.,
2024) and GPT-4 (OpenAI, 2023) are generally trained in three stages. First, LLMs are pre-trained
on large corpora of knowledge using next-token prediction (Radford et al., 2018; 2019). Second, the
pre-trained models are fine-tuned to follow instructions via supervised fine-tuning (SFT) (Raffel et al.,
2020; Wei et al., 2022). Lastly, reinforcement learning from human feedback (RLHF) (Christiano
et al., 2017; Ziegler et al., 2019; Stiennon et al., 2020) is used to further increase the quality of
generations. The RLHF step generally consists of learning a reward model (RM) (Ouyang et al.,
2022) on human preferences and then optimizing the LLM to maximize predicted rewards using
reinforcement learning algorithms.

RLHF algorithms and their challenges. Fine-tuning LLMs with reinforcement learning (RL) is
challenging (Casper et al., 2023), notably since it can cause forgetting (French, 1992) of pre-trained
knowledge, and since loopholes in the RM (Clark & Amodei, 2016; Pan et al., 2022) can cause reward
hacking (Askell et al., 2021; Skalse et al., 2022). The standard strategy is to use policy-gradient
methods (Williams, 1992) with KL regularization towards the SFT policy. Those RL algorithms
seek Pareto-optimal policies with high reward at low KL, to preserve the general capabilities of the
original model and tackle the misalignment (Ngo et al., 2022) concerns.

Best-of-N sampling. In practice, a surprisingly simple inference-time approach is often used to
improve the quality of generations: Best-of-N sampling (Stiennon et al., 2020). It consists of drawing
N candidate generations from the reference (typically, supervised fine-tuned) model and selecting
the one with the highest reward according to the RM. This strategy empirically achieves excellent
reward-KL trade-offs (Nakano et al., 2021; Gao et al., 2023; Touvron et al., 2023) but increases the
computational cost by a factor of N .

BOND. In this paper, we propose BOND (Best-of-N Distillation), a novel RLHF algorithm that learns
a policy that achieves the strong performance of Best-of-N sampling but, crucially, requires only a
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Figure 1: Best-of-N is an inference-time strategy that selects the best generation among N candidates
from a reference LLM policy, improving quality at the cost of a large computational (need to sample
and score N times from the model). In contrast, the proposed BOND approach aims at obtaining a
fine-tuned policy that can directly sample the Best-of-N generation. This would inherit the quality of
Best-of-N sampling, while requiring a single sample at inference time. We achieve this by distilling
the Best-of-N strategy into the policy via online distribution matching.

single sample at inference time, as depicted in Figure 1. Our key idea is to cast the alignment of the
policy as a distribution matching problem, where we fine-tune the policy to emulate the Best-of-N
distribution. To achieve this, we first derive an analytical expression for the Best-of-N distribution.
This allows us to consider and optimize different divergence metrics. We first show how to minimize
the forward KL divergence using samples from the Best-of-N strategy, leading to a standard imitation
learning setup with a mode covering behavior. We also show how to minimize the backward KL,
leading to a new form of quantile-based advantage, which does not depend on the reward scale,
and corresponds to a mode seeking behavior. Then, we propose to minimize a linear combination
of forward and backward KL, also known as Jeffreys divergence, which retains the best of both
approaches. Furthermore, to optimize performance while keeping a reduced sample-complexity, we
propose an iterative BOND approach which consists of iteratively distilling the Best-of-N of a moving
anchor policy. Finally, based on the aforementioned ideas, we propose J-BOND (J for Jeffreys), a
novel, stable, efficient and practical RLHF algorithm to align LLMs.

Experiments. We first demonstrate the effectiveness of BOND and of our design choices on the
abstractive summarization XSum (Narayan et al., 2018) task. Then, in Section 6, we apply J-BOND
to align Gemma (Gemma Team, 2024) policies. J-BOND does not require committing to a specific
regularization strength, but it continuously improves the reward displaying a stable optimization and a
better reward/KL trade-off compared to standard RL algorithms. This translates into a higher quality
and improved scores on popular real-world benchmarks.

2 PROBLEM SETUP

We consider a LLM based on the transformer (Vaswani et al., 2017) architecture, defining a policy
π(x, ·) by auto-regressively generating token sequences y from the prompt x. Given a pre-trained and
typically supervised fine-tuned reference policy πref, we seek to further align it to human preferences.
To achieve this, throughout the rest of the paper we assume access to a reward model (RM) which we
denote as r(·), trained to reflect human preferences.

Standard RLHF. Most RL algorithms optimize a linear combination of the expected reward and a
KL divergence between the current and reference policy:

πRL = argmaxπ Eπ[r(y)]− βRL ·KL(π || πref), (1)
with regularization strength βRL ≥ 0. This KL regularization forces the policy to remain close to
its initialization πref (Geist et al., 2019; Lazaridou et al., 2020), reducing forgetting (French, 1992)
and reward hacking (Skalse et al., 2022). Equation (1) is usually optimized with online algorithms,
as they perform better than their offline counterparts (Tang et al., 2024). Moreover, simple methods
have demonstrated the best results, e.g., REINFORCE (Williams, 1992) with a sampled baseline for
variance reduction (Li et al., 2023; Ahmadian et al., 2024) outperform PPO (Schulman et al., 2017).

Best-of-N. A complementary alignment strategy is Best-of-N, which is an inference-time strategy
that involves sampling multiple times from πref and selecting the generation with highest reward
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according to the RM r. In contrast to RLHF strategies, Best-of-N does not fine-tune the weights
of the LLM, but instead modifies the inference procedure. Best-of-N was empirically shown to be
efficient (Touvron et al., 2023) when looking at reward/KL trade-offs, and comes with theoretical
guarantees (Qiping Yang et al., 2024) in terms of Pareto-optimality. Unfortunately, Best-of-N comes at
a significantly higher inference cost which increases linearly with N , since producing N generations
is (in general) N times more costly than sampling a single one.

Motivated by the above considerations, we propose a novel alignment method which we name BOND
for Best-of-N Distillation. The goal of BOND is to distill the Best-of-N strategy into the policy. This
allows the policy to reach the strong performance of Best-of-N sampling, while requiring only a
single sample at inference time. We outline our overall approach in the next section.

3 THE BOND APPROACH

We formulate the BOND approach in two main steps. First, we derive an analytical expression for the
Best-of-N distribution (Section 3.1). Second, using the derived expression, we phrase the problem as
a distribution matching problem (Section 3.2), i.e., we want to steer the policy closer to the Best-of-N
distribution. In Section 3.3, we draw insightful connections between BOND and standard RLHF.

3.1 THE BEST-OF-N DISTRIBUTION

In this section, we derive the exact analytical distribution of Best-of-N sampling and study its
properties. For simplicity, we drop the context x from all notation without loss of generality and
assume that the reward r(y) induces a strict ordering on all generations y1. We can affirm the
following main theorem (proof in Appendix A.1).
Theorem 1. For any generation y, let

p<(y) = Py′∼πref [r(y
′) < r(y)] (2)

denote the probability that a random generation y′ from πref is strictly worse than y and let

p≤(y) = Py′∼πref [r(y
′) ≤ r(y)], (3)

the probability that y′ is not better than y (thus including the equality case). Then, the probability
that y is the output of Best-of-N sampling is given by

πBoN(y) = πref(y)× p≤(y)
N−1︸ ︷︷ ︸

(A)

×
N∑
i=1

[
p<(y)

p≤(y)

]i−1

︸ ︷︷ ︸
(B)

. (4)

Interpretation. Theorem 1 provides an intuitive explanation on the behavior of Best-of-N sampling:
it essentially reweights the original sampling distribution πref, by the multiplicative terms (A) and (B).

The term (A) corresponds to a penalty exponential in N based on the fraction of generations (for the
same prompt) that are worse or equal to the considered generation y. Intuitively, this ensures that we
sample exponentially less from bad generations when increasing N .

The term (B) is an additional correction factor due to the potential of collisions among generations.
Importantly, it is at most linear in N as it is always bounded within [1, N ]:

1 ≤ 1 +

N∑
i=2

[
p<(y)

p≤(y)

]i−1

=

N∑
i=1

[
p<(y)

p≤(y)

]i−1

≤
N∑
i=1

1 ≤ N . (5)

It achieves its minimum at 1 for the worst generation y− since we have p<(y−) = 0 by definition.
This is not surprising, as we need to sample y− exactly N times in a row and which corresponds
to πBoN(y−) = πref(y−)

N (note that p≤(y−) = πref(y−)). In contrast, if the likelihood of individual
generations y are low and such generations are good, then p<(y) is almost p≤(y) and term (b) is
close to N . Intuitively, this corresponds to the case where sampling a generation y multiple times
is unlikely. In the extreme case when πref is a continuous distribution, term (B) is constant and equal
to N (see Appendix A.2).

1To distinguish between generations with the same reward, ties can be broken by any arbitrary strict ordering.

3



Published as a conference paper at ICLR 2025

3.2 THE BOND OBJECTIVE

The analytical characterization of the Best-of-N distribution allows us to formulate BOND as a
distribution matching problem. That is, we want to solve the objective:

πBOND = argmin
π∈Π

D(π ∥πBoN), (6)

where D(· ∥ ·) is a divergence metric steering the training policy π towards πBoN. For this, a toolbox
of possible divergences exist in the literature including, e.g., forward and backward KL (Kullback,
1959). Moreover, we can employ existing distribution matching techniques to estimate D from online
and offline samples. We defer the choice of divergences and resulting BOND algorithms to Section 4.

3.3 CONNECTION WITH STANDARD RLHF

In this section, we draw important connections between the two seemingly different objectives of
standard RLHF (Equation (1)) and BOND (Equation (6)).

It is well known (see, e.g., Vieillard et al., 2020; Rafailov et al., 2023) that the policy maximizing the
RLHF objective from Equation (1) is:

πRL(y) ∝ πref(y) exp

(
1

β RL
r(y)

)
. (7)

From the derived expression of πBoN in Theorem 1, we see that the Best-of-N sampling distribution co-
incides with the optimal solution of standard RLHF when using the following specific BOND reward:

rBOND(y) = log p≤(y)︸ ︷︷ ︸
(A)

+
1

N − 1
log

N∑
i=1

[
p<(y)

p≤(y)

]i−1

︸ ︷︷ ︸
(B)

, (8)

and the specific regularization strength βBOND = 1
N−1 . The term (B) corresponds to the correction

factor in Theorem 1, which is bounded in
[
0, logN

N−1

]
for all generations y. Instead term (A) lies

in (−∞, 0]. This provides two interesting insights for Best-of-N sampling:

1. Best-of-N sampling corresponds to the solution of a standard KL-regularized RLHF problem
where the choice of N determines the level of KL regularization.

2. Best-of-N sampling corresponds to optimizing the expected log reward quantile, i.e., the log
likelihood that the generation has larger reward than a random sample from the reference
distribution. Interestingly, due to the concavity of the logarithm, rBOND(y) strongly encourages
the model to avoid bad generations rather than encouraging to generate good ones. Moreover,
rBOND(y) is invariant to monotone transformations of the reward r(·), since it depends only
on the rank among the generations. We conjecture that both these features make the BOND
reward rBOND(y) more robust to reward hacking compared to standard RLHF.

The connection to RLHF also inspires the proposed approach in this manuscript: if we can compute
the BOND reward or equivalently the Best-of-N distribution πBoN, then we can steer the policy towards
Best-of-N via distribution matching. In the next section we explore different algorithms to tackle the
main underlying challenges.

4 BOND CHALLENGES AND ALGORITHMS

Implementing the BOND approach induces the three following challenges: (1) how to estimate the
reward quantiles, (2) which is the appropriate divergence metric to use, and (3) how to choose the
hyperparameter N representing the number of sampled generations in Best-of-N. We discuss and
address these challenges in the next three subsections.

4.1 MONTE-CARLO QUANTILE ESTIMATION

One key difficulty in estimating the πBoN distribution is that we need to estimate the quantile

p≤(y) = Py′∼πref [r(y
′) ≤ r(y)], (9)
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of a given generation y. The quantile p≤(y) measures the quality of y compared to generations from
πref when conditioned on the same prompt (recall that we have suppressed the conditioning on x
in our notation). A very simple but effective quantile estimation method is Monte-Carlo sampling,
sampling k generations from πref and obtaining the following empirical estimate:

p̂≤(y) =
1

k

k∑
i=1

I{r(yi) ≤ r(y)}. (10)

We found this to be a very effective in our experiments, even with a limited number of samples. In
principle, though, one could also use alternative approaches, e.g., training a learned quantile model
(as we explore in Appendix B.2).

4.2 JEFFREYS DIVERGENCE AS A ROBUST OBJECTIVE

The choice of the divergence metric used in BOND is of crucial importance: different divergences
can steer the policy to very different solutions. Here, we propose the Jeffreys divergence as a robust
distribution matching objective.

The Jeffreys divergence (Jeffreys, 1946) between two distributions is defined as:

Jβ
effreys(p ∥ q) := (1− β) · KL(q ∥ p)︸ ︷︷ ︸

Forward KL

+β · KL(p ∥ q)︸ ︷︷ ︸
Backward KL

. (11)

The (generalized) Jeffreys divergence is a weighted average (with weight β ∈ [0, 1]) between the
forward and backward KL divergence. Notably, when fine-tuning policy p, the forward KL(q ∥ p)
encourages that generations likely under q are also likely under p, thus encouraging a mode-covering
behavior. Instead, the reverse KL(p ∥ q) is well-known to have a mode-seeking effect, steering policy
p to produce generations that have a high likelihood according to q (Agarwal et al., 2024). While
the forward KL may produce over-spread distributions, the backward KL can lead to policy and
entropy collapses. Instead, we empirically show that the Jeffreys divergence inherits the best of both
divergences, producing better aligned policies.

In the context of BOND, this translates into minimizing the divergence Jβ
effreys(π ∥πBoN) which we

can estimate using samples from the training policy π and reference policy πref as follows.

Estimation of the forward KL. The forward KL defined as

KL(πBoN ∥π) = Ey∼πBoN [log πBoN(y)− log π(y)] (12)

can be estimated directly drawing samples from the πBoN (i.e., sampling N times from πref and
selecting the best one) and can be seen as a supervised fine-tuning loss on the Best-of-N samples:

∇πKL(πBoN ∥π) = −Ey∼πBoN∇ log π(y). (13)

Estimation of the backward KL. The backward KL defined as

KL(π ∥πBoN) = Ey∼π[log π(y)− log πBoN(y)] (14)

can be estimated from the policy samples (note the expectation w.r.t. π) and their estimated log-
likelihood under πBoN. In particular, by the analogies drawn in Section 3.3, we show (in Appendix A.3)
that its gradient coincides with a policy gradient (e.g., used by REINFORCE (Williams, 1992) in
standard RLHF):

∇πKL(π ∥πBoN) = −(N − 1)Ey∼π

[
∇π log π(y)

(
rBOND(y)− βBOND

(
log π(y)− log πref(y)

))]
,

(15)
with the equivalent reward rBOND and regularization βBOND defined in Section 3.3. Note that rBOND(y)
depends on the true unknown quantile p≤(y) and on the correction factor (B) defined in Equation (8).
In practice, we substitute the true quantile by its estimate, while we observed the correction factor
does not play a significant role. Thus, we use rBOND(y) = p̂≤(y). Moreover, to reduce the resulting
variance, we use a policy gradient baseline (Sutton & Barto, 1998) which we compute as the average
return for the other generations in the batch.

Thus, the overall Jβ
effreys loss is a linear weighted combination between a supervised fine-tuning and a

policy gradient loss.
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Experiments. We consider the abstractive summarization XSum task (Narayan et al., 2018) with πref
being a T5 supervised fine-tuned policy and r(·) being a T5 NLI reward model (Roit et al., 2023).
We run BOND with Jβ

effreys objective and β ∈ {0, 0.5, 1}. We use 16 MC samples (per prompt) to
estimate quantiles during training. During eval, we use 32 MC samples to estimate the backward
and forward KL divergences between the training policy and the πBoN distribution. We report these
in Figure 7 (Appendix B.1) when setting N = 4, 8 and 16, respectively. The results confirm our
intuition: the Jeffreys divergence (β = 0.5) allows to minimize both divergences from πBoN (left and
middle plot), compared to when solely the backward (β = 1) or the forward (β = 0) KL divergence
is minimized. In addition, we compute the reward log quantiles (averaged over the eval batches)
of the training policy. Interestingly, BOND with β = 0.5 maximizes the quantiles similarly to the
mode-seeking β = 1 choice, while the mode-covering forward KL (β = 0) lags behind.

4.3 ITERATIVE BOND

Finally, we discuss the choice of the parameter N . In practice, choosing N may be difficult for
three main reasons: (1) As in standard RLHF, N plays the role of regularization (see Section 3.3):
a large N improves downstream performance, but if N is too large it will eventually cause reward
over optimization (Gao et al., 2023). (2) The larger the N the more the estimate of πBoN is sensitive
to errors in the estimated quantiles (since πBoN(y) ∝ p≤(y)

N−1). (3) Estimating the forward KL
divergence requires sampling from πBoN which is prohibitive for large N .

To address the above challenges, we propose the iterative BOND approach. The approach is inspired
by the fact that Best-of-N sampling from a Best-of-N distribution, coincides with Best-of-N2 sampling
from the original distribution. More generally, by informally defining BoN(·) as an operator that
performs Best-of-N sampling from a base distribution, we have:

BoN(· · ·BoN(BoN(︸ ︷︷ ︸
M times

πref))) ≡ BoNM (πref). (16)

This suggests the key idea behind iterative BOND: if we know how to distill the Best-of-N distribution
(i.e., via BOND), then we can apply BOND recursively (say M times), equivalently to distilling a
Best-of-NM of the initial distribution πref. This allows fixing a small n (i.e., n = 2) and running
BOND (with N = n) in an iterative fashion, as an improvement operator. For this, we can introduce
an auxiliary anchor policy πanchor initialized as πref. We can then run BOND against πanchor (i.e., we
can distill the Best-of-n version of πanchor) and, after a given number of distillation steps, update
πanchor to be the current training policy πt. The overall approach is depicted in Figure 2 and
summarized in Algorithm 1.

In a nutshell, iterative BOND allows exponential scaling to arbitrary large N (in fact, it does not
require setting N in advance) while keeping a reduced sample complexity and a stable optimization.
The claim is validated in the results below.

Experiments. In Figure 3, we consider the same experimental setup of Section 4.2, fix the BOND
objective to J0.5

effreys and run iterative BOND with n ∈ {2, 4} where the moving anchor is updated
every 1000 steps. We report the average reward (left plot) and average log quantile (middle plot)
obtained during training and compare them to (non-iterative) BOND run with N ∈ {4, 8, 16}. As
expected, both reward signals saturate early for non-iterative BOND (the smaller the N the earlier the
reward saturates), while the iterative BOND approach continuously improves performance (the higher
the n, the faster). Moreover, in the rightmost plot we plot the obtained log quantiles against the KL

Figure 2: Iterative BOND approach. The policy πt is trained to iteratively distill a Best-of-N (in
the figure, N = 2) version of a moving anchor. This allows to continuously improve the policy
performance without requiring to set a (large) N upfront. Moreover, it leads to better training stability
and a minimal computational complexity, since a small n is used at each distillation step.
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Algorithm 1 Iterative BOND (meta algorithm)

Inputs: πref, n ∈ N.
Initialize π0 = πref, π0

anchor = πref.
for t = 0, . . . , do */ iterations

πt+1 = argminπ∈Π D(π ∥Best-of-n(πt
anchor)) */ distill the Best-of-n version of πt

anchor

πt
anchor = πt

Figure 3: Iterative BOND (with n = 2 and n = 4) compared to BOND with N = 4, 8, 16. Iterative
BOND continuously improves rewards (left plot) and log quantiles (middle plot), while they saturate
for non-iterative BOND (the smaller the N , the sooner). It allows achieving the same reward/KL trade-
off (right plot) as non-iterative BOND while keeping a small n and smoothly moving away from πref.

from the reference policy. The plot shows that iterative BOND essentially has the same reward/KL
trade-off of the non-iterative BOND runs, but crucially allows keeping a small n and to smoothly but
continuously move away from πref.

5 THE J-BOND ALGORITHM

In this section we present J-BOND, a concrete and practical BOND algorithm motivated by the results
discussed in the previous sections. We describe its main components below, and summarize it in the
pseudo-code of Algorithm 2.

J-BOND follows the template of iterative BOND (Algorithm 1) with n = 2, i.e., it fine-tunes policy
πt to iteratively distill the Best-of-2 version of a moving anchor πt

anchor, initialized as πref. The name
J-BOND stands for Jeffreys divergence BOND because it uses the Jeffreys divergence as distribution
matching objective, i.e., it minimizes Jβ

effreys(π ∥Best-of-2(πt
anchor)) as defined in Section 4.2.

Minimal sample complexity. Compared to the BOND algorithms tested in the previous section,
J-BOND has a minimal sample complexity: for each prompt in the batch it generates 1 sample from
the policy πt and 2 samples from the anchor πt

anchor. While more anchor samples are generally useful
for a better divergence estimation (in Section 4 we used 16 MC samples), autoregressive sampling is
the main bottleneck of online RLHF and we have thus opted for a practical approach working with a
small number of samples.

Crude divergence estimate based on 2 anchor samples. The policy and anchor samples are used to
obtain a crude estimate of the forward and backward KL components of Jβ

effreys(π ∥Best-of-2(πt
anchor))

as described next.

We can minimize the forward KL as described in Section 4.2, by doing supervised fine-tuning on the
best of the 2 anchor samples. To minimize the backward KL, we utilize the policy gradient-style loss
of Equation (15) replacing rBOND(y) with a different reward which we denote as rJ-BOND(y). The
reason for this is that when only 2 anchor samples are available, the reward rBOND(y) = log p̂≤(y)
would be quite uninformative due to p̂≤(y) being a very noisy MC estimate. Let y be the policy
sample and {y′1, y′2} be the corresponding anchor samples, we instead define rJ-BOND(y) as

rJ-BOND(y) =

{
− log(16) if r(y) < min{r(y′1), r(y′2)}
0 otherwise

. (17)
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Algorithm 2 The J-BOND algorithm

Inputs: Prompt dataset D, reference policy πref, reward r(·), β, η ∈ [0, 1], γ ≥ 0.
Initialize policy and anchor π0 = π0

anchor = πref.
for t = 0, . . . do

Sample batch of prompts Dt ⊆ D
For each x ∈ Dt generate: 1 policy sample y ∼ πt(x) and 2 anchor samples y′1, y

′
2 ∼ πt

anchor(x)

*/ Forward KL */
Extract Best-of-2 sample: y′Bo2 = argmaxy′∈{y′

1,y
′
2} r(y

′).
Compute forward KL gradient: GFW(x, πt) = ∇πt log πt(x, y

′
Bo2)

*/ Backward KL */
Compute rJ-BOND(x, y) according to Equation (17).
Compute return: R(x, y) = rJ-BOND(x, y)− (log πt(x, y)− log πt

anchor(x, y)).
[Optional] Compute baseline B, e.g. average return of the other generations in the batch.
Compute backward KL gradient: GBW(x, πt) = ∇πt

log πt(x, y) · (R(x, y)−B).
*/ Additional KL regularization */

KL regularization gradient: GReg(x, πt) = ∇πt
log πt(x, y) · (log πt(x, y)− log πt

anchor(x, y)).
*/ Overall policy update: Jeffreys divergence + KL regularization

*/
Update policy weights θt+1 with the overall stochastic gradient:

−1 · Ex∼Dt [(1− β) ·GFW(x, πt) + β ·GBW(x, πt) + γ ·GReg(x, πt)]

*/ Update moving anchor */
Update anchor weights with EMA: θt+1

anchor ← (1− η) · θtanchor + η · θt+1

That is, generation y receives a negative reward of − log(16) if it has worse reward than both anchor
samples, while receives 0 reward otherwise. The above definition is motivated by the following two
main reasons:

(i) We negatively reward y only if it is worse than both the anchor samples, to mimic the concavity
of the ideal (and unknown) reward function rBOND = log p≤(·).

(ii) We choose value − log(16) to ensure that: Ey′
1,y

′
2∼πt

anchor

[
rJ-BOND(y)

]
= log p≤(y) when

p≤(y) = 0.5. The interested reader is referred to Appendix A.4 for a derivation and illustration
of this fact. In words, the value − log(16) calibrates the reward function rJ-BOND(·) so that,
in expectation under the 2 anchor samples, it matches with the ideal reward log p≤(·) for
generations y that have median reward (i.e., when p≤(y) = 0.5).

Exponential Moving Average (EMA) anchor. An important component of J-BOND, which refines
the vanilla iterative BOND of Section 4.3, is the use of an Exponential Moving Average (EMA) anchor.
That is, instead of using a periodically updated anchor, we update the anchor weights θtanchor at each
fine-tuning step as a moving average of the policy weights θt:

θt+1
anchor ← (1− η) · θtanchor + η · θt+1. (18)

Consistently with WARP (Ramé et al., 2024), we observed that this weight averaging procedure has
a positive effect on training stability by reducing variance, and can improve the overall reward/KL
trade-off of J-BOND. We provide an ablation in Section 6.

Additional KL regularization. Finally, we further regularize the policy to stay closer to the
moving anchor via an extra2 KL regularization term, modulated by a tunable hyperparameter γ ≥ 0.
The scope is to further stabilize the policy updates, viewing the overall operator as a constrained
optimization one:

πt+1 = argmin
π∈Π

Jβ
effreys(π ∥Best-of-2(πt

anchor)) + γ · KL(πt ∥πt
anchor). (19)

2Note that KL regularization is already present in the backward KL component of the Jeffreys divergence.
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Figure 4: J-BOND (η = 0.02) for Gemma 7B, compared to standard REINFORCE (with KL-
regularized objective of Equation (1)) with regularization strength βRL ∈ {0.001, 0.01, 0.1, 1}. J-
BOND does not require committing to a specific regularization strength, but it continuously improves
the reward displaying a stable and linear KL increase and a better reward/KL trade-off.

6 EXPERIMENTS

We test J-BOND on relevant use cases with the following main goals. First, we ablate and showcase
important aspects of J-BOND: the benefits of the EMA anchor, and the effects of the anchor speed
and the additional KL regularization. Then, we compare J-BOND to classical RLHF baselines using
REINFORCE, demonstrating its efficacy and better performance.

Setup. We consider Gemma (2B and 7B) models (Gemma Team, 2024) which we aim to fine-tune
into better conversational agents. For this task, we consider a set of conversational prompts D, a
reference policy πref previously supervised fine-tuned on similar prompts, and a large previously
trained reward model r(·). We use a batch size of 128 and the Adam optimizer (Kingma & Ba,
2015) with learning rate 3e−6 and 100 warm-up steps. For the Jeffreys divergence objective, we
set β = 0.5 (we ablate different Jeffreys divercences in Appendix B.3).

EMA vs. hard anchor updates. We ablate the benefits of using an EMA moving anchor (Equa-
tion (18)) compared to the periodically updated anchor used in Section 4.3. For this, we run J-BOND
with γ = 0 and EMA coefficient η = 0.02 on Gemma 7B, and compare it with its variant where the
anchor is only updated every 50 steps. In Figure 10 (in Appendix B.4 due to space constraints), we
report the average reward of the policy during training (left plot), the KL from the reference policy
πref (middle plot), and the resulting reward/KL trade-off for the two runs. Both runs produce the same
reward increase profile (this is not surprising since an EMA with η = 0.02 roughly corresponds to an
update period of 50 steps) but, crucially, J-BOND with an EMA anchor displays a significantly lower
KL increase and, as a result, a better reward/KL trade-off.

Anchor speed and KL regularization. We illustrate the effect of the anchor mixing parameter η ∈
[0, 1] and the benefits of the additional KL regularization parameter γ ≥ 0 introduced in Equation (19).
For this, we consider Gemma 2B and first run J-BOND with γ = 0 and η ∈ {0.01, 0.05, 0.1}. In the
left plot of Figure 11 (relegated to Appendix B.4) we report the average reward of the policy along
training. This illustrates that the larger the mixing parameter η (i.e., the faster the anchor moves),
the faster the reward increases, as one could intuitively expect. Second, we fix η = 0.05 and run
J-BOND with different regularization strengths γ ∈ {0, 0.5, 1, 2}. We plot the results in the middle
and rightmost plots of Figure 11. As expected, the larger the regularization γ, the more constrained
are the policy updates and thus, the slower the policy moves away from πref (middle plot). Importantly,
the right plot shows that such a regularization has a positive effect since it can ultimately improve the
reward/KL trade-off.

Comparison with standard RLHF. We compare J-BOND against standard RLHF algorithms that
aim at maximizing the KL-regularized objective of Equation (1). To optimize Equation (1), we use
REINFORCE (Williams, 1992) with 2 policy samples per-prompt and a leave-one-out baseline (Ah-
madian et al., 2024) for policy gradient advantages. For J-BOND we set the anchor mixing coefficient
to η = 0.02. For REINFORCE, we test possible regularization strengths βRL ∈ {0.001, 0.01, 0.1, 1}.
In Figure 4 we plot the average reward of the training policy (left plot) and its KL divergence from
the reference πref (middle plot). As presumed, REINFORCE is quite sensitive to the regularization
coefficient βRL: the larger the regularization, the lower the reward achieved by REINFORCE (and the
lower the KL from πref). This highlights a key advantage of J-BOND: it does not require committing

9
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to a specific regularization level, but it continuously improves the reward displaying a stable and
linear KL increase. Moreover, in the rightmost plot we plot the corresponding reward/KL trade-off
showing that J-BOND produces a better reward/KL than all of the REINFORCE baselines. This
translates into a higher quality (measured via side-by-side comparisons) and improved scores on
popular real-world benchmarks, as we report in Appendix B.5.

7 RELATED WORK

Best-of-N was introduced in Stiennon et al. (2020) as a straightforward but costly inference method
to optimize language generation against a given reward function. Further works established and
refined an analytical form for the KL divergence against the reference (i.e., Bo1) policy (Hilton, 2023;
Beirami et al., 2024), provided an estimator for the average Best-of-N reward (Nakano et al., 2021),
made theoretical connections with KL-constrained RL (Yang et al., 2024) and provided scaling laws
for Best-of-N alignment (Gao et al., 2023).

Matching Best-of-N for improved alignment is a strategy that was studied in different flavors in the
literature. Dong et al. (2023) and Touvron et al. (2023) propose to fine-tune LLMs in a supervised
fashion on Best-of-N data actually applying forward KL minimization. Concurrently to ours, Gui et al.
(2024) proposes to mimic the Best-of-N policy by applying a combination of supervised fine-tuning
on best responses and direct preference optimization on best-and-worst response pairs. The latter
is similar to a common strategy in online preference optimization methods: Guo et al. (2024) use
pairwise AI feedback on online generations to obtain online preferences that are then optimized,
while Calandriello et al. (2024) use a dedicated preference reward model instead. Concurrently and
closest to our work, Amini et al. (2024) also apply distribution matching in order to get the benefits of
Best-of-N sampling with amortized cost. While their formalization is identical, we opt for a different
divergence (i.e., Jeffreys) than the one they use (i.e., only backward KL), and propose an iterative
procedure with dynamic anchor, which we show critical for optimal results. We compare J-BOND
with the VBON approach of (Amini et al., 2024) in Appendix A.5. Best-of-N can also be used for
self-improvement in reward modeling, as evidenced in Pace et al. (2024).

Using a contrastive advantage is an option of J-BOND studied in prior works as well, which
replaced a value estimate by the average Monte Carlo return of other samples. This was applied in
the context of REINFORCE (Kool et al., 2019; Pinto et al., 2023), for online RLHF (Ahmadian et al.,
2024), offline RLHF (Flet-Berliac et al., 2024) and preference optimization (Wu et al., 2024).

Exponential moving average (EMA) of policy as reference in regularization, which we use
in J-BOND, is an increasingly popular option. While most alignment approaches use a static
anchor, dynamic anchors bring the benefit of improving the flexibility of the policy space being
explored (Munos et al., 2023; Gorbatovski et al., 2024; Ramé et al., 2024), with the caveat that too
slow updates limit optimization and too fast updates hinder stability.

Scaling post-training and iterated amplification. BOND hinges on the idea of investing more
resources during training to ensure that computational demands during inference remain low, a factor
often overlooked in traditional scaling laws (Hoffmann et al., 2022). Specifically, BOND incorporates
the principles of iterated amplification (Christiano et al., 2018; Cotra, 2018), where amplification in
this context consists of producing multiple generations, comparing their rewards, and using these
to iteratively improve the policy performance. In this regard, BOND is complementary to WARM
(Ramé et al., 2024) and WARP (Ramé et al., 2024), which previously scaled post-training by training
multiple reward models and policies, respectively.

8 CONCLUSION

We introduce BOND, a novel RLHF method that fine-tunes the policy via online distillation of
the Best-of-N sampling distribution. We propose a concrete algorithm, J-BOND, that integrates
multiple components to enhance its practicality and efficiency; Monte-Carlo quantile estimation, a
combination between forward and backward KL divergence objectives, and an iterative procedure
with an exponential moving average anchor. J-BOND improves the KL-reward Pareto front of
solutions, and compares favorably against state-of-the-art baselines. We hope this work can help
improve alignment of AI systems, making them safer and more reliable.
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learning with quantile regression. In AAAI Conference on Artificial Intelligence, 2017.

Hanze Dong, Wei Xiong, Deepanshu Goyal, Yihan Zhang, Winnie Chow, Rui Pan, Shizhe Diao,
Jipeng Zhang, KaShun SHUM, and Tong Zhang. RAFT: Reward ranked finetuning for generative
foundation model alignment. TMLR, 2023.

Yannis Flet-Berliac, Nathan Grinsztajn, Florian Strub, Eugene Choi, Chris Cremer, Arash Ahmadian,
Yash Chandak, Mohammad Gheshlaghi Azar, Olivier Pietquin, and Matthieu Geist. Contrastive
policy gradient: Aligning llms on sequence-level scores in a supervised-friendly fashion. arXiv
preprint, 2024.

11

https://openai.com/research/faulty-reward-functions
https://openai.com/research/faulty-reward-functions
https://ai-alignment.com/iterated-distillation-and-amplification-157debfd1616
https://ai-alignment.com/iterated-distillation-and-amplification-157debfd1616


Published as a conference paper at ICLR 2025

Robert M French. Semi-distributed representations and catastrophic forgetting in connectionist
networks. Connection Science, 1992.

Leo Gao, John Schulman, and Jacob Hilton. Scaling laws for reward model overoptimization. In
ICML, 2023.

Matthieu Geist, Bruno Scherrer, and Olivier Pietquin. A theory of regularized markov decision
processes. In ICML, 2019.

Gemini Team. Gemini: A family of highly capable multimodal models. 2023.

Gemma Team. Gemma: Open models based on gemini research and technology. arXiv preprint,
2024.

Alexey Gorbatovski, Boris Shaposhnikov, Alexey Malakhov, Nikita Surnachev, Yaroslav Aksenov,
Ian Maksimov, Nikita Balagansky, and Daniil Gavrilov. Learn your reference model for real good
alignment. arXiv preprint, 2024.
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A SUPPORTING RESULTS AND DERIVATIONS

A.1 PROOF OF THEOREM 1

Consider N random generations y1, y2, . . . , yN from πref and an arbitrary generation y among them.
Let Ai(y) denote the event that y is the best sample (i.e., r(y) ≥ r(yi) for all i) and that i is the
lowest index for which yi = y. It is trivial to see that the the events {Ai(y)}i=1,2,...,N are disjoint
and that their union corresponds to y being selected by Best-of-N sampling.

The event Ai(y) occurs if and only if three conditions are met: r(yj) < r(y) for all j < i, yi = y,
and r(yj) ≤ r(y) for all j < i. This allows us to derive the likelihood of the event Ai(y):

P[Ai(y)] =

i−1∏
j=1

P[r(yj) < r(y)]

× πref(y)×

 N∏
j=i+1

P[r(yj) ≤ r(y)]


= p<(y)

i−1 × πref(y)× p≤(y)
N−i−1.

The likelihood that Best-of-N sampling selects the generation y is then given by

πBoN(y) =

N∑
i=1

P[Ai(y)]

=

N∑
i=1

[
p<(y)

i−1 × πref(y)× p≤(y)
N−i

]
= πref(y)×

N∑
i=1

[
p<(y)

i−1 × p≤(y)
N−i

]
= πref(y)× p≤(y)

N−1 ×
N∑
i=1

[
p<(y)

p≤(y)

]i−1

.

A.2 LINK TO THE CONTINUOUS CASE

A noteworthy observation is that we can relate the Best-of-N expression to the case of a continuous
distribution, in which case the term (B) in Equation (4) is constant and equal to N (which is intuitively
natural as p<(y) and p≤(y) have the same value in this case).

Indeed, recall that the probability for a sequence y to be drawn from the Best-of-N distribution is

πBoN(y) = πref(y)× p≤(y)
N−1︸ ︷︷ ︸

(A)

×
N∑
i=1

[
p<(y)

p≤(y)

]i−1

︸ ︷︷ ︸
(B)

. (20)

Here, y is a discrete variable, as it lives in [1;T ]L where T is the number of tokens and L is the
maximum length of a sequence.

Now, we show why Equation (20) matches the classic formula for the max of N continuous variables.
Formally, let X be a real valued random variable with density fX and a cumulative distribution
function FX . Taking Y1, ...YN i.i.d. variables with the same density, define XN = max{Y1, ...YN}
as the maximum over the N variables. Then, we have that

FXN
(y) = P(Y1 ≤ y, . . . YN ≤ y) = FX(y)N , (21)

and thus
fXN

(y) = fX(y)FX(y)N−1N. (22)
In Equation (22), we recognize the Best-of-N formula in the case where the correction factor (B) is
N . For the term (A), FX(y) plays the role of p≤(y), as by definition FX(y) = P(X ≤ y). Finally,
fX(y) is the density of X , which is analogous to the probability πref(y) in the discrete case.
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A.3 BACKWARD KL AND POLICY GRADIENT EQUIVALENCE

We formally show the analogy between the gradient of the backward KL divergence of Equation (14)
and the standard (e.g.,REINFORCE (Williams, 1992)) policy gradient of a KL-regularized RLHF
problem with equivalent reward rBOND and regularization βBOND.

The exact backward KL gradient can be derived as:

∇π KL(π || πBoN) = ∇πEy∼π[log π(y)− log πBoN(y)]

= ∇π

∑
y

π(y)(log π(y)− log πBoN(y))

=
∑
y

∇ππ(y)(log π(y)− log πBoN(y)) + π(y)∇π log π(y)

=
∑
y

π(y)∇π log π(y)(log π(y)− log πBoN(y)) + π(y)∇π log π(y)

= Ey∼π[∇π log π(y)(log π(y)− log πBoN(y)) +∇π log π(y)]

= Ey∼π[∇π log π(y)(log π(y)− log πBoN(y))].

Above, we have used the product rule of gradient, the rule ∇ππ(y) = π(y)∇π log π(y) and the fact
that Ey∼π∇π log π(y) = 0.

Equivalence with Policy Gradient RL. As anticipated, one can verify that descending the above
gradient is equivalent – up to a constant scaling – to running the RL policy gradient REINFORCE
algorithm on the RL objective of Equation 1 with r = rBOND and βRL = βBOND. Indeed, we can use
the expression for πBoN to break down the above gradient into:

Ey∼π[∇π log π(y)(log π(y)− log πBoN(y))]

= Ey∼π

[
∇π log π(y)

(
log π(y)− log πref(y)− (N − 1) log p≤(y)− log

N∑
i=1

[
p<(y)

p≤(y)

]i−1
)]

= Ey∼π

[
∇π log π(y)

(
log π(y)− log πref(y)−

rBOND(y)

N − 1

)]
= −(N − 1)Ey∼π[∇π log π(y)(rBOND(y)− βBOND(log π(y)− log πref(y)))]︸ ︷︷ ︸

gradient used by REINFORCE

.

A.4 DERIVATION OF J-BOND REWARD

Here we provide a theoretical explanation behind the design of the J-BOND reward function discussed
in Section 5:

rJ-BOND(y) =

{
− log(16) if r(y) ≤ min{r(y′1), r(y′2)}
0 otherwise

.

Recall that rJ-BOND(·) is meant to approximate the true reward function rBOND(y) = log p≤(·) which
is unknown since p≤(·) in general requires knowing the reward distribution of πt

anchor (in J-BOND,
we only take 2 samples y′1, y

′
2 ∼ πt

anchor).

As mentioned in Section 5, we designed rJ-BOND(·) to assign a negative reward only if sample y is
worse than both the anchor samples, to mimic the concavity of the log quantile log p≤(·). In practice,
we did not observe gains when rewarding also the intermediate case. The particular choice of value
− log(16) is motivated by the following main reason.

We want that, when sample y has median reward compared to the anchor rewards’ distribution
(i.e., p≤(y) = 0.5), then – in expectation – rJ-BOND(y) coincides with the true reward rBOND(y) =
log p≤(·) = log(0.5). For this purpose, let us consider the parametrized function:

rαJ-BOND(y) =

{
α if r(y) < min{r(y′1), r(y′2)}
0 otherwise

.
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Note that the stochasticity of rαJ-BOND(y) is due to the 2 random anchor samples y′1, y
′
2 and its

expectation can be computed as:

Ey′
1,y

′
2∼πt

anchor
[rαJ-BOND(y)] = α · P[{r(y′1) > r(y)} ∩ {r(y′2) > r(y)}] + 0 · P[”otherwise”] (23)

= α · (1− p≤(y))
2, (24)

where we have used the definition of p≤(y) = Py′∼πt
anchor

[r(y′) ≤ r(y)]. Using the expression above,
we can find the α for which Ey′

1,y
′
2∼πt

anchor
[rαJ-BOND(y)] = rBOND(y) when p≤(y) = 0.5:

α · (1− 0.5)2 = log(0.5) → α = − log(16).

We illustrate this in Figure 5, where we plot the expected rJ-BOND(y) reward and the true reward
rBOND(y) as a function of p≤(·).

Figure 5: Expected value of the J-BOND reward, i.e., Ey′
1,y

′
2∼πt

anchor
[rJ-BOND(y)] (see Equation (23)),

compared to the true (unknown) reward log p≤(y), as a function of the quantile p≤(y). By design of
rJ-BOND, the two curves coincide when p≤(y) = 0.5, i.e., when y has median reward w.r.t. the anchor
distribution.

A.5 COMPARISON WITH VBON (AMINI ET AL., 2024)

In this section we compare J-BOND with the concurrent VBON approach of Amini et al. (2024).
Amini et al. (2024) consider the same BOND objective of Section 3.2 with the main difference that only
backward KL divergence is considered. Thus, according to the equivalence drawn in Equation (15),
their approach can be seen as using standard RLHF algorithms to optimize the equivalent reward
rBOND of Equation (8) with regularization strength βBOND = 1

N−1 . Below, we summarize the main
differences with respect to J-BOND:

(i) VBON considers only backward KL divergence, while J-BOND uses Jeffreys divergence.

(ii) VBON requires setting a fixed N in advance (similar to regularization in standard RLHF),
while J-BOND continuously improves the reward thanks to its iterative nature.

(iii) To compute rBOND(y), the vanilla version of VBON presented in (Amini et al., 2024) requires
estimating the quantile p≤(y) with several MC samples. Unfortunately, this is only doable
when the number of prompts is small and the estimation can be done offline, but it is
prohibitive in more complex experimental setups with millions of prompts.

To overcome challenge (iii), we consider a variation of VBON where rBOND(y) are estimated via
the exact same crude estimate used in J-BOND, based on 2 anchor samples (Equation (17)). We
consider the Gemma 7B finetuning experiment of Section 6 and compare J-BOND to VBON for
N ∈ [4, 8, 64, 128, 512]. The corresponding results are reported in Figure 6. Unlike VBON where the
reached reward and KL depend on the value of N defined in advance, J-BOND displays a stable KL
and reward increase yielding a better reward/KL trade-off. This is attributed to its iterative approach
and to the fact that both backward and forward KL divergences are minimized.
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Figure 6: Comparison of J-BOND and our implementation of VBON (Amini et al., 2024) for
finetuning Gemma 7B. Compared to (Amini et al., 2024), we approximate the backward KL objective
via the crude reward estimate of Equation (17) and optimize it with standard policy gradient. This
is because estimating the actual BOND reward of Equation (8) requires several anchor samples and
is not feasible in our online setup. Unlike VBON, J-BOND does not require setting a fixed N in
advance and produces a stable and improved reward/KL trade-off.

B ADDITIONAL PLOTS AND EXPERIMENTS

B.1 BOND WITH JEFFREYS DIVERGENCE OBJECTIVE

In Figure 7, we report the results concerning the experimental setup described in Section 3.2, i.e. we
run BOND with Jβ

effreys objective and β ∈ {0, 0.5, 1}. The Jeffreys divergence (β = 0.5) allows to
minimize both divergences from πBoN (left and middle plot), compared to when solely the backward
(β = 1) or the forward (β = 0) KL divergence is minimized.

B.2 LEARNED QUANTILE MODELS

Monte-Carlo quantile estimation (Section 4.1) approximates the reward quantiles by sampling
multiple times from the reference policy πref, for each observed context. While we found it to be very
simple and effective, it may require many sample for an accurate quantile estimation and, in addition,
it does not exploit any information about the given context. For instance, assuming we have a good
quantile estimation for context x and are presented a new context x′. MC quantile estimates treat x′

independently from x, although they may have very similar reward quantiles.

Motivated by this, in this section we explore an alternative approach that aims at learning a context-
dependent quantile estimator p̂≤θ(·), parametrized by parameter θ. The idea is to view quantile p≤(y)
as the parameter of a Binomial random variable Z where Z = I{r(yi) ≤ r(y)} for yi ∼ πref. Under
such a view, we can interpret p̂≤θ(·) as the output of a binary classifier and train it via maximum
likelihood estimation using the standard binary cross-entropy loss (Cover, 1999):

L(θ, x, y) = −Ey′∼πref(x)

[
log p̂≤θ(x, y)I{r(x,y′)≤r(x,y)} + log(1− p̂≤θ(x, y))I{r(x,y′)>r(x,y)}

]
.

(25)

We test such an approach in the abstractive summarization task considered in Section 4. We
parametrize p̂≤θ(·) with a LLM initialized as πref and fine-tuned using the loss of Equation (25).
Simultaneously, the policy πt is fine-tuned using BOND and utilizing p̂≤θt

(·) as quantile estimator at
each step. Notably, we approximate the expectation in Equation (25) via a single sample from πref for
each prompt in the batch. In Figure 8 we report the backward and forward KL divergences between
the training policy and the πBoN distribution as well as the average log quantiles, and compare them
to the ones obtained when running BOND with MC quantile estimation. Note that in both cases,
πBoN is approximated by 32 MC samples during evaluation. When using the learned quantile model
p̂≤θ(·), we observe BOND achieves very comparable KL divergences and log quantiles compared to
using MC quantile estimaton. This illustrates that the use of learned quantiles is valid and promising,
potentially offering interesting computational advantages in situations where, e.g., p̂≤θ(·) can be
re-used or learned offline with a fixed sample budget.

Finally, we remark that the explored approach is quite naive, and alternative learned quantile models
can definitely be derived, e.g., further enforcing ordering in the predicted quantiles, using quantile
regression (Dabney et al., 2017), or assuming a pre-specified (e.g., Gaussian) rewards’ distributions.
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Figure 7: BOND with N = 4 (top row), N = 8 (middle row), and N = 16 (bottom row), and
different values of β for the Jeffreys divergence objective (cf. Equation (11)). When using β = 0.5
(Jeffreys divergence), BOND minimizes both backward (left plots) and forward (middle plots) KL
divergences from πBoN, achieving best of both objectives (β = 0 and β = 1). Moreover, it optimizes
the reward quantiles (right plots) significantly more than when using β = 0.

Figure 8: BOND (with N = 8) using MC quantile estimates vs. a Learned quantile model.

B.3 J-BOND ABLATIONS: JEFFREYS DIVERGENCE

Here we ablate the effect of parameter β in J-BOND, i.e., we test J-BOND with different Jeffreys
divergences. We consider the Gemma 7B finetuning experiment of Section 6 and run J-BOND
with different choices for β ∈ [0, 0.25, 0.5, 0.75, 1]. We report the obtained results in Figure 9.
J-BOND with β = 0.5 (in red) displays the best reward/KL trade-off, highlighting the importance of
minimizing Jeffreys divergences as opposed to only backward (β = 1) or forward (β = 0) KL. The
ablation complements the one of Appendix B.1 showing that Jeffreys divergence as objective is also
beneficial for J-BOND to achieve best Pareto solutions.
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Figure 9: J-BOND with different Jeffreys divergences (parametrized by β) when finetuning Gemma
7B. Employing Jeffreys divergence as an objective, i.e., β ∈ (0, 1) leads to a better reward/KL
trade-off (rigthmost plot) than when only backward (β = 1) or forward (β = 0) KL are considered.
In this example, the best reward/KL trade-off is achieved by β = 0.5.

B.4 J-BOND ABLATIONS: EMA ANCHOR AND KL REGULARIZATION

Here we provide the plots associated to the J-BOND ablations discussed in Section 6. In partic-
ular, Figure 10 illustrates the benefit of the EMA anchor compared to periodic anchor updates.
Moreover, Figure 11 illustrates the role of the EMA mixing parameter η and the regularization
parameter γ in J-BOND. See Section 6 for the detailed setups and related discussions.

Figure 10: J-BOND with periodic anchor updates (every 50 steps) vs. EMA anchor (η = 0.02) on
Gemma 7B. While attaining the same reward (left), using the EMA anchor displays a significantly
lower KL than the reference policy (middle) and thus a better reward/KL trade-off (right).

Figure 11: J-BOND: the role of the EMA mixing parameter η and regularization γ. The left plot
shows J-BOND with γ = 0, η ∈ {0.01, 0.05, 0.1}: the larger the η the faster the average reward
increases. The middle and right plots show J-BOND with η = 0.05 and γ ∈ {0, 0.5, 1, 2}: the larger
the regularization γ, the slower the policy moves away from πref, improving the reward/KL trade-off.

B.5 DOWNSTREAM EVALUATIONS

We report downstream evaluations of the Gemma 7B policies finetuned with J-BOND and the
REINFORCE baselines considered in Section 6. In particular, we report:

• Side-by-side comparisons: For each trained policy we generate candidate answers on
a held-out collection of prompts. We compare such answers with the ones generated
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by Mistral (Jiang et al., 2023) and Mixtral (Jiang et al., 2024) models. We use Gem-
ini (Gemini Team, 2023) as a judge and for each comparison we assign a score in
{−1, 5,−1,−0.5, 0, 0.5, 1, 1.5} ranging from “much worse” (−1.5) to “much better” (1.5).
We then report the average score over all prompts.

• Zero-shot performance on popular benchmarks including: GPQA (Rein et al., 2024),
GSM8K (Cobbe et al., 2021), MATH (Hendrycks et al., 2021) and Big Bench Hard
(BBH) (Suzgun et al., 2022) to test our policies on different capabilities.

We evaluate multiple checkpoints for J-BOND and REINFORCE and in Table 1 report the numbers
corresponding to the best ones. J-BOND consistently and significantly outperforms the REINFORCE
(standard RLHF) baseline both in terms of quality, as measured by the side-by-side comparisons, and
in terms of accuracy on real-world benchmarks.

Side-by-side comparisons

Mistral 7B v1 Mistral 7B v2 Mixtral 8x7B

Standard RLHF 0.34 0.16 0.04
J-BOND 0.36 0.17 0.07

Benchmarks

GPQA GSM8K MATH BBH

Standard RLHF 26.6 45.4 26.8 53.3
J-BOND 31.2 54.2 28 54.1

Table 1: Downstream evaluations of Gemma 7B finetuned with J-BOND compared to standard RLHF,
i.e. REINFORCE with leave-one-out baseline (Ahmadian et al., 2024).

21


	Introduction
	Problem Setup
	The BOND Approach
	The Best-of-N distribution
	The BOND objective
	Connection with standard RLHF

	BOND Challenges and Algorithms
	Monte-Carlo quantile estimation
	Jeffreys divergence as a robust objective
	Iterative BOND

	The J-BOND Algorithm
	Experiments
	Related Work
	Conclusion
	Supporting results and derivations
	Proof of thm:bondist
	Link to the continuous case
	Backward KL and policy gradient equivalence
	Derivation of J-BOND reward
	Comparison with vBoN amini2024variationalbestofnalignment

	Additional plots and experiments
	BOND with Jeffreys divergence objective
	Learned quantile models
	J-BOND ablations: Jeffreys divergence
	J-BOND ablations: EMA anchor and KL regularization
	Downstream evaluations


