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Abstract. Combinatorial optimization (CO) problems are traditionally addressed
using Operations Research (OR) methods, including metaheuristics. In this study,
we introduce a demand selection problem for the Vehicle Routing Problem (VRP)
with an emission quota, referred to as QVRP. The objective is to minimize
the number of omitted deliveries while respecting the pollution quota. We fo-
cus on the demand selection part, called Maximum Feasible Vehicle Assignment
(MFVA), while the construction of a routing for the VRP instance is solved using
classical OR methods. We propose several methods for selecting the packages
to omit, both from machine learning (ML) and OR. Our results show that, in
this static problem setting, classical OR-based methods consistently outperform
ML-based approaches.
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1 Introduction

Due to climate change, nations must implement measures to reduce emissions and miti-
gate its critical and far-reaching consequences. Local authorities, in particular, are work-
ing to minimize their environmental footprint by restricting the emission of greenhouse
gases such as CO2 and other pollutants. One example is the establishment of Low
Emission Zones, developed in several European cities to limit access for polluting de-
livery vehicles. This study focuses on supply chain management, with an emphasis on
reducing emissions generated during the delivery process.
Under stringent emission constraints or quotas, transporters are compelled to delay or
cancel certain demands. The primary objective of this work is to determine the optimal
selection of demands to maximize the number of accepted deliveries.
We decompose the demand selection problem into two distinct layers, representing
two simpler subproblems where the ML methods can be used to select demands. The
first layer, referred to as the assignment layer, selects the demands to be delivered and,
optionally, assigns a vehicle to each demand. The second layer, termed the routing
layer, computes the routes for the resulting VRP instance based on the vehicles’ cost
matrices. For the routing layer, we employ classical methods, such as the guided local
search (GLS) algorithm from the OR-Tools library [27].
Subsequently, we employ well-established methods, such as dynamic programming and
metaheuristics, to establish baseline results. Building on this foundation, we focus on
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learning-based approaches to address the problem. Our objective is to design and eval-
uate methods that combine operational research (OR) techniques and learning-based
strategies, incorporating varying levels of hybridization with the routing component,
which is solved using OR techniques. We compare the performance of these methods
in terms of both computational efficiency and solution quality.

Related Works Traditionally, combinatorial optimization problems have been addressed
using operations research (OR) methods such as linear programming (LP), dynamic
programming (DP), and metaheuristics [12]. In the context of our study, some re-
searchers have sought to reduce emissions in the VRP alongside costs by employing in-
teger linear programming within multi-objective optimization frameworks [25]. While
LP and DP encounter scalability challenges for large problem instances, metaheuristic
methods such as simulated annealing (SA) often provide robust performance even in
these cases [16].
The environmental impact of VRPs has been the focus of several studies [11], most of
which rely predominantly on OR techniques, particularly metaheuristics. For example,
[37] incorporates fuel costs, carbon emissions, and vehicle usage costs into the tradi-
tional VRP, creating a low-carbon routing problem model. Similarly, [29] integrates
customer satisfaction alongside cost and carbon emissions, revealing a trade-off be-
tween reducing emissions and maintaining customer satisfaction.
Other studies approach this problem as a multi-objective optimization task, where car-
bon emissions are optimized alongside criteria such as cost and waiting time [9,28,19,4].
Research has explored the application of reinforcement learning (RL) across various
domains related to OR, including combinatorial optimization [24], scheduling [7], and
specific supply chain challenges [6,8,26]. In [21], a graph convolutional network (GCN)
is employed to predict high-granularity, time-dependent traffic speeds, combined with
a hybrid genetic algorithm and adaptive variable neighborhood search to achieve low-
carbon vehicle routing.
Several studies have integrated machine learning (ML) and deep learning into meta-
heuristics to enhance their performance [35,32]. Others have employed specialized neu-
ral network architectures to tackle combinatorial optimization problems [5,22], while
multi-agent approaches have also gained attention [3,13,23].
For solving the Traveling Salesman Problem (TSP) and Vehicle Routing Problems
(VRPs), traditional methods remain highly effective. The state-of-the-art solver Con-
corde [1] provides optimal solutions for TSP, the Lin-Kernighan Heuristic (LKH) [14]
is an approximate algorithm capable of solving both TSP and VRP, often yielding near-
optimal solutions, and Hybrid Genetic Search (HGS) [36] has proven to be one of the
best metaheuristic algorithms for VRP. However, both heuristic and metaheuristic meth-
ods lack formal asymptotic guarantees on performance.
In recent years, learning-based approaches have been applied to VRPs, particularly
using deep neural networks (DNNs). Some studies leverage DNNs to learn heuris-
tics for dynamic programming [17], while others utilize RL or multi-agent RL ap-
proaches [26,13,23], or integrate attention mechanisms [18]. Although these methods
have shown interesting results, they generally fail to outperform classical OR methods
in terms of efficiency and solution quality.
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A promising direction lies in hybrid approaches, where an agent learns to partition
the problem and delegates tasks to local searchers based on metaheuristics [20]. This
method has demonstrated strong results, outperforming other learning-based approaches
in scalability, computational efficiency, and solution quality when compared to tradi-
tional OR techniques.

Our Contributions We introduce MFVA a demand selection problem with a static set
of demands, formulated as a combinatorial optimization problem, which we decompose
into an assignment layer and a routing layer. To the best of our knowledge, this problem
is rarely addressed in the literature on delivery and commodity transportation services,
as classical VRPs often assume that all deliveries are to be served, or it is outsourced
by paying a penalty [33].
We propose and implement several approaches to solve this problem, including oper-
ations research (OR) methods and reinforcement learning (RL)-based techniques. In
particular, we try the state of the art actor-critic method Proximal Policy Iteration [31]
to train a neural network to solve the selection problem, and we also try decentralized
multi-agent learning methods such as EXP3 [2] and LRI [30]. Our findings demonstrate
that classical OR methods, particularly those based on metaheuristics, remain more ef-
ficient and outperform RL-based methods in this context.

2 Problem Setting

We denote the set of integers {1, . . . , n} by [n]. We model a transporter that seeks
to distribute packages to d different destinations from one single hub or warehouse.
We represent the destinations (or equivalently the packages) by integers in [d], and
the hub vertex is represented by 0. We let q be the function from [d] to N∗, such that
q(i) represents the quantity of product to be delivered at destination i. We are given a
distance matrix D between all pairs of destinations, we denote by D[i, j] the distance
between i and j.
A route r is an ordered list of destinations in [d], without repetition, which begins and
finishes with the hub vertex 0: (d0 = 0, d1, . . . , dk = 0). The length of a route r is the
sum of the distances between consecutive destinations in r: len(r) =

∑k−1
i=0 D[di, di+1].

We denote by D(r) the set of destinations reached in route R, that is all di for 0 < i < k.
We define the load of a route as the total quantity which must be delivered to destina-
tions in the route: load(r) =

∑k−1
i=1 q(di).

A vehicle v is a triple (Capv, Efv, Cfv), where Capv is an integer representing the
capacity of the vehicle, Efv and Cfv are rationals, respectively the emission fac-
tor, and the cost factor of the vehicle. We define the emission of a vehicle v follow-
ing route r as emv(r) = Efv × len(r) and the cost of a vehicle v following r by
costv(r) = Cfv × len(r). In this work, we have chosen to make emission and cost
depend linearly on the length of the route, which is enough to model real logistic prob-
lems quite accurately. The different values of the coefficients Cfv and Efv , enable us
to model different types of vehicles and engine technologies.
The fleet of a transporter V is a set of vehicles. Each vehicle has its own capacity, emis-
sion factor and cost factor. A routing R is a function mapping each vehicle v ∈ V
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to a route Rv , such that each vehicle transports less than or equal to its capacity:
load(Rv) ≤ Capv . We denote by D0(R) the set of packages which are not deliv-
ered when following the routes of R: D0(R) = D \ ∪v∈VD(Rv). We define the cost
of a routing R as the sum of the costs of the vehicles: cost(R) =

∑
v∈V costv(Rv).

Similarly, the emission of a routing R is the sum of the emissions of the vehicles:
em(R) =

∑
v∈V emv(Rv).

In our settings, the transporter must respect strong emission regulations set by governing
bodies, as represented by an emission quota denoted by Q. A routing R is admissible
only if its emissions are less than the quota: em(R) ≤ Q. Therefore, we tackle the
vehicle routing problem under a quota denoted by QVRP defined as follows: given
a matrix of distances D, a quantity function q, a set of vehicles V , a quota Q, compute
a routing R such that em(R) ≤ Q, which minimizes cost(R).
However, the particularity of our problem is that the constraint on emissions cannot be
satisfied while delivering all packages: QVRP is typically infeasible. Hence, the trans-
porter has to omit some packages, and we face the problem of selecting the packages to
omit. Consequently, the routing R might not include all destinations. For quality of ser-
vice reasons, our main objective in this paper is to minimize the undelivered quantity,
that we define as Oq(R) for Omitted quantity: Oq(R) =

∑
i∈D0(R) q(i). Moreover,

given an omitted quantity, if possible minimum, we want to minimize the cost of the
routing used to deliver the non-omitted packages.
Thus, we introduce the problem maximum feasible vehicle assignment (MFVA) de-
fined as follows : given a matrix of distances D, a quantity function q, a set of vehicles
V , a quota Q, compute a vehicle assignment with maximum cardinality for which there
exists a (minimum cost) routing R such that em(R) ≤ Q, which minimizes in lexico-
graphic order (Oq(R), cost(R)).
A vehicle assignment a is a mapping from [d] to {0} ∪ V . If a(i) = v, it means that
vehicle v delivers the package at destination i, while a(i) = 0 means that no vehicle
delivers the package at destination i. A routing R respects a vehicle assignment a if for
each vehicle v, D(Rv) = a−1(v). The cardinal of an assignment a is the number of
i ∈ [d] such that a(i) ∈ V . We alternatively consider the simpler omission assignment
a, a function from [d] to {0, 1}, where a(i) = 0 means that no vehicle delivers the
package at i, while a(i) = 1 means that a vehicle must deliver it. A routing R respects
an omission assignment a if D0(R) = a−1(0).
To make MFVA more tractable, we decompose it into two interacting subproblem lay-
ers: (i) choosing an assignment and (ii) finding the best routing respecting this assign-
ment.

Assignment Layer. This layer consists in choosing a vehicle assignment which is then
given to the routing layer, which produces a routing respecting this assignment. The
choice of a vehicle assignment (and the corresponding routing layer resolution) is re-
peated many times, by using different algorithms, to converge to an efficient assign-
ment.
We model the routing layer by a function f which returns a routing from an instance
I = (D, q,V, Q) of MFVA and an assignment a. The computed routing f(I, a) must
satisfy the capacity constraints given in V and must respect the vehicle assignment a
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(or the omission assignment a), but it may not respect the emission quota Q if it is not
possible.
Hence, the problem solved in the assignment layer is the following, given I and f ,
compute a such that em(f(I, a)) ≤ Q and (Oq(f(I, a)), cost(f(I, a))) is minimal in
lexicographic order.

Routing Layer. In the routing layer, we are given a MFVA instance along with a vehi-
cle/omission assignment, and we must produce a routing which respects the assignment
and the quota if possible.
To solve MFVA on the assignment layer, an algorithm may query the routing layer
many times, which is very time-consuming, since it corresponds to solving many in-
stances of an NP-hard problem in the routing layer. Hence, we also consider a simpler
variant of MFVA, where we are given a single routing R from the instance I , and we
must remove packages in the routing R, to satisfy the emission constraint.
We say that R′ is a subrouting of R, if it can be obtained by removing elements in the
routes of R except the hub. We define the problem SHORTCUT as follows, given a set
of vehicles V , a routing R, a quota Q, an integer k, compute, if it exists, a subrouting
R′ such that em(R′) ≤ Q and Oq(R′) ≤ k, which minimizes cost(R′). This problem
serves as a low complexity variant of MFVA to test the quality of our methods and to get
bounds on the optimal solution. However, the optimal solution to this problem depends
on the choice of the initial routing R and can be arbitrarily far from the solution of the
original QVRP instance, as we prove in appendix A.

3 Solving the Routing Layer

Vehicle assignment When the routing layer is provided with a vehicle assignment, we
solve a Capacitated Traveling Salesman Problem (CTSP) for each vehicle. The given
vehicle assignment a determines the set of packages a−1(v) that each vehicle v must
deliver. Since both emissions and costs are proportional to the total route length for a
vehicle, minimizing the route length suffices to achieve the lowest emissions and costs
while respecting a. We use the Nearest Neighbor algorithm, a simple heuristic, due
to the need for solving this problem multiple times efficiently. This algorithm greedily
constructs a route starting from the hub by selecting the cheapest unvisited destination
from the current location. If adding a destination exceeds the vehicle’s capacity, it is
skipped.

Omission assignment When the routing layer is provided with an omission assignment,
the problem is a QVRP, since no omissions on the selected packages. The primary chal-
lenge lies in balancing the dual objectives of cost minimization and quota adherence,
which may conflict. To manage this, we combine cost and emissions into a single opti-
mization value.
For each vehicle v, we define a new distance matrix between destinations Dλ

v = CfvD+
λEfvD where λ is a constant. The parameter λ1 must be large enough to prioritize

1 The value of λ chosen for our experiments is given in appendix C.
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lower emissions, ensuring compliance with the quota, but not so large that it disregards
cost optimization.
To solve QVRP, we use the classical VRP approach with the distance matrix Dλ

v for
each vehicle v. This is implemented using the or-tools library, a widely used open-
source tool for solving combinatorial optimization problems. For relatively small in-
stances such as ours, it provides optimal or near-optimal solutions. An initial solution is
generated using a greedy algorithm similar to the Nearest Neighbor approach, applied
sequentially to each vehicle. This solution is then refined using Guided Local Search
(GLS) [12] until a predefined time budget is reached.

4 Methods for Solving the Assignment Layer

First, we propose different heuristics that solve MFVA on the assignment layer, ei-
ther for omission assignment or for vehicle assignment, and an exact algorithm for the
SHORTCUT problem.
Our objective is then to understand the relevance of learning-based methods, in particu-
lar Reinforcement Learning (RL) and multi-agent learning algorithms. We aim to com-
pare these sophisticated techniques with classical OR methods. As explained earlier,
we tackle the MFVA used in the routing layer in two ways: with vehicle assignment or
with omission assignment. To compute the assignments, we adopt two main strategies:
either beginning with an initial assignment and iteratively adjusting it, or independently
deciding the fate of each package in a decentralized way.
Recall that we want to minimize in lexicographic order (Oq(f(I, a)), cost(f(I, a))).
To reduce our problem to the minimization of a single value, we use the loss function
LP :

LP (R) = Oq(R) · P + cost(R).

We let P be twice the largest distance from the hub. Hence, minimizing LP (f(I, a)) or
(Oq(f(I, a)), cost(f(I, a))) in lexicographic order is the same.

Greedy Removal

We first design a simple greedy algorithm. We begin with a an omission assignment
such that no packages are omitted, that is [d] = a−1(1). From that, we get a routing
respecting a on the instance I: R = f(I, a).
We now build routing by removing elements from the routes of R. Let Rv be some route
of R, and its elements are Rv,0, Rv,1, . . . , Rv,lastv . Note that, for all v ∈ V , Rv,0 =
Rv,lastv = 0 is the element representing the hub where our vehicles are loaded and
come back after delivery. In this algorithm, we fix the routing R, hence an assignment
a can be interpreted as a set of pairs (v, j) representing the destination removed from
R. We define the subrouting R(a) of R as the routing R where Rv,j is removed from
Rv for all (v, j) ∈ a. We always have j > 0, since we cannot remove the first element,
which represents the hub and not a package destination.
To guide our algorithm, we must take into account the value of the current omission
assignment, but also bias it towards a routing which respects the quota. To do so, we
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define a new objective function g(a) = LP (a) + λ(em(R(a)) − Q)+ where λ > 0
is the same emission penalty coefficient defined in Section 3. Our greedy algorithm,
called Greedy Removal or Greedy for short, select at each step some pair (v, j) to
remove from a (setting a = a \ {(v, j)}) which minimizes g. When we get an omission
assignment a such that R(a) respects the quota, we return it.
The described algorithm work on a fixed routing R, hence it solves the simple SHORTCUT
problem.

Dynamic Programming

We give a dynamic program to optimally solve the SHORTCUT problem, the simplified
version of the assignment layer where the routing is fixed and destinations are removed
in the routing. Solving the SHORTCUT problem produces the best way to remove ele-
ments of bounded total quantity k from a given routing; we can then find the smallest k
such that the emission is below the quota Q.
We solve SHORTCUT on a routing R and a vehicle fleet V . We let N = |V| and
V = {v1, . . . , vN}, hence we have an arbitrary order on the vehicles and the routes.
Furthermore, we define the value function Val(i, j, k) as the smallest length of a sub-
routing R(a) such that Oq(R(a)) = k and for all (m,n) ∈ a, m < i or m = i and
n < j. In other words, Val(i, j, k) is the length of the best subrouting of R, with omit-
ted quantity less than k, which is obtained by removing elements in the first i routes
and in the i-th route only before the j-th destination.
We denote by ∆(v, j, s) the distance avoided when we remove s consecutive destina-
tions before Rv,j in the route Rv . We have

∆(v, j, s) = −D[Rv,j−s−1, Rv,j ] +

s∑
t=0

D[Rv,j−t−1, Rv,j−t]

We denote by Oq(v, j, s) the quantity we remove in vehicle v if we remove s consecu-
tive destinations before Rv,j in the route Rv . We have

Oq(v, j, s) =

j−1∑
t=j−s−1

q(Rv,t)

The function Val satisfies the following equations for all v, j, k:

– Val(v, j, 0) = len(R): nothing is removed, we have the length of the routing R,
– Val(vi+1, 1, k) = Val(vi, lastvi

, k): removing quantity k before the first package
of the route Rvi+1

is the same as removing quantity k before the end of the route
Rvi (we use the implicit ordering of the vehicles),

– Val(v, j, k) = mins≤min(v,j−1) Val(v, j − 1− s, k −Oq(v, j, s))−∆(v, j, s) for
j > 1: we may remove any number s < j of consecutive elements before Rv,j and
we keep the choice with the lowest emission.

These equations enable us to compute Val(vN , lastvN , k) by dynamic programming.
Recall that d is the number of destinations, and we assume that a destination appears at
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most once in the routes of R. The complexity of computing all relevant values of ∆ is
in O(dmin(k, d)), since s, the number of consecutive destination removed, is bounded
by k and also by d. The dynamic program must compute O(kd) distinct values of Val
and for each it evaluates a minimum of at most d values, hence it is of complexity
O(kd2). From the computed values of Val and k, it is easy to derive a subrouting R′

with Oq(R′) ≤ k such that R′ has the smallest possible length in time O(kd2).
Assume now that all vehicles have the same emission factors and the same cost factors,
denoted by Ef and Cf . Then, minimizing the length of a subrouting minimizes the
emission and the cost simultaneously. Hence, to solve SHORTCUT, we only have to find
the smallest k, such that Ef ·Val(N, lastN , k) ≤ Q.
Now, let us consider we have t different types of vehicle. Let R1, . . . , Rt be the rout-
ing induced by a routing R on these t homogenous groups of vehicles. For each Ri

and l ≤ k, we compute in polynomial time by dynamic programming Ri(l) the sub-
routing of the smallest length satisfying Oq(Ri(l)) ≤ l. We then generate all possible
tuples of integers (k1, k2, . . . , kt) such that they sum to k. For each of these tuples,
we obtain a subrouting R1(k1), . . . , R

t(kt) of R. We test all k in increasing order,
until there is a subrouting R1(k1), . . . , R

t(kt) with emission less than Q, and we se-
lect the one of smallest cost. This algorithm solves the problem SHORTCUT in time
O(

(
k
t

)
kd2), where k is the omitted quantity in the optimal solution, since there are

(
k
t

)
tuples (k1, k2, . . . , kt) of sum k. It implies the following theorem :

Theorem 1. When restricted to instances where the fleet of vehicles has a fixed number
of different coefficients Ef and Cf , SHORTCUT ∈ P.

In our settings we typically have t ≤ 4, and k is at most of the order of d, since the
quantity of each destination is a few units. Hence, the described algorithm is efficient
in practice. However, it is not possible to give a polynomial time algorithm for t un-
bounded, since SHORTCUT is a NP-hard problem for general instances as proved in
Section A.

Simulated Annealing

We propose to use Simulated Annealing [12], a well-known metaheuristic method, to
find a global minimum in a combinatorial problem. It achieves this by evaluating and
selecting neighboring solutions in a stochastic manner, guided by a temperature param-
eter that gradually decreases over time.
Let us describe the simulated annealing algorithm solving MFVA for Omission Assign-
ment, that we call Omission Assignment Simulated Annealing or OA-SA. To evaluate
the quality of an omission assignment a during the simulated annealing, we use the
function g, described previously, applied to f(I, a). We define the neighborhood of
a as the set of assignments a′ such that a and a′ differs on a single package: |{i ∈
[d] | a(i) ̸= a′(i)}| = 1. The neighborhood exploration is done like a classical SA
algorithm. The temperature decreases exponentially with some given factor.
We also define a simulated annealing algorithm solving MFVA for Vehicle Assignment,
that we call Vehicle Assignment Simulated Annealing or VA-SA. We use the same
value function for the solutions, which are vehicle assignments. The neighborhood of a
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vehicle assignment is the set of vehicle assignments at distance 1, i.e. only one index is
changed. In this context, however, the neighborhood is larger by a factor of |V|, since
we can assign the changed destination to any vehicle instead of adding or removing it.

Reinforcement Learning

A way of learning to find optimal behavior in an environment is by training through
exploration and exploitation. This approach in machine learning is called reinforcement
learning (RL). RL is concerned with how the interacting agent ought to take actions in
an environment to maximize their expected cumulative rewards (also called return).
The environment is typically stated in the form of a Markov decision process (MDP)
that allows many theoretical guarantees. Many reinforcement learning algorithms use
dynamic programming techniques or are inspired by them. The main difference between
the classical dynamic programming methods and reinforcement learning algorithms is
that the latter do not assume knowledge of an exact mathematical model of the MDP,
and they target large MDPs where exact methods become infeasible. In RL, the agent
has to find a balance between exploration (better knowing the environment) and ex-
ploitation (using current knowledge) [34].
Modern RL algorithms seek either to approximate the value (Q function) or directly to
find the best policy πθ that maximizes the discounted return by adjusting the parameters
θ (typically neural nets’ parameters).
To apply RL algorithms for our case, we need to define our problem as a RL environ-
ment with observations, actions and rewards.

Environment : When using RL, we tackle MFVA with omission assignment, since it
has a smaller action space A: it is the discrete space [d], an action i ∈ A means the i-th
package is omitted. Let us denote by R(i) the subrouting of R, where destination i is
removed from the route where it appears in R. When action is taken, the current routing
R is replaced by R(i).
We consider episodes, which are agent-environment interactions from initial to final
states. In our context, an episode is on a fixed instance I of MFVA and consists of
removing destinations until the quota is respected. The initial state is the instance I
and the routes generated by the routing layer with all destinations included, and the
excess emission em(R)−Q. Accordingly, the final state is the state in which the excess
emission is negative or null. Thus, we consider a large MDP, constituted of multiple
independent MDPs, each of them dealing with a particular instance I . The objective,
however, is to find some regularity and common pattern among these MDPs to be able
to learn something which could work over all instances.
The state of our MDP consists in the instance I and the current routes. Therefore, the
state space of this MDP encompasses all possible instances and routes, which repre-
sents a complex and heavy observation for learning algorithms to process. As a result,
we need to select relevant observations for the learner agent to interact with this envi-
ronment. This leads us into the domain of Partially Observable MDPs (POMDPs) [34].
We construct an informative observation vector o by incorporating the λ-penalized costs
based on emissions, as described in Section 3. We also add to the state the route of each
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vehicle and the excess emissions (em(R) − Q)+. So, we have dim(o) = (d + 1)2 +
|V|(maxv∈V Capv + 2) + 1, thus, we define the observation space as O = Rdim(o).
We also tested alternative observation spaces. To expedite the learning process, we may
provide the agent with lighter observations, reducing the dimensionality. For instance,
instead of giving the entire cost matrix, we could provide only the routes along with
the cost of transitioning from the previous destination to the next, along with informa-
tion about excess emissions. However, neither of these state spaces led to improved
performance for our learning agents.
We tested other observation spaces to reduce dimensionality by providing the agent
with lighter observations. For example, instead of providing the entire cost matrix, we
provide only the routes along with the cost of going from the preceding destination to
the next, accompanied by information about excess emissions. But no alternate state
space has improved the performances of our learning agents.
Let i be the agent’s action and R the current routing on instance I . Recall that R(i)
is the subrouting induced by the elimination of the destination i from the routing R
and q(i) be the quantity demanded by the destination i, the rewards are computed as
P

∑
j∈[d] q(j)−LP (R(i))

P
∑

j∈[d] q(j)
if (em(R(i))−Q)+ > 0 and 0 otherwise. LP is the loss function

defined before. Hence, the reward represents the relative gain over the cost of omitting
all packages in range [0, 1].

RL Model : The state-of-the-art algorithms, such as Proximal Policy Optimization
(PPO) [31], which we use in this work, operate within an actor-critic framework. This
actor-critic method involves approximating both the actor function π and the value func-
tion V , which serves as the critic in the algorithm. Typically, parameterized functions
πθ and Vσ are employed, with θ and σ denoting the parameters of each function. Mod-
ern reinforcement learning (RL) techniques leverage neural networks and deep learning
to optimize these parameters, which is why they are often referred to as deep reinforce-
ment learning methods.
In our implementation, we employ a five-layer Multilayer Perceptron (MLP) network to
generate a feature vector. The parameters of these layers are shared between the actor
and value functions. Each function then utilizes this feature vector to produce either
the value or the probability distribution over actions through a straightforward linear
regression process. The parameters are updated based on the rewards obtained in each
episode.
In our model, since selecting a previously executed action has no impact, we incorporate
a mask to exclusively consider remaining actions. This variant is known as Maskable
PPO [15], where the probability of choosing invalid actions is set to zero, and the ac-
tion is selected according to the renormalized probability distribution of the remaining
actions. This avoids unnecessary actions, thereby accelerating the learning process.

Multi-agent Learning

We solve the MFVA in a multi-agent model, in which each package is an agent. To make
the routing layer fast enough, routes are calculated by the Nearest Neighbor algorithm
described in Section 3. Each package k is an agent that chooses its vehicle ak ∈ V∪{0}.
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Then, they either observe their collective reward r(a), or an individual one rk(a) with
a = (a1, . . . , aK). Let Dλ[v] = Dλ

v , with Dλ
v the penalized cost matrix constructed

in Section 3. Let a(i) be the attributed vehicle of the destination/package i, prec(i) be
the precedent destination before i, and next(i) the next destination after i in the route
Ra(i). Let ∆ be the marginal gain function when we omit a destination, as defined in
Section 4. We define the marginal cost vector δ as

δi = ∆(a(i), prec(i), next(i))

Let LCF(v) be the local cost function that represents the total cost of the vehicle v’s
tour with the cost matrix Dλ

v and the omission penalties of that vehicle. The omission
penalty is added when the capacities required by the packages assigned to the vehicle v
outnumber the capacity of the latter. Formally,

LCF(v) = cost(Rv) + Oq(Rv)P + λ emv(Rv)

So we have, with the assignment/action vector a,

L(i)
P (a) = −

(
δi

maxj δj
+

LCF(a(i))−minj LCF(j)
maxj LCF(j)−minj LCF(j)

)
In the multi-agent case, we only consider the vehicle assignment. If the number of
packages assigned to a vehicle exceeds its capacity, the packages with higher indices
are omitted, and a penalty is added to the LCF cost. This penalty impacts all packages
in the affected vehicle.
We consider two classical methods for the multi-agent learning, LRI [30] and EXP3 [2].
These algorithms operate without any contextual information or observation, focusing
solely on learning the optimal policy through observations of the rewards obtained from
their actions. Each agent i receives the reward defined as −L(i)

P (a). This reward ac-
counts for both individual and collective performance. This reward is normalized and
is in [−2, 0] which helps with the convergence of our decentralized learning algorithms
to a relevant solution.

5 Experimental Results

For the experimental results2, we consider different scenarios with varying numbers
of unique destinations. First, we compare the performance of the methods when all
packages i have the same quantity q(i) = 1 for 100 destinations. Next, we evaluated
the methods with varying quantities for each package, for 20 destinations only. The
instances are generated randomly, following a distribution derived from real delivery
data in France (see details in appendix C).
First, we evaluate all methods except the RL approach to identify the best baseline
methods for comparison with the RL method. We run the algorithms over 100 different
randomly chosen instances and compare their relative performance against the optimal

2 The code is available online at https://github.com/Farid-Najar/
TransportersDilemma.
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Fig. 1: The performance of different methods over 100 instances with the same parame-
ters. On the vertical axis, the rewards relative to a reference algorithm (higher is better)
or execution times (lower is better).

algorithm for the SHORTCUT problem, i.e., dynamic programming. For the d = 20
scenario, we exclude LRI from the experiments due to its poor performance in previous
tests and its consistent underperformance compared to EXP3. In these experiments, the
routes are fixed for algorithms working with omission assignments, effectively solving
the simpler SHORTCUT problem.
We begin with methods that make omission assignments on fixed routes and compare
them with vehicle assignment methods in Figures 1. The comparison is made using the
reward defined for RL methods. The results indicate that dynamic programming (DP) is
the most efficient among the omission assignment methods, while VA-SA outperforms
all other methods. This highlights the importance of adjusting routes in QVRP to con-
struct optimal solutions. This phenomenon is further illustrated in Figures 10 and 11 of
the appendix: the routing in classical VRPs, which partitions the destinations, differs
significantly from the best routing for QVRP, where less pollutant vehicles are required
to take longer routes in order to respect the emission quota.

Fig. 2: The performance of different methods for d = 20 with destinations that have
different quantities over 100 instances with same parameters.

All algorithms demonstrated reasonable execution times. The greedy removal method
also yielded relatively good results while being faster than the other methods. On the
other hand, LRI failed to find a valid solution, whereas EXP3 was able to converge
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to a valid solution, achieving results comparable to VA-SA in the d = 20 case. This
is notable considering that EXP3 agents have limited information about the instances,
relying solely on the rewards received from their interactions with the environment, and
their routes are suboptimal in terms of distance.

Fig. 3: The performance of the RL agent compared to other methods. The experiments
are done on a single instance, with the same routes and destinations at every episode.
The learning curves is the mean over 10 different instances picked randomly.

For the RL agents, we first trained them on one instance to see if they were able to learn
in this case. As we can see in Figure 3, the RL agent converged to a solution nearly as
good as the one given by DP surpassing Greedy.

Fig. 4: The performance of the RL agent trained on 200 different instances compared to
the average performance of DP in the scenario with d = 50. On the right-hand side, we
keep 80% of destinations unchanged in all instances.

We also trained the RL agent on a variety of instances, hoping it would generalize to all
instances with a given number of destinations. However, it failed to learn anything, as
shown on the left side of Figure 4. When trained on a dataset where 80% of the desti-
nations remained unchanged, the RL agent was able to learn, although it still could not
outperform the solution found by DP. Specifically, it learned to route the 80% of desti-
nations that remained constant, but it was unable to adapt to the changing destinations.
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6 Discussion

We addressed the demand selection problem in QVRP, a VRP with a strict emission
constraint and the option to omit deliveries to comply with this constraint. Specifically,
we studied MFVA, an assignment problem interacting with a QVRP.
We developed and compared several methods based on classical OR and machine learn-
ing (ML). Our experiments showed that OR methods, particularly simulated annealing,
outperformed ML approaches in terms of efficiency. The reinforcement learning (RL)
agent failed to surpass classical algorithms on large instances, and only achieved similar
results on small instances at the cost of increased computation time. This finding aligns
with prior studies [5,22,20,8,13,23]. Additionally, RL struggled to generalize across all
problem instances.
Decentralized learning algorithms, such as EXP3, demonstrated promising results given
their limited problem knowledge but remained slower and less effective than simulated
annealing.
Our results suggest that pure learning and end-to-end approaches may not be well-
suited for combinatorial problems, at least in static settings. Future work will focus on
extending these methods to dynamic variations of the problem, where learning-based
approaches are expected to perform better.

Acknowledgments. This work was supported by the French LabCom HYPHES (ANRS-21-
KCV1-0002).
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A Limits to the use of SHORTCUT as a proxy for QVRP

Hardness of Shortcut

We prove that when all vehicles have different cost and emission functions, SHORTCUT
is NP-hard to solve. Hence, the only theoretical question left is whether there is an FPT
algorithm with parameter the number of different types of vehicles.

Theorem 2. SHORTCUT is NP-hard.

Proof. We consider the KNAPSACK problem, where we are given (C, V, k, (ci, vi)i∈[n]),
and we must decide whether there is a set of indices I , such that

∑
i∈I ci ≤ C and∑

i∈I vi ≥ V . Since KNAPSACK is NP -complete [10], we give a Turing reduction
from KNAPSACK to SHORTCUT to prove its NP-hardness. We build a routing R =
(R1, . . . , Rn) such that Ri = (d0, di, d0) and the destination di is chosen to be at dis-
tance vi/2 of d0, hence the length of Ri is equal to vi. We set all emission factors of the
vehicles to 1, the quantity of each destination to 1 and the quota to Q =

∑
i∈[n] vi −V .

Therefore, if we consider a set I ⊆ [n] of elements, and we remove the single destina-
tion in the route Ri for i ∈ I , the quota is satisfied if and only if

∑
i∈I vi ≥ V .

We let B be the maximum of the ci. We set the cost factor of the vehicle following Ri

to B−ci
2vi

, such that the cost of Ri is equal to B − ci. Hence, solving SHORTCUT for the
instance we have built and k the number of destinations to remove, gives us, if it exists,
I of size k which minimizes the cost of R(I) and satisfies

∑
i∈I vi ≥ V . Minimizing

the cost of R(I) means maximizing the length removed, that is
∑

i∈I B − ci. It is thus
equivalent to minimizing

∑
i∈I ci since I is of fixed size k and B a constant. Therefore,

if it is possible for
∑

i∈I ci ≤ C, then the solution given by solving SHORTCUT satisfies
this constraint. Therefore, solving the SHORTCUT instance we have built for all k, we
can decide whether the original instance of KNAPSACK has a solution.

Quality of SHORTCUT solution as a heuristic for QVRP

Here, we prove that using a solution to the SHORTCUT problem as a heuristic to solve
QRVP may be very far from optimal.
We consider an instance with n destinations d1, . . . , dn each of quantity 1 and their
distances from the hub d0 are D[0, i] = 2i. We have n vehicles of capacity 1, the
emission factor of vehicle i is 2−i for all i ∈ [n] and the cost factors are equal to 1.
When we produce a good first routing without removing destinations in the routing
layer, we try to minimize the emission. Here, the routing R where Ri = (d0, di, d0)
has an emission of 1 for each route. Hence, we have e(R) = n, and this routing has
minimal emission. We let the quota be Q = n/2. If we solve the problem SHORTCUT
on this instance, since we must minimize the number of elements to remove to respect
the quota, we have to remove the destinations of exactly n/2 vehicles. To minimize the
cost, we must remove the destinations of the n/2 last vehicles which have the largest
cost.
If we solve optimally the problem QVRP on the same instance, we get a different so-
lution. It is always better to remove the destinations with the largest distance to the hub
and to avoid the first vehicles with the largest emission functions. Hence, if we remove
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the last destination, and we do not use the first vehicle, we have a routing of emission
(n − 1)/2 < Q. Therefore, the optimal solution of QVRP only requires removing a
single destination, while the solution to SHORTCUT requires removing half the desti-
nations. Hence, using a solution to SHORTCUT as a heuristic to solve QVRP can be
arbitrarily bad, even though in experiments it gives reasonable results, see Section Ex-
periments.
By modifying the cost factor, it is also possible to prove that the gap in cost can be
arbitrarily large. We could also prove smaller gaps in the number of packages to remove
when the cost and emission factors are all within some fixed range.

B Details On RL

RL methods are implemented using Stable Baselines 3. The value function and
the policy function share the same NN parameters for the feature function, upon which
we add a last independent linear layer for each function. The feature function’s model
is a simple feed forward linear NN in 5 layers with sizes [4096, 2048, 2048, 1024, 512]
respectively for each layer. We use the ReLU function as the non-linear activation func-
tion. The optimization process is done using the Adam optimizer. The rest of the hyper-
parameters are by default parameters of the Maskable PPO in Stable Baselines
3.
For the results of the RL on one instance (as shown in the submitted article), we take
a particular instance and train the RL agent over the same instance at every episode.
On the other hand, in the experiments of the RL for multiple instances, we change the
instance at every episode.

C Details On Methods and Experiments

The code to reproduce the experiments is available online3. Experiments are done on a
MacBook Pro M1 with 16Go of RAM.

Real data We generate 200 instances for each scenario. The destinations are drawn
from the anonymized data provided by a company. The frequency of the deliveries are
used as a probability vector to draw destinations. The distance matrix is computed using
the longitude and the latitude of the destinations. The emission quota Q is fixed arbitrary
equal to 125 for d = 100, 100 for d = 50 and 75 for d = 20.

Synthetic data We generate 200 instances for each scenario. The destinations are drawn
uniformly at random on a plane of dimension 12×12. The distances between two nodes
are then computed using the Euclidean distance in the plane. The emission quota Q is
fixed arbitrary equal to 10 for d = 20, and 20 otherwise.

3 https://github.com/Farid-Najar/TransportersDilemma
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Shared between synthetic and real data Our instances have four vehicles4: one electric
vehicle of emission factor 0, one hybrid of emission factor 0.15 and 2 diesels of emis-
sion factor 0.3. All vehicles have the same capacity, which is chosen with respect to the
number of vehicles and the total capacity necessary for delivering all packages.
Among generated instances, we discard those that respect the quota without the need
of omitting packages to better discriminate the efficiency of our algorithms. Note that
quota determines the degree of difficulty of the assignment problem. Indeed, the more
strict is this constraint relative to the total emissions of the delivery operation, more
packages need to be omitted to respect the constraint.
For d = 20, we chose quantities as q = 1d+(C ∗M −d) ∗ ⌊X⌋ with C the capacity of
a vehicle, M the number of vehicles, and X ∼ Dir(α = 1d). We redraw X if the total
quantity demanded exceeds the total capacity.

Hyperparameters

The emission penalty λ is set to 100005 to be high enough to penalize effectively the
emissions. It biases the solution found by the routing layer so that it minimizes the
emissions to hopefully respect the quota.

Table 1: Hyperparameters.
Hyperparameters Values
Simulated Annealing

τinit 5000
τlimit 1
cooling rate 0.995

EXP3

η 1/d
√
t

γ 0.1

LRI

b 0.003

or-tools

Initial solution strategy Nearest neighbor
Local search algorithm GLS
Execution time limit 10s for d = 20,

60s for d = 50,
120s for d = 100

4 Vehicles’ emissions are chosen to have a diverse set of characteristics.
5 Chosen arbitrarily, but we could tune it to be relevant for the real emission targets considered

by cities in the future.
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Additional Figures

Fig. 5: The performance of different methods using synthetic data. On the vertical axis,
the rewards relative to a reference algorithm (higher is better) or execution times (lower
is better).

Comments on the routes As we can see in the Figures 10 and 11, the routes generating
the best rewards are those that make the EV and hybrid trucks travel long distances and,
on the other hand, the diesel vehicles does much less in distance. This seems natural for
our problem, but it is in contrast with the usual VRP routings that tries to distribute the
destinations, by partitioning the destinations into zones with roughly the same number
of destinations. Then, each zone is served by one vehicle.
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Fig. 6: The performance of the RL agent, using synthetic data, compared to other meth-
ods. The experiments are done on a single instance with the same routes and destina-
tions at every episode. (Areas in light color indicate the standard deviation of values.)

Fig. 7: Demands and their frequencies of the real data of the deliveries in France on the
map.
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Fig. 8: The average best reward found by EXP3 per step. The average is done over
100 experiments. We can remark the convergence of the EXP3 algorithm towards some
solution.

Fig. 9: This Figure shows how different layers work and interact with each other.
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(a) The initial routes given by
or-tools (b) Routes of the DP solution

(c) Routes of the multi-agent EXP3 so-
lution (d) Routes of the VA-SA solution

Fig. 10: Routes given by different methods for d = 50. Node colors indicate the vehicle,
and the color heatmap of each arc indicates the cost of that arc. Vehicle 1 is EV, 2 hybrid,
and 3 & 4 are diesel with the same characteristics.
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(a) The initial routes given by or-tools (b) Routes of the multi-agent EXP3 solution

(c) Routes of the VA-SA solution

Fig. 11: Routes given by different methods for d = 20. Node colors indicate the vehicle,
their size indicate the quantity demanded by that destination, and the color heatmap of
each arc indicates the cost of that arc. Vehicle 1 is EV, 2 hybrid, and 3 & 4 are diesel
with the same characteristics.


