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ABSTRACT

Bayesian neural network (BNN) approximates the posterior distribution of model
parameters and utilizes the posterior for prediction via Bayesian Model Averaging
(BMA). The quality of the posterior approximation is critical for achieving accurate
and robust predictions. It is known that flatness in the loss landscape is strongly
associated with generalization performance, and it necessitates consideration to
improve the quality of the posterior approximation. In this work, we empirically
demonstrate that BNNs often struggle to capture the flatness. Moreover, we
provide both experimental and theoretical evidence showing that BMA can be
ineffective without ensuring flatness. To address this, we propose Sharpness-
Aware Bayesian Model Averaging (SA-BMA), a novel optimizer that seeks flat
posteriors by calculating divergence in the parameter space. SA-BMA aligns with
the intrinsic nature of BNN and the generalized version of existing sharpness-aware
optimizers for DNN. In addition, we suggest a Bayesian Transfer Learning scheme
to efficiently leverage pre-trained DNN. We validate the efficacy of SA-BMA in
enhancing generalization performance in few-shot classification and distribution
shift by ensuring flat posterior1.

1 INTRODUCTION

Bayesian neural network (BNN) provides a theoretically grounded framework for modeling uncer-
tainty in deep learning by approximating the posterior distribution of model parameters (MacKay,
1992b; Hinton & Van Camp, 1993; Neal, 2012). The approximated posterior is used for making
predictions through Bayesian Model Averaging (BMA) (Wasserman, 2000; Fragoso et al., 2018;
Wilson & Izmailov, 2020; Zeng & Van den Broeck, 2024). It allows BNNs to account for uncertainty
in predictions, leading to more reliable outcomes compared to the deterministic neural network
(DNN) (Kapoor et al., 2022; Kristiadi et al., 2022b). The accuracy and robustness of BNN predictions
are heavily dependent on the quality of the approximated posterior (Kristiadi et al., 2022a; Wenzel
et al., 2020).

One key factor influencing posterior quality is the flatness of the loss landscape. Flat modes of
the loss landscape have been strongly associated with better generalization performance, as they
represent solutions that are less sensitive to small perturbations in model parameters (Hochreiter &
Schmidhuber, 1997; Keskar et al., 2016; Neyshabur et al., 2017). The concept of flatness has been
extensively studied in the context of DNNs, but no comprehensive analysis has been conducted on its
role in BNNs or its impact on BMA. The significance of flatness in BNNs has only been explored in a
limited number of studies. SA-BNN (Nguyen et al., 2023) incorporated a flat-seeking optimizer into
BNNs with a theoretical foundation. However, SA-BNN adapted a DNN-based optimizer to BNNs
without considering the probabilistic nature of BNNs, resulting in only limited improvements. On the
other hand, E-MCMC (Li & Zhang, 2023) introduced a guidance model to achieve flat posteriors, but
this approach is less suited for large-scale models.

In this work, we first demonstrate that BNNs often struggle to capture the flatness. In detail, we
compare the flatness of various BNN frameworks, including SWAG, VI, and MCMC, against that of
DNNs. Furthermore, we show that BMA can be ineffective without ensuring flatness in the posterior
distribution. These findings highlight the need for an optimization strategy that accounts for the
probabilistic nature of BNNs to effectively estimate flat posteriors.

1Code for this paper is available in https://anonymous.4open.science/r/SA-BMA-A890.
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Therefore, we propose Sharpness-Aware Bayesian Model Averaging (SA-BMA), a novel optimization
approach that explicitly targets flat posterior distributions. We first compute the adversarial posterior
that belongs to the vicinity of the current posterior through divergence, which maximizes the BNN
loss function. After that, we update the posterior by employing the gradient of the adversarial
posterior with respect to the BNN loss. We show that the proposed SA-BMA is an extended version
of previous flatness-aware optimizers, Sharpness-aware Minimization (SAM) (Foret et al., 2020),
Fisher SAM (FSAM) (Kim et al., 2022), and Natural Gradient (NG) (Amari, 1998) with specific
conditions. Additionally, we propose a Bayesian Transfer Learning scheme integrated with SA-BMA,
allowing for more efficient utilization of pre-trained models. We prove that SA-BMA improves the
generalization performance of BNNs, particularly in few-shot classification and distribution shift
scenarios, by ensuring flatness in the posterior.

Our major contributions are summarized as follows:

• We demonstrate that BNN often struggle to capture the flatness. Moreover, we show that
BMA can be ineffective without flatness in the posterior.

• We suggest a Bayesian-fitting flat posterior seeking optimizer, SA-BMA. SA-BMA is a
parameter space loss geometric optimizer, a generalized version of other loss geometric
optimizers, such as SAM, FSAM, and NG.

• We propose a Bayesian Transfer Learning scheme integrated with SA-BMA to efficiently
utilize pre-trained models. This scheme aims to enhance the generalization performance
of BNN, especially in few-shot classification and distribution shifts, by ensuring posterior
flatness.

2 PRELIMINARY

2.1 BAYESIAN NEURAL NETWORK

Bayesian neural network (BNN) aims to estimate the posterior distribution p(w|D) of model param-
eters w ⊆ Rp with observed data points D = {(x, y)} with inputs x and outputs y. The posterior
distribution p(w|D) is calculated by Bayes’ Rule:

p(w|D) = p(D|w)p(w)∫
w
p(D|w)p(w)dw

, (1)

where p(D|w) and p(w) denote the likelihood of dataD and the prior distribution over w, respectively.
Due to the high dimensionality of neural networks, it is intractable to compute the marginal likelihood
(evidence) of Eq. (1). Numerous studies have focused on approximating the posterior p(w|D) with
variational parameter θ ⊆ Rq as qθ(w|D), including Markov Chain Monte Carlo (MCMC) (Welling
& Teh, 2011; Chen et al., 2014), Variational Inference (VI) (Graves, 2011; Ranganath et al., 2014;
Blundell et al., 2015), and other variants employing DNN (MacKay, 1992a; Ritter et al., 2018;
Daxberger et al., 2021a; Gal & Ghahramani, 2016; Maddox et al., 2019). Typically, model parameters
are assumed to follow a Gaussian distribution N (µ,Σ), where θ encompasses the mean µ and the
covariance Σ.

Based on the approximated posterior, BNN makes predictions of the model on unobserved data
(x∗, y∗) through Bayesian Model Averaging (BMA):

p(y∗|x∗,D) ≈
∫
w

p(y∗|x∗, w)qθ(w|D)dw (2)

≈ 1

M

M∑
m=1

p(y∗|x∗, wm), wm ∼ qθ(w|D), (3)

where M denotes the number of sampled models. Unfortunately, the integral in Eq. (2) is intractable.
Monte Carlo integration (Eq. (3)) is a representative method to approximate posterior predictive.
BNNs marginalize diverse solutions over the posterior of model parameters through BMA.
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Figure 1: Flatness comparison between DNNs and BNNs. We measured the Error and NLL on
CIFAR10 and CIFAR100. To assess flatness, we used the maximal Hessian eigenvalue of the loss,
λ1, where lower values indicate flatter models. BNN frameworks—VI, MCMC, and SWAG—were
compared against DNNs trained with SGD and SAM, with SAM being a flatness-aware optimizer for
DNNs. The results suggest that BNNs may not consistently capture flatness as effectively as DNNs.

2.2 FLATNESS AND OPTIMIZATION

Many studies have connected the flatness of loss surface and generalization (Hochreiter & Schmidhu-
ber, 1994; 1997; Keskar et al., 2016; Neyshabur et al., 2017). The Hessian eigenvalue of loss is a
widely adopted method for measuring the flatness of model, as smaller value indicates flatter regions
in the loss landscape. However, due to the large size of neural networks, it is impractical to examine
all eigenvalues. Therefore, maximal eigenvalue λ1(w) or ratio of eigenvalue λ1(w)/λ5(w) is often
used to compare flatness of model parameter, where λi(w) denotes i-th maximal eigenvalue of model
parameter w (Keskar et al., 2016; Foret et al., 2020; Jastrzebski et al., 2020).

On the top of the connection between flatness and generalization, the local entropy (Baldassi et al.,
2015; 2016) is one way to find flat minima. Typically, Entropy-SGD (Chaudhari et al., 2019) and
Entropy-SGLD (Dziugaite & Roy, 2018) suggested finding flat modes by approximating the local
entropy with a nested chain. On the other hand, SAM (Foret et al., 2020) aims to find parameters lie
in the neighborhood γ where the loss is consistently low by solving a min-max optimization problem.
Within γ-ball neighborhood, the objective function of SAM is defined as:

lγSAM(w) = min
w

max
∥∆w∥p≤γ

l(w +∆w),

where l(·) is the empirical loss function, such as cross-entropy loss in classification. p is practically
set to two, yielding ∆w = γ∇wl(w)/∥∇wl(w)∥2. On the one hand, FSAM (Kim et al., 2022)
proposed replacing the Euclidean ball in SAM with a natural non-Euclidean ball induced by Fisher
information:

lγFSAM(w) = min
w

max
∥Fy(w)∆w∥p≤γ2

l(w +∆w),

where the Fisher information matrix (FIM) is approximated as Fy(w) = 1/|B|∇w log p(y|x,w)2 and
|B| denotes batch size. The Fisher inverse matrix is approximated as Fy(w)

−1 = 1/
√

1 + ηFy(w),

with a hyperparameter η. This results in a closed-form perturbation, ∆w = γ
(Fy(w)−1)2∇wl(w)
∥Fy(w)−1∇wl(w)∥2

, for
p = 2. In other words, by preconditioning approximated FIM Fy(w) over predictive distribution,
FSAM attempts to find curvature-aware perturbation. SAM and FSAM are derived under deterministic
w, and the Fy(w) is defined in predictive distribution p(y|x,w), not in parameter space.

3 FLATNESS DOES MATTER FOR BAYESIAN MODEL AVERAGING

We first cast a question of whether BNNs inherently captures the flatness. To answer this, we compare
the flatness of DNNs and BNNs without flatness-aware optimizer and demonstrate empirically that
BNNs often struggle to capture the flatness. We also show flatness does matter for BMA both
experimentally and theoretically.
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(a) Correlation between flatness
and generalization

(b) Error variation under
flatness-ordered BMA

(c) NLL variation under
flatness-ordered BMA

Figure 2: (a) illustrates the clear correlation between flatness, the maximal Hessian eigenvalue (λ1),
and normalized generalization metrics such as classification error, ECE, and NLL. ρ represents
the Pearson correlation coefficient. We conjecture that the flatness is crucial for the generalization
performance of BNN. (b)-(c) represent the variation of generalization performance under flatness-
ordered BMA. "Flat" denotes starting model averaging from the flattest model, and "Sharp" means
the opposite of "Flat". "Rand" denotes starting BMA from a random sample of prepared 30 models.
This result shows degradation or stagnation can appear without considering the flatness in BMA and
highlights the need to account for flatness in BNNs.

3.1 BNN STRUGGLES TO CAPTURE THE FLATNESS

We first investigate whether BNNs effectively capture flatness and find that they often struggle to do so.
To assess flatness, we use λ1(w) and λ1(w)/λ5(w), as criteria (Foret et al., 2020; Li & Zhang, 2023).
For BMA, we compute the average of these metrics across M model samples wm,m = 1, ...,M ,
as 1/M

∑M
m=1 λ1(wm) and 1/M

∑M
m=1 λ1(wm)/λ5(wm) (detailed in Appendix A.1). We simply

refer to these criteria as λ1 and λ1/λ5. We also measure the Error (100 − Accuracy), Expected
Calibration Error (ECE) (Guo et al., 2017), and Negative Log Likelihood (NLL) to compare the
generalization ability. We mainly set ResNet18 (RN18) (He et al., 2016) without Batch Normalization
(BN) (Ioffe & Szegedy, 2015) as a backbone model. For BNN frameworks, we adopt VI, MCMC,
and SWAG. To minimize the effect on measuring the flatness, we remove the BN and also do not
adjust data augmentation. We present more detailed results of the analysis between flatness and
performance across various settings in Appendix A.2, demonstrating consistent outcomes.

In Figure 1, BNNs do not consistently capture the loss geometry well. BNNs trained with SGD often
exhibit higher λ1 compared to DNN trained with SGD. They also show significantly higher λ1 when
compared to DNN trained with SAM. This is consistent with Figure 7 and 8 (Appendix A.2), trained
on diverse learning rate schedulers. Therefore, we conclude that BNNs often struggle to capture
flatness, raising the question of whether BMA, with its unique prediction approach, is also affected
by flatness.

3.2 BMA CAN BE INEFFECTIVE WITHOUT FLATNESS

BNNs possess the benefit of BMA, which anticipates performance enhancement through model
ensemble based on the approximated posterior distribution. However, following the fact that BNNs
often struggle to capture the flatness, we cast another question: "Does the flatness also affect BMA?"

First, we consolidate that the correlation between flatness and generalization performance also exists
in BMA. Figure 2a shows the affirmative correlation between performance and flatness throughout
30 sampled model parameters from posterior trained on CIFAR10 with RN18 w/o BN. We provide
additional plots in Figure 9 (Appendix A.3), demonstrating consistent results.

Second, we observe how performance changes when the sampling model parameter in BMA is
performed based on flatness. We first sample 30 models trained on CIFAR10 with RN18 w/o BN.
Then, we start to do BMA through three criteria. "Flat" denotes starting model averaging from the
flattest model, and "Sharp" means the opposite of "Flat". "Rand" denotes starting BMA from a
random sample of prepared 30 models. From Figure 2b and 2c, we conclude that degradation or
stagnation can appear without considering the flatness during BMA. Figure 10 and 11 (Appendix A.4)
support the conclusion, as well. With a closer look at the "Flat" label, where progressively sharper
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models are contained, we observe that performances do not improve as the number of averaged
models increases. These points prove the necessity of flatness in BMA.

Along with the experimental influence of flatness on BMA, we also show that the individual sampled
models affect the flatness of BMA. Specifically, we suggest a theoretical bound of flatness on BMA
through the Hessian eigenvalue of loss. The Hessian eigenvalue of loss is a typical measurement
to compare the flatness of neural networks. BMA marginalizes diverse predictions by ensembling
model output. The loss of the weight-averaged model is approximately the same as the loss of the
ensemble model, with a small error term based on the difference between their outputs (Lemma 1 in
Appendix E.1) (Izmailov et al., 2018; Wortsman et al., 2022; Rame et al., 2022). We demonstrate the
flatness bound for WA and connect it to that of BMA. Through Weyl’s inequality (Weyl, 1912), the
bound of the Hessian eigenvalue of wWA = 1/M

∑M
m=1 wm is defined as:

Theorem 1. With M model sample wm,m = 1, ...,M , the maximal eigenvalue of averaged Hessian
of loss λmax(HwWA)is bounded as follow:

max

{
1

M

(
λmax(Hwm

) +

M∑
n=1
n̸=m

λmin(Hwn
)

)}M

m=1

 ≤ λmax(HwWA) ≤
∑M

m=1 λmax(Hwm
)

M
.

Theorem 1 implies that the flatness of BMA reflects the flatness of model samples. If a sampled
model had a large Hessian eigenvalue, the lower bound of Hessian eigenvalue can be larger. Namely,
the ensembled model can be located in a sharp region by ensembling sharp model samples from
posterior. Through empirical and theoretical analysis of flatness in BNNs, we confirm that a flat
posterior is necessary to ensure the individual sampled models are flat, leading to more effective
BMA.

4 BAYESIAN MODEL AVERAGING WITH FLAT POSTERIOR

For more effective BMA, we propose a Bayesian flat-seeking optimizer (Section 4.1) and Bayesian
transfer learning combined with diverse BNN frameworks (Section 4.2).

4.1 BAYESIAN FLAT-SEEKING OPTIMIZER

To deal with the probabilistic nature of BNN, we suggest a new objective function based on VI:

lγSA-BMA(θ) = min
θ

max
d|θ+∆θ,θ|≤γ2

l(θ +∆θ) + βDKL[qθ(w|D)||p(w)] (4)

s.t. d|θ +∆θ, θ| = DKL
[
qθ+∆θ(w|D) || qθ(w|D)

]
, (5)

where θ and ∆θ denote the variational parameters and perturbation on them, respectively. l(·)
denotes empirical loss, such as NLL under qθ(w|D), and β is a hyperparameter that controls the
influence of the prior.

Through the relationship between KL divergence and FIM, the objective function (Eq. (4)) is rewritten
as:

lγSA-BMA(θ) = min
θ

max
∆θTFθ(θ)∆θ≤γ2

l(θ +∆θ) + βDKL[qθ(w|D)||p(w)], (6)

where Fθ(θ) = Ew,D[∇θ log qθ(w|D)∇θ log qθ(w|D)T ]. Note the FIM is defined over parameters.
Accordingly, the adversarial posterior is directly obtained in the parameter space, enabling BNNs to
better construct neighbor to flat minima.

In first step, we get the closed-form ∆θSA-BMA (∆θ in Eq. (6)) as:

∆θSA-BMA = γ
Fθ(θ)

−1∇θl(θ)√
∇θl(θ)TFθ(θ)−1∇θl(θ)

. (7)

Detailed formula derivation of the optimal perturbation for SA-BMA (Eq. (7)) is provided in
Appendix E.2.

5
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In second step, we update θ by gradients from adversarial posterior perturbated with ∆θSA-BMA:

∇θl
γ
SA-BMA(θ) ≈ ∇θl(θ +∆θSA-BMA). (8)

SA-BMA enhances the estimation of flat posteriors by adapting SAM to the probabilistic nature of
BNNs, defining adversarial perturbation ball directly in the parameter space.

Generalized version of geometric optimizers Notably, SA-BMA is a generalized version of SAM,
FSAM, and NG under deterministic parameters, as shown in Theorem 2. Proof of Theorem 2 are
provided in Appendix E.3.
Theorem 2. (Informal) Suppose the model parameter w is deterministic and the loss function l(·) is
twice continuously differentiable. Let γ′ = γ/

√
∇θl(θ)TFθ(θ)−1∇θl(θ), then

i) SA-BMA degenerates to FSAM by using the diagonal terms of FIM.

ii) SA-BMA degenerates to SAM if FIM is an identity matrix.

iii) Update rule of SA-BMA θ − ηSA-BMA∇θl(θ +∆θ) degenerates to update rule of NG
θ − ηNGFy(θ)

−1∇θl(θ) with learning rate ηSA-BMA = ηNG
(1+γ′)Fθ(θ)

−1.

SA-BMA replaces the output space FIM, used by existing DNN-based flat-seeking optimizers, with
the parameter space FIM. By taking into account the off-diagonal terms of the FIM, SA-BMA more
accurately estimates flatness, leading to more precise optimization. This makes SA-BMA better
suited for BNNs. Additionally, SA-BMA becomes equivalent to NG when using a specific learning
rate, suggesting the potential for accelerating convergence.

4.2 BAYESIAN TRANSFER LEARNING

The proposed optimizer theoretically captures curvature more exactly, but it faces practical limitations
when applied to neural networks with a large number of parameters. To address this limitation, we
propose a Bayesian transfer learning scheme alongside the proposed optimizer. In this scheme, we
leverage pre-trained DNN as a prior and train only a subset of the model’s parameters, enhancing
scalability while maintaining performance. The proposed Bayesian transfer learning scheme consists
of three steps, and Algorithm 1 (Appendix D.3) depicts how it operates.

First, we load a pre-trained DNN wMAP ⊆ Rp optimized by Maximum A Posteriori (MAP). We
change the loaded DNN into BNN on the source or downstream taskDpr. Formally, we get qpr

θ (w|Dpr).
Various BNN frameworks, such as VI, SWAG, and others, can be employed to transform a DNN into
a BNN. This study mainly employs MCMC, SWAG (Maddox et al., 2019), and MOPED (Krishnan
et al., 2020) for VI. Note that the proposed optimizer is not employed in this step.

Second, we set the converted BNN as prior and initial points and train new posterior with the proposed
optimizer, following objective function:

lγSA-BMA(θ) = min
θ

max
∆θTFθ(θ)∆θ≤γ2

l(θ +∆θ) + βDKL[qθ(w|Dft)||qpr
θ (w|D

pr)], (9)

where Dft represents the downstream dataset used for fine-tuning, and l(·) denotes the empirical
loss function. To reduce computational complexity, we also incorporate a subnetwork BNN strategy,
which has been extensively explored in recent studies (Izmailov et al., 2020; Daxberger et al., 2021c;
Sharma et al., 2023; Snoek et al., 2015; Daxberger et al., 2021b; Harrison et al., 2023). In this work,
we set the trainable parameters to parameters of normalization and last layers. Additionally, we
reinitialize the last layer using a simple Gaussian distribution N (0, αI) during fine-tuning on the
downstream dataset, where α is a hyperparameter controlling the variance. This approach is expected
to facilitate scalable and stable training by leveraging pre-trained DNNs.

5 EXPERIMENTS

We first verify that SA-BMA effectively converges to flat minima using a synthetic example (Sec-
tion 5.1). Then, we demonstrate that training from scratch with SA-BMA optimizer leads to improved
generalization performance (Section 5.2). In addition, by integrating Bayesian transfer learning, we
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show that SA-BMA performs well in few-shot image classification tasks (Section 5.3) and is robust
to distribution shifts (Section 5.4). Finally, we visualize the loss surface and compare the Hessian
eigenvalues numerically, further confirming that the model approximates flat posteriors (Section 5.5).

5.1 SYNTHETIC EXAMPLE

(a) MCMC (b) SWAG (c) VI (d) SA-BMA

Figure 3: Posterior approximation with synthetic example. When both flat and sharp modes coexist,
we compared how optimizers approximate the posterior. Unlike other methods, the proposed SA-
BMA converged to the flat mode, demonstrating its effectiveness in finding more stable solutions.

We conduct a toy experiment designed to create sharp and flat modes. We run various methods,
including SGD, MCMC with SGLD, SWAG, and VI, to compare them with SA-BMA combined with
VI and SWAG. The results in Figure 3 and 12 (Appendix B) show that the baseline methods based
on SGD and SGLD converge to the sharp mode without any consideration for flatness. In contrast,
the proposed SA-BMA consistently converged to the flat mode, regardless of the BNN framework
combined. We provide the setting and additional results in Appendix B.

5.2 LEARNING FROM SCRATCH

Table 1: Performance of learning from scratch with RN18 and modified ViT-B/16†. SA-BMA (VI),
SA-BMA (MCMC), and SA-BMA (SWAG) indicate the specific BNN framework combined with
SA-BMA. Bold highlights the best performance within each BNN framework, while red indicates
the overall best performance across all frameworks. SA-BMA leads better performance across all
BNN frameworks and shows superior performance both on the CIFAR10 and CIFAR100.

Backbone RN18 ViT-B/16†

Dataset CIFAR10 CIFAR100 CIFAR10 CIFAR100

Method ACC ↑ ECE ↓ NLL ↓ ACC ↑ ECE ↓ NLL ↓ ACC ↑ ECE ↓ NLL ↓ ACC ↑ ECE ↓ NLL ↓

SGD 83.28±0.49 0.058±0.005 0.540±0.006 50.33±0.62 0.123±0.016 1.976±0.055 81.20±1.31 0.050.±0.002 0.569±0.027 48.66±0.21 0.062±0.013 1.956±0.021

SAM 87.59±3.10 0.031±0.017 0.389±0.065 51.48±0.05 0.096±0.026 1.873±0.042 81.25±0.10 0.020±0.003 0.550±0.002 54.91±4.20 0.053±0.020 1.709±0.148

FSAM 83.38±0.86 0.052±0.003 0.540±0.010 50.87±1.29 0.114±0.008 1.963±0.058 81.57±1.49 0.046±0.006 0.563±0.036 48.75±0.42 0.055±0.010 1.956±0.003

bSAM 84.28±0.32 0.051±0.010 0.502±0.012 52.55±0.30 0.087±0.011 1.802±0.027 80.33±0.88 0.037±0.007 0.588±0.012 57.75±0.29 0.040±0.014 1.573±0.015

VI 82.61±0.51 0.067±0.003 0.632±0.008 51.45±0.32 0.037±0.007 1.874±0.007 75.81±0.88 0.027±0.021 0.715±0.038 48.97±0.20 0.037±0.012 1.965±0.002

SA-BMA (VI) 85.34±0.18 0.028±0.006 0.431±0.001 54.49±0.82 0.016±0.003 1.699±0.021 76.23±0.44 0.018±0.006 0.692±0.010 51.62±1.12 0.038±0.013 1.884±0.026

MCMC 84.82±0.13 0.049±0.001 0.523±0.008 58.38±0.16 0.090±0.002 1.742±0.014 81.80±0.46 0.014±0.003 0.542±0.023 51.79±0.29 0.081±0.001 2.068±0.016

E-MCMC 85.45±0.27 0.037±0.002 0.479±0.006 60.38±0.21 0.074±0.003 1.574±0.002 81.97±0.49 0.034±0.004 0.545±0.014 50.48±0.13 0.068±0.005 2.010±0.007

SA-BMA (MCMC) 86.98±0.19 0.030±0.004 0.393±0.001 61.94±0.37 0.029±0.003 1.467±0.006 82.49±1.95 0.012±0.003 0.528±0.067 61.10±1.44 0.046±0.005 1.461±0.067

SWAG 88.95±0.09 0.044±0.015 0.349±0.013 59.48±0.19 0.030±0.002 1.594±0.011 83.70±0.30 0.044±0.011 0.493±0.020 54.76±2.20 0.151±0.025 2.008±0.136

F-SWAG 89.35±0.19 0.028±0.013 0.323±0.010 60.44±0.20 0.074±0.023 1.566±0.006 83.57±0.41 0.046±0.015 0.498±0.029 56.80±1.44 0.061±0.017 1.733±0.073

SA-BMA (SWAG) 89.84±0.30 0.019±0.002 0.306±0.006 63.63±0.60 0.052±0.007 1.342±0.003 84.44±0.58 0.028±0.008 0.464±0.011 57.64±1.42 0.032±0.005 1.590±0.050

We evaluate the performance of SA-BMA by combining it with various BNN frameworks, VI,
MCMC, and SWAG. For this, we train both RN18 and ViT-B/16† models from scratch in CIFAR10
and CIFAR100 (Krizhevsky et al., 2009). We use modified ViT-B/16† (Dosovitskiy et al., 2020) to
deal with the underfitting issue over small dataset of ViT-B/16 (Liu et al., 2021; Zhu et al., 2023a). SA-
BMA was applied only to the normalization and last layers, while all other layers were trained using
SGD. We compare the performance of SA-BMA with DNNs trained using SGD, SAM, and FSAM,
as well as BNN frameworks—SWAG, VI, and MCMC—and prior methods like F-SWAG (Nguyen
et al., 2023), bSAM (Möllenhoff & Khan, 2022), and E-MCMC (Li & Zhang, 2023). For MCMC and
E-MCMC, we consistently use SGLD in all experiments, evaluating models based on accuracy (ACC),
ECE, and NLL. As shown in Table 1, SA-BMA consistently improved performance when integrated
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with all BNN frameworks, demonstrating superior results compared to all baselines. Experimental
details are provided in Appendix C.

5.3 FEW-SHOT IMAGE CLASSIFICATION WITH BAYESIAN TRANSFER LEARNING

We also evaluate the performance of the proposed SA-BMA on a few-shot image classification task
in the context of transfer learning. In this experiment, we adopt RN18 and ViT-B/16 pre-trained on
ImageNet (IN) 1K (Russakovsky et al., 2015) as backbone. We add baselines for the Bayesian transfer
learning baseline MOPED (Krishnan et al., 2020) and Pre-Train Your Loss (PTL) (Shwartz-Ziv et al.,
2022) in this setting. Detailed configuration for experiments is provided in Appendix D.

First, we evaluate our model in CIFAR10 and CIFAR100 (Krizhevsky et al., 2009) with ten images
per class, each. As illustrated in Table 2, SA-BMA with diverse BNN frameworks consistently
outperforms existing baselines in terms of both accuracy and uncertainty quantification. Unlike
scratch learning, SA-BMA (VI) outperforms SA-BMA (SWAG) in few-shot image classification
tasks. This can be attributed to the nature of few-shot tasks, where VI, which only learns a diagonal
covariance, is less prone to underfitting due to the limited amount of data.

Table 2: Downstream task performance with RN18 and ViT-B/16 pre-trained on IN 1K. Bold
highlights the best performance within each BNN framework, while red indicates the overall best
performance across all frameworks. SA-BMA shows superior performance both on the CIFAR10 and
CIFAR100 10-shot, with the sole exception being the ECE on the CIFAR100 10-shot in RN18.

Backbone RN18 ViT-B/16

Dataset C10 10-shot C100 10-shot C10 10-shot C100 10-shot

Method ACC ↑ ECE ↓ NLL ↓ ACC ↑ ECE ↓ NLL ↓ ACC ↑ ECE ↓ NLL ↓ ACC ↑ ECE ↓ NLL ↓

SGD 55.52±0.32 0.062±0.006 1.302±0.020 44.29±0.83 0.025±0.005 2.133±0.043 84.37±1.47 0.056±0.061 0.503±0.038 68.78±0.21 0.143±0.007 1.193±0.019

SAM 56.54±2.57 0.129±0.013 1.354±0.089 44.51±0.07 0.065±0.007 2.089±0.013 84.35±0.81 0.035±0.012 0.486±0.023 68.93±0.37 0.153±0.005 1.200±0.021

FSAM 54.04±4.11 0.139±0.010 1.432±0.068 44.07±1.21 0.056±0.005 2.159±0.064 84.51±0.50 0.073±0.085 0.517±0.061 68.74±0.39 0.110±0.007 1.166±0.024

bSAM 56.56±1.18 0.083±0.006 1.280±0.027 43.93±0.48 0.060±0.003 2.167±0.026 82.85±2.10 0.113±0.008 0.583±0.062 68.42±0.40 0.148±0.019 1.219±0.031

MOPED 57.29±1.20 0.093±0.006 1.297±0.045 44.30±0.42 0.047±0.006 2.127±0.005 84.50±1.36 0.023±0.009 0.474±0.038 68.80±0.77 0.111±0.001 1.165±0.029

SA-BMA (VI) 64.98±1.37 0.016±0.007 0.997±0.046 49.09±1.38 0.071±0.004 1.893±0.036 87.56±1.10 0.044±0.012 0.397±0.026 71.37±0.36 0.060±0.007 1.023±0.012

MCMC 56.31±1.27 0.083±0.003 1.305±0.063 44.28±0.95 0.021±0.002 2.155±0.038 83.93±1.33 0.069±0.010 0.523±0.039 66.48±1.18 0.077±0.011 1.224±0.044

PTL 57.26±1.44 0.116±0.003 1.345±0.004 43.00±1.05 0.120±0.006 2.383±0.062 85.76±1.37 0.080±0.014 0.482±0.027 65.52±2.45 0.056±0.006 1.260±0.095

E-MCMC 56.69±2.14 0.142±0.004 1.266±0.054 41.57±0.04 0.046±0.012 2.370±0.175 83.91±1.16 0.333±0.010 0.877±0.044 63.40±0.01 0.280±0.008 1.655±0.024

SA-BMA (MCMC) 57.49±0.64 0.039±0.00. 1.248±0.048 45.72±0.56 0.016±0.003 2.062±0.050 84.82±1.84 0.051±0.018 0.449±0.048 68.73±1.09 0.061±0.004 1.117±0.042

SWAG 56.31±0.60 0.094±0.013 1.315±0.056 44.14±1.28 0.034±0.010 2.161±0.058 83.51±2.22 0.022±0.015 0.510±0.072 68.72±0.45 0.065±0.005 1.136±0.014

F-SWAG 57.65±1.20 0.075±0.003 1.249±0.038 46.09±0.44 0.062±0.006 2.089±0.002 83.87±1.28 0.013±0.005 0.492±0.040 68.84±0.77 0.076±0.012 1.137±0.020

SA-BMA (SWAG) 61.79±4.34 0.026±0.004 1.214±0.119 47.45±0.60 0.055±0.018 2.044±0.022 86.81±0.78 0.010±0.003 0.399±0.034 70.10±0.18 0.045±0.015 1.063±0.023

Table 3: Downstream task accuracy with RN50 and ViT-B/16 pre-trained on IN 1K. SA-BMA
(SWAG) denotes using SWAG to convert pre-trained model into BNN. Bold and underline denote
best and second best performance each. SA-BMA demonstrates superior performance across all
16-shot datasets.

Backbone RN50 ViT-B/16

Method EuroSAT Flowers102 Pets UCF101 Avg EuroSAT Flowers102 Pets UCF101 Avg

SGD 86.75±1.47 93.16±0.27 89.95±0.51 66.34±0.59 84.05±0.33 81.25±1.03 91.24±0.83 88.68±0.92 68.64±0.51 82.45±0.56

SAM 87.85±0.49 94.80±0.17 90.23±0.78 70.40±0.76 85.82±0.25 82.53±0.65 93.08±0.87 90.66±0.74 70.66±1.03 84.23±0.60
SWAG 88.97±1.56 93.27±0.15 89.95±0.46 66.41±0.30 84.65±0.37 81.62±0.66 91.21±0.91 88.67±0.42 67.65±0.45 82.29±0.31

F-SWAG 90.03±1.08 94.84±0.26 90.12±0.57 70.00±0.87 86.25±0.19 82.72±0.49 92.93±0.93 90.60±0.55 68.67±0.39 83.73±0.35

MOPED 85.21±3.14 92.15±0.73 89.25±0.61 65.85±0.99 83.11±0.86 83.97±0.49 91.71±0.87 89.90±0.54 69.66±0.53 83.81±0.51

PTL 90.01±0.39 92.55±0.53 89.43±0.41 65.00±1.24 84.25±0.30 83.76±0.61 88.43±1.27 88.54±0.53 60.38±1.84 80.28±0.03

SA-BMA 90.16±1.04 95.85±1.26 90.23±0.58 71.57±0.27 86.95±0.65 84.60±0.25 94.15±0.80 91.30±0.25 72.63±1.12 85.67±0.14

Table 4: Downstream task accuracy of CLIP with visual
encoder, RN50 and ViT-B/16. Bold and underline denote
best and second best performance each. SA-BMA shows
superior performance in average over five datasets.

Backbone Method IN IN-V2 IN-R IN-A IN-S Avg

RN50

Zero-Shot 59.83±0.00 52.89±0.00 60.73±0.00 23.25±0.00 35.45±0.00 46.43±0.00

SGD 61.70±0.01 54.31±0.01 60.87±0.01 22.74±0.01 35.68±0.00 47.06±0.01

SAM 61.73±0.01 54.35±0.01 60.86±0.01 22.76±0.01 35.67±0.00 47.07±0.01

SWAG 61.77±0.22 54.10±0.19 61.25±0.21 23.25±0.08 35.55±0.27 47.18±0.19
SA-BMA 63.33±0.92 55.06±0.79 61.14±0.37 22.78±0.68 35.82±0.11 47.63±0.17

ViT-B/16

Zero-Shot 68.33±0.00 61.91±0.00 77.71±0.00 49.93±0.00 48.22±0.00 61.22±0.00

SGD 69.97±0.00 62.97±0.01 78.05±0.00 50.31±0.02 48.76±0.00 62.01±0.00

SAM 70.01±0.01 63.03±0.02 78.03±0.01 50.37±0.00 48.75±0.00 62.04±0.00

SWAG 70.11±0.02 63.44±0.06 78.33±0.03 50.55±0.02 48.95±0.01 62.28±0.02
SA-BMA 72.41±0.33 64.85±0.11 78.14±0.31 50.52±0.25 49.25±0.03 63.03±0.04

We also conduct extra experiments
on four fine-grained image classifica-
tion benchmarks, EuroSAT (Helber
et al., 2019), Flowers102 (Nilsback &
Zisserman, 2008), Pets (Parkhi et al.,
2012), and UCF101 (Soomro et al.,
2012). From this point, we conduct
all experiments using SA-BMA with
SWAG for efficiency. We observe that
SA-BMA achieves the best accuracy
(Table 3) and NLL (Table 15 in Ap-
pendix F) across all datasets, as well.
We demonstrate that SA-BMA syner-
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gizes the advantages of sharpness-aware optimization and Bayesian transfer learning in a few-shot
learning context.

In addition, we employ ResNet50 (RN50) and ViT-B/16 in CLIP (Radford et al., 2021), widely-
adopted vision-language model (VLM). We fine-tune only the last layer of the CLIP visual encoder
on the IN 1K 16-shot dataset and evaluate the trained model on IN and its variants—IN-V2 (Recht
et al., 2019), IN-R (Hendrycks et al., 2021a), IN-A (Hendrycks et al., 2021b), and IN-S (Wang et al.,
2019)—following the protocols outlined in Radford et al. (2021); Zhu et al. (2023b); Lin et al. (2023).
Table 4 shows that SA-BMA outperforms baselines in the in-distribution evaluation and also shows
better or comparable robustness in the out-of-distribution datasets both in RN50 and ViT-B/16, which
leads to superior performance in average.

5.4 ROBUSTNESS ON DISTRIBUTION SHIFT

Figure 4: Accuracy under distributional shift. We evaluate the accuracy of RN18 and ViT-B/16
models trained on CIFAR10 and CIFAR100 10-shot across all severity levels of CIFAR10C and
CIFAR100C. SA-BMA consistently outperforms all baseline methods across all levels of corruption.

In Figure 4, we show the accuracy on a corrupted dataset, CIFAR10C and CIFAR100C (Hendrycks
& Dietterich, 2019), to verify the robustness and generalization performance of SA-BMA. We find
that our proposed SA-BMA outperforms other methods across both CIFAR10C and CIFAR100C
datasets on backbone models RN18 and ViT-B/16. SA-BMA consistently makes robust predictions
across corruption levels from mild level to severe level. We conclude that SA-BMA provides robust
predictions under distribution shift across all severities compared to the baselines, as well as under
in-distribution image classification. Detailed result is provided in Appendix G.

5.5 FLATNESS ANALYSIS Table 5: Hessian analysis on
RN18 trained with CIFAR10
10-shot. SA-BMA shows the
lowest score on both maximal
eigenvalue λ1 and eigenvalue
ratio λ1/λ5, proving it leads
the model to flatter minima.

Method λ1 ↓ λ1/λ5 ↓
SGD 559.62 2.59
SAM 381.74 2.23

FSAM 561.15 2.24
bSAM 532.74 2.09

MOPED 686.90 2.41
PTL 559.16 2.23

E-MCMC 540.83 1.98
SWAG 602.34 2.13

F-SWAG 362.33 2.44
SA-BMA 275.21 1.69

To substantiate the flatness in the loss surface of the SA-BMA model,
we compare the sampled models from the posterior approximated
with SA-BMA and PTL. The backbone model is RN18, and the
trained dataset is CIFAR10 10-shot. As shown in Figure 5, we
compare the sampled weight of SA-BMA and PTL in diverse views
and show SA-BMA converging to a flatter loss basin with lower loss.
Additional results and the protocol to visualize the loss basin are
provided in Appendix H.

We also quantitatively compare the sharpness of models. Table 5
presents the results of analyzing the eigenvalue of model Hessian
for both DNN and BNN series baseline models, as well as SA-
BMA. λ1 and λ5 represent the largest eigenvalue and the fifth largest
eigenvalue, respectively. We used the maximal eigenvalue λ1 and
ratio λ1/λ5 as a metric (Foret et al., 2020; Li et al., 2018; Li &
Zhang, 2023). SA-BMA has the lowest value compared to all other
baselines, which can be interpreted as our model being the flattest. It supports our visual results,
highlighting the superior flatness and improved generalization of SA-BMA.
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Figure 5: Comparison of the loss surfaces of SA-BMA (grey) and PTL (light blue) models. The loss
surface comparison offers an intuitive view of SA-BMA achieving a lower, flatter loss surface than
PTL, underlining the importance of flatness in model design.

6 RELATED WORKS

6.1 FLATNESS AND BNN
Recent works have suggested flat-seeking optimizers combined with BNN. First, SWAG (Maddox
et al., 2019) implicitly approximated posterior toward flatter optima based on SWA (Izmailov et al.,
2018). However, SWAG can fail to find flat minima, leading to limited improvement in generalization,
as shown in Section 3.1. bSAM (Möllenhoff & Khan, 2022) showed that SAM can be interpreted
as a relaxation of the Bayes and quantified uncertainty with SAM. Yet, bSAM only focused on
uncertainty quantification by simply modifying Adam-based SAM (Khan et al., 2018), not newly
considering the parametric geometry for perturbation. Moreover, scaling the variance with the number
of data points hampers the direct implementation of bSAM in few-shot settings. SA-BNN (Nguyen
et al., 2023) proposed a sharpness-aware posterior derived directly from the variational objective
and proved the effectiveness experimentally and theoretically. However, they just employ the L2
norm to calculate the perturbation of SAM without considering the difference between the nature of
DNN and BNN. E-MCMC (Li & Zhang, 2023) proposed an efficient MCMC algorithm capable of
effectively sampling the posterior within a flat basin by removing the nested chain of Entropy-SGD
and Entropy-SGLD. Still, E-MCMC necessitates a guidance model, which doubles the parameters
and heavily hinders its employment over large-scale models. SA-BMA is the first to reflect the
parameter space in the perturbation step of SAM for stochastic models, considering the nature of
BNNs.

6.2 BAYESIAN TRANSFER LEARNING
There are several works on performing transfer learning on BNN with prior. PTL (Shwartz-Ziv et al.,
2022) constructs BNN by learning closed-form posterior approximation of the pre-trained model
on the source task and uses it as a prior for the downstream task after scaling. The work requires
additional training on the source task, which makes it restrictive when it is impossible to access the
source task dataset. MOPED (Krishnan et al., 2020) employs pre-trained BNN as a prior for VI
based on the empirical Bayes method. Using pre-trained DNN, MOPED enhances accessibility to
BNN, however, it is only applicable to Mean-field VI (MFVI). Non-parametric transfer learning
(NPTL) (Lee et al., 2024) suggested adopting non-parametric learning to make posterior flexible in
terms of distribution shift. Our proposed scheme for Bayesian transfer learning can approximate the
distribution of parameters within either the downstream dataset or the source dataset, which allows
us to leverage more sophisticated and large-scale pre-trained models. Moreover, it is the first study
considering flatness in Bayesian transfer learning.

7 CONCLUSION

This study shows the limitations of BNNs in capturing the flatness, which is crucial for generalization
performance. We also show that BMA can fail to yield optimal results without explicitly considering
flatness. To address this issue, we introduce Sharpness-Aware Bayesian Model Averaging (SA-BMA),
which seeks to find a flat posterior by capturing flatness in the parameter space. SA-BMA is the
generalized version of existing sharpness-aware optimizers for DNN and aligns with the intrinsic
nature of BNN. We further propose a Bayesian Transfer Learning scheme, which enables efficient
fine-tuning of pre-trained DNNs while maintaining scalability with SA-BMA. Through extensive
experiments, we demonstrate that SA-BMA significantly enhances the generalization performance of
BNNs in diverse scenarios. Our work highlights the importance of flatness in posterior approximations
and provides a practical solution to improve the predictive robustness and accuracy of BNNs.
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A ADDITIONAL RESULTS FOR FLATNESS DOSE MATTER FOR BAYESIAN
MODEL AVERAGING

A.1 DETAILS ABOUT HESSIAN EIGENVALUE OF LOSS WITH BMA

(a) Flatness of BMA (b) Hessian Eigenvalue of loss

Figure 6: Description of flatness of BMA and Hessian Eigenvalue of loss. (a) depicts how flatness is
measured in BNNs. We measure the flatness of individual sampled model weights and subsequently
ensemble the flatness of them. (b) represents how the Hessian eigenvalue of loss corresponds to
flatness. It reveals that direction of steep curvature (sharp minima) exhibits with larger eigenvalues,
while that of gentle curvature (flat minima) exhibits smaller eigenvalues. Based on this understanding,
we measure flatness using the maximal eigenvalue of the Hessian at the minima.

To measure the flatness of BNNs and compare them with DNNs, we introduce a new metric specifi-
cally designed for this study. Unlike DNNs, where model parameters are typically treated as point
estimate, BNNs represent model parameters as random variables, necessitating an appropriate ap-
proach for measuring flatness. As shown in Figure 6b, the maximal eigenvalue of the Hessian of
the loss function is commonly used to evaluate flatness quantitatively in DNNs (Keskar et al., 2016;
Foret et al., 2020; Jastrzebski et al., 2020). To assess flatness in BNNs, we followed BMA protocol.
BMA samples model weights from the approximated posterior, calculates the outputs of the sampled
individual models, and ensemble the outputs, as shown in Figure 6a. Thus, similar to how BMA
operates, we measured the flatness of individual model weights and subsequently ensemble these
measurements to derive a comprehensive metric.
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A.2 FLATNESS COMPARISON

To prove that BNN cannot guarantee flatness, we run a variety of experiments for flatness comparison.
Since it’s uncommon, we do not run DNN or VI with SWAG learning rate scheduler for additional
flatness comparisons. First, Table 6 summarizes the comparison results covering different models
with a wide range of combinations with learning methods, optimizers, and schedulers. We conducted
on RN18 w/o BN and data augmentation. We use MOPED as the VI framework.

Table 6: Flatness Comparison on DNN and BNN with sharpness-aware optimization methods. We
observe that BNN does not find the flatness-aware local minima, and the compatibility of BNN and
the previous sharpness-aware optimization (SAM) is limited. All experiments were repeated three
times with RN18 w/o BN.

Dataset CIFAR10 CIFAR100
Methods Optim Schedule ACC ↑ ECE ↓ NLL ↓ λ1 ↓ λ1/λ5 ↓ ACC ↑ ECE ↓ NLL ↓ λ1 ↓ λ1/λ5 ↓

DNN

SGD
Constant 81.96±0.55 0.033±0.004 0.546±0.015 37.34±3.59 1.72±0.22 44.31±1.02 0.047±0.004 2.194±0.032 12.65±0.87 1.68±0.17

Cos Decay 84.51±0.53 0.027±0.015 0.474±0.030 19.98±2.64 1.59±0.09 47.01±0.52 0.074±0.004 2.077±0.027 102.21±12.42 1.73±0.09

SWAG lr 82.72±3.08 0.029±0.023 0.520±0.097 18.09±6.97 1.57±0.06 33.13±1.12 0.065±0.010 2.485±0.362 26.85±2.04 1.90±0.10

SAM
Constant 85.06±0.68 0.019±0.006 0.450±0.019 11.81±0.50 1.30±0.02 51.28±0.32 0.043±0.018 1.864±0.014 6.55±0.16 1.45±0.06

Cos Decay 87.29±0.12 0.019±0.003 0.390±0.004 11.71±0.24 1.42±0.01 54.85±0.62 0.031±0.006 1.731±0.007 6.67±0.61 1.43±0.02

SWAG lr 85.34±2.76 0.034±0.015 0.465±0.057 5.57±0.58 1.48±0.05 48.65±1.44 0.053±0.012 1.970±0.065 7.84±0.04 1.45±0.01

SWAG SGD
Constant 85.81±0.42 0.027±0.007 0.426±0.005 55.01±4.74 1.67±0.00 50.35±0.40 0.069±0.031 2.219±0.067 66.59±20.34 1.50±0.04

Cos Decay 87.34±0.48 0.029±0.006 0.384±0.013 29.87±2.55 1.62±0.02 52.31±0.81 0.101±0.065 2.132±0.166 24.58±15.13 1.52±0.06

SWAG lr 86.07±0.12 0.113±0.115 0.435±0.002 50.88±3.00 1.66±0.02 51.52±0.40 0.124±0.008 2.237±0.175 44.21±5.79 1.65±0.01

VI SGD Constant 83.11±0.40 0.016±0.002 0.518±0.011 19.72±0.88 1.49±0.04 45.81±0.42 0.018±0.002 2.104±0.017 217.05±16.11 1.67±0.08

Cos Decay 84.51±0.30 0.037±0.003 0.465±0.005 20.86±0.58 1.53±0.01 48.30±0.41 0.121±0.007 2.519±0.029 34.71±2.06 1.80±0.09

MCMC SGLD Cos Decay 86.54±0.02 0.043±0.002 0.465±0.005 24.30±3.91 1.83±0.10 49.09±0.45 0.160±0.002 2.777±0.035 110.05±3.19 1.65±0.03

Second, we compare the flatness with ResNet18 pre-trained on ImageNet 1K, provided in torchvision.
Note that the ResNet18 contains Batch Normalization, and data augmentation is also applied in this
setting. Table 7 consistently shows the SWAG cannot guarantee the flatness with Batch Normalization
and data augmentation, either.

Table 7: Flatness Comparison on DNN and BNN with sharpness-aware optimization methods. We
observe that BNN does not find the flatness-aware local minima even with BN and data augmentation.
All experiments were repeated three times with ResNet18 pre-trained on ImageNet 1K.

Dataset CIFAR10 CIFAR100
Methods Optim Schedule ACC ↑ ECE ↓ NLL ↓ λ1 ↓ λ1/λ5 ↓ ACC ↑ ECE ↓ NLL ↓ λ1 ↓ λ1/λ5 ↓

DNN
SGD Constant 95.60±0.21 0.005±0.001 0.127±0.002 587.06±17.13 2.22±0.065 80.61±0.17 0.059±0.005 0.674±0.003 1261.65±44.00 1.97±0.005

Cos Decay 96.46±0.08 0.010±0.001 0.110±0.001 436.79±22.52 2.07±0.276 82.00±0.40 0.058±0.001 0.656±0.007 1195.30±33.53 2.35±0.086

SAM Constant 96.55±0.11 0.005±0.002 0.102±0.001 115.97±6.09 1.92±0.074 82.06±0.40 0.040±0.004 0.617±0.005 306.44±43.19 2.19±0.190

Cos Decay 96.92±0.14 0.031±0.002 0.112±0.002 728.99±5.07 2.06±0.053 83.76±0.13 0.060±0.001 0.589±0.003 382.66±10.00 2.07±0.052

SWAG SGD
Constant 96.46±0.06 0.084±0.026 0.178±0.031 2263.44±1025.76 2.86±0.886 82.99±0.20 0.118±0.016 0.677±0.022 2227.27±539.94 3.00±0.510

Cos Decay 96.54±0.09 0.021±0.001 0.116±0.002 1147.92±165.90 2.74±0.357 82.48±0.22 0.083±0.001 0.667±0.006 2457.46±224.32 2.93±0.086

SWAG lr 96.35±0.10 0.090±0.011 0.192±0.015 7823.13±2183.11 3.03±0.362 82.34±0.19 0.052±0.002 0.638±0.003 1529.73±58.99 3.02±0.102

Third, we train the pre-trained RN18 with CIFAR10 10-shot and CIFAR100 10-shot. In other words,
we only use 10 data per class in this setting. Table 8 shows identical results with other flatness
comparisons. SWAG cannot guarantee flatness without SAM.

Table 8: Flatness Comparison on DNN and BNN with sharpness-aware optimization method. We
observe that BNN does not find the flatness-aware local minima, and the compatibility of BNN and
the previous sharpness-aware optimization (SAM) is limited. All experiments were repeated three
times with ResNet18 pre-trained ImageNet 1K in few-shot setting.

Dataset CIFAR10 10-shot CIFAR100 10-shot
Methods Optim Schedule ACC ↑ ECE ↓ NLL ↓ λ1 ↓ λ1/λ5 ↓ ACC ↑ ECE ↓ NLL ↓ λ1 ↓ λ1/λ5 ↓

DNN
SGD Constant 81.96±0.55 0.033±0.004 0.546±0.015 37.34±3.59 1.73±0.229 44.31±1.02 0.047±0.004 2.194±0.032 12.65±0.87 1.68±0.172

Cos Decay 84.51±0.53 0.027±0.015 0.474±0.030 19.98±2.64 1.59±0.097 47.01±0.52 0.074±0.004 2.077±0.027 102.21±12.42 1.74±0.097

SAM Constant 57.91±1.84 0.030±0.017 1.227±0.038 199.79±47.69 2.25±0.426 45.54±0.64 0.094±0.011 2.118±0.021 359.59±38.51 1.86±0.049

Cos Decay 56.54±2.57 0.015±0.005 1.255±0.070 148.59±17.70 2.12±0.190 45.51±1.26 0.106±0.009 2.131±0.051 426.73±51.64 2.08±0.293

SWAG SGD
Constant 55.74±1.57 0.018±0.002 1.289±0.047 530.71±48.39 1.53±0.314 44.22±1.27 0.120±0.003 2.221±0.069 976.07±178.03 2.42±0.276

Cos Decay 56.47±0.77 0.042±0.013 1.274±0.036 566.26±96.65 2.18±0.329 44.18±1.26 0.102±0.009 2.225±0.051 588.19±70.21 2.46±0.293

SWAG lr 56.13±1.37 0.041±0.007 1.272±0.059 562.87±116.08 2.16±0.373 43.91±1.00 0.106±0.004 2.214±0.058 756.86±68.28 2.10±0.160

Fourth, we measure the flatness of last-layer SWAG (L-SWAG) and VI (L-VI) in Table 9. We use
the trained DNN models as an initial weight for L-SWAG. For example, a DNN model trained with
constant lr scheduling and SGD optimizer is the base model for L-SWAG, which trains with the same
lr schedule and optimizer. For L-VI, we only set stochastic parameters for last layer. Again, SWAG
failed to show better flatness compared to DNN with SAM.
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Table 9: Flatness Comparison on DNN and L-SWAG applied to the DNN. We confirm that using
pre-existed flatness-aware optimization on the last layer of BNN cannot be enough to pull the model
to a flat basin. All experiments were repeated three times with ResNet18 w/o BN.

Dataset CIFAR10 CIFAR100
Methods Optim Schedule ACC ↑ ECE ↓ NLL ↓ λ1 ↓ λ1/λ5 ↓ ACC ↑ ECE ↓ NLL ↓ λ1 ↓ λ1/λ5 ↓

DNN

SGD
Constant 81.96±0.55 0.033±0.004 0.546±0.015 37.34±3.59 1.73±0.229 44.31±1.02 0.047±0.004 2.194±0.032 12.65±0.87 1.68±0.172

Cos Decay 84.51±0.53 0.027±0.015 0.474±0.030 19.98±2.64 1.59±0.097 47.01±0.52 0.074±0.004 2.077±0.027 102.21±12.42 1.74±0.097

SWAG lr 82.72±3.08 0.029±0.023 0.520±0.097 18.09±6.97 1.57±0.068 33.13±1.12 0.065±0.010 2.485±0.362 26.85±2.04 1.90±0.107

SAM
Constant 85.06±0.68 0.019±0.006 0.450±0.019 11.81±0.50 1.31±0.020 51.28±0.32 0.043±0.018 1.864±0.014 6.55±0.16 1.45±0.061

Cos Decay 87.29±0.12 0.019±0.003 0.390±0.004 11.71±0.24 1.43±0.006 54.85±0.62 0.031±0.006 1.731±0.007 6.67±0.61 1.44±0.026

SWAG lr 85.34±2.76 0.034±0.015 0.465±0.057 5.57±0.58 1.49±0.053 48.65±1.44 0.053±0.012 1.970±0.065 7.84±0.04 1.45±0.013

L-SWAG SGD
Constant 82.20±0.40 0.036±0.007 0.544±0.007 49.49±4.71 1.68±0.080 49.65±0.65 0.053±0.003 1.980±0.012 18.65±1.14 1.71±0.134

Cos Decay 84.94±0.70 0.034±0.01 0.475±0.012 26.26±2.81 1.62±0.055 49.56±0.58 0.015±0.003 1.938±0.014 131.32±13.82 1.65±0.046

SWAG lr 83.26±3.10 0.043±0.027 0.544±0.052 49.49±8.86 1.68±0.134 49.65±0.65 0.053±0.002 1.980±0.036 18.65±3.26 1.71±0.021

L-VI SGD Constant 83.46±0.34 0.027±0.002 0.529±0.000 29.65±3.44 1.64±0.087 49.26±0.69 0.046±0.006 2.068±0.018 63.17±7.96 1.61±0.165

Cos Decay 85.11±0.35 0.083±0.003 0.605±0.007 55.92±3.02 1.56±0.076 50.70±2.29 0.130±0.083 2.424±0.337 47.53±38.46 1.61±0.24

Figure 7: Comparison of Error, NLL, and ECE with various schedulers on CIFAR10 in relation to
the maximum eigenvalue λ1.

In Figure 1, only the Error and NLL in relation to the maximum eigenvalue λ1 are presented for
training with the Constant scheduler. Figures 7 and 8 show the Error, NLL, and additionally ECE
with various schedulers and datasets. These figures depict the experimental results on CIFAR10 and
CIFAR100, respectively. Similar to what was observed in Figure 1, BNN does not guarantee the
flatness.
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Figure 8: Comparison of Error, NLL, and ECE with various schedulers on CIFAR100 in relation to
the maximum eigenvalue λ1.
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A.3 CORRELATION BETWEEN FLATNESS AND GENERALIZATION

Together with flatness comparisons in A.2, we check the correlation between flatness and generaliza-
tion performance of sampled models throughout all considered learning rate schedulers. We present
the scatter plot of the model, sampled from RN18 w/o BN trained on CIFAR10 and CIFAR100 in
the first and second rows of Figure 9. Each column of Figure 9 denotes Constant scheduler, Cosine
Decay scheduler, and SWAG lr scheduler, respectively. All the models are trained with SWAG and
SGD momentum, and we set maximal eigenvalue λ1 as a flatness measure. Correlation with flatness
and each generalization performance metric is suggested in the legend, as well. Regardless of the
scheduler and dataset, all generalization performances, error, ECE, and NLL strongly correlate with
flatness.

(a) Constant scheduler (b) Cosine Decay scheduler (c) SWAG lr scheduler

(d) Constant scheduler (e) Cosine Decay scheduler (f) SWAG lr scheduler

Figure 9: Correlation between maximal eigenvalue and performances of 30 sampled models from
SWAG throughout all considered schedulers. It shows classification error, ECE, and NLL are
distinctly correlated with flatness. We conjecture that the flatness is crucial for the generalization
performance of BNN
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A.4 PROGRESSIVE BMA BASED ON FLATNESS

We also inspect the influence of flatness on BMA performance throughout all considered schedulers.
We prepared 30 sampled models, trained on CIFAR10 and CIFAR100 with RN18 w/o BN. "Flat"
denotes starting BMA from sampling the flattest model. "Sharp" denotes starting BMA by sampling
the sharpest model. "Rand" denotes starting BMA from a random sample of prepared 30 models.
Figure 10 and 11 shows the results in CIFAR10 and CIFAR100, respectively. Each row means
Constant, Cosine Decay, and SWAG lr scheduler, and each column denotes the classification error,
ECE, and NLL.

Generally, we observe that there is no significant improvement or limited improvement in performance
when gradually applying BMA from flat models. Following the observation, we conclude flatness
should be taken into account for efficient BMA. This observation is particularly pronounced in
classification error ((a), (d), (g) of Figure 10 and 11). However, the trend is inconsistent in ECE. It is
an interesting topic for future research.

(a) Error (b) ECE (c) NLL

(d) Error (e) ECE (f) NLL

(g) Error (h) ECE (i) NLL

Figure 10: Performance variation based on sampling considering flatness among BMA on CIFAR10.
Each row means the Constant, Cos Decay, and SWAG lr scheduler. Each column denotes classification
error, ECE, and NLL. "Flat" denotes starting BMA from sampling the flattest model, and "Sharp"
means the opposite of "Flat". "Rand" denotes starting BMA from a random sample of prepared 30
models. It reveals that the flatness should be taken into account for efficient BMA.

21



1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187

Under review as a conference paper at ICLR 2025

(a) Error (b) ECE (c) NLL

(d) Error (e) ECE (f) NLL

(g) Error (h) ECE (i) NLL

Figure 11: Performance variation based on sampling considering flatness among BMA on CIFAR100.
Each row means the Constant, Cos Decay, and SWAG lr scheduler. Each column denotes classification
error, ECE, and NLL. "Flat" denotes starting BMA from sampling the flattest model, and "Sharp"
means the opposite of "Flat". "Rand" denotes starting BMA from a random sample of prepared 30
models. It reveals that the flatness should be taken into account for efficient BMA.
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B ADDITIONAL RESULTS FOR SYNTHETIC EXAMPLE

(a) SGD (b) MCMC (c) SWAG

(d) VI (e) SA-BMA (SWAG) (f) SA-BMA (VI)

Figure 12: Posterior approximation with synthetic example. When both flat and sharp modes coexist,
we compared how optimizers approximate the posterior. Unlike other methods, the proposed SA-
BMA converged to the flat mode, demonstrating its effectiveness in finding more stable solutions.

Following Li & Zhang (2023), we construct a loss surface following the distribution
1
2 (N ([−2,−1]T , 0.5I)) + 1

2 (N ([2, 1]T , I)) and set the initial point at (−0.4,−0.4). Unlike other
SGD-based methods, SA-BMA efficiently identifies flat modes regardless of the underlying BNN
frameworks.
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C EXPERIMENTAL DETAILS:LEARNING FROM SCRATCH

C.1 SA-BMA WITH DIVERSE BNN FRAMEWORKS

In Eq. (4), SA-BMA can be applied with various BNN frameworks by using an empirical loss
function l(·) and adjusting the parameter β. We commonly set l(·) as cross-entropy loss in context of
image classification task. Note that SA-BMA was applied only to the normalization layers and the
last layer, while all other layers were trained using SGD.

SA-BMA (VI) For VI, we follow the loss function of Eq. (4).

SA-BMA (MCMC) We mainly adopt SGLD for MCMC in this work. For SGLD, we incorporated
noise into Eq. (4) without KLD term (β = 0) based on the learning rate and the hyperparameter,
temperature. In this approach, during the first step, the adversarial posterior is computed without any
noise (Eq. (7)). In the second step, both the noise and the adversarial posterior are used together in
the learning process.

SA-BMA (SWAG) SWAG updates the first and second moments along the trajectory of SWA and
uses these moments to approximate the posterior with a Gaussian distribution. In Eq. (4), β is fixed
to 0, and as the trajectory of SWA is optimized through SA-BMA, posterior approximation can be
performed accordingly.

C.2 HYPERPARAMETERS FOR EXPERIMENTS

In this section, we provide the details of the experimental setup for Section 5.2. In the other
experiments, the range of hyperparameters, excluding the number of epochs, is shared across different
backbones and methods. For all experiments, the hyperparameters are selected using grid-search.
Configuration of best hyperparameters for each baseline is summarized in Table 10 and Table 11.

Table 10: Hyperparameter Configuration for CIFAR10

Backbone Baseline learning rate β1

(momentum) β2 γ weight decay

RN18

SGD 5e-2 9e-1 × × 5e-4
SAM 1e-1 9e-1 × 1e-1 5e-4

FSAM 5e-2 9e-1 × 1e-2 5e-4
bSAM 8e-1 9e-1 0.999 1e-1 5e-4

VI 5e-3 9e-1 × × 5e-4
SA-BMA (VI) 5e-2 9e-1 × 1e-1 5e-4

MCMC 1e-1 × × × 5e-4
E-MCMC 1e-1 × × × 5e-4

SA-BMA (MCMC) 5e-2 9e-1 × 5e-2 5e-4
SWAG 1e-1 9e-1 × × 5e-4

F-SWAG 1e-1 9e-1 × 1e-1 5e-4
SA-BMA (SWAG) 1e-1 9e-1 × 1e-1 5e-4

ViT-B/16†

SGD 1e-1 9e-1 × × 5e-4
SAM 1e-1 9e-1 × 5e-2 5e-4

FSAM 1e-1 9e-1 × 1e-1 5e-4
bSAM 5e-1 9e-1 0.999 1e-1 5e-4

VI 5e-3 9e-1 × × 5e-4
SA-BMA (VI) 5e-3 9e-1 × 5e-3 5e-4

MCMC 2e-2 × × × 5e-4
EMCMC 2e-2 × × × 5e-4

SA-BMA (MCMC) 3e-2 9e-1 × 1e-2 5e-4
SWAG 5e-2 9e-1 × × 5e-4

F-SWAG 5e-2 9e-1 × 5e-4
SA-BMA (SWAG) 5e-2 9e-1 × 1e-2 5e-4
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Table 11: Hyperparameter Configuration for CIFAR100

Backbone Baseline learning rate β1

(momentum) β2 γ weight decay

RN18

SGD 1e-1 9e-1 × × 5e-4
SAM 5e-2 9e-1 × 1e-1 5e-4

FSAM 1e-1 9e-1 × 1e-2 5e-4
bSAM 1 9e-1 0.999 1e-1 5e-4

VI 5e-3 9e-1 × × 5e-4
SA-BMA (VI) 8e-3 9e-1 × 2e-1 5e-4

MCMC 5e-1 × × × 5e-4
E-MCMC 5e-1 × × × 5e-4

SA-BMA (MCMC) 1e-1 9e-1 × 3e-2 5e-4
SWAG 1e-1 9e-1 × × 5e-4

F-SWAG 1e-1 9e-1 × 1e-1 5e-4
SA-BMA (SWAG) 3e-1 9e-1 × 2e-1 5e-4

ViT-B/16†

SGD 1e-1 9e-1 × × 5e-4
SAM 1e-1 9e-1 × 1e-1 5e-4

FSAM 1e-1 9e-1 × 1e-2 5e-4
bSAM 5e-1 9e-1 0.999 1e-1 5e-4

VI 3e-2 9e-1 × × 5e-4
SA-BMA (VI) 8e-3 9e-1 × 1e-1 5e-4

MCMC 2e-1 × × × 5e-4
EMCMC 1e-1 × × × 5e-4

SA-BMA (MCMC) 5e-2 9e-1 × 5e-2 5e-4
SWAG 1e-1 9e-1 × × 5e-4

F-SWAG 1e-1 9e-1 × 1e-1 5e-4
SA-BMA (SWAG) 1e-1 9e-1 × 1e-1 5e-4

Stochastic Gradient Descent with Momentum (SGD) In this study, we adopt Stochastic Gradient
Descent with Momentum as an optimizer for DNN. Learning rate schedule is fixed to cosine decay.
We run 300 epochs. The hyperparameter tuning range included learning rate in [1e-4, 1e-3, 1e-2].

Sharpness Aware Minimization (SAM) We set SGD with momentum as the base optimizer of
SAM. It also ran upon a cosine decay learning rate scheduler. All the range of hyperparameters is
shared with SGD with Momenmtum. Additional hyperparameter γ, the ball size of perturbation, is in
[1e-2, 5e-2, 0.1].

Fisher SAM (FSAM) We set SGD with momentum as the base optimizer of FSAM. It also ran
upon a cosine decay learning rate scheduler. All the range of hyperparameters is shared with SGD
with Momenmtum. Additional hyperparameter η, regularize Fisher impact, is in [1e-2, 1e-1, 1].

SAM as an optimal relaxation of Bayes (bSAM) We use a cosine learning rate decay scheme.
We run 300 epochs with fixed β1 and β2. The hyperparameter tuning rage included: learning rate in
[1e-1, 3e-1, 5e-1, 8e-1, 1], weight decay in [1e-4, 5e-4, 1e-3, 1e-2], damping in [1e-1, 1e-2, 1e-3],
and γ in [1e-3, 1e-2, 5e-2, 1e-1, 5e-1]. Damping parameter stabilizes the method by adding constant
when updating variance estimate.

Variational Inference (VI) We use MOPED to change DNN into BNN, first. We set prior mean
and variance as 0 and 1, respectively. Besides, we set the posterior mean as 0 and variance as 1e-3.
We adopt Reparameterization as type of VI. The essential hyperparmeter for MOPED is δ, which
adjusts how much to incorporate pre-trained weights. The δ was searched in [1e-3, 5e-3, 1e-2].
Moreover, we add a hyperparameter β for MOPED that can balance the loss term in VI. The β is in
range [1e-2, 1e-1 ,1]
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MCMC We consistently use SGLD (Welling & Teh, 2011) for MCMC in this work. It ran upon a
cyclic cosine decay learning rate scheduler. The number of cycles was ranged in [2, 4]. The number
of sampled models is in [10, 20, 28]. We search temperature in [1e-5, 5e-4, 1e-4, 5e-3, 1e-3, 1e-2].

Entropy-MCMC (E-MCMC) We use a cosine learning rate decay scheme, annealing the learning
rate to zero. We run 300 epochs. We search η in [1e-4, 5e-3, 1e-3, 5e-2, 1e-2, 1e-1] and a system
temperature T in [1e-4, 5e-4, 1e-3, 5e-3, 1e-2]. Note that the η handles flatness, and the system
temperature adjusts the weight update’s step size.

SWAG We use a cosine learning rate decay scheme for SWAG. All the range of hyperparameters is
shared with SGD with Momenmtum. Additionally, we search for three additional hyperparameters
for SWAG, capturing DNN snapshots and calculating statistics. First, the epoch to start SWA is in
[161, 201], and epoch is 300. Second, the frequency of capturing the model snapshot is in [1, 2, 3].
Third, the low rank for covariance is in [2, 3, 5, 7, 10].

F-SWAG F-SWAG shares hyperparameter with SWAG, except γ. We search γ in [1e-2, 5e-2, 1e-1].

Sharpness-aware Bayesian Model Averaging (SA-BMA) In case of SA-BMA (VI), we set
N (0, 1e − 3) as prior and δ as 1e-3 to make DNN to BNN using MOPED. After getting prior
distribution, we search three hyperparameters: learning rate and γ. The hyperparameter tuning range
included: learning rate in [1e-3, 5e-3, 1e-2, 5e-2], γ in [1e-2, 5e-2, 1e-1, 5e-1]. We set weight decay
as 5e − 4 for all backbones and train the model over 300 epochs with early stopping. We fix β as
1e-8 for all experiments. In case of SA-BMA (MCMC), we search learning rate, temperature for
learning rate scheduling, and γ. The hyperparameter ranges are [1e-3, 5e-3, 1e-2, 5e-2] for learning
rate, [1e-4, 5e-3, 1e-3, 5e-2, 1e-2, 1e-1] for temperature, and [5e-3, 1e-2, 5e-2, 1e-1, 5e-1] for γ. In
case of SA-BMA (SWAG), we follow the hyperparameter for SWAG, except γ in [1e-2, 5e-2, 1e-1].
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D EXPERIMENTAL DETAILS:FEW-SHOT IMAGE CLASSIFICATION WITH
BAYESIAN TRANSFER LEARNING

D.1 SA-BMA WITH DIVERSE BNN FRAMEWORKS

Diverse BNN frameworks can be adopted for Bayesian Transfer Learning. Specifically, there are
several options for making pre-trained DNN into BNN. In this work, we mainly adopt MOPED and
SWAG for the converting.

In addition, SA-BMA can be applied with various BNN frameworks by using an empirical loss
function l(·) and adjusting the parameter β in Eq. (9). We commonly set l(·) as cross-entropy loss in
context of image classification task.

SA-BMA (VI) First, we convert pre-trained DNN into BNN with MOPED. We set the converted
BNN as prior, qpr

θ (w|Dpr) in Eq. (9), and initial point of model. We only train parameters of
normalization and last layer and freeze others. We train them with the loss function of Eq. (9).

SA-BMA (MCMC) For SGLD, it is unnecessary to convert pre-trained DNN into BNN. Instead,
we directly set the pre-trained DNN as initialization. We incorporated noise into Eq. (9) without the
KLD term (β = 0) based on the learning rate and the hyperparameter, temperature. During the first
step, the adversarial posterior is computed without any noise (Eq. (7)). In the second step, both the
noise and the adversarial posterior are used together in the learning process.

SA-BMA (SWAG) SWAG is also one of the options to convert pre-trained DNN into BNN.
Specifically, we run a few epochs with source or downstream datasets to make BNN from pre-trained
DNN. After this step, we set the BNN as the prior, qpr

θ (w|Dpr) in Eq. (9). We also let the converted
BNN as initialization and train with downstream dataset. We optimize model with the loss function
in Eq. (9).

D.2 HYPERPARAMETERS FOR EXPERIMENTS

In this section, we provide the details of the experimental setup for Section 5.3. In the other
experiments, the range of hyperparameters, excluding the number of epochs, is shared across different
backbones and methods.

First, we provide remarks for each baseline method, followed by the tables of hyperparameter
configuration with respect to downstream datasets and the baselines. For all experiments, the
hyperparameters are selected using grid-search. Configuration of best hyperparameters for each
baseline is summarized in Table 12 and Table 13. We ran all experiments using GeForce RTX 3090
and NVIDIA RTX A6000 with GPU memory of 24,576MB and 49,140 MB.

Stochastic Gradient Descent with Momentum (SGD) In this study, we adopt Stochastic Gradient
Descent with Momentum as an optimizer for DNN. Learning rate schedule is fixed to cosine decay
with warmup length of 10. We tested [100, 150] epoch and set 100 epoch as the best option. In
overall experiments, we set momentum as 0.9. The hyperparameter tuning range included learning
rate in [1e-4, 1e-3, 1e-2], and weight decay in [1e-4, 5e-4, 1e-3, 1e-2].

Sharpness Aware Minimization (SAM) We set SGD with momentum as the base optimizer of
SAM. It also ran upon a cosine decay learning rate scheduler. All the range of hyperparameters is
shared with SGD with Momenmtum. Additional hyperparameter γ, the ball size of perturbation, is in
[1e-2, 5e-2, 1e-1].

Fisher SAM (FSAM) We set SGD with momentum as the base optimizer of FSAM. It also ran
upon a cosine decay learning rate scheduler. All the range of hyperparameters is shared with SGD
with Momenmtum. Additional hyperparameter η, regularize Fisher impact, is in [1e-2, 1e-1, 1].

SAM as an optimal relaxation of Bayes (bSAM) We use a cosine learning rate decay scheme,
annealing the learning rate to zero. We fine-tuned pre-trained models for 150 epochs with fixed β1
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Table 12: Hyperparameter Configuration for CIFAR10

Backbone Baseline learning rate β1

(momentum) β2 γ weight decay

RN18

SGD 5e-3 9e-1 × × 1e-3
SAM 1e-2 9e-1 × 1e-1 1e-4

FSAM 1e-2 9e-1 × 1e-1 1e-4
bSAM 1e-1 9e-1 0.999 5e-2 1e-1

MOPED 1e-2 9e-1 × × 1e-4
SA-BMA (VI) 1e-2 9e-1 × 7e-1 1e-3

MCMC 5e-2 9e-1 × × 5e-4
PTL 1e-1 × × × 1e-3

E-MCMC 5e-2 × × × 1e-3
SA-BMA (MCMC) 5e-3 9e-1 × 8e-3 5e-4

SWAG 5e-3 9e-1 × × 1e-5
F-SWAG 5e-3 9e-1 × 5e-2 5e-4

SA-BMA (SWAG) 5e-2 9e-1 × 1e-1 5e-4

ViT-B/16

SGD 1e-3 9e-1 × × 1e-4
SAM 1e-3 9e-1 × 1e-2 1e-3

FSAM 5e-3 9e-1 × 1e-2 1e-3
bSAM 1e-1 9e-1 0.999 1e-2 1e-1

MOPED 1e-3 9e-1 × × 1e-4
SA-BMA (VI) 1e-2 9e-1 × 1e-1 5e-4

MCMC 3e-2 9e-1 × × 5e-4
PTL 6e-2 × × × 1e-3

EMCMC 5e-3 × × × 1e-2
SA-BMA (MCMC) 5e-3 9e-1 × 8e-3 5e-4

SWAG 1e-3 9e-1 × × 1e-3
F-SWAG 1e-3 9e-1 × 1e-2 1e-3

SA-BMA (SWAG) 5e-3 9e-1 × 5e-1 5e-4

and β2. The hyperparameter tuning range included: learning rate in [1e-3, 1e-2, 5e-2, 1e-1, 0.25,
0.5, 1], weight decay in [1e-3, 1e-2, 1e-1], damping in [1e-3, 1e-2, 1e-1], noise scaling parameter in
[1e-4, 1e-3, 1e-2, 1e-1], and γ in [1e-3, 1e-2, 5e-2, 1e-1]. Damping parameter stabilizes the method
by adding constant when updating variance estimate. Since SAM as Bayes optimizer depends on the
number of samples to scale the prior, we introduced additional noise scaling parameters to mitigate
the gap between the experimental settings, where SAM as Bayes assumed training from scratch and
our method assumed few-shot fine-tuning on the pre-trained model. We multiplied noise scaling
parameter to the variance of the Gaussian noise to give strong prior, assuming pre-trained model.

Model Priors with Empirical Bayes using DNN (MOPED) MOPED was a baseline to compare
for Bayesian Transfer Learning. It employs pre-trained DNN and transforms it into Mean-Field
Variational Inference (MFVI). We set prior mean and variance as 0 and 1, respectively. Besides,
we set the posterior mean as 0 and variance as 1e-3. We adopt Reparameterization as type of VI.
The essential hyperparameter for MOPED is δ, which adjusts how much to incorporate pre-trained
weights. The δ was searched in [5e-2, 1e-1, 2e-1]. Moreover, we add a hyperparameter β for MOPED
that can balance the loss term in VI. The β is in range [1e-2, 1e-1, 1].

MCMC We consistently use SGLD (Welling & Teh, 2011) for MCMC in this work. It ran upon a
cyclic cosine decay learning rate scheduler. The number of cycles was ranged in [2, 4]. The number
of sampled models is in [10, 20, 28]. We search temperature in [1e-5, 1e-4, 1e-3, 1e-2, 1e-1, 1].

Pre-train Your Loss (PTL) The backbones both ResNet18 and Vit-B/16 were refined through
fine-tuning with a classification head for the target task, leveraging a prior distribution learned from
SWAG on the ImageNet 1k dataset using SGD. First, the hyperparameter tuning range of the pre-
training epoch is [2, 3, 5, 15, 30] to generate the prior distribution on the source task, ImageNet 1k.
The learning rate was 0.1. We approximated the covariance low rank as 5. Second, in the downstream
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Table 13: Hyperparameter Configuration for CIFAR100

Backbone Baseline learning rate β1

(momentum) β2 γ weight decay

RN18

SGD 1e-2 9e-1 × × 5e-3
SAM 1e-2 9e-1 × 5e-2 1e-2

FSAM 1e-2 9e-1 × 1e-1 1e-4
bSAM 1 9e-1 0.999 1e-2 1e-2

MOPED 1e-2 9e-1 × × 1e-3
SA-BMA (VI) 5e-2 9e-1 × 1e-2 5e-4

MCMC 3e-2 9e-1 × × 5e-4
PTL 5e-1 × × × 1e-3

E-MCMC 5e-2 × × × 1e-3
SA-BMA (MCMC) 1e-2 9e-1 × 1e-1 5e-4

SWAG 1e-2 9e-1 × × 1e-4
F-SWAG 1e-2 9e-1 × 5e-2 1e-2

SA-BMA (SWAG) 5e-2 9e-1 × 5e-1 5e-4

ViT-B/16

SGD 1e-3 9e-1 × × 1e-2
SAM 1e-3 9e-1 × 1e-2 1e-2

FSAM 5e-3 9e-1 × 1e-2 1e-4
bSAM 2.5e-1 9e-1 0.999 1e-2 1e-3

MOPED 1e-3 9e-1 × × 1e-3
SA-BMA (VI) 1e-2 9e-1 × 5e-2 5e-4

MCMC 5e-2 9e-1 × × 5e-4
PTL 1e-1 × × × 1e-3

E-MCMC 5e-2 × × × 1e-3
SA-BMA (MCMC) 8e-3 9e-1 × 8e-3 5e-4

SWAG 1e-3 9e-1 × × 1e-2
F-SWAG 1e-3 9e-1 × 1e-2 1e-2

SA-BMA (SWAG) 1e-2 9e-1 × 5e-1 5e-4

task, the fine-tuning optimizer is SGLD with a cosine learning rate schedule, sampling 30 in 5 cycles.
The hyperparameter tuning range included: learning rate in [1e-4, 1e-3, 1e-2, 5e-2, 6e-2, 1e-1, 5e-1],
weight decay in [1e-4, 1e-3 ,1e-2 ,1e-1], and prior scale in [1e+4, 1e+5, 1e+6]. Prior scaling in the
downstream task is to reflect the mismatch between the pre-training and downstream tasks and to add
coverage to parameter settings that might be consistent with the downstream. Training was conducted
over 150 epochs; tuning range of fine-tuning epoch is [100, 150, 200, 300, 1000].

Entropy-MCMC (E-MCMC) We use a cosine learning rate decay scheme, annealing the learning
rate to zero. We set the range of the hyperparameter sweep to the surroundings of the best hyperpa-
rameter in E-MCMC for ResNet18: learning rate in [5e-3, 5e-2, 5e-1], weight decay in [1e-4, 1e-3,
1e-2], η in [1e-6, 5e-6, 1e-5, 5e-5, 1e-4, 4e-4, 5e-3, 8e-3, 1e-2] and a system temperature T in [1e-5,
1e-4, 1e-3]. In this study, we performed an extensive exploration of the hyperparameter space of
ViT-B/16, as it has a mechanism different from the CNN family and may not be found near the best
hyperparameter range of ResNet18: learning rate in [1e-3, 5e-3, 1e-2, 5e-2, 5e-1], weight decay in
[1e-5, 1e-4, 5e-4, 1e-3, 1e-2, 5e-2], η in [5e-7, 1e-6, 5e-6, 5e-5, 1e-4, 4e-4, 5e-4, 1e-3, 8e-3, 1e-2,
1e-1] and a system temperature T in [1e-6, 5e-6, 1e-5, 5e-5, 1e-4, 1e-3, 1e-2, 1e-1]. We fine-tuned
pre-trained models for 150 epochs. Note that the η handles flatness, and the system temperature
adjusts the weight update’s step size.

SWAG We use a cosine learning rate decay scheme for SWAG. All the range of hyperparameters is
shared with SGD with Momenmtum. Additionally, we search three additional hyperparameters for
SWAG, capturing DNN snapshots and calculating statistics. First, the epoch to start SWA is in [51,
76, 101] and epoch is in [100, 150]. Second, the frequency to capture the model snapshot is in [1, 2,
3]. Third, the low rank for covariance is in [2, 3, 5, 7, 10].

F-SWAG F-SWAG shares hyperparameter with SWAG, except γ. We search γ in [1e-2, 5e-2, 1e-1].
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Sharpness-aware Bayesian Model Averaging (SA-BMA) In case of SA-BMA (SWAG), we train
SWAG on source task IN 1K to make prior distribution and follow the pre-training protocol of PTL.
In case of employing MOPED to make prior distribution, we do not go through any training step.
In case of SA-BMA (VI), we just set δ as 0.05 for MOPED and make DNN into BNN. In case of
SA-BMA (MCMC), we just set pre-trained weight as initialization and run experiments. After getting
prior distribution, we search three hyperparameters: learning rate, γ, and α. The hyperparamter
tuning range included: learning rate in [1e-3, 5e-3, 1e-2, 5e-2], γ in [5e-3, 8e-3, 1e-2, 5e-2, 1e-1,
5e-1, 7e-1], and α in [1e-6, 1e-5, 1e-4, 1e-3]. We set weight decay as 5e− 4 for all backbones and
train the model over 150 epochs with early stopping. We fix β as 1e-8 for all experiments.

D.3 ALGORITHM OF SA-BMA

Training algorithm of SA-BMA with Bayesian transfer learning can be depicted as Algorithm 1. In
the first step, load a model pre-trained on the source task. Note that the pre-trained models do not
have to be BNN. Namely, it is capable of using DNN, which can be easier to find than pre-trained
BNN. Second, change the loaded DNN into BNN on the source or downstream task. Every BNN
framework, containing VI, SWAG, LA, etc., can be adopted to make DNN into BNN. This study
mainly employs PTL (Shwartz-Ziv et al., 2022) and MOPED (Krishnan et al., 2020) for this step.
We can skip this second step if you load a pre-trained BNN model before. Third, train the subnetwork
of the converted BNN model with the proposed flat-seeking seeking optimizer. It allows model to
converge into flat minina efficiently.

Algorithm 1 SA-BMA with Bayesian Transfer Learning

Require: Variational parameter θ, Neighborhood size γ, Epochs E, and Learning rate ηSA-BMA
1) Load pre-trained DNN
2) Make pre-trained DNN model into BNN qpr

θ (w|Dpr) and set as prior
for t = 1, 2, ..., E do

3-1) w ∼ qθ(w|Dft) ▷ Sample weight from posterior
3-4) Forward and calculate the loss l(θ) with the sampled w
3-5) Backward pass and compute∇θ log pθ(w|D)
3-6) Compute F−1

θ (θ) = ∇θ log pθ(w|D)∇θ log pθ(w|D)T

∥∇θ log pθ(w|D)∥4

3-7) Compute the perturbation ∆θSA-BMA = γ Fθ(θ)
−1∇θl(θ)√

∇θl(θ)TFθ(θ)−1∇θl(θ)

3-8) Compute gradient approximation for the SA-BMA∇θlSA-BMA(θ) =
∂l(θ)
∂θ |θ+∆θSA-BMA

3-9) Update θ → θ − η∇θlSA-BMA(θ)
end for

D.4 EFFICIENCY OF SA-BMA WITH BAYESIAN TRANSFER LEARNING

Table 14: Efficiency of SA-BMA with
Bayesian Transfer Learning.

Method Optim Num. of Tr Param.

DNN
SGD p
SAM p

FSAM p

SWAG SGD p
F-SWAG SAM p

VI bSAM p
MOPED SGD 2p

E-MCMC SGLD 2p
PTL SGLD p

SA-BMA SA-BMA (K + 2)p1

BNN often struggles with high computation and mem-
ory complexity, which makes optimizing large-scale BNN
hard. However, SA-BMA only optimizes the last (classi-
fier) and normalization layer, which only requires vector-
sized learnable parameters. Table 14 provides the scala-
bility of SA-BMA and baselines in the fine-tuning stage
given pre-trained model. SA-BMA only requires fewer
learnable parameters since p1 ≪ p and low rank K are
even fewer than DNN, where p1 denotes the number of
parameters in normalization and last layers. It only needs
1% of learnable parameters compared to other methods in
case of RN18 and ViT-B/16. SA-BMA efficiently adapts
the model in a few-shot setting.
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E PROOF AND DERIVATION

E.1 PROOF OF THEOREM 1

The derivation of Theorem 1 can be straightforward using Wely’s inequality (Weyl, 1912).

We assume M model wm,m = 1, ..,M , whose Hessian matrices Hwm are Hermitian. wavg =

1/M
∑M

m=1 wm is simple weight averaging and the Hessian of wavg also be a Hermitian matrix. Let’s
say λn(Hwm) is n-th maximal eigenvalue of Hwm and assume there are N eigenvalues. λmax(Hwm)
is same as λ1(Hwm). Weyl’s inequality (Theorem 3) is known to bound the eigenvalues of Hermitian
matrices.

Theorem 3. (Weyl’s Inequality) For Hermitian matrices Cm ∈ Cp×p, k, l = 1, ...,M ,

λk+l−1(Ci + Cj) ≤ λk(Ci) + λl(Cj) ≤ λk+l−N (Ci + Cj).

(10)

Let k = 1 and l = 1, then Eq. (10) can be written as:

λ1(Ci + Cj) ≤ λ1(Ci) + λ1(Cj).

As we have M Hermitian matrices, it can be expanded as:

λ1(
1

M

M∑
m=1

Hwm
) ≤ 1

M

M∑
m=1

λ1(Hwm
). (11)

One the other hand, we can let (k, l) = {(1, N), (N, 1)} and rewrite the Eq. (10) as:

max{λ1(Ci) + λN (Cj), λN (Ci) + λ1(Cj)} ≤ λ1(Ci + Cj).

Again, set M Hermitian matrices we have, it can be expanded as:

max

{
1

M

(
λ1(Hwm

) +

M∑
n=1
n ̸=m

λN (Hwn
)

)}M

m=1

 ≤ λ1(
1

M

M∑
m=1

Hwm
). (12)

By combining Eq. (11) with Eq. (12) and substituting λ1 to λ1max and λN to λmin, the flatness of
averaged weight parameter is bounded as:

max

{
1

M

(
λmax(Hwm

) +

M∑
n=1
n ̸=m

λmin(Hwn
)

)}M

m=1

 ≤ λmax(
1

M

M∑
m=1

Hwm
) ≤

∑M
m=1 λmax(Hwm

)

M
.

(13)

BMA marginalizes diverse predictions by ensembling model output. As shown in Lemma 1, it is
closely related to weight averaging (WA) (Izmailov et al., 2018; Wortsman et al., 2022; Rame et al.,
2022).

Lemma 1. ((Rame et al., 2022)) Given predictions of model fm(·) parameterized by {wm}Mm=1,
wWA = 1

M

∑M
m=1 wm, prediction of averaged model fWA parameterized by wWA, prediction of BMA

fBMA, and arbitrary twice differentiable loss function l(·), let ∆ = ∥fBMA(x) − fWA(x)∥2. Then,
∀(x, y)

l(fWA(x), y) = l(fBMA(x), y) +O(∆).

As the predictions of BMA and WA get closer, we can say the Hessian of loss for BMA and WA
become approximately identical. Specifically, they becomes equivalent as O(∆) goes to zero, where
the predictions of BMA and WA are same.
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E.2 DERIVATION OF BAYESIAN FLAT-SEEKING OPTIMIZER

E.2.1 SETTING

Let model parameter w ⊆ Rp and w ∼ N (µ,Σ). While fully-factorized or mean-field covariance
is de facto in Bayesian Deep Learning, it cannot capitalize on strong points of Bayesian approach.
Inspired from SWAG, we approximate covariance combining diagonal covariance σ ⊆ Rp and
low-rank matrix L ⊆ Rp×K with low-rank component K. Then, we can simply sample w =
µ+ 1√

2
(σz1 + Lz2), where z1 ∼ N (0, Ip) and z2 ∼ N (0, IK) where p, K denotes the number of

parameter, low-rank component, respectively. We treat flattened µ, σ, and L, and concatenate as
θ = Concat(µ;σ;L).

E.2.2 OBJECTIVE FUNCTION

We compose our objective function with probabilistic weight, using KL Divergence as a metric to
compare between two weights.

lγSA-BMA(θ) = max
d|θ+∆θ,θ|≤γ2

l(θ +∆θ) + βDKL(pθ(w|D)||p(w)) (14)

s.t. d|θ +∆θ, θ| = DKL
[
pθ+∆θ(w|D)||pθ(w|D)

]
. (15)

E.2.3 OPTIMIZATION

From KL Divergence to Fisher Information Matrix We can consider three options of perturbation
on mean and covariance parameters of w: 1) Perturbation on mean, 2) perturbation on mean and
diagonal variance, 3) Perturbation on mean and whole covariance. All of them can be approximated
to Fisher Information Matrix. Here, we show the relation between KLD and FIM considering the
probation option 3.

Following FSAM, we deal with parameterized and conditioned as same notation:

pθ+∆θ(w|D) = p(w|D, θ +∆θ).

By definition of KL divergence, we rewrite Eq. (15) as:

DKL[p(w|D, θ +∆θ)||p(w|D, θ)] =
∫
w

p(w|D, θ +∆θ) log
p(w|D, θ +∆θ)

p(w|D, θ)
dw. (16)

In Eq. (16), we apply first-order Taylor Expansion:

p(w|D, θ +∆θ) ≈ p(w|D, θ) +∇θp(w|D, θ)T∆θ.

log p(w|D, θ +∆θ) ≈ log p(w|D, θ) +∇θ log p(w|D, θ)T∆θ.
(17)

Substitute right terms of Eq. (16) with Eq. (17):∫
w

p(w|D, θ +∆θ) log
p(w|D, θ +∆θ)

p(w|D, θ)
dw

=

∫
w

(
p(w|D, θ) + ∆θT∇θp(w|D, θ)

)
∇θ log p(w|D, θ)T∆θ dw

=

∫
w

p(w|D, θ)∇θ log p(w|D, θ)T∆θdw

+

∫
w

∆θT p(w|D, θ)∇θ log p(w|D, θ)∇θ log p(w|D, θ)T∆θ dw. (18)
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First term of Eq. (18) is equal to 0:∫
w

p(w|D, θ)∇θ log p(w|D, θ) dw

=

∫
w

p(w|D, θ)∇θp(w|D, θ)
p(w|D, θ)

dw

=

∫
w

∇θp(w|D, θ) dw = ∇θ

∫
w

p(w|D, θ) = 0.

(19)

We can rewrite Eq. (16) using Eq. (18), Eq. (19) and find it’s related to Fisher information matrix by
the definition of expectation:

DKL[p(w|D, θ +∆θ)||p(w|D, θ)]

=

∫
w

∆θT p(w|D, θ)∇θ log p(w|D, θ)∇θ log p(w|D, θ)T∆θ

= ∆θTEw[∇θ log p(w|D, θ)∇θ log p(w|D, θ)T ]∆θ

= ∆θTFθ(θ)∆θ,

(20)

where Fθ(θ) = Ew,D[∇θ log p(w|D, θ)∇θ log p(w|D, θ)T ].
It’s too expensive to calculate Fisher information matrix F (θ) in practice. We introduce a pseudo
inverse for Fisher information matrix Fθ(θ)

−1 with Samelson inverse of a vector (Gentle, 2007; Sidi,
2017; Wynn, 1962) :

Fθ(θ)
−1 =

∇θ log p(w|D, θ)∇θ log p(w|D, θ)T

∥∇θ log p(w|D, θ)∥4
. (21)

Lagrangian Dual Problem From the result of Eq. (20), we can rewrite the Eq. (14):

lγSA-BMA(θ) = max
∆θTFθ(θ)∆θ≤γ2

l(θ +∆θ). (22)

We can reach the optimal perturbation of SA-BMA ∆θ∗ by using Taylor Expansion on l(θ +∆θ) of
Eq. (14):

l(θ +∆θ) = l(θ) +∇θl(θ)
T∆θ. (23)

Using Eq. (23), we can rewrite Eq. (14) as Lagrangian dual problem:

L(∆θ, λ) = l(θ) +∇lθ(θ)T∆θ − λ(∆θTFθ(θ)∆θ − γ2). (24)

Differentiating Eq. (24), we get ∆θ∗:
αL(∆θ, λ)

α∆θ
= ∇θl(θ)

T − 2λ∆θTFθ(θ) = 0

∴ ∆θ∗ =
1

2λ
Fθ(θ)

−1∇θl(θ). (25)

Putting ∆θ∗ of Eq. (25) into ∆θ of Eq. (24), we can rewrite Eq. (24):

L(∆θ∗, λ) = l(θ) +
1

2λ
∇θl(θ)

TFθ(θ)
−1∇θl(θ)

− 1

4λ
∇θl(θ)

TFθ(θ)
−1∇θl(θ) + λγ2.

(26)
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By taking derivative of Eq. (26) w.r.t. λ, we can also get λ∗:

αL(∆θ∗, λ)

αλ
= − 1

2λ2
∇θl(θ)

TFθ(θ)
−1∇θl(θ) +

1

4λ2
∇θl(θ)

TFθ(θ)
−1∇θl(θ) + γ2 = 0

4λ2γ2 = ∇θl(θ)
TFθ(θ)

−1∇θl(θ)

∴ λ∗ =

√
∇θl(θ)TFθ(θ)−1∇θl(θ)

2γ
. (27)

Finally, we get our ∆θ∗SA−BMA by substituting Eq. (27) into Eq. (25):

∆θ∗SA-BMA = γ
Fθ(θ)

−1∇θl(θ)√
∇θl(θ)TFθ(θ)−1∇θl(θ)

. (28)

E.3 PROOF OF THEOREM 2

E.3.1 SA-BMA TO FSAM

Theorem 2 shows that SA-BMA is degenerated to FSAM under DNN and diagonal FIM setting. De-
terministic parameters draw out the constant prior p(w|x) = c and mean-only variational parameters
w = θ.

First, we can rewrite the log posterior log pθ(w|x, y) with Bayes rule:

log pθ(w|x, y) = log pθ(y|x,w) + log pθ(w|x)− Z, (29)

where Z is constant independent of w. Is is noted that the log posterior is divided into the log
predictive distribution and log prior. Also, note that the prior is conditioned on the data to align with
a generalized notation. The prior can depend on the input; however, this dependence is often ignored
in practice (Marek et al., 2024).

By taking derivative with respect to θ on Eq. (29), the constant Z goes to 0:

∇θ log pθ(w|x, y) = ∇θpθ(y|x,w) +∇θ log pθ(w|x).

We have constant prior p(w|x) = c in deterministic setting and it makes the gradient of log posterior
and log predictive distribution:

∇θ log pθ(w|x, y) = ∇θpθ(y|x,w). (30)

Underlying Eq. (30), it is possible to substitute the gradient of log posterior into the gradient of log
predictive distribution and FIM over posterior goes to FIM over predictive distribution:

Fθ(θ) =Ew,D[∇θ log pθ(w|x, y)∇θ log pθ(w|x, y)T ]
= Ew,D[∇θ log pθ(y|x,w)∇θ log pθ(y|x,w)T ]. (31)

By taking diagonal computation over Eq. (31), it goes to Fy(θ). After that, using the fact that
mean-only variational parameters, SA-BMA degnerates to FSAM with Fy(θ) finally.

∆θSA-BMA = γ
Fy(θ)

−1∇θl(θ)√
Fy(θ)−1∇θl(θ)Fy(θ)−1

. (32)

E.3.2 SA-BMA TO SAM

It is simple to show that SA-BMA is extended version of SAM by defining FIM over output
distribution Fy(w) as identity matrix I in Eq. (32), SA-BMA goes to SAM.

∆θSA-BMA = γ
∇wl(w)

∥∇wl(w)∥2
. (33)
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E.3.3 SA-BMA TO NG

Theorem 2 also states the NG can be approximated with SA-BMA under specific conditions. The
update rule of natural gradient and SA-BMA can be written as Eq. (34) and Eq. (35), respectively.

θ ← θ + ηNGFy(θ)
−1∇θl(θ). (34)

θ ← θ + ηSA-BMA∇θl(θ +∆θ). (35)

where ηNG and ηSA-BMA denote the learning rate of NG and SA-BMA. Note that we assume the log
likelihood as loss fuction.

The ∇θl(θ +∆θ) in Eq. (35) can be approximated with Taylor Expansion, the connection between
Hessian and FIM, and Eq. (31) in DNN setup:

∇θl(θ +∆θ) ≈ ∇θl(θ) +∇2
θ∆θ

= ∇θl(θ) +∇2
θl(θ) · γ

Fθ(θ)
−1∇θl(θ)√

∇θl(θ)TFθ(θ)−1∇θl(θ)

= ∇θl(θ) + γ′∇2
θl(θ)Fθ(θ)

−1∇θl(θ)

(
∵ Let γ′ =

γ√
∇θl(θ)TFθ(θ)−1∇θl(θ)

)
= [I + γ′∇2

θl(θ)Fθ(θ)
−1]∇θl(θ)

≈ (1 + γ′)∇θl(θ) (∵ ∇2
θl(θ) ≈ Fy(θ), Fθ(θ) = Fy(θ)). (36)

By using the denoted learning rate ηSA-BMA = ηNG
I+γ′Fθ(θ)

−1, Eq. (31), and Eq. (36), update rule of
SA-BMA approximates to NG.

35



1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943

Under review as a conference paper at ICLR 2025

F FINE-GRAINED IMAGE CLASSIFICATION

In addition to classification accuracy, SA-BMA shows superior performance compared to the baseline
in NLL metric, indicating that SA-BMA effectively quantifies uncertainty.

Table 15: Downstream task NLL with RN50 and ViT-B/16 pre-trained on IN 1K. SA-BMA (SWAG)
denotes using SWAG to convert pre-trained model into BNN. Bold and underline denote best and
second best performance each. SA-BMA demonstrates superior performance across all 16-shot
datasets, including EuroSAT , Oxford Flowers, Oxford Pets, and UCF101.

Backbone RN50 ViT-B/16

Method Optim EuroSAT Oxford Flowers Oxford Pets UCF101 Avg EuroSAT Oxford Flowers Oxford Pets UCF101 Avg

DNN SGD 0.416±0.043 0.265±0.010 0.367±0.008 1.331±0.024 0.595±0.010 0.573±0.044 0.361±0.027 0.385±0.044 1.246±0.044 0.641±0.020

DNN SAM 0.376±0.003 0.190±0.001 0.344±0.014 1.157±0.035 0.517±0.005 0.522±0.023 0.276±0.029 0.287±0.022 1.140±0.034 0.556±0.020
SWAG SGD 0.343±0.046 0.264±0.011 0.367±0.007 1.347±0.022 0.580±0.009 0.547±0.021 0.361±0.027 0.366±0.010 1.286±0.045 0.640±0.006

F-SWAG SAM 0.301±0.039 0.190±0.002 0.351±0.010 1.186±0.034 0.507±0.008 0.514±0.018 0.276±0.033 0.297±0.030 1.234±0.031 0.580±0.017

MOPED SGD 0.481±0.100 0.347±0.019 0.388±0.007 1.367±0.029 0.646±0.028 0.484±0.018 0.354±0.025 0.309±0.015 1.180±0.028 0.582±0.017

PTL SGLD 0.319±0.006 0.307±0.010 0.360±0.015 1.391±0.036 0.594±0.010 0.493±0.012 0.616±0.066 0.381±0.008 1.670±0.050 0.790±0.013

SABMA (SWAG) SABMA 0.297±0.038 0.147±0.037 0.339±0.023 1.113±0.009 0.474±0.023 0.455±0.006 0.219±0.037 0.272±0.006 1.071±0.036 0.504±0.012

G PERFORMANCE UNDER DISTRIBUTION SHIFT

We adopt the corrupted dataset CIFAR10/100C to test the robustness over distribution shift. The
corrupted dataset transform the CIFAR10/100-test dataset, which has been modified to shift the
distribution of the test data further away from the training data. It contains 19 kinds of corrupt options,
such as varying brightness or contrast to adding Gaussian noise. The severity level indicates the
strength of the transformation and is typically expressed as a number from 1 to 5, where the higher
the number, the stronger the transformation. In Figure 13, our method ensures relatively robust
performance in the data distribution shift, even as the severity increases.

Figure 13: NLL performance of ResNet 18 and ViT-B/16 on corrupted CIFAR10 and CIFAR100,
respectively (Hendrycks & Dietterich, 2019).
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We also provide the detailed results of three repeated experiments with corrupted sets.

(a) RN18 CIFAR10C

Method Optim
Severity

1 2 3 4 5

ACC ↑ NLL ↓ ACC ↑ NLL ↓ ACC ↑ NLL ↓ ACC ↑ NLL ↓ ACC ↑ NLL ↓

DNN
SGD 49.57±0.97 1.49±0.02 45.78±1.43 1.62±0.04 43.78±1.44 1.69±0.04 40.83±1.59 1.80±0.06 36.30±1.79 1.96±0.08

SAM 50.23±2.11 1.62±0.07 46.56±2.00 1.76±0.03 44.59±2.26 1.83±0.03 41.85±2.42 1.94±0.04 37.33±2.52 2.12±0.07

FSAM 48.76±4.00 1.63±0.03 45.11±3.91 1.78±0.01 42.94±3.88 1.87±0.03 40.06±3.85 2.00±0.08 35.70±3.50 2.20±0.12

SWAG SGD 50.05±0.76 1.55±0.09 46.31±1.16 1.70±0.11 44.17±1.07 1.78±0.11 41.20±1.13 1.90±0.13 36.64±1.26 2.09±0.15

F-SWAG SAM 51.37±1.08 1.49±0.05 47.35±0.71 1.64±0.04 45.16±0.66 1.72±0.06 42.01±0.57 1.85±0.06 37.27±0.64 2.03±0.07

VI bSAM 49.20±2.40 1.46±0.05 45.35±1.93 1.57±0.04 43.07±2.10 1.63±0.04 40.12±1.74 1.71±0.03 35.50±1.36 1.84±0.02

MOPED SGD 50.72±0.80 1.58±0.11 46.87±0.32 1.74±0.11 44.52±0.39 1.85±0.12 41.38±0.29 2.00±0.12 36.73±0.17 2.20±0.10

E-MCMC SGLD 49.86±1.54 1.49±0.03 46.17±1.55 1.60±0.04 44.07±1.72 1.67±0.07 41.05±1.65 1.77±0.10 36.53±1.74 1.91±0.13

PTL SGLD 50.44±1.65 1.45±0.06 46.22±1.96 1.58±0.09 44.06±1.67 1.65±0.09 41.02±1.66 1.75±0.11 36.14±1.51 1.91±0.13

SA-BMA (VI) 58.53±0.75 1.19±0.02 53.72±0.70 1.33±0.00 50.61±0.84 1.42±0.01 46.76±1.15 1.55±0.03 40.70±1.34 1.75±0.05

(b) RN18 CIFAR100C

Method Optim
Severity

1 2 3 4 5

ACC ↑ NLL ↓ ACC ↑ NLL ↓ ACC ↑ NLL ↓ ACC ↑ NLL ↓ ACC ↑ NLL ↓

DNN
SGD 36.01±0.86 2.55±0.06 31.81±0.73 2.79±0.06 29.75±0.57 2.91±0.04 26.73±0.25 3.11±0.02 22.20±0.08 3.40±0.00

SAM 37.94±0.52 2.46±0.02 33.57±0.50 2.69±0.03 31.46±0.67 2.82±0.03 28.19±0.75 3.02±0.05 23.32±0.69 3.33±0.06

FSAM 36.46±0.44 2.53±0.05 32.24±0.36 2.77±0.04 30.19±0.42 2.90±0.03 27.12±0.37 3.10±0.02 22.48±0.39 3.42±0.01

SWAG SGD 35.84±5.17 2.62±0.30 32.43±4.55 2.81±0.27 30.71±4.21 2.89±0.25 28.13±3.81 3.05±0.22 24.24±2.99 3.29±0.17

F-SWAG SAM 37.10±0.60 2.49±0.03 32.84±0.62 2.72±0.03 30.59±0.72 2.86±0.04 27.43±0.91 3.06±0.06 22.74±0.93 3.38±0.08

VI bSAM 36.20±0.59 2.73±0.03 32.48±0.34 2.99±0.03 30.66±0.33 3.12±0.02 27.94±0.14 3.32±0.05 23.66±0.29 3.66±0.06

MOPED SGD 38.20±0.57 2.47±0.02 33.77±0.59 2.71±0.03 31.70±0.75 2.83±0.03 28.56±0.77 3.03±0.04 23.72±0.78 3.33±0.05

E-MCMC SGLD 36.49±0.89 2.57±0.06 32.25±0.76 2.83±0.06 30.22±0.63 2.97±0.05 27.17±0.38 3.19±0.03 22.54±0.27 3.54±0.01

PTL SGLD 36.43±0.35 2.53±0.03 32.24±0.40 2.76±0.03 30.20±0.42 2.87±0.03 27.17±0.55 3.06±0.04 22.56±0.54 3.36±0.05

SA-BMA (VI) 39.41±0.72 2.44±0.04 35.07±0.64 2.70±0.05 32.75±0.71 2.86±0.05 29.41±0.67 3.10±0.05 24.25±0.70 3.44±0.05

(c) VIT-B/16 CIFAR10C

Method Optim
Severity

1 2 3 4 5

ACC ↑ NLL ↓ ACC ↑ NLL ↓ ACC ↑ NLL ↓ ACC ↑ NLL ↓ ACC ↑ NLL ↓

DNN
SGD 79.62±0.56 0.64±0.06 76.47±0.67 0.73±0.06 74.10±0.83 0.79±0.05 70.42±1.23 0.90±0.05 64.41±1.85 1.08±0.05

SAM 79.78±0.49 0.61±0.01 76.59±0.64 0.70±0.02 74.58±0.94 0.75±0.02 71.12±1.06 0.86±0.03 65.26±1.46 1.03±0.04

FSAM 79.87±0.83 0.62±0.02 76.78±0.78 0.70±0.02 74.70±0.60 0.76±0.01 71.29±0.49 0.86±0.01 65.53±0.56 1.03±0.03

SWAG SGD 76.58±1.69 1.21±0.04 73.45±1.98 1.25±0.04 71.20±2.18 1.29±0.04 67.54±2.46 1.35±0.04 61.65±2.82 1.44±0.04

F-SWAG SAM 81.03±2.20 0.60±0.05 77.73±2.63 0.69±0.06 75.45±2.96 0.76±0.07 71.82±3.31 0.87±0.08 66.05±3.59 1.03±0.10

VI bSAM 78.80±1.18 0.64±0.04 75.43±1.14 0.74±0.04 73.45±1.43 0.80±0.04 70.07±1.50 0.91±0.05 64.21±1.57 1.09±0.05

E-MCMC SGLD 78.91±2.31 0.65±0.08 75.78±2.36 0.74±0.08 73.94±2.56 0.79±0.09 70.66±2.63 0.89±0.10 65.07±2.77 1.06±0.11

PTL SGLD 76.26±2.46 0.74±0.06 72.36±2.41 0.83±0.06 69.61±2.46 0.90±0.07 65.47±2.52 1.01±0.07 59.04±2.26 1.18±0.06

SA-BMA (VI) 82.89±1.09 0.53±0.04 79.68±1.26 0.62±0.04 77.30±1.43 0.69±0.05 73.41±1.62 0.81±0.06 66.94±1.79 1.01±0.07

(d) VIT-B/16 CIFAR100C

Method Optim
Severity

1 2 3 4 5

ACC ↑ NLL ↓ ACC ↑ NLL ↓ ACC ↑ NLL ↓ ACC ↑ NLL ↓ ACC ↑ NLL ↓

DNN
SGD 62.19±0.52 1.42±0.02 57.81±0.37 1.61±0.02 55.04±0.14 1.73±0.02 50.73±0.24 1.93±0.01 44.12±0.39 2.24±0.01

SAM 61.90±0.53 1.47±0.02 57.49±0.43 1.65±0.02 54.80±0.29 1.76±0.01 50.52±0.25 1.96±0.01 44.04±0.24 2.26±0.01

FSAM 61.70±0.52 1.47±0.02 57.16±0.44 1.65±0.02 54.46±0.37 1.77±0.02 50.11±0.39 1.97±0.01 43.53±0.42 2.28±0.01

SWAG SGD 59.19±0.90 2.00±0.03 55.45±0.88 2.12±0.03 53.34±0.94 2.19±0.03 49.44±0.81 2.33±0.03 43.71±0.93 2.53±0.03

F-SWAG SAM 59.55±2.94 1.49±0.11 55.10±2.82 1.70±0.10 52.37±2.80 1.82±0.10 48.18±2.63 2.04±0.09 41.84±2.43 2.37±0.09

VI bSAM 62.36±0.73 1.40±0.03 57.97±0.70 1.58±0.03 55.32±0.61 1.70±0.03 51.09±0.49 1.90±0.03 44.77±0.42 2.21±0.03

E-MCMC SGLD 62.28±0.47 1.40±0.02 57.84±0.46 1.59±0.02 55.14±0.29 1.71±0.02 50.87±0.21 1.91±0.02 44.49±0.13 2.22±0.02

PTL SGLD 61.84±0.33 1.47±0.02 57.36±0.22 1.66±0.02 54.47±0.08 1.78±0.01 50.03±0.23 1.98±0.01 43.34±0.36 2.29±0.01

SA-BMA (VI) 63.91±0.02 1.33±0.00 59.70±0.00 1.51±0.00 57.00±0.01 1.63±0.00 52.51±0.03 1.84±0.00 45.39±0.04 2.18±0.00
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H ADDITIONAL LOSS SURFACE OF SAMPLED MODEL

(a) seed 1

(b) seed 2

(c) seed 3

(d) seed 4

Figure 15: Four instances of sampled weights, including (b) as presented in Figure 5. Across all plots,
it is consistently observed that SA-BMA converges to a flatter loss surface compared to PTL.

As shown in Figure 5, we sampled four model parameters from the posterior, which were trained on
CIFAR10 with RN18. It shows the consistent and robust trend of flatness of SA-BMA in the loss
surface. In Figure 15, commencing with the leftmost panel, a 3D surface plot illustrates the loss
surface, revealing the SA-BMA model’s comparatively flatter topology against the PTL model. This
initial plot intuitively demonstrates that the SA-BMA model exhibits a flatter loss surface compared
to the PTL model. Following this, the second visualization compresses the information along a
diagonal plane into a 1D scatter plot. This transformation reveals areas obscured in the 3D view,
highlighting that SA-BMA maintains a considerably flatter and lower-loss landscape. The third and
fourth images showcase the loss surface through 2D contour plots, from which one can easily discern
that the area representing the lowest loss is significantly more expansive for SA-BMA than for PTL.
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I LIMITATION AND FUTURE WORKS

This study has several limitations. Firstly, calculating the FIM in weight space rather than output
space makes it intractable to compute the FIM for the entire model parameter. Obtaining the FIM for
the entire model weight space could lead to much more powerful performance improvements, making
it one potential direction for future work. Secondly, the assumption of the existence of pre-trained
models is necessary for Bayesian transfer learning. In situations where pre-trained weights are not
available, performance improvements may be somewhat limited.
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