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ABSTRACT

In recent times, there have been major developments in two distinct yet connected
domains of quantum information. On the one hand, substantial progress has been
made in so-called randomized measurement protocols. Here, a number of proper-
ties of unknown quantum states can be deduced from surprisingly few measure-
ment outcomes, using schemes such as classical shadows. On the other hand,
significant progress has been made in quantum machine learning. For example,
exponential advantages have been proven when the data consists of quantum states
and quantum algorithms can coherently measure multiple copies of input states.
In this work, we aim to understand the implications and limitations of combining
randomized measurement protocols with quantum machine learning, although the
implications are broader. Specifically, we investigate quantum machine learning
algorithms that, when dealing with quantum data, can either process it entirely
using quantum methods or measure the input data through a fixed measurement
scheme and utilize the resulting classical information. We prove limitations for
quantum machine learning algorithms that use fixed measurement schemes on the
input quantum states. Our results have several implications. From the perspective
of randomized measurement procedures, we show limitations of measure-first pro-
tocols in the average case, improving on the state-of-the-art which only focuses
on worst-case scenarios. Additionally, previous lower bounds were only known
for physically unrealizable states. We improve upon this by employing quantum
pseudorandom functions to prove that a learning separation also exists when deal-
ing with physically realizable states, which may be encountered in experiments.
From a machine learning perspective, our results are crucial for defining a phys-
ically meaningful task that shows fully quantum machine learning processing is
not only more efficient but also necessary for solving certain problems. The tasks
at hand are also realistic, as the algorithms and proven separations hold when
working with efficiently preparable states and remain robust in the presence of
measurement and preparation errors.

1 INTRODUCTION

A central question in quantum machine learning revolves around understanding the various types
of advantages one can achieve by exploiting quantum effects. Some of the most interesting sce-
narios arise when the dataset itself comprises quantum states, which can then be processed fully
coherently, or through elaborate measurement strategies. In this context, exponential advantages
have been identified when coherent measurements of multiple copies of a given quantum state are
allowed Chen et al. (2022b); Huang et al. (2022; 2020b). In a parallel related line, there have
been significant breakthroughs in extracting useful classical information from quantum states us-
ing the versatile toolkit of randomized measurements Elben et al. (2023). This toolkit includes the
groundbreaking concept of classical shadows Huang et al. (2020a; 2022), which can extract an effi-
cient classical description of quantum states that allows one to compute various physical properties.
These two distinct research lines cast doubt on the advantages of quantum machine learning proto-
cols that process quantum data directly compared to those that use a fixed measurement procedure,
which can also allow for a coherent manipulation of quantum states before the fixed measurement,
in order to extract valuable classical data1. In particular we address the question: is it possible that

1Technically, we allow that the processing of the classical data is also done on a quantum computer. What is
critical for the “measure first” stage is that the data is measured out first, before the possible quantum processing.
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a “measure-first” protocol can be universally used as a substitute for any “fully-quantum” protocol
in the general context of machine learning?
We formally define what we mean by a “measure-first” or a “fully-quantum” protocol in Section 2
(see Definition 3 and Definition 5), and we provide an overview in Figure 1. Importantly, we focus
on physically relevant scenarios where the quantum states in the dataset are efficiently preparable,
rather than arbitrary unphysical states that do not allow a polynomial description in terms of quantum
gates.

Our main conceptual contribution is to resolve the above question negatively by presenting a con-
crete machine learning scenario that clearly exhibits the limitations of any measure-first protocol.
In a machine learning setup, we construct a task that requires reproducing an undisclosed measure-
ment from the data. This task shows an exponential difference in the number of data needed between
fully-quantum protocols and measure-first protocols.

Outside of machine learning, certain limitations of measure-first protocols are implied by other
works in various tasks such as distributed sampling Montanaro (2019) and relational prob-
lems Aaronson et al. (2023). However, these results primarily address separations in worst-case
scenarios, which contrasts with the typical focus in machine learning settings where average-case
performance is usually sufficient. In this paper, we advance these findings by identifying the limi-
tations of measure-first protocols that need only achieve average-case correctness for a set of effi-
ciently preparable quantum states, i.e. physical states. On a technical level, establishing limitations
for measure-first protocols in a general quantum machine learning setting necessitates novel tech-
niques beyond those utilized in previous studies. In particular, limitations for the task of predicting
properties of quantum states were also recently derived for worst-case settings Grier et al. (2022)
exploiting lower bounds for classical one-way communication complexity. However, this approach
inherently limits the focus to states that are not efficiently preparable. This limitation arises be-
cause, if states were efficiently preparable, there would be a concise classical description of their
preparation procedure, enabling the transmission of valid classical messages to the recipient. Our
main technical contribution lies in exploiting that, from the more general machine learning stand-
point, it makes sense to constrain the computational power of the learning protocol. This allows us
to additionally impose the requirement that states must be efficiently preparable and still achieve a
separation by utilizing a novel construction that combines results on one-way communication com-
plexity and pseudorandom quantum states Brakerski & Shmueli (2019). The task we consider is also
experimentally robust, in the sense that we allow for errors in the preparation of the input quantum
states and on the measurement outcomes which label them.

1.1 HIGH-LEVEL OVERVIEW OF LEARNING SETTING AND MAIN RESULT

The machine learning problem concerns learning an unknown measurement acting on a set of
input quantum states. Specifically, the data that the learning protocol gets consists of pairs of
copies of n-qubit quantum states ρ drawn from some distribution D together with a correspond-
ing label z ∈ {0, 1}2n+1. The first n bits of z encode a 2n-outcome POVM measurement
:::::::::::::::::::::
Λx = {Ex

j | j ∈ {0, 1}n} from some set Λ = {Λx | x ∈ {0, 1}n}. The remaining n + 1 bits
are determined by the outcome of Λx on the quantum state ρ. The goal of the machine learning
protocol is to “learn” how to reproduce the measurement Λx. More precisely, the trained learning
protocol has to receive as input an unseen quantum state ρ′ and output a sample z′ in agreement
with the probability distribution πx(ρ), where πx(ρ) denotes the distribution of the measurement
outcomes of Λx.

This paper explores whether solving learning problems such as the above requires a quantum com-
puter capable of adaptive measurements on the training data, or if a fixed measurement strategy
that produces classical representations of the quantum states is sufficient. Specifically, we consider
so-called “measure-first protocols” that are forced to measure the input states and use the obtained
classical description to train the machine learning model to produce samples from the target distri-
bution. Importantly, in a measure-first protocol the measurements are not allowed to depend on the
training data, but are unconstrained otherwise. In particular, the measure-first protocol can depend
on the set of measurements that is to be reproduced from the data, but not on the specific individual
measurement hidden within some given training data. On the other hand, we consider so-called
“fully-quantum protocols” that can coherently process the quantum states and adjust the measure-
ments based on the training data. Our main result is the existence of a learning problem where the
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Figure 1: An overview of the quantum machine learning protocols explored in our paper. In both
protocols, the quantum algorithm A is tasked with processing training data Tx to output a classical
description of a function h that correctly produces samples z∗ for new input states ρ∗ (i.e., h should
implement the quantum measurement). The difference between the two protocols is that, in the
measure-first protocol, both the input quantum states and those in the training set Tx are subjected
to a randomized measurement strategy M . Consequently, these quantum states ρ∗ are transformed
into a classical representation ρ̂∗. Importantly, this strategy is allowed to depend only on the concept
class C (which captures the general learning problem), not on the specific target concept πx ∈ C. In
other words, the same randomized measurement strategy M is used to preprocess the quantum data
for all concepts πx ∈ C.

quantum data is efficiently generatable on a quantum computer for which a “measure-first protocol”
requires an exponential amount of data to be able to reproduce measurement outcomes on new input
states, whereas a fully-quantum protocol only requires a polynomial amount of data. Additionally,
we require that the protocols must be efficient in the sense that they run in time polynomial in n.
Using the notion of learning we presented above, we now give an informal description of the main
result of this paper.

Theorem 1. (Informal) There exist a concept class C, where each concept is defined by a measure-
ment and a distribution D over efficiently preparable quantum states such that no “measure-first”
protocol can learn to reproduce C correctly on average with a polynomial amount of training data.
On the other hand, there exists a “fully-quantum” protocol which can learn C efficienctly with re-
spect to both sample and time complexity .
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1.2 RELATED WORK

In this section we discuss related works and highlight their relationships to our learning setting.
Firstly, in Huang et al. (2020a), the authors introduced a randomized measurement technique tailored
to extract a classical description of a quantum state ρ. This description enables the computation of
the expectation values of any set of observables {Ok}Mk=1 – provided they have a low “shadow
norm”, such as when the observables are local – up to a precision of ϵ. Notably, they showed that
a number of copies of ρ, scaling logarithmically with the number of observables M and inverse-
polynomially in the precision ϵ, suffices for this task.
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The concept of shadow tomography, introduced in Aaronson (2018), revolves around the problem of
computing the expectation values of any set of M two-outcome measurements on an n-qubit state ρ
up to precision ϵ. It has been shown that this can be done using a number of copies of ρ that scale
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polylogarithmically in M , linearly in n, and inverse-polynomially in ϵ Aaronson (2018). In contrast
to the methods in Huang et al. (2020a), the approach in Aaronson (2018) requires coherent mea-
surements on multiple copies of ρ. Additionally, as demonstrated in Huang et al. (2022); Chen et al.
(2022a) for specific tasks, the capacity to coherently measure multiple copies of quantum states pro-
vides an exponential advantage in sample complexity over sequential measurements. Considering
our framework, where measurements can act coherently on multiple copies of each input state, one
might question whether such strategies enable a measure-first protocol to solve our learning task.
However, it is important to note that coherent measurements do not improve the scaling with respect
to the precision ϵ, leaving room for the possibility of a separation since the learning task studied in
this paper would require at least exponential precision to be solved.

In Gong & Aaronson (2023), the authors extended the concept of shadow tomography to the sce-
nario of learning a K-outcome POVMs (for K ≥ 2) selected from a set of M unknown quantum
measurements. In contrast to the binary outcome case, the goal now is to approximate an unknown
distribution up to precision ϵ in total variation distance, rather than focusing on expectation values.
Their procedure requires a number of copies of the quantum state scaling linearly with K and n,
polylogarithmically with M , and inverse-polynomially with the precision ϵ. Moreover, they estab-
lish the optimality of this scaling with respect to the dependence on the number of outcomes K.
This result prompts the question of whether our separation between measure-first and fully-quantum
protocols can be directly inferred from it. However, in establishing their lower bound, it is important
to note that no assumptions were made regarding the complexity of the unknown quantum state.
The crux of our study lies in demonstrating that measure-first protocols fall short of reproducing
the unknown measurement, even on quantum states that are efficiently preparable. Moreover, it is
important to highlight that while their shadow tomography procedures can be employed to construct
a measure-first protocol by “shadowfying” input states to approximate the expected values of each
measurement outcome, this is not strictly necessary for our task. Specifically, understanding the
probability of each outcome allows for the creation of an “evaluator” that can compute the correct
probability for every outcome. However, to resolve our learning problem, a “generator” (i.e., an
algorithm generating samples with the correct probabilities) already suffices, and it does not neces-
sarily require computing the output probabilities Sweke et al. (2021).

Next, in Grier et al. (2022) the authors explore lower bounds on the number of copies of a quantum
state required for solving what they term the “classical shadow” task. This task involves estimat-
ing the expected values of observables using a measure-first approach. While they establish lower
bounds on the number of copies of a quantum state required for this task, shedding light on the in-
herent limitations of measure-first protocols, it is crucial to note two significant bottlenecks of their
approach when viewed from our more general machine learning perspective. Firstly, their analysis
only focuses on worst-case scenarios, whereas in our machine learning scenarios we are concerned
with average-case performance. Secondly, their investigation centers on protocols required to oper-
ate effectively even for unphysical quantum states that are not efficiently preparable.

The authors of Cheng et al. (2015) provide upper bounds for the dual problem of shadow tomogra-
phy, or more specifically the problem of learning a measurement. In particular, they studied the
task of learning an unknown two-outcome POVM denoted {E, I − E}, from data of the form
{(ρi,Tr(Eρi))}mi=1. They showed that to approximate the unknown E up to a precision of ϵ on
new n-qubit input states, O(2n/ϵ2) training samples are sufficient. Nonetheless, the number of
required samples scales exponentially with the number of qubits.

Finally, in Jerbi et al. (2023) the authors study quantum process learning, where the task is to learn
a unitary U , from data of the form {|ψi⟩ , U |ψi⟩}. In particular, they study the limitations of what
they call incoherent learning, where the learner is constrained to first measure multiple copies of the
data U |ψi⟩. While they therefore also study the problem of extracting classical information from
quantum data and utilizing it in the learning process, the setting in their work differs from ours.
Namely, the quantum states in our scenario are labeled by a sample obtained from the unknown
measurement process, whereas in Jerbi et al. (2023) the labels are the input quantum states when
evolved under some unknown target unitary.
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2 BACKGROUND

In this section, we introduce the notations and definitions needed to frame our main result, which
involves a learning problem that demonstrate the separation between any measure-first protocol and
a fully quantum protocol.

The learning problem we study is the learning of a measurement. In particular, it involves generating
samples from a distribution induced by measuring an (unknown) POVM measurement Λx on n-qubit
quantum states. The (unknown) target measurement Λx is drawn from a set of POVMs {Λx | x ∈
{0, 1}n}, and each measurement Λx is a computational basis measurement preceded by an n-qubit
unitary Ux, i.e.,

Λx =

{
Ex

j

∣∣ j = 1, . . . , 2n
}
, where Ex

j = Ux |j⟩ ⟨j|U†
x.

During training the learner is given a set of examples Tx, where each example consists of a poly-
nomial number of copies of a phase state

:::
|ψf ⟩:together with a sample from the associated POVM-

induced distribution. This is a special case of labeled quantum data, which was introduced in Aı̈meur
et al. (2006), where we are additionally allowed to have access to polynomially many copies of the
input quantum state. We formalize our learning problem by generalizing the standard PAC learning
framework Valiant (1984). In our generalization, a concept corresponds to a quantum randomized
function, i.e., a function that on each quantum input state outputs a sample from a random variable
(which in our case corresponds to the outcomes of a POVM on the input quantum state). Before we
define the concept class studied throughout this paper, we first setup some auxilliary definitions.
Definition 1 (Auxiliary definitions/notation).

• Let N = 2n, or equivalently n = log2N .

• We identify a function f : {0, 1}n → {0, 1} with its truth table f ∈ {0, 1}N , and we
denote its corresponding phase state with

|ψf ⟩ =
1√
N

N∑
i=1

(−1)fi |i⟩ . (1)

• Let Sphase = {|ψf ⟩⊗ℓ | f ∈ {0, 1}N} denote the set of ℓ = poly(n) copies of n-qubit
phase states.

• We write x ∼ π to denote that x was drawn according to a distribution π.

• We write U(X ) for the uniform distribution over a set X .

• We write ∆(X ) for the set of all distributions over a set X .

• For p, q ∈ R2n

≥0 probability distributions over {0, 1}n we define

||p− q||TV =
1

2

∑
x∈{0,1}n

|px − qx|

to be the total variation distance.
Definition 2 (Concept class). We define our concept class as C = {πx | x ∈ {0, 1}n}, where

πx : Sphase → ∆({0, 1}2n+1)

|ψf ⟩⊗ℓ 7→ πx(f)
(2)

where πx(f) is a distribution over samples (x, y, b) ∈ {0, 1}2n+1, where (y, b) ∈ {0, 1}n+1 are
variables sampled from a problem-specific distribution characterizing the specific learning task.

In particular, πx is a randomized function which takes as input a polynomial number of copies of a
phase state and outputs a sample z consisting of x ∈ {0, 1}n together with some (y, b) ∈ {0, 1}n+1

sampled from some problem-specific probability distribution. As we will see in the next section,
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a learning separation for this kind of learning problem is achieved by considering (y, b) sampled
uniformly from the set of variables which satisfy the Hidden Matching relation defined by the input
functions f and the bitstring x ∈ {0, 1}n.

A learner then is given several evaluations of the randomized function πx in the form of training data
and its objective is to implement a randomized function π̃x that closely approximates πx on most
input states.

In this paper, we compare two categories of machine learning systems that can tackle problems of
this type. First, we introduce what we call a “fully-quantum protocol”.
Definition 3 (Fully-quantum protocol). A fully-quantum protocol for the concept class C in Defini-
tion 7 is a polynomial-time quantum algorithm A that takes as input training data of the form

Tx =
{(

|ψf(i)⟩⊗ℓ
, (x, y, b)

) ∣∣ (x, y, b) ∼ πx(f
(i)),

and f (i) ∼ U
(
{0, 1}N

)}poly(n)

i=1
,

(3)

and outputs a classical description of a polynomial-time quantum algorithm that on input |ψf ⟩⊗ℓ ∈
Sphase generates a sample from a distribution π̃x(f) ∈ ∆({0, 1}2n+1).

We emphasize that for a “fully quantum” protocol, the learning algorithm must produce a classical
description of the quantum algorithm generating samples from π̃x. Consequently, we do not store
any quantum states from the training data in quantum memory, which would be more general but not
studied in this paper. Ultimately, the goal of the protocol is to implement a randomized function π̃x
that closely approximates the actual data-generating randomized function πx for most of the input
quantum states.
Definition 4 ((ϵ, δ, psucc)-fully-quantum learnable). We say that C is (ϵ, δ, psucc)-fully-quantum
learnable if there exists a fully-quantum protocol A such that for every πx ∈ C, with probability at
least psucc we have

Prf∼U({0,1}N ) (||π̃x (f)− πx(f)||TV ≤ ϵ) ≥ 1− δ, (4)

where π̃x(f) ∈ ∆({0, 1}2n+1
) denotes the distribution that the polynomial-time quantum algorithm

obtained from the learning algorithm A generates samples from on input |ψf ⟩⊗ℓ ∈ Sphase.

Next, we introduce a “measure-first protocol” which consists of two components: (i) a randomized
measurement strategy M , and (ii) a learning algorithm A. The main difference between a measure-
first protocol and a fully-quantum protocol is that the former involves a randomized measurement
procedure that first measures the quantum states before putting it into a learning algorithm. Im-
portantly, the measure-first protocol is allowed to perform arbitrary coherent measurements on all
input quantum states (i.e., the polynomially-many copies of the phase states). The only constraint is
that the measurement strategy cannot depend on the specific target concept of the learning problem,
although it is allowed to depend on the concept class (i.e., the set of all possible target concepts).
In short, a randomized measurement strategy is a polynomial-time algorithms that maps a polyno-
mial number of copies of a phase state |ψf ⟩ to some classical description ψ̂f ∈ {0, 1}m for some
m = poly(n). These classical descriptions ψ̂f are then used as input for the learning algorithm, that
is tasked with implementing a randomized function close to πx.
Definition 5 (Measure-first protocol). A measure-first protocol is a tuple (M,A) where

• M is a measurement strategy that in time O(poly(n)) maps |ψf ⟩⊗ℓ ∈ Sphase
2 to some

ψ̂f ∈ {0, 1}m, where m = poly(n).

• A is a polynomial-time quantum algorithm that takes input of the form

TM
x =

{(
ψ̂f(i) , (x, y, b)

) ∣∣ (x, y, b) ∼ πx(f
(i))

and f (i) ∼ U
(
{0, 1}N

)}poly(n)

i=1

,

(5)

2
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and outputs a description of a polynomial-time quantum algorithm that on input ψ̂f =

M(|ψf ⟩⊗ℓ
) generates a sample from a distribution π̃x(f) ∈ ∆({0, 1}2n+1).

Note that the distinction between measure-first and fully-quantum protocols lies in Eq. 5, where the
data is measured to give ψ̂f instead of remaining quantum states |ψf ⟩. Nonetheless, the measure-
ments employed by the measurement strategy M are completely arbitrary and entirely unrestricted.
We emphasize, however, that the sole constraint on the measurement strategy M is that it must not
rely on the specific concepts it will be applied to later, although it can depend on the concept class it
is intended for. Recall that the objective of the protocol is to implement a randomized function π̃x
that closely approximates the actual data-generating randomized function πx on most inputs.
Definition 6 ((ϵ, δ, psucc)-measure-first learnable). We say that C is (ϵ, δ, psucc)-measure-first learn-
able if there exists a measure-first protocol (M,A) such that for every πx ∈ C, with probability at
least psucc we have

Prf∼U{0,1}N (||π̃x(f)− πx(f)||TV ≤ ϵ) ≥ 1− δ, (6)

where π̃x(f) ∈ ∆({0, 1}2n+1
) denotes the distribution that the polynomial-time quantum algorithm

obtained from the learning algorithm A generates samples from on input ψ̂f =M(|ψf ⟩⊗ℓ
).

Although we defined the two protocols in an idealized case, we will show in Appendix A.1 that our
separation results are robust. In particular, they still hold even in the experimental setting where the
input states |ψf ⟩ are affected by preparation errors and they are just close in trace distance to the
ones defined in Eq.( 1). Furthermore, we also allow for measurement errors on the labels (y, b).

3 MAIN RESULT

In this section, we present the key findings of our paper. In Section 3.1, we define the specific learn-
ing problem considered and show how the fully-quantum machine learning model can efficiently
solve it. In Section 3.2, we present our first main result showing that no measure-first quantum ma-
chine learning model can solve our learning problem efficiently. Finally, in Section 3.3, we show
that this separation between the models still holds if the quantum states in the data are efficiently
preparable.

3.1 THE LEARNING PROBLEM

In this section, we concretely define the learning problem for which we prove a learning separation.
Then, we initiate the proof by showing that it is learnable using a fully-quantum protocol.

The specific concept class we developed to prove our main result is a particular instance of the one
defined in Def. 2, with the condition that the variables (y, b) are sampled from the set Rx(f) defined
as follows:
Definition 7 (Concept class). C = {πx | x ∈ {0, 1}n}, where

πx : Sphase → ∆({0, 1}2n+1)

|ψf ⟩⊗ℓ 7→ πx(f)
(7)

where πx(f) is a distribution over samples (x, y, b), where (y, b) ∼ U(Rf (x)) and

Rf (x) = {(y, b) | y ∈ {0, 1}n, b ∈ {0, 1},
f(y)⊕ f(y ⊕ x) = b}. (8)

Importantly, in Aaronson et al. (2023) the authors showed that for each x ∈ {0, 1}n there exist a
POVM measurement Λx which when applied to a phase state |ψf ⟩ outputs a pair exactly satisfying
the relation Rf (x). With regards to our learning problem, the task of the learning protocols is to
learn this measurement.

We now describe how the concept class in Definition 7 is fully-quantum learnable.
Proposition 1. The concept class in Definition 7 is (0, 0, 1)-fully-quantum learnable.
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The proof of Proposition 1 can be found in Appendix A, and we provide a high-level overview of the
fully-quantum protocol here. Firstly, the fully-quantum protocol reads out x from one of the samples
generated by πx in the training data. Next, a quantum circuit denoted as Ux is constructed following
the procedure outlined in Aaronson et al. (2023). Measuring Ux |ψf ⟩ in the computational basis
results in a sample from the distribution U(Rf (x)). Crucially, it is worth noting that these quantum
circuits Ux are of size O (poly(n)) and can be constructed in time O (poly(n)). We remark here
that the concept class in Definition 7 remains fully quantum learnable even when errors are present
in the training data, see Appendix A.1.

It might seem that little genuine learning occurs when x can be readily read out from a single
example in Tx. However, we can introduce various levels of learning by providing only partial
information about x within the examples. This partial information should allow the recovery of x
from a polynomial number of examples. Several examples illustrating this are discussed in more
detail in Appendix A.

3.2 LIMITATIONS OF MEASURE-FIRST PROTOCOLS WITH GENERAL QUANTUM DATA

In the last section, we discussed how the concept class in Definition 7 is fully-quantum learnable.
Conversely, in this section we discuss the first part of our main result which states that this concept
class is not measure-first learnable.

Theorem 2. The concept class in Definition 7 is not (ϵ, δ, psucc)-measure-first learnable for
:::::::::::::::::::
(1− ϵ) · (1− δ) > 7/8 and any psucc > 0.

The full proof of Theorem 2 is provided in Appendix B, we present a concise overview of the proof
here. At its core, the proof hinges on the notion that the existence of a measure-first protocol for
the concept class described in Definition 7 implies the existence of an efficient classical one-way
communication protocol for the Hidden Matching (HM) problem Bar-Yossef et al. (2004). Notably,
in Bar-Yossef et al. (2004), it has been shown that the HM problem cannot be solved with a com-
munication cost of O (poly(n)) bits, even on a 7/8 fraction of possible inputs. In essence,

:
if
:::

the
::::::
concept

:::::
class

::
in

::::::::
Definition

::
7

:::
was

::::::::
learnable,

:
one of the two parties can employ the measurement pro-

tocol to encode their input for the HM problem, transmit it to the other party, who can then utilize
the learning algorithm A to successfully solve the HM problem. Intuitively, the reason behind why
measure-first learning fails is that due to Bar-Yossef et al. (2004) it is not possible to compress a
phase state |ψf ⟩ into a polynomially-sized classical representation ψ̂f that contains enough infor-
mation to allow one to generate samples from the distributions πx(f) for all possible x. Importantly,
within the machine learning context, it is crucial to also consider the possibility of protocols making
errors on a fraction of inputs and the requirement to gather the necessary data. To overcome this
limitation, we use Yao’s principle to show that the existence of a protocol which succeeds in the
machine learning context would still violate the classical hardness of the HM problem.

::
In

::::::::
particular,

::
by

:::::::
applying

:::::
Yao’s

::::::::
principle,

:::
we

::::
can

:::::
ensure

:::
the

::::::::
existence

::
of

::
a

::::::::::
deterministic

:::::::::
algorithm

:::
that

::::::
solves

::
the

:::
HM

:::::::
problem

:::
on

:
a
::::::::::
sufficiently

::::
large

:::::::
fraction

::
of

::::::
inputs,

::::::::
provided

:::
that

:::::
there

:::::
exists

:
a
:::::::
machine

:::::::
learning

::::::::::
measure-first

::::::::
protocol

::::::
capable

::
of

:::::::
solving

:::
the

:::::::
learning

:::
task

:::::::
defined

::
in

:::::::::
Definition

::
6.

Since in our machine learning setting we are concerned with physical states appearing in the real-
world, in the next section we show that our findings also apply to settings where states are efficiently
preparable, which we achieve by using pseudorandom states Brakerski & Shmueli (2019) (see Sec-
tion 3.3). Finally, it is crucial to note that even when the data in Eq.( 5) is derived from a polynomial
number ℓ of copies of each input state |ψf ⟩, measure-first protocols remain incapable of solving the
task. This holds true even when considering inefficient ( i.e., superpolynomial-time ) algorithms or
an exponential number of training points, as the communication complexity bounds still apply re-
gardless of the time resources utilized by the algorithms (since the communication protocol assumes
both parties have unbounded resources).

3.3 LEARNING SEPARATION WITH EFFICIENTLY PREPARABLE QUANTUM DATA

From a pragmatic perspective, a crucial limitation of the learning problem outlined in the previous
section is that preparing a general phase state is intractable (i.e., not realized by polynomial-time
processes). In particular, this raises the question of whether separations could persist for states that
are prepared by (natural or artificial) polynomial-time processes. To address this limitation, we show
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that the concept class in Definition 7 remains not measure-first learnable, even when we constrain
the input of the random functions πx to phase states of so-called pseudorandom functions. Notably,
phase states corresponding to appropriately chosen pseudorandom functions can be efficiently pre-
pared.

::::::
Because

::
of

::::
this

::::::::
additional

::::::::::::
consideration,

:::
our

::::::::::
separations

::
are

:::::::
notably

:::::
more

::::::
general

::::
than

::::
those

::
in

:::::::
previous

:::::
works

:::::::::::::::::::::::::::::::::::::::
Aaronson et al. (2023); Bar-Yossef et al. (2004).

:
Our definition of pseudorandom

functions is as follows.
Definition 8 (Quantum-secure pseudorandom function (QPRF) Brakerski & Shmueli (2019)).
Let K = {Kn}n≥1 be an efficiently samplable key distribution, and let PRF = {PRFn}n≥1,
PRFn : Kn × {0, 1}n → {0, 1} be an efficiently computable function. We say PRF is a quantum-
secure pseudorandom function if for every efficient non-uniform quantum algorithmA that can make
quantum queries there exists a negligible function negl(.) such that for every n ≥ 1:∣∣∣∣Prk∼U(Kn)

[
APRFn(k)()

:::::::
= 1

]
− Prf∼U({0,1}n)

[
Af () = 1

] ∣∣∣∣ ≤ negl(n) (9)

:::::
Where

:::
the

::::::::
notation

::::
Af ()

::::::
stands

:::
for

:::
the

:::::::::::
non-uniform

::::::::
quantum

::::::::
algorithm

::::::
which

:::
can

:::::
make

::::::
queries

::
to

:::
the

:::::::
function

::
f

:::
and

:::
can

::::
take

::::
any

:::::::
quantum

::::
state

:::
as

:::::
input.

:
We remark that if every function PRFn

admits a classical circuit of size s(n) and depth d(n), then one can prepare the corresponding phase
states using a quantum circuit of size O(s(n)) and depth d(n) + 1 Brakerski & Shmueli (2019).
Moreover, the existence of such PRFn is implied by the existence of quantum secure one-way func-
tions Zhandry (2012).

3.3.1 FULLY-QUANTUM LEARNABILITY WITH PSEUDORANDOM PHASE STATES

Note that when we constrain the inputs of πx to phase states of pseudorandom functions, we essen-
tially modify the distribution over input states in Eq. 4 and Eq. 6. This new distribution now only
has support on phase states that are efficiently preparable. While Proposition 1 examines general
quantum phase states as input states (which are not typically efficiently preparable), we note that
the fully-quantum learnability directly extends the setting where we limit ourselves to efficiently
preparable phase states as well. We summarize this observation in the following proposition (whose
proof is the same as that of Proposition 1).

Proposition 2. Let Spr = {|ψf(k)⟩⊗ℓ | f (k)(.) = PRFn(k, .), k ∈ K}, where PRF is a quantum-
secure pseudorandom function with keys K. The concept class in Definition 7 is (0, 0, 1)-fully-
quantum learnable when the distribution over input states is uniform over Spr.

3.3.2 LIMITATIONS OF MEASURE-FIRST PROTOCOLS WITH PSEUDORANDOM PHASE STATES

In the last section, we discussed how the concept class in Definition 7 remains fully-quantum learn-
able when restricted to phase states of pseudorandom functions. Conversely, in this section we show
that this concept class also remains not measure-first learnable when restricted to phase states of
pseudorandom functions.

Theorem 3. Let Spr = {|ψf(k)⟩⊗ℓ | f (k)(.) = PRFn(k, .), k ∈ K}, where PRF is a quantum-
secure pseudorandom function with keys K. The concept class in Definition 7 is not (ϵ, δ, psucc)-
measure-first learnable for

::::::::::::::::::::::
(1− ϵ) · (1− δ) · psucc > c

:
for any constant c > 7/8 when the distribu-

tion over input states is uniform over Spr.

The main results of this section directly follows from combining Theorem 3 and Proposition 2.
Corollary 1 (informal). If there exist quantum-secure pseudorandom functions, then there exists a
quantum supervised learning problem with efficiently generatable quantum data, which cannot be
learned by any measure-first protocol according to Def. 6 while there exist a fully-quantum protocol
which satisfies the learning condition of Def. 4

The proof of Theorem 3 is provided in Appendix C, and we first present a concise overview of
the proof here. The main idea behind the proof is to illustrate that if the concepts are measure-
first learnable when restricted to pseudorandom phase states, then the corresponding measure-first
learning protocol can be harnessed to create a non-uniform quantum algorithm that is able to dis-
tinguish between truly random functions and pseudorandom functions. More precisely, this “dis-
tinguisher” algorithm employs the measure-first learning protocol and evaluates its performance
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when applied to the phase state corresponding to the function it has been given oracular access to.
In the proof of Theorem 2, we established an upper bound on the generalization performance of
any measure-first protocol for truly random phase states. If, however, the measure-first protocol
performs well on pseudorandom phase states, then the outcomes of the “distinguisher” algorithm
would differ significantly based on whether it is given oracular access to a truly random or a pseu-
dorandom function, thereby contradicting the pseudorandomness assumption.

:
In

:::::
other

::::::
words,

::
if

::
the

::::::::::
measure-first

:::::::::
protocols

::::
were

::::::::
effective

::
on

:::::::::::::
pseudorandom

::::::
states,

::::
there

::::::
would

:::
be

:
a
:::::
clear

::::::::
difference

::
in

:::
the

::::::::::
performance

:::
of

:::
the

:::::::::::
distinguisher:

:::::
poor

::::::::
accuracy

:::::
when

::::::
dealing

::::
with

:::::
truly

::::::
random

::::::::
functions

:::
and

:::::
strong

::::::::
accuracy

:::::
when

::::::
dealing

::::
with

::::::::::::
pseudorandom

:::::::::
functions.

::::::::
However,

:::::
since

:::
this

::::::
would

:::::
violate

:::
Eq.

::
9,

:::::::::::
measure-first

::::::::
protocols

::::
have

::
to

:::
fail

:::::
when

::::::
applied

::
to

:::::::::::::
pseudorandom

::::::::
functions.

:

4 CONCLUSION

In our study, we explored the constraints and capabilities of learning from quantum data. We estab-
lished a formal machine learning framework that contrasts two protocols: “fully quantum”, which
adjusts measurements based on data, and “measure-first” restricted by fixed initial (though arbitrar-
ily powerful) measurements. In particular, we provided an example of a learning problem efficiently
solved by a fully-quantum protocol but beyond the capabilities of measure-first protocols. More-
over, we showed that this persists even when we limit from universal quantum states, which include
also those intractable to prepare, to efficiently preparable quantum states. These findings under-
score the crucial role of processing unmeasured quantum data in machine learning, presenting a
setting where quantum advantages arise. In particular, they imply that certain learning tasks inher-
ently require the “exponential capacity” of quantum states, distinct from classical data. In other
words, the number of bits needed to store n qubits, in a way that allows a learner to successfully
solve the learning problem, is exponential in n. Such a conclusion is analogous to what Montanaro
refers as “anti-Holevo” theorems Montanaro (2019). While our proof relies on both separations
in one-way communication complexity and pseudorandom states, we highlight the potential for
more general constructions. Instead of considering states demonstrating a one-way communica-
tion complexity separation, any quantum advice state used in quantum advice complexity classes
that cannot be classically simulated with polynomial overhead could suffice, leveraging the sepa-
ration between the classes FBQP/qpoly and FBQP/poly showed in Aaronson et al. (2023).

:
In

::::::::
particular,

:::
by

:::
the

:::::
result

::
in

::::::::::::::::::::::::
Aaronson & Drucker (2010)

:::
any

:::::::
problem

::::
that

:::
can

:::
be

:::::::::
efficiently

:::::
solved

::::
with

:
a
:::::::::::::::
polynomial-sized

:::::::
quantum

::::::
advice

:::::
state

:::
can

::::
also

:::
be

::::::
solved

::::
with

::
an

::::::
advice

:::::
state

:::
that

::
is
:::

the
::::::
ground

::::
state

::
of

:
a
:::::
local

:::::::::::
Hamiltonian.

::::
This

:::::::
suggests

::::
that

:::::::
learning

::::::::
problems

:::::
where

:::
the

:::::
input

:::::::
quantum

:::
data

:::::::
consists

::
of
:::::::

ground
:::::
states

::
of

::::::::::
sufficiently

:::::::
complex

::::
local

::::::::::::
Hamiltonians

:::
are

::::::::
promising

:::::::::
candidates

::
for

::::::::::::
demonstrating

::
a

::::::::
separation

:::::::
between

:::::::::::
measure-first

::::
and

::::::::::::
fully-quantum

::::::::
protocols.

:::::::
Finally,

:::
we

:::
note

:::
that beyond pseudorandom states one could use so-called “computationally indistinguishable” states,
which are known to exist assuming the intractability of the graph isomorphism problem Kawachi
et al. (2012), or various other complexity theoretic assumptions Brakerski et al. (2022).

REPRODUCIBILITY STATEMENT

This manuscript presents exclusively theoretical results. To ensure reproducibility, we provide fully
detailed proofs of all theorems claimed in the main text, which are included in the Appendix. Addi-
tionally, key proof ideas are outlined within the main body of the paper for further clarity.
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and Zoë Holmes. The power and limitations of learning quantum dynamics incoherently.
arXiv:2303.12834, 2023.

Akinori Kawachi, Takeshi Koshiba, Harumichi Nishimura, and Tomoyuki Yamakami. Computa-
tional indistinguishability between quantum states and its cryptographic application. Journal of
cryptology, 25:528–555, 2012.

Yunchao Liu, Srinivasan Arunachalam, and Kristan Temme. A rigorous and robust quantum speed-
up in supervised machine learning. Nature Physics, 2021.

Ashley Montanaro. Quantum states cannot be transmitted efficiently classically. Quantum, 3, 2019.

Michael A Nielsen and Isaac L Chuang. Quantum computation and quantum information. Cam-
bridge university press, 2010.

Ryan Sweke, Jean-Pierre Seifert, Dominik Hangleiter, and Jens Eisert. On the quantum versus
classical learnability of discrete distributions. Quantum, 5:417, 2021.

Leslie G Valiant. A theory of the learnable. Communications of the ACM, 27(11):1134–1142, 1984.

Mark Zhandry. How to construct quantum random functions. In 2012 IEEE 53rd Annual Symposium
on Foundations of Computer Science. IEEE, 2012.

11



A PROOF OF PROPOSITION 1

Proposition 1. The concept class in Definition 7 is (0, 0, 1)-fully-quantum learnable.

Proof. To prove that the concept class C in Definition 7 is fully-quantum learnable we will provide
a fully-quantum protocol A that does so successfully. Suppose we are given training data Tx of the
form provided in Eq. 3. Firstly, the fully-quantum protocol A reads out x from one of the examples
in Tx. Next, it uses the construction of Aaronson et al. (2023) to construct a circuit Ux of size O(n)
in time O(n) such that when measuring the state |ϕf,x⟩ = Ux |ψf ⟩ in the computational basis it
produces (y, b) ∈ {0, 1}n+1 such that b = f(y) ⊕ f(x ⊕ y).

:::
The

:::::::
operator

::::
Ux,

:::::
whose

::::::::
graphical

:::::::::::
representation

::
is
::::::::
provided

::
in

::::::
Figure

:
3
::
of
:::::::::::::::::::

Aaronson et al. (2023)
:
,
:
is
:::::::
defined

::
as

:::::::
follows.

::::::::
Consider

::
an

::::::::::
x ∈ {0, 1}n

::::
with

:
a
::::::::
Hamming

::::::
weight

::
of

::::::
k ≥ 1.

::::
The

:::::::
operator

:::
Ux :::

acts
:::
on

:
n
::::::
qubits

:::::
based

::
on

:::
the

:::::
values

::
of

:::
the

:::::
entries

:::
of

:
x
::
as

:::::::
follows:

:

1.
:
A
:::::::
position

:
i
::
is
:::::::
selected

::::
such

::::
that

::::::
xi = 1.

::::
The

::::::::::::
corresponding

::::
qubit

:
i
::
is

::::
then

::::::
chosen

::
to

:::::
output

::
the

:::::
value

::
of

::::::::::
b ∈ {0, 1}.

2.
:::
For

::::
each

::
of

:::
the

::::::::
remaining

::::::::
positions

:
j
::::::
where

::::::
xj = 1

:::
and

:::::
j ̸= i,

::
a

:::::
CNOT

::::
gate

::
is

::::::
applied

::::
with

::::
qubit

::
j

::
as

:::
the

::::::
control

:::
and

:::::
qubit

:
i
::
as

:::
the

:::::
target.

:::::
This

:::::
results

::
in

::
a

::::
total

::
of

:::::
k − 1

::::::
CNOT

:::::
gates.

3.
::::::
Finally,

:
a
:::::::::
Hadamard

::::
gate

::
is

::::::
applied

::
to
:::::
qubit

::
i.

:::::::::
Measuring

:::
the

:::::::
resulting

:::::
state

:::::::
Ux |ψf ⟩ ::

in
:::
the

::::::::::::
computational

::::
basis

::::::
yields

::
an

:::::
n-bit

:::::
string

:::::::::
j1j2, ..., jn

::::
such

::::
that

::::
the

::::::::
variables

::::::::::::::
y = j1, ..., jn−1::::

and
:::::::
b = jn

3
::
are

::::::::::
guaranteed

:::
to

::::::
satisfy

::::
the

:::::::
relation

::::::::::::::::::
b = f(y)⊕ f(x⊕ y).

:::
The

:
learning protocol outputs the description of the POVM measurement

Πx =
{
Ux |j⟩ ⟨j|U†

x

∣∣ j ∈ {0, 1}n
}

(10)

as by the above measuring Πx on an arbitrary phase state |ψf ⟩ implements πx with zero error.

While it may appear that little learning is occurring when we can readily extract x from a single
example in Tx, we can introduce varying degrees of learning by not appending the complete de-
scription of x to the examples. Instead, we include only partial information about x that still allow
us to recover a full description of x using a polynomial number of examples. For instance, instead
of appending x to the examples we can append certain functions gi(x), where gi is drawn uniformly
random from some set of G = {gi}i∈I . For instance, for i ∈ {0, 1}n we can consider functions like

gi(x) = (i · x, i) ∈ {0, 1}n+1, (11)

where x · i =
∑n

j=1 xj · ij mod 2. Another example of such a family of functions would be

gi(x) = (DLP(x)i, i) ∈ {0, 1}n+1, (12)

where DLPi(x) denotes the ith bit of the discrete logarithm of x in a suitably chosen group. For
these functions, one can show that x can be recovered with high probability from a polynomial
number of evaluations of gi(x) for randomly chosen gi from G. Moreover, functions similar to the
gi in Eq. 12 require a quantum computer to be able to efficiently recover x Liu et al. (2021).

A.1 LEARNABILITY WITH NOISY DATA

In a realistic setting, quantum states and measurements will always be affected with experimental er-
rors. In this section we study whether the fully-quantum protocol still manages to solve the learning
task even in non ideal scenarios.

3
::::::
Without

:::
loss

::
of

::::::::
generality,

:::
we

::::::
assume

::
the

::::
qubit

:
i
::
in
:::
the

:::::
above

:::::::::
construction

::
to

::
be

::
at

::
the

::::::
positon

:::::
i = n.
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We specifically address the scenario where the input states are not exactly the phase states |ψf ⟩ from
Eq.( 1 ) but are instead approximate states |ψf ⟩ϵsp in trace distance, such that:

d(|ψf ⟩ , |ψf ⟩ϵsp) ≤ ϵsp (13)

where d(|ψf ⟩ , |ψf ⟩ϵsp) = || |ψf ⟩ ⟨ψf |−|ψf ⟩ ⟨ψf |ϵsp ||1 is the trace distance between the states |ψf ⟩
and |ψf ⟩ϵsp .

As mentioned before, we also allow for measurement errors on the training labels. Specifically we
can consider the case that the labels (y, b) in the training data follow an approximate distribution
πϵM
x (f) which is only close to the ideal one in total variation distance:

∀f ∈ {0, 1}N ||πϵM
x (f)− πx(f)||TV ≤ ϵM (14)

Note that only the two variables (y, b) are affected by measurement errors, while the variable x,
which labels each concept, is not affected by any error.

Even with both of the above sources of experimental error, the learning problem in Def. 7 remains
fully quantum learnable in the following sense.

Proposition 3. Assuming a maximum error ϵmax
sp on the input states and a maximum error ϵmax

M on
the corresponding labels, then there exists a fully-quantum protocol A such that for every πx ∈ C
with probability 1 satisfies:

Prf∼U({0,1}N )

(
||π̃x(f)− πx(f)||TV ≤ ϵmax

sp

)
= 1 (15)

where π̃x(f) ∈ ∆({0, 1}2n+1) denotes the distribution that the polynomial-time quantum algorithm
obtained from the learning algorithm A generates samples from on input |ψf ⟩⊗l

ϵsp
.

Proof. The proof follows directly from the one for the ideal case in Appendix A. The fully-quantum
protocol performs exactly the same steps as in the ideal case, in this way the error in the prediction is
bounded by the error in state preparation. Specifically, assuming for every f ∈ {0, 1}N input states
|ψ⟩ϵsp are such that:

d(|ψf ⟩ , |ψf ⟩ϵsp) ≤ ϵmax
sp (16)

Then by the definition of trace distance we have that given any set of POVM {Em} (see Theorem
9.1 of Nielsen & Chuang (2010)) it holds that:∑

m

|Tr[Em(|ψf ⟩ ⟨ψf | − |ψf ⟩ ⟨ψf |ϵsp)]| ≤ d(|ψf ⟩ , |ψf ⟩ϵsp) (17)

Therefore, any probability distribution obtained from the measurement outcomes of the POVM Em

on each state |ψf ⟩ϵsp will have a total variation distance of at most d(|ψf ⟩ , |ψf ⟩ϵsp) compared to
the distribution induced by applying the same POVM Em on the ideal states |ψf ⟩. As the inequality
( 17) holds for any set of POVM {Em}, it will particularly be true for the set of POVM Πx of Eq.( 10)
implemented by the fully-quantum protocol. This then concludes the proof as we previously showed
that the fully-quantum protocol exactly reconstruct the target distribution πx(f) for each f with zero
error and we assumed ϵmax

sp to be the maximum difference in trace distance between the noisy input
states and the ideal ones.

Following the same reasoning as in the proof of Theorem 2 in Appendix B, it is straightforward to
show that when ϵmax

sp ≤ 7/8, the learning task becomes intractable for any measure-first protocol.

B PROOF OF THEOREM 2

Theorem 2. The concept class in Definition 7 is not (ϵ, δ, psucc)-measure-first learnable for
:::::::::::::::::::
(1− ϵ) · (1− δ) > 7/8 and any psucc > 0.
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Proof of Theorem 2. The main building block of our proof of Theorem 2 is a result in one-way
communication complexity by Bar-Yossef, Jayram and Kerenidis Bar-Yossef et al. (2004). They
define a problem called Hidden Matching (HM). Here Alice is given a string f ∈ {0, 1}N , while
Bob is given a perfect matching M on the set [N ], consisting of N/2 edges. Bob’s goal is to output
some (i, j, fi ⊕ fj) for some edge (i, j) ∈M . Their main result is:

Theorem 4 (Classical hardness of HM Bar-Yossef et al. (2004)). Let M be any set of perfect
matchings on [N ] that is pairwise edge-disjoint and satisfies |M| = Ω(N). Let µ be the distribution
over inputs to HM in which Alice’s input is uniform in {0, 1}N and Bob’s input is uniform in M.
Then, any deterministic one-way protocol for HM that errs with probability at most 1/8 with respect
to µ requires Ω(

√
N) bits of communication.

Suppose the concept class in Definition 7 is (ϵ, δ, psucc)-measure-first learnable using a measure-
first protocol given by (M,A) with

:::::::::::::::::::
(1− ϵ) · (1− δ) > 7/8

:
and psucc > 0. Throughout the proof,

we will show that the existence of such a measure-first learning protocol contradicts the classical
hardness of HM outlined in Theorem 4. To do so, consider the HM problem with M = {Mx | x ∈
{0, 1}n}, where

Mx = {(y, y ⊕ x) | y ∈ {0, 1}n}. (18)

and note that |M| = N . To solve this instance of the HM problem Bob first generates training data
TM
x as in Eq. 5. Note that Bob can do so because he has knowledge of the bitstring x. In particular,

Bob can generate f (i) from {0, 1}N , compute Rf(i)(x) and pick an element (y, b) from it. Next,
Alice applies the measure protocol M to |ψf ⟩ for her input f ∈ {0, 1}N and sends ψ̂f = M(|ψf ⟩)
to Bob. Finally, Bob applies A on the data TM

x he generated and Alice’s input ψ̂f to obtain a
sample (x, y, b) ∼ π̃x(ψ̂f ). Since we assumed that psucc > 0, we know that for any x ∈ {0, 1}n
there must exist training data T̂M

x and internal randomization of the learning algorithm A such
that the polynomial-time quantum algorithm output by the protocol satisfies Eq. 6. Throughout the
remainder of this proof, we assume Bob fixes this to be the training data and internal randomization
he uses for his input x (note that Bob can do so because this does not depend on the input of
Alice). Based on this fixed choice of training data and internal randomization we partition {0, 1}N =
Fx

good ⊔ Fx
bad, where Fx

good denotes the set of functions f for which

||π̃x(f)− πx(f)||TV ≤ 1− ϵ, (19)

where π̃x is the random function implemented by the quantum algorithm output by the proto-
col when using the training data ˆTM

x and internal randomization as above. Moreover, we note
:::::::::::::::::
|Fx

good| ≥ (1− δ) · 2n
:
by Eq. 6. Finally, due to Eq. 6 we find that the probability that (y, b) ∈ Rf (x)

is at least

Pr
(
(y, b) ∈ Rf (x)

)
≥ (1−

:::
ϵ) (20)

for all f ∈ Fx
good. In conclusion, we find that the above described protocol is a randomized one-way

communication protocol for HM with success probability at least ϵ for all inputs (x, f) in the subset

X :=
⋃

x∈{0,1}n

{x} × Fx
good. (21)

In the remainder of our proof, we let A′(x, ψ̂f ) denote the protocol that Bob runs on his side (i.e.,
generating the training data TM

x , running the algorithmA on it, and drawing a sample from π̃x(ψ̂f )).
Also, we ensure Bob does so using only classical randomized computation by classically simulating
the quantum algorithms. Next, we use Yao’s principle to show that the above randomized one-way
communication protocol implies the existence of a deterministic one-way communication protocol
that errs with probability at most

:::::::::::::
(1− ϵ) · (1− δ)

:
with respect to µ (which would violate Theo-

rem 4 since
:::::::::::::::::::
(1− ϵ) · (1− δ) > 7/8). Let A denote the family of deterministic protocols obtained

by “hardwiring” all possible internal randomizations of the evaluation of π̃x by A′, i.e.,

A = {A′
r(., .) | r ∈ {0, 1}exp(n)}. (22)
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Also, let X be the random variable with values (x, f) distributed according to the uniform distribu-
tion over X , and letA be the random variable over A where the r is uniformly random. Finally, we
define the function s : X ×A → R as

s((x, f), A′
r(., .)) = 1

[
A′

r(x, ψ̂f ) ∈ Rf (x)
]
. (23)

Theorem 5 (Yao’s principle). Let A be a random variable with values in
::
A

:
as defined in Eq. 22,

and letX be a random variable with values in X as defined in Eq. 21. Then,

min
(x,f)∈X

E [s((x, f),A)] ≤ max
A′

r∈A
E [s(X, A′

r)] (24)

where s is the function defined in Eq.23.

Observe that the quantity E [s(X, A′
r)] is precisely the success probability of the deterministic algo-

rithm A′
r ∈ A with respect to the uniform distribution over X . Thus, Eq. 24 implies the existence

of a deterministic algorithm A′
r such that

E [s(X, A′
r)] = Pr(x,f)∼U(X )

(
A′

r(x, ψ̂f ) ∈ Rf (x)
)

≥ min
(x,f)∈X

E [s((x, f),A)] .
(25)

Moreover, observe that the quantity min(x,f)∈X E [s((x, f),A)] is precisely the success probability
of the randomized algorithmA′, which we have previously shown to be at least

::::
1− ϵ. By combining

this with Eq. 25 we find that

Pr(x,f)∼U(X )

(
A′

r(x, ψ̂f ) ∈ Rf (x)
)
≥ 1−

::
ϵ. (26)

Moreover, since
::::::::::::::::::
|Fx

good| ≥ (1− δ) · 2n we find that

Pr(x,f)∼µ

(
A′

r(x, ψ̂f ) ∈ Rf (x)
)
≥ (1−

:::
ϵ) · (1−

:::
δ). (27)

Finally, since
:::::::::::::::::::
(1− ϵ) · (1− δ) > 7/8, this violates the classical hardness of HM outlined in Theo-

rem 4.

C PROOF OF THEOREM 3

Theorem 3. Let Spr = {|ψf(k)⟩⊗ℓ | f (k)(.) = PRFn(k, .), k ∈ K}, where PRF is a quantum-
secure pseudorandom function with keys K. The concept class in Definition 7 is not (ϵ, δ, psucc)-
measure-first learnable for

::::::::::::::::::::::
(1− ϵ) · (1− δ) · psucc > c

:
for any constant c > 7/8 when the distribu-

tion over input states is uniform over Spr.

Proof of Theorem 3. Suppose the concept class in Definition 7 is (ϵ, δ, psucc)-measure-first learnable
with

::::::::::::::::::::::
psucc · (1− ϵ) · (1− δ) > c

:
for a constant c > 7/8 when the distribution over input states is

uniform over Spr using a measure-first protocol given by (M,A). That is, for every πx ∈ C, with
probability at least psucc we have

Prk∼U(Kn)

(
||π̃x(f (k)::

)− πx(f
(k)
::

)||TV ≤ ϵ
)
≥ 1− δ, (28)

where f (k)(.) = PRF(k, .) and π̃x is the randomized quantum function obtained from A on input of
the form

TM
x =

{(
ψ̂f(k) , (x, y, b)

) ∣∣ (x, y, b) ∼ πx(f
(k)
::

)

and k ∼ U (Kn)

}poly(n)

i=1

.

(29)
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The main goal of the remainder of the proof is to show that the above assumptions violates the
assumption that PRF is a quantum-secure pseudorandom function. To achieve this, we devise a
quantum algorithm, denoted as Af , which

:::
has

:
query access to a function f , and which will exhibit

a significant difference in the probability of outputting 1 when provided with either a truly random
function f or a pseudorandom function f (k). In essence, Af will train a measure-first protocol on
phase states of pseudorandom functions and evaluate its performance on the provided function f ,
outputting 1 if it produces a correct sample (x, y, b) with (y, b) ∈ Rf (x). Assuming our measure-
first protocol can successfully learn the concepts for phase states of pseudorandom functions, Af

will most likely output 1 when f is pseudorandom. Conversely, if f is truly random, then based
on arguments similar to those used in the proof of Theorem 2, the measure-first learning protocol
is likely to be incorrect, leading Af to most of the time output 0. In particular, we consider the
polynomial-time quantum algorithm Af that does the following:

1. Sample x ∼ U({0, 1}n).

2. Generate a set of examples TM
x as in Eq. 294.

3. Use the learning algorithm A with set of examples TM
x to obtain a quantum algorithm A′

for π̃x.

4. Using quantum query access to f prepare |ψf ⟩⊗ℓ.5

5. Apply M to |ψf ⟩⊗ℓ to obtain ψ̂f =M
(
|ψf ⟩⊗ℓ

)
.

6. Apply A′ to ψ̂f to obtain a sample (x, y, b) and output 1 if y ∈ Rf (x), and 0 otherwise.

By the Eq. 28 and the paragraph leading up to it, we know that

Prk∼U(Kn)

[
Af(k)

= 1
]
≥ psucc · (1−

:::
ϵ) · (1−

:::
δ) > c. (30)

On the other hand, from the classical lower bound for the HM problem in Theorem 4, we know that

Prf∼U({0,1}N )

[
Af (.) = 1

]
≤ 7/8. (31)

In particular, if Eq. 31 does not hold, then one can construct a one-way communication protocol
for HM that succeeds with probability at least 7/8 with respect to µ by having Bob perform steps
(2) − (3), having Alice perform steps (4) − (5), and sending ψ̂f to Bob to perform

::
the

::::
first

:::
part

::
of step (6)

:::::
where

::::
they

::::::
obtain

:::
the

::
a

::::::
sample

:::::::
(x, y, b). In summary, we conclude that the measure-

first protocol, when trained on phase states of pseudorandom functions, cannot generalize well to
truly random functions based on the lower-bound established for the HM problem in Theorem 4.
Moreover, given our assumption that the concept class C in Definition 7 is (ϵ, δ, psucc)-measure-first
learnable on phase states of pseudorandom states, it has to generalize well to other pseudorandom
states. This implies a distinctive behavior of the “benchmarking algorithm” Af when provided with
access to either a pseudorandom function f (k) or a truly random function f . In other words, we thus
conclude that Eq. 30 and Eq. 31 are in contradiction with the assumption that PRF is a quantum-
secure pseudorandom function.

D
:::::
TWO

::::::::::::
EXAMPLES

:::
OF

:::::::::::::::::
MEASURE-FIRST

:::::::::::::
PROTOCOLS

::
To

::::::::
elaborate

::
on

:::
the

:::::::::
definition

::
of

:::::::::::
measure-first

::::
(MF)

::::::::
protocols

:::::
(i.e.,

::::::::
Definition

::
5)

::::
and

::::
their

:::::::
potential

::::::::::
capabilities,

:::
we

::::::
present

::::
two

:::::::
concrete

::::
MF

::::::::
protocols

::::
that,

::
at

::::
first

::::::
glance,

::::::
appear

:::::::
capable

::
of

::::::
solving

::
the

::::::::
learning

::::
task.

::::::::
However,

:::
in

::::
each

::::
case,

:::
we

:::::::
identify

:::::::::::
fundamental

::::::
reasons

:::
for

:::::
their

::::::
failure,

:::::
which

:::::::
highlight

:::
the

:::::::::
limitations

::
of

::::
MF

::::::::
protocols.

:

4Note that we can do so efficiently using a quantum algorithm since we only consider phase states of
pseudo-random functions.

5This step is also efficient both for random and pseudorandom function since we suppose oracle access to
f .
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D.1
::::::::::::::
MEASURE-FIRST

::::::::::
PROTOCOL

::::::
BASED

:::
ON

::::::::::
CLASSICAL

:::::::::
SHADOWS

:::
One

::::::::
plausible

::::
MF

:::::::
protocol

::::::::
leverages

:::
the

::::::::
classical

::::::
shadow

::::::::::
framework

:::::::::::::::::
Huang et al. (2020a).

:::::
Here,

::
the

::::::::::::
measurement

:::::::
strategy

:::
M

:::::
takes

::
as

:::::
input

::::::::
multiple

::::::
copies

::
of

:::::
each

::::
state

:::::
|ψf ⟩:::

and
:::::::::

generates
:
a

:::::::
classical

::::::::::::
representation

:::
ψ̂f ::

by
::::::::::
performing

::::::::::
randomized

::::::::::::
measurements

::
as

:::::::::
prescribed

::
by

:::
the

:::::::
classical

::::::
shadow

:::::::
protocol

:::::::::::::::::
Huang et al. (2020a)

:
.
:::
The

:::::::
learning

::::::::
algorithm

::
A
::::
can

:::
then

::::
use

::
the

:::::::
training

::::
data

:::
T̂x :

to

::::::::
determine

::
x

:::
and

::::::
output

:
a
:::::::::
hypothesis

:::
hx.

:::::
This

:::::::::
hypothesis

:::::
would

:::
use

:::
the

::::::::
classical

::::::::::::
representation

::̂
ψf

::
to

::::::
predict

:::
the

::::::
correct

:::::
labels

::::::::
associated

:::::
with

:
f
:::
by

::::::::::::
approximating

:::
the

::::::::
outcomes

::
of

:::
the

:::::::
POVMs

::::
Ex

j .

::::::::
However,

:::
for

:::
the

:::::::::
hypothesis

:::
hx ::

to
:::::::
generate

:::::::
samples

:::::
(y, b)

::::
that

:::
are

::::
close

:::
in

::::
total

:::::::
variation

:::::::
distance

::
to

::
the

:::::
target

::::::::::
distribution

:::
Λx,

:::
the

::::::::
precision

:::::::
required

:::
on

::::
each

::::::
POVM

:::
Ex

j :::::
must

::::
scale

::::::::::::
exponentially.

::
As

:
a
:::::
result,

:::
the

:::::::
number

::
of

::::::
copies

::
N

::
of
:::::
|ψf ⟩:::::::

required
::
by

:::
the

::::::::
classical

::::::
shadow

::::::::
protocol

::
to

::::::
achieve

::::
such

:::::::
precision

::::
also

:::::
grows

::::::::::::
exponentially.

:::::::::
Therefore,

:::
this

::::
MF

:::::::
protocol

::::
fails

:::
due

::
to

::::::::::
fundamental

:::::::::
limitations

::
in

:::::::::
efficiently

:::::::::::
compressing

::::::::::::
pseudorandom

::::::
phase

:::::
states

::::
into

::::::::
classical

:::::::::::::
representations

:::::::
capable

::
of

::::::::
achieving

:::
the

::::::::
required

::::::::::
exponential

:::::::::
precision.

:::
In

::::
this

:::::
sense,

::::
our

:::::
result

::::
can

::::
also

:::
be

:::::::::
interpreted

::
as

:
a
::::::

lower
:::::
bound

:::
on

:::
the

:::::::
number

:::
of

::::::
copies

:::::::
required

:::
for

::::
any

::::::::::::
shadow-based

::::::::
procedure

:::
to

::::::
recover

:::::::::
observables

::::
with

::::::::::
exponential

:::::::::
precision.

D.2
::::::::::::::
MEASURE-FIRST

::::::::::
PROTOCOL

:::::
WITH

::::::::
CIRCUIT

:::::::::
LEARNING

:::::::
Another

:::::::
potential

::::
MF

:::::::
protocol

:::::
could

:::::::
attempt

::
to

:::::::
directly

::::
learn

::
a

::::::::::::::::
polynomially-sized

:::::::::
description

::
of

::
the

::::::
circuit

::::
that

::::::::
prepares

:::
the

::::::::::::
pseudorandom

::::::
states

:::::
|ψf ⟩. :::

By
:::::::::

definition,
:::::::::::::

pseudorandom
:::::
states

:::
are

::::::::
efficiently

:::::::::
preparable

::::
and

::::::
always

:::::
admit

::::
such

::
a
::::::
circuit.

:::
In

:::
this

:::::::::
approach,

:::
the

:::::::::::
measurement

::::::
scheme

::
M

::::::
would

::::
take

::
as

:::::
input

:::::::
multiple

::::::
copies

::
of

:::::
|ψf ⟩:::

and
:::::::

attempt
::
to

:::::
infer

:::
this

::::::
circuit

::::::::::
description.

::::
The

:::::::
learning

::::::::
algorithm

::
A

::::::
would

::::
then

:::
use

:::
the

:::::::
training

::::
data

:::
T̂x::

to
:::::::::
determine

:
x
::::

and
::::::
output

:
a
:::::::::
hypothesis

:::
hx.

::::
The

:::::::::
hypothesis

:::
hx:::::

could
:::
use

:::
the

:::::::
learned

::::::
circuit

::
to

:::::::
recreate

:::
the

::::
state

:::::
|ψf ⟩ :::

and
:::::::::
implement

:::
the

:::::::::::
measurement

:::
Λx.

:

::::::::
However,

::::::
despite

:::
the

::::::::
existence

::
of

::
a
:::::::::::::::
polynomial-depth

::::::
circuit

:::
that

::::::::
prepares

::::
|ψf ⟩,::::

our
::::::
results

::::
show

:::
that

:::
no

:::::::
efficient

:::::::::::
measurement

:::::::
strategy

::
M

::::
can

::::::
extract

:
a
:::::::
succinct

:::::::
classical

::::::::::
description

::
of

:::
this

::::::
circuit.

::::
This

:::::
failure

:::::
arises

:::::
from

:::
the

:::::::
inherent

:::::::::::::::
pseudorandomness

::
of

:::
the

::::::
states,

:::::
which

:::::::
ensures

:::
that

:::
no

::::::
efficient

:::::::::::
measurement

:::::::
strategy

::::
can

::::::::
compress

::::
the

::::::::::
information

:::::::::
contained

::
in

:::::
|ψf ⟩::::

into
::
a
::::::
usable

:::::::
classical

:::::::::
description.

::::::::::::
Consequently,

::::
this

:::
MF

:::::::
protocol

::::
also

::::
fails

::
to

:::::::
achieve

::
the

::::::::
learning

::::
goal.

:

:::::
These

::::::::
examples

::::::::
highlight

:::
not

::::
only

:::
the

:::::::::
challenges

:::::
faced

::
by

::::
MF

::::::::
protocols

:::
but

::::
also

:::
the

::::::::::
fundamental

:::::::::
separations

::::::::
between

::::
MF

:::
and

:::::
fully

::::::::
quantum

:::::
(FQ)

:::::::::
protocols.

::::::
They

::::::::
illustrate

::::
the

::::::::
difficulty

::
of

::::::::
efficiently

:::::::::::
compressing

::::::::::::
pseudorandom

::::::
phase

:::::
states

::::
into

:::::::
classical

:::::::::::
descriptions

::::
that

:::::
retain

::::::
enough

:::::::::
information

:::
for

:::
the

:::::::
machine

::::::::
learning

::::
task.
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