
Learning from Future: A Novel Self-Training
Framework for Semantic Segmentation

Ye Du1,2 Yujun Shen3 Haochen Wang4 Jingjing Fei5 Wei Li5
Liwei Wu5 Rui Zhao5,6 Zehua Fu1,2 Qingjie Liu1,2∗

1 State Key Laboratory of Virtual Reality Technology and Systems, Beihang University
2 Hangzhou Innovation Institute, Beihang University

3 The Chinese University of Hong Kong
4 Institute of Automation, Chinese Academy of Sciences 5 SenseTime Research†
6 Qing Yuan Research Institute, Shanghai Jiao Tong University, Shanghai, China
{duyee, zehua_fu, qingjie.liu}@buaa.edu.cn shenyujun0302@gmail.com

wanghaochen2022@ia.ac.cn {feijingjing1, liwei1, wuliwei, zhaorui}@sensetime.com

Abstract

Self-training has shown great potential in semi-supervised learning. Its core idea is
to use the model learned on labeled data to generate pseudo-labels for unlabeled
samples, and in turn teach itself. To obtain valid supervision, active attempts
typically employ a momentum teacher for pseudo-label prediction yet observe
the confirmation bias issue, where the incorrect predictions may provide wrong
supervision signals and get accumulated in the training process. The primary cause
of such a drawback is that the prevailing self-training framework acts as guiding the
current state with previous knowledge, because the teacher is updated with the past
student only. To alleviate this problem, we propose a novel self-training strategy,
which allows the model to learn from the future. Concretely, at each training step,
we first virtually optimize the student (i.e., caching the gradients without applying
them to the model weights), then update the teacher with the virtual future student,
and finally ask the teacher to produce pseudo-labels for the current student as the
guidance. In this way, we manage to improve the quality of pseudo-labels and thus
boost the performance. We also develop two variants of our future-self-training
(FST) framework through peeping at the future both deeply (FST-D) and widely
(FST-W). Taking the tasks of unsupervised domain adaptive semantic segmentation
and semi-supervised semantic segmentation as the instances, we experimentally
demonstrate the effectiveness and superiority of our approach under a wide range
of settings. Code is available at https://github.com/usr922/FST.

1 Introduction

Improving the labeling efficiency of deep learning algorithms is vital in practice since acquiring
high-quality annotations could consume great effort. Self-training (ST) offers a promising solution to
alleviate this issue by learning with limited labeled data and large-scale unlabeled data [47, 24]. The
key thought is to learn a model on labeled samples and use it to generate pseudo-labels for unlabeled
samples to teach the model itself. In general, a teacher network that maintains an exponential moving
average (EMA) of the student (i.e., the model to learn) weights is used for pseudo-label prediction, as
shown in Fig. 1a. Intuitively, such a training strategy relies on the previous student states to supervise

∗Corresponding Author.
†This work is done when Ye Du and Haochen Wang are interns at SenseTime Research.

36th Conference on Neural Information Processing Systems (NeurIPS 2022).

https://github.com/usr922/FST


Student

Teacher

… …

……

ℒ!" ℒ!" ℒ!" ℒ!"

… …

……

ℒ!" ℒ!" ℒ!"

EMA EMA EMA EMA EMA EMA

Student

Teacher

𝜙𝑡 + 1 𝜙𝑡 − 1 𝜙𝑡

𝜃𝑡𝜃 𝑡 − 1 𝜃 𝑡 + 1

𝜙𝑡 − 1

𝜃 𝑡 − 1

𝑥𝑡 − 1

𝑥𝑡 − 1

𝑥𝑡

𝑥𝑡 𝑥𝑡 + 1

𝑥𝑡 + 1

𝜃𝑡

𝜙𝑡

𝜃 𝑡 + 1

𝑥𝑡 − 1

𝑥𝑡 − 1

𝑥𝑡

𝑥𝑡

𝑥𝑡 + 1

𝑥𝑡 + 1

𝜙𝑡 + 1

(a) Self-training (b) Future-self-training
Figure 1: Concept comparison between self-training (ST) and our future-self-training (FST). (a) ST
employs a teacher, which collects information from the past states, to supervise the student. (b) Our
FST derives a teacher at the future moment and utilizes it to guide the current student.

the current state, which amounts to using a poor model to guide a good one given the fact that a model
tends to perform better along with the training process. As a result, the confirmation bias issue [4, 9]
emerges from existing ST approaches, where the wrong supervision signals caused by those incorrect
pseudo-labels get accumulated during training.

To break through the predicament of seeking supervision only from the past states, we propose
future-self-training (FST), which allows the model to learn from its future self. Fig. 1b illustrates
the concept diagram of our FST. Compared to the conventional ST framework in Fig. 1a, which
employs the t-step teacher (i.e., updated with the student at moments 1; 2; : : : ; t � 1) to guide the
t-step student, FST presents a new training manner by urging the t-step student to learn from the
(t+1)-step teacher. However, at the start of the training step t, the (t+1)-step teacher is not available
yet since it is dependent on the to-be-optimized t-step student. To tackle this obstacle, we come up
with a virtual updating strategy. Concretely, we first optimize the current student just like that in
the traditional ST. Differently, we do not actually update the student weights but cache the gradients
instead. Such stashed gradients can be treated as the “virtual future” and help derive the (t+ 1)-step
teacher. Finally, the training of step t borrows the pseudo-labels predicted by the latest teacher, and
this time we apply the gradients to the student weights for real.

Recall that our motivation of encouraging the model to learn from the future is to help it acquire
knowledge from an advanced teacher. To this end, we put forward two variants based on our FST
framework to make the teacher more capable. On the one hand, we propose FST-D to investigate the
future deeply. For this case, we ask the teacher to move forward for K steps via virtual updating, thus
the t-step student can be better supervised by the (t+K)-step teacher. On the other hand, FST-W
originates from the idea of model soups [53], which reveals that the averaging weights of multiple
fine-tuned models can improve the performance. We hence propose to explore the future widely with
teachers developed from different training samples and expect the student to learn from all these
(t+ 1)-step teachers simultaneously.

Pseudo-label Quality on Training Set Performance on Validation Set

Training Iteration

Er
ro

r
R

at
e

M
ea

n
In

te
rs

ec
tio

n
ov

er
U

ni
on

5.7 %

7.1 %

Training Iteration

Figure 2: Performance comparison between self-
training (ST) and our future-self-training (FST), in-
cluding the pseudo-label quality on unlabeled training
samples (left) and the evaluation performance (right).
The comparison is conducted under the same number
of updates of the student, which is the final model used
for evaluation.

We evaluate our proposed FST on the
tasks of both unsupervised domain adaptive
(UDA) semantic segmentation and semi-
supervised semantic segmentation. The
superiority of FST over the prevailing ST
framework is summarized in Fig. 2, where
our teacher model is capable of producing
pseudo-labels with much higher quality
and hence assists the student with a better
performance. This is because, along with
the training process, the future states usually
outperform the past states and thus can
provide more accurate supervision, reducing
the damage of confirmation bias. Such a
comparison validates our primary motive of
learning from the future. Furthermore, we
observe consistent performance gain under a broad range of experimental settings (e.g., network
architectures and datasets), demonstrating the effectiveness and generalizability of our approach.

2



2 Related work

Domain adaptive semantic segmentation.UDA semantic segmentation aims at transferring the
knowledge from a labeled source domain to an unlabeled target domain, which is often viewed
as a special semi-supervised learning problem. Early methods for UDA segmentation focus on
diminishing the distribution shift between the source and target domain at the input level [23, 40, 18],
the feature level [46, 10, 8, 31], or the output level [46, 48, 36]. Over the years, adversarial learning
[19, 17] has been the dominant approach to aligning the distributions. However, the alignment-
based methods may destroy the discrimination ability of features and cannot guarantee a small
expected error on the target domain [58]. In contrast, self-training [2], which is originated from
semi-supervised learning (SSL) [29], is introduced to directly minimize a proxy cross-entropy (CE)
loss on the target domain. By leveraging the model itself to generate pseudo-labels on unlabeled data,
self-training together with tailored strategies such as consistency regularization [61, 3], cross-domain
mixup [45, 62], contrastive learning [26, 34, 63, 31], pseudo-label re�ne [51, 58, 60], auxiliary tasks
[49, 50] and class balanced training [30] achieves excellent performance. Recently, Hoyer et al. [24]
empirically proved that the transformer architecture [55] is more robust to domain shift than CNN.
They propose a transformer-based framework with three ef�cient training strategies in pursuit of
milestone performance.

Semi-supervised semantic segmentation.Self-training is widely studied in SSL literature [47]. To
facilitate the usage of unlabeled samples, Tarvainen et al. [44] propose a mean teacher framework for
consistency learning between astudentand a momentum updatingteacher. This idea is extended later
to semi-supervised semantic segmentation, which trains the student model with high-con�denthard
pseudo-labels predicted by the teacher. On this basis, extensive attempts improve semi-supervised
semantic segmentation by CutMix augmentation [16], class-balanced training [64, 25, 21] and
contrastive learning [64, 1, 33, 52]. A closely relevant topic to self-training in SSL is consistency
regularization, which believes that enforcing semantic or distribution consistency between various
perturbations, such as image augmentation [27] and network perturbation [57], can improve the
robustness and generalization of the model. In general, consistent regularization methods are used
together with a ST framework. We focus on improving the basic ST in this work.

Nesterov's accelerated gradient descent.A related idea to our work is Nesterov's accelerated
gradient descent (NAG). Originally proposed in [37] for solving convex programming problem, NAG
is a �rst-order optimization method with a better convergence rate than gradient descent. With the
rise of deep learning, NAG is adopted as an alternative to momentum stochastic gradient descent
(SGD) to optimize neural networks [43, 14]. It is intuitively considered to perform a look ahead
gradient evaluation and then make a correction [7]. Due to its solid theoretical explanations [65, 5]
and remarkable performance, many works incorporate NAG with various tasks. In [32], Lin et al.
adopt NAG into the area of adversarial attack, where they propose a Nesterov's iterative fast gradient
sign method to improve the transfer ability of adversarial examples. In [56], Yang et al. explore the
utilization of NAG in federal learning. Different from NAG that pursues accelerated convergence, our
work aims at building a stronger pseudo-label generator and improving the performance of traditional
self-training.

3 Method

3.1 Background

Consider such a real-world scenario where we have access to a labeled segmentation datasetDL =
f x l ; yl g

n l
l =1 from distributionP and an unlabelled oneDU = f xu gn u

u=1 from unknown distribution
Q. We are required to build a semantic segmentation model using the combination ofDL andDU .
A general case is whenP 6= Q, the problem falls into the category of UDA semantic segmentation.
Otherwise, it is usually treated as a regular SSL task.

Self-training provides a uni�ed solution and achieves state-of-the-art performance on both settings
[24, 52]. One of the most common and widely used forms of self-training in semantic segmentation
is a variant of mean teacher, which is shown in Fig. 3. Denote byg� the segmentation model required
to be trained, and� its parameters. The mean teacher framework trains thestudentg� on unlabeled
data with pseudo-labels predicted by a momentumteacherg� , which has the same architecture
to the student but with different parameters� . Speci�cally, as the training progresses, the teacher

3



evolves with the student by maintaining an EMA of student weights on each training iteration. This
ensembling enables generating high quality predictions on unlabeled samples, and using them as
training targets improves performance. Formally, at each training step, the teacher is �rst updated and
then predict pseudo-labels to train the student.

� t +1 = �� t + (1 � � )� t ;
� t +1 = � t �  r � [L (g� t (x l ); yl ) + � L (g� t (xu ); ŷu j� t +1 )] ;

(1)

where� is the momentum coef�cient, is the learning rate, and� is the dynamic re-weighting
parameter to weigh the training of labeled and unlabeled data.ŷu denotes the pseudo-labels predicted
by � t +1 , i.e., ŷu = arg max g� t +1 (xu ). L is the pixel-wise cross-entropy training objective, which
can be written as

L (x; y) = �
H � WX

j =1

CX

c=1

I y j;c =1 logg� (x) j;c ; (2)

whereH � W is the input image size andC is the total number of classes.

Figure 3:Illustration of the ST framework
with a teacherg� . “sg” means stop-gradient.

Limitation of self-training. Despite the remarkable
performance, self-training suffers from the problem
of con�rmation bias. To be speci�c, the inherent
noise in pseudo-labels could undesirably mislead the
student training, which in return affects the pseudo-
label prediction, and thereby results in noise accu-
mulation. Though a momentum updating strategy
in the mean teacher framework improves tolerance
with inaccurate pseudo-labels, this issue is still a
bottleneck since the student still relies on learning
from its ownpasttraining states.

3.2 Learning from future self

An intuitive observation shown in Fig. 2 is that the
performance of the student model generally improves during training, despite the noise in supervision.
From this perspective, a reasonable conjecture is, can we use model information from future moments
to guide the current training iteration? Motivated by this, we proposefuture-self-trainingfor
facilitating the utilization of unlabeled data in semantic segmentation. Concretely, at each training
step, we propose to directly update the teacher model by the student weights from the next training
moment. To this end, a simple modi�cation to Eq. (1) is made as follows.

� t +1 = �� t + (1 � � ) ( � t �  r � [L (g� t (x l ); yl ) + � L (g� t (xu ); ŷu j� t )]) ;
� t +1 = � t �  r � [L (g� t (x l ); yl ) + � L (g� t (xu ); ŷu j� t +1 )] :

(3)

Furthermore, it can be seen that Eq. (3) only uses a virtual future state to update the teacher and
ignores the current student weights� t . Our mission here is to establish a reliable pseudo-label
generator (i.e. a stronger teacher). In terms of the ensembling effect of EMA, it is not necessary to
discard� t . Therefore, an improved version of FST is proposed as follows.

� 0
t +1 = �� t + (1 � � )� t ;

� t +1 = � 0� 0
t +1 + (1 � � 0)( � t �  r � [L (g� t (x l ); yl ) + � L (g� t (xu ); ŷu j� 0

t +1 )]) ;

� t +1 = � t �  r � [L (g� t (x l ); yl ) + � L (g� t (xu ); ŷu j� t +1 )] ;

(4)

where a new momentum parameter� 0 is introduced to distinguish the contribution of current and
future model weights to teacher updates. We provide pseudo-codes to further illustrate how we
implement Eq. (4) inSupplementary Material.

3.3 Exploring a deeper future

We reiterate that the key insight of FST is to look ahead during training, which allows to mine more
accurate supervision from future model states. In experiments, we found that Eq. (4) exhibits only a
slight improvement in performance (Tab. 2), showing that this one-step future exploration strategy is
insuf�cient.

4



Therefore, we further propose a looking aheaddeeperstrategy to peek into deeper future student states.
To be speci�c, at each training step, we update the teacher not only with the student weights from the
next moment, but also with those from deeper steps. Formally, denote bye� t = �� t + (1 � � )� t and
e� t = � t two agent variables �rstly. Then, we can use the co-evolvinge� t ande� t for virtual updating
as follows.

e� t + k+1 = e� t + k �  r e� [L (ge� t + k
(x l ); yl ) + � L (ge� t + k

(xu ); ŷu j e� t + k )];

e� t + k+1 = � 0e� t + k + (1 � � 0)( e� t + k+1 );
(5)

wherek = f 0; :::; K � 1g indexes the serial virtual steps for current training andK is the total number
of exploration steps. Finally, we use the future information aware teachere� t + K as the pseudo-label
generator to supervise the current training. A simple reassignment and gradient descent update are
applied to form the deeper version of FST, which is so called FST-D as shown below.

� t +1 = e� t + K ;
� t +1 = � t �  r � [L (g� t (x l ); yl ) + � L (g� t (xu ); ŷu j� t +1 )]:

(6)

3.4 Exploring a wider future

On the other hand, looking aheadwider instead ofdeeperis another intuitive way to enhance future
exploration. Inspired by the recent progress [53] that an ensemble of different model weights often
shows excellent performance, we propose to �rst explore the next moment in different optimization
directions and then use the average of them to update the teacher. Concretely, we obtain different
optimization directions by feedingdifferent data batchesto the student model at each training moment.
Thus, a wider version of FST,i.e., FST-W, is presented as follows.

� t +1 = � 0f �� t + (1 � � )� t g + (1 � � 0)( � t �
1
N

NX

i =1

 r � [L (g� t (x
i
l ); yi

l ) + � L (g� t (x
i
u ); ŷi

u j� t )]) ;

� t +1 = � t �  r � [L (g� t (x l ); yl ) + � L (g� t (xu ); ŷu j� t +1 )];
(7)

wherei indexes different samples andN is parallel virtual exploration steps.

Eq. (7) holds due to the fact that averaging the model weights is equivalent to averaging the gradients
�rst and then updating the parameters by gradient descent. It is worth noting that FST-D and FST-W
are complementary that can be utilized together. However, this is beyond the scope of our work, and
we leave this exploration to the future.

4 Experiment

The experiment section is organized as follows. First, we illustrate the experimental setup and
implementation details in Sec. 4.1 and Sec. 4.2. Then, we evaluate the proposed FST and analyze the
two variants in Sec. 4.3. After that, we conduct extensive ablation studies to dissect our method in
Sec. 4.4. Finally, we compare our FST with existing state-of-the-art alternatives on both UDA and
semi-supervised benchmarks in Sec. 4.5.

4.1 Setup

Datasets and tasks.We evaluated our method on UDA and semi-supervised semantic segmentation.
In UDA segmentation, we use synthetic labeled images from GTAV [38] and SYNTHIA [39] as the
source domain and use real images from Cityscapes [13] as the target domain. In addition, PASCAL
VOC 2012 [15] is used for standard semi-supervised evaluation. To simulate a semi-supervised setting,
we randomly sample a portion(i.e., 1=4, 1=8, and1=16) of images together with corresponding
segmentation masks from the training set as the labeled data and treat the rest as the unlabeled
samples.

Evaluation metric. Mean Intersection over Union (mIoU) is reported for evaluation. In SYNTHIA
! Cityscapes UDA benchmark,16and13of the19classes of Cityscapes are used to calculate mIoU,
following the common practice [3, 24].

5



Table 1: Comparison between ST and our FST, where we explore the future with either (a) the
same data batch as the current or (b) a different data batch from the current. “SourceOnly” means
training the model with labeled data only, whose result is borrowed from [24] as the reference.4�
means using quadruple samples per mini-batch. All results are averaged over 3 random seeds.

Method mIoU �

SourceOnly 34:3 � 2:2 -
ST 56:3 � 0:4 -
- - -

Naive-FST 56:4 � 0:4 " 0:1
Improved-FST 57:7 � 0:6 " 1:4
FST-W 56:8 � 0:1 " 0:5
FST-D 59:8 � 0:1 " 3:5

(a) Future exploration with thesamedata batch.

Method Batch mIoU �

SourceOnly 1� 34:3 � 2:2 -
ST 1� 56:3 � 0:4 -
ST 4� 55:5 � 0:4 # 0:8

Naive-FST 1� 58:7 � 2:3 " 2:3
Improved-FST 1� 58:7 � 0:7 " 2:4
FST-W 1� 59:3 � 0:5 " 3:0
FST-D 1� 59:6 � 1:4 " 3:3

(b) Future exploration with a differentdata batch.

Baselines.We �rst build strong baselines of the classical ST framework. For UDA segmentation,
we adopt the basic framework from [45], which contains a ClassMix augmentation. Standard
cross-entropy loss is calculated on both labeled and unlabeled data. We use the ef�cient Encoder-
Decoder structure for all semantic segmentation models, where the networks various in the structure
of encoders and decoders. In the semi-supervised benchmark, we use the classical ST without
other tricks as the baseline, because it has been proved to achieve competitive performance while
maintaining simplicity [27].

4.2 Implementation details

Image augmentation. The proposed FST and its baselines use the same image augmentation for fair
comparison. In UDA semantic segmentation, color jitter, Gaussian blur and ClassMix [45] are used
as the strong data augmentation for the unlabeled target domain, which follows the practice in [24].
In semi-supervised semantic segmentation, we use random �ip and random crop, and the images are
resized to513� 513for both teacher and student.

Network architecture. We use the DeepLabV2 [11] as the basic segmentation architecture for
UDA segmentation, where the ASPP decoder only uses the dilation rates6 and12 following [46].
For Transformer-based networks, we adopt from [24] and [54] as the decoders. In semi-supervised
segmentation, we evaluate our method on the commonly used DeepLabV2 [22], DeepLabV3+ [12]
and PSPNet [59] with ResNet-101 [22] as the backbone.

Optimization. In UDA segmentation, the model is trained with an AdamW [28] optimizer, a learning
rate of6� 10� 5 for the encoder and6� 10� 4 for the decoder, a weight decay of0:01, linear learning
rate warmup with1:5k iterations and linear decay afterwards. We train the model on a batch of
two 512� 512 random crops for a total of40k iterations. The momentumu is set to0:999. In
semi-supervised segmentation, the model is trained with a SGD optimizer, a learning rate of0:0001
for the encoder and0:001for the decoder, a weight decay of0:0001. We train the model with16
labeled and16unlabeled images per-batch for a total of40epochs.

4.3 Comparison with self-training

We �rst comprehensively compare our FST with classical ST to evaluate the effectiveness. The results
are shown in Tab. 1. To simplify, we use GTAV as the labeled data and Cityscapes as the unlabeled
data for evaluation. All methods use the same experimental settings for fairness.

Quantitative analyses. We illustrate the improvements of Naive-FST (Eq. (3)), Improved-FST
(Eq. (4)), FST-D (Eqs. (5) and (6)) and FST-W (Eq. (7)) compared with classical ST (Eq. (1))
in Tab. 1a. These methods use the same batch of data for virtual forward at each step of future
exploration. As presented, Naive-FST only shows a negligible boost because the current student
state is discarded without contributing to the teacher. By revising it, the improved FST in Eq. (6),
which is a special case of FST-D whenK = 1 , achieves an improvement of1:4% mIoU. Further,
FST-D (withK = 3 ) clearly outperforms ST by a margin of3:5% mIoU, which bene�ts from the
higher-quality pseudo-labels generated by a more reliable teacher as shown in Fig. 2. In contrast,
FST-W shows a slight improvement of only0:5% mIoU under the same data batch setting. Thus, we

6



Figure 4: (a)Performance curvesfor ST and FST with variousK values. The comparison is
conducted under the same number of updates of the student, which is the �nal model used for
evaluation. (b)Qualitative comparisonon Cityscapes [13], where dashed white boxes highlight the
visual improvements.

Table 2:Generalizationof FST across architectures. All results are averaged over 3 random seeds.

Method K mIoU �

ST - 55:0 � 0:9 -
FST 2 56:3 � 1:0 " 1:3
FST 3 56:9 � 0:5 " 1:9
FST 4 56:4 � 0:9 " 1:4

(a) DeepLabV2 [11]w/ ResNet-50 [22].

Method K mIoU �

ST - 56:3 � 0:4 -
FST 2 57:8 � 1:3 " 1:5
FST 3 59:8 � 0:1 " 3:5
FST 4 59:7 � 0:8 " 3:4

(b) DeepLabV2 [11]w/ ResNet-101 [22].

Method K mIoU �

ST - 56:3 � 0:8 -
FST 2 58:1 � 3:1 " 1:8
FST 3 58:5 � 0:7 " 2:2
FST 4 58:8 � 1:0 " 2:5

(c) PSPNet [59]w/ ResNet-101 [22].

Method K mIoU �

ST - 61:3 � 0:7 -
FST 2 63:7 � 2:0 " 2:4
FST 3 64:3 � 2:3 " 3:0
FST 4 64:4 � 2:0 " 3:1

(d) UPerNet [54]w/ Swin-B [35].

Method K mIoU �

ST - 59:9 � 2:0 -
FST 2 62:5 � 1:2 " 2:6
FST 3 62:5 � 1:9 " 2:6
FST 4 62:6 � 1:8 " 2:7

(e) UPerNet [54]w/ BEiT-B [6].

Method K mIoU �

ST - 68:3 � 0:5 -
FST 2 69:1 � 0:3 " 0:8
FST 3 69:3 � 0:3 " 1:0
FST 4 68:8 � 0:9 " 0:5

(f) DAFormer [24]w/ MiT-B5 [55].

prefer the deeper variant and adopt it as the basic approach in this paper,i.e., FST stands for FST-D
unless speci�ed. We also analyse the effect of exploration steps (i.e., K ) on the training process. As
suggested in Fig. 4a, FST spends only about1=3 of the total training time to reach the performance
level of ST. Besides, we �nd that a largerK can achieve higher mIoU at the beginning of the training
process. WhenK = 4 , however, the performance in later training iterations drops and gets worse
thanK = 3 . We speculate that this is because the deeper exploration becomes unnecessary in the
later training stage. This interesting phenomenon indicates that an adaptive exploration mechanism
may bring better results.

Qualitative analyses.Fig. 4b provides some qualitative comparisons, where our FST can correct
some mistakes made by ST. Taking the presented sample in the second row as an instance, ST
struggles to distinguish betweenbicycleandmotorcycle, while our FST successfully predicts it. More
visualization results and analyses can be found inSupplementary Material.

Data batches for future exploration. In Sec. 3.4, we derive FST-W, which uses different samples
for future exploration in parallel. Tab. 1a and Tab. 1b compare the performance of using the same and
different data batches. Note that FST-W in Tab. 1a could produce slightly different mixed images
for virtual forward, since we use ClassMix augmentation. It is obvious that the parallel exploration
with different samples performs better because the differences between models are important for
ensembling.

Generalization of popular architectures. To verify the generality under various advanced semantic
segmentation models, we evaluate FST (the deeper variant) on two mainstream backbones (i.e., CNN
and Transformer) with four commonly used segmentation decoders. As presented in Tab. 2, FST
shows consistent performance improvement over classical ST, including DeepLab [11], PSPNet [59]
and UPerNet [54]. Besides, FST shows signi�cant improvements not only on supervised pretrained
CNN [22] and Transformer backbones [35, 55] but also on unsupervised pretrained BEiT [6]. Note
that, the established ST baselines are strong, which even surpass many complex multi-stage methods
(e.g., [58]) proposed recently. FST achieves59:8%mIoU using DeepLabV2 and ResNet-101. More
comparisons between FST and existing CNN-based methods are provided inSupplementary Material.

7


